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algorithm is sketched and its topological correctness for (26, 6) pictures is proved.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Skeletons are frequently applied shape features in im-
age processing, pattern recognition, and visualization,
hence fast skeletonization is extremely important for large
3D objects [1–6]. Unfortunately, skeletonization methods
are rather sensitive to coarse object boundaries, hence
the produced skeletons generally contain some false seg-
ments. In order to overcome this problem, unwanted skel-
etal parts are usually removed by a pruning process as a
post-processing step [7–11].

Thinning algorithms [12] are capable of extracting
skeleton-like shape descriptors in a topology preserving
way [13]. In 3D, surface-thinning algorithms are to extract
medial surfaces by preserving surface-endpoints and curve-
thinning algorithms produce centerlines by preserving
curve-endpoints [14]. Due to the topological constraint,
each arisen endpoint is to be connected with the medial
surface or the centerline of the given elongated object.
Hence the number of unwanted skeletal parts can be re-
. All rights reserved.
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duced by removing some ‘‘unimportant’’ endpoints during
the thinning process. In this paper we propose a new thin-
ning scheme that uses iteration-by-iteration contour
smoothing. Since unwanted endpoints are salient object
points, the proposed topology preserving smoothing algo-
rithm is to remove additive contour noise elements.

There exist numerous approaches for smoothing binary
objects in 2D and 3D [15–18]. Yu and Yan developed a 2D
sequential boundary smoothing algorithm that uses opera-
tions on chain codes [15]. It removes some noisy pixels
along a contour, decomposes the contour into a set of
straight lines, and detects structural feature points which
correspond to convex and concave segments along the
contour. Based on this work, Hu and Yan proposed an im-
proved algorithm [16]. The method that is introduced by
Taubin is suitable for smoothing piecewise linear shapes
of arbitrary dimensions [17]. This method is a linear low-
pass filter that removes high curvature variations. These
three approaches mentioned above cannot smooth 3D bin-
ary objects. In [18], Couprie and Bertrand introduced the
homotopic alternating sequence filter (HASF), a topology
preserving operator which is controlled by a constraint
set. Their HASF is a composition of homotopic cuttings
and fillings by spheres of various radii. Unfortunately, the
efficient implementation scheme for parallel thinning
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[19,20] cannot be adopted to the HASF, hence we have not
combined it with 3D parallel thinning algorithms.

That is why we proposed a parallel 3D smoothing algo-
rithm for 3D binary images [21]. Our first algorithm
removes some border points that are considered as
extremities. It is composed of two topology preserving par-
allel reduction operators, hence the entire algorithm is
topology preserving too.

In this work we present the advanced version of that
smoothing algorithm that is capable of removing much
more salient border points than the previously proposed
one. Deletable points (i.e., object points to be deleted
simultaneously in the two-pass process) are given by
3 � 3 � 3 matching templates.

The rest of this paper is organized as follows. Section 2
gives an outline of 3D digital topology. In Section 3 we pro-
pose our new 3D parallel smoothing algorithm. Section 4
gives the new thinning scheme that uses iteration-by-iter-
ation smoothing for reducing the noise sensitivity of 3D
thinning algorithms. Section 5 presents an efficient imple-
mentation of the proposed smoothing algorithm. The
topology preservation of the advanced smoothing algo-
rithm for (26, 6) binary pictures is proven in Section 6.
After, we round off the paper with a few brief concluding
remarks.
2. Basic notions and results

In this paper, we use the fundamental concepts of digi-
tal topology as reviewed by Kong and Rosenfeld [13].

Let p be a point in the 3D digital space denoted by Z3.
Let us denote Nj(p) (for j = 6, 18, 26) the set of points that
are j-adjacent to point p (see Fig. 1a).

The sequence of distinct points hx0, x1, . . . , xni is called a
j-path (for j = 6, 18, 26) of length n from point x0 to point xn

in a non-empty set of points X if each point of the sequence
is in X and xi is j-adjacent to xi�1 for each 1 6 i 6 n (see
Fig. 1a). Note that a single point is a j-path of length 0.
Two points are said to be j-connected in the set X if there
is a j-path in X between them.

The 3D binary (26,6) digital picture P is a quadruple
P ¼ ðZ3;26;6;BÞ [13]. Each element of Z3 is called a point
of P. Each point in B # Z3 is called a black point and has a
(a) (b)

Fig. 1. Frequently used adjacencies in Z3 (a). The set N6(p) of the central point p 2
W = w(p), and D = d(p). The set N18(p) contains the set N6(p) and the 12 points m
‘‘}’’. Indexing schemes to encode all possible 3 � 3 � 3 configurations (b and c
operators of the proposed method.
value of 1. Each point in Z3 n B is called a white point and
has a value of 0. 26-adjacency is associated with the black
points and 6-adjacency is assigned to the white ones. A
black component is a maximal 26-connected set of points
in B, while a white component is a maximal 6-connected
set of points in Z3 n B. A black point is called a border point
in a (26, 6) picture if it is 6-adjacent to at least one white
point.

A reduction operator transforms a binary picture only by
changing some black points to white ones (which is re-
ferred to as the deletion of 1’s). A parallel reduction operator
deletes all points satisfying its condition simultaneously. A
3D reduction operator does not preserve topology [22] if
any black component is split or is completely deleted,
any white component is merged with another white com-
ponent, a new white component is created, or a hole (that
donuts have) is eliminated or created.

A simple point is a black point whose deletion is a topol-
ogy preserving reduction [13]. Now we will make use the
following result:

Theorem 1. [23] A black point p is simple in picture
ðZ3;26;6;BÞ if and only if all of the following conditions hold:

1. The set (Bn{p}) \ N26 (p) contains exactly one 26–
component.

2. The set ðZ3 n BÞ \ N6ðpÞ is not empty.
3. Any two points in ðZ3 n BÞ \ N6ðpÞ are 6-connected in the

set ðZ3 n BÞ \ N18ðpÞ.

Based on Theorem 1, simple points can be locally char-
acterized; the support of an operator which deletes (26,6)–
simple points is 3 � 3 � 3.

Parallel reduction operators delete a set of black points
and not just a single simple point. Hence we need to con-
sider what is meant by topology preservation when a num-
ber of black points are deleted simultaneously. The
following theorem provides sufficient conditions for 3D par-
allel reduction operators to preserve topology.

Theorem 2. [14] Let O be a parallel reduction operator. Let p
be any black point in any picture P ¼ ðZ3;26;6;BÞ such that p
is deleted by O. Let Q be the family of all the sets of
(c)

Z3 contains p and the 6 points marked U = u(p), N = n(p), E = e(p), S = s(p),
arked ‘‘h’’. The set N26(p) contains the set N18(p) and the 8 points marked
). They are assigned to the first (b) and the second (c) parallel reduction
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Q # (N18(p)n{p}) \ B contained in a 2 � 2 � 1, a 2 � 1 � 2, or
a 1 � 2 � 2 subset of Z3. The operator O is topology preserv-
ing if all of the following conditions hold:

1. p is simple in the picture ðZ3;26;6;B n QÞ for any Q in Q.
2. No black component contained in a 2 � 2 � 2 cube can be

deleted completely by O.

3. The new smoothing algorithm

In this section, we present an advanced parallel algo-
rithm for smoothing 3D binary pictures.

The proposed algorithm is composed of two parallel
reduction operators denoted by R1 and R2. Deletable points
in these reduction operators are given by sets of 3 � 3 � 3
matching templates. Templates are usually composed of
three kinds of elements: black, white, and don’t care. A black
element matches a black point, a white one matches a
white point, and a don’t care template position matches
either a black or a white point. A black point p of a picture
is deletable if at least one template in the corresponding
set of templates matches the neighborhood configuration
of p. (Note that a template with k (k = 0, 1, . . .) don’t care
elements matches exactly 2k binary configurations.)

A point is deletable by R1 if at least one template in the
set of 37 templates

T R1 ¼ fU0; . . . ;U8; N0; . . . ;N8; W0; . . . ;W8;

UN; . . . ;NE; UNW ; . . . ;USWg

shown in Figs. 2–6 matches it. In these figures, we use the
following notations: each element marked ‘‘c’’ (that is the
Fig. 2. The nine templates Ui (i = 0, 1
central element of a template), ‘‘�’’, or ‘‘j’’ matches a black
point, each white template element is denoted by a ‘‘�’’,
and positions masked ‘‘�’’ correspond to the don’t care tem-
plate elements. (Note that using different symbols for
black template positions helps us to prove the topological
correctness of the algorithm.)

Deletable points by operator R2 are defined by matching
templates too. Templates in Figs. 2–6 reflected to the point
p are taken into consideration by reduction operator R2.
Note that template positions marked ‘‘�’’ in templates
assigned to operator R1 (see Figs. 2–6) coincide with the
13 elements marked p0, p1, . . . , p12 in Fig. 1b. Template
positions marked ‘‘�’’ in templates assigned to operator
R2 correspond to the remaining 13 elements marked
p13, p14, . . . , p25.

Our smoothing algorithm consists of two steps. First,
points are deleted according to the rules of operator R1.
Then, in a basically identical step, all points deletable by
R2 are removed simultaneously.

Deletable points of our first two-pass smoothing algo-
rithm [21] were given by 13–13 matching templates. The
set of templates assigned to its first phase was
fU0;N0;W0; UN;UE;US;UW ;NW ;NE; UNW ;UNE;USE;USWg

(see Figs. 2–6). Since the set T R1 contains 24 additional
templates (U1, . . . , U8, N1, . . . , N8, W1, . . . , W8), the new
algorithm can remove much more salient border points.
Figs. 7–9 are to compare the proposed algorithm with
our first attempt [21]. Numbers in parentheses mean the
count of object points. Notice that both of them are proper
, . . . , 8) assigned to the U-face.



Fig. 3. The nine templates Ni (i = 0, 1, . . . , 8) assigned to the N-face.

Fig. 4. The nine templates Wi (i = 0, 1, . . . , 8) assigned to the W-face.
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Fig. 5. Templates assigned to the first six edges.

Fig. 6. Templates assigned to the first four nodes.

Fig. 7. A 20 � 30 � 10 3D image of a noisy ribbon (left), the smoothed image produced by our first algorithm [21] (middle), and the result of the advanced
algorithm (right).

Fig. 8. A 103 � 42 � 60 3D image of a noisy shark (left), the smoothed image produced by our first algorithm [21] (middle), and the result of the advanced
algorithm (right).
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Fig. 9. A 64 � 64 � 19 3D image of a noisy torus (left), the smoothed image produced by our first algorithm [21] (middle), and the result of the advanced
algorithm (right). Notice that the smooth boundary segments are not altered by the proposed algorithm.
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smoothing algorithms, since they do not alter the smooth
boundary segments of the original image (see Fig. 9).

4. The new thinning scheme

We are to apply our smoothing algorithm for reducing
the noise sensitivity of 3D parallel thinning algorithms.
Consider an arbitrary thinning algorithm called T . The pro-
posed thinning scheme combined with iteration-by-itera-
tion smoothing is sketched by the following program:

Input: pictureðZ3;26;6;XÞ
Output: pictureðZ3;26;6;YÞ
begin

Y = X ;
repeat

//smoothing
Y¼Y n fpjp is deletable by R1in ðZ3;26;6;YÞg ;
Y ¼Y nfpjp is deletable by R2 in ðZ3;26; 6;YÞg ;

//one thinning iteration

D ¼ fpjp is deletable by T in ðZ3;26;6;YÞg ;
Y = YnD ;

until D = ; ;
end

In experiments the proposed thinning scheme was
tested on objects of various images. Here we present six
examples, where six kinds of 3D parallel thinning
algorithms were applied (Figs. 10–15). Numbers in paren-
theses mean the count of object points.

Note that a modified version of the proposed smoothing
algorithm is to be combined with curve-thinning algo-
rithms. That is why the 13 templates

U0;N0;W0; UN;UE;US;UW;NW ;NE; UNW ;UNE;USE;USW

in T R1 (see Figs. 2–6) can truncate 1-point thin curves. It is
easy to overcome this problem by modifying these 13
masks in the following way: at least one element marked
‘‘�’’ matches a black point. The topology preservation of
the proposed smoothing algorithm for (26, 6) binary pic-
tures is proven in Section 6. Since the modification sug-
gested above yields a more restrictive algorithm, the
modified smoothing process for reducing the noise sensi-
tivity of 3D curve-thinning algorithms is topology preserv-
ing as well.
5. Implementation

If the 37+37 templates of operators R1 and R2 are con-
sidered, then one may think that the proposed algorithm
is time consuming and it is rather difficult to implement
it on conventional sequential computers. Thus we sketch
here an efficient and fairly general implementation meth-
od. It can be used for various reduction operators (e.g., par-
allel thinning algorithms) as well [19,20].

The proposed implementation uses just one pre-calcu-
lated look-up-table (LUT) to encode deletable points. Since
the 3 � 3 � 3 support of our operators contains 26 points
with the exception of the central point in question (see
Figs. 2–6), the LUT has 226 entries of 1 bit in size. It is not
hard to see that it requires just 8 MB of storage space in
memory.

An integer in [0, 226) can be assigned to each 3 � 3 � 3
configuration. This index is calculated as

P25
k¼02kpk, where

pk 2 {0, 1} (k = 0, . . . , 25, see Fig. 1b and c). We applied
the indexing scheme depicted in Fig. 1b when the LUT as-
signed to operator R1 was built. The ith bit of that LUT has
the value of 1 if the central point of the ith configuration is
deletable by R1, otherwise a value of 0 is assigned to the ith
bit of the LUT (i = 0, . . . , 226). If a matching template in the
set of 37 templates of operator R1 contains n (n = 0, 1, . . .)
don’t care elements, then the central points of the matched
2n configurations are deletable by R1.

Note that operator R2 does not need an additional LUT.
Operator R2 can be executed by the LUT assigned to R1, but
it is to be addressed by the reflected indexing scheme de-
picted in Fig. 1c.

In addition, two lists are used to speed up the process:
one for storing the border points in the current picture
(since operators R1 and R2 can only delete border points,
thus the repeated scans of the entire image array are
avoided); the second list is to store all deletable points in
the current phase of the process.



Fig. 12. A 124 � 207 � 300 3D image of a rabbit (left), its centerlines produced by the 6-subiteration surface-thinning algorithm proposed by Gong and
Bertrand [26] (middle), and the result of that algorithm combined with iteration-by-iteration smoothing.

Fig. 11. A 175 � 93 � 285 3D image of a cow (left), its centerlines produced by the 8-subfield curve-thinning algorithm proposed by Németh et al. [27] with
the endpoint characterization introduced by Bertrand and Aktouf [25] (middle), and the result of that algorithm combined with iteration-by-iteration
smoothing.

Fig. 13. A 139 � 90 � 285 3D image of a car (left), its medial surface produced by the 2-subfield surface-thinning algorithm proposed by Németh et al. [27]
(middle), and the result of that algorithm combined with iteration-by-iteration smoothing.

Fig. 10. A 304 � 96 � 261 3D image of a helicopter (left), its centerlines produced by the 6-subiteration curve-thinning algorithm proposed by Palágyi and
Kuba [24] (middle), and the result of that algorithm combined with iteration-by-iteration smoothing.
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Fig. 15. A 135 � 86 � 191 3D image of a dragon (left), its medial surface produced by the 8-subfield surface-thinning algorithm proposed by Németh et al.
[29] (middle), and the result of that algorithm combined with iteration-by-iteration smoothing.

Fig. 14. A 59 � 285 � 139 3D image of a raptor (left), its medial surface produced by the fully parallel surface-thinning algorithm proposed by Manzanera
et al. [28] (middle), and the result of that algorithm combined with iteration-by-iteration smoothing.

(a) (b) (c) (d)

Fig. 16. Possible configurations in which point p is deleted by template Ui (i = 0, 1, . . . , 8) and q is to be deleted by templates N6 (a) or W4 (b). Possible
configurations in which point p is deleted by template UE and q is to be deleted by templates Wi (i = 0, 1, . . . , 8) (c) and NW (d). Each black point marked ‘‘€’’
is not deletable by R1.
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6. Verification

Now we will show that the proposed smoothing algo-
rithm is topology preserving for (26, 6) pictures. We are
to prove that the first operator R1 given by the set of
matching templates T R1 fulfills both conditions of Theorem
2. It can be proved for the second operator R2 in the same
way. Hence the entire smoothing algorithm is topology
preserving, since it is composed of topology preserving
reductions.

Let us classify the elements of the templates in the set
of templates T R1 (see Figs. 2–6). The element in the centre
of a template (marked ‘‘p’’) is called central. A noncentral
template element is called black if it is marked ‘‘�’’ or
‘‘j’’. A noncentral template element is called white if it is
marked ‘‘�’’. Any other noncentral template element which
is neither white nor black, is called potentially black
(marked ‘‘�’’). A black or a potentially black noncentral tem-
plate element is called nonwhite.

A black point p is deletable if at least one template in the
set of 37 templates in T R1 matches it (i.e., if it is deletable
by R1).

Lemma 1. Each deletable point is simple.
Proof. The first thing we need to verify is that there exists
a 26-path between any two potentially black positions
(Condition 1 of Theorem 1). Here it is sufficient to show
that any potentially black position is 26-adjacent to a black
position and any black position is 26-adjacent to another
black position. This is really apparent from a careful exam-
ination of the templates in T R1 .
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To prove that Conditions 2 and 3 of Theorem 1 hold, it is
sufficient to show that, for each template,

� there exists a white position 6–adjacent to the central
position,
� for any potentially black or white position 6-adjacent to

the central position p, there exists a 6-adjacent white
18-neighbour which is 6-adjacent to a white position
6-adjacent to p.

These two points are obvious by a careful examination of
the set of templates T R1 . h
Lemma 2. The simplicity of a deletable point does not depend
on any point coinciding with a template position marked ‘‘j’’.
(In other words, a deletable point remains simple after the
deletion of any (sub)set of points coinciding with potentially
black or ‘‘j’’ template positions.)

It can be seen similarly as Lemma 1.

Lemma 3. Let p and q be any two black points in a picture
ðZ3;26;6; BÞ such that q 2 N18(p). If both points p and q are
deletable, then p is simple in picture ðZ3;26;6;B n fqgÞ.
(a) (b) (

Fig. 18. Possible configurations in which point p is deleted by template Wi (i = 0,
(c), and USE (d). Each black point marked ‘‘€’’ is not deletable by R1.

(a) (b) (

Fig. 17. Possible configurations in which point p is deleted by template Ni (i = 0, 1
USW (d). Each black point marked ‘‘€’’ is not deletable by R1.

(a) (b) (

Fig. 19. Possible configurations in which point p is deleted by template US and
Possible configuration in which point p is deleted by template UW and q is to be d
R1.
Proof. Since point p is deletable, by Lemma 1 it is simple.
To prove this lemma, we must show that p remains simple
after the deletion of q.

If q coincides with a potentially black template element,
then this lemma holds by Lemma 2. Hence it is sufficient to
deal with the deletable points coinciding with template
elements marked ‘‘�’’ in templates Ui, Ni, Wi, UN, UE, US, UW,
NW, and NE (i = 0, 1, . . . , 8, see Figs. 2–5). We do not have to
take templates UNW, UNE, USE, and USW into consideration
since elements marked ‘‘�’’ in these four templates are not
18-adjacent to their central elements marked ‘‘p’’ (see Fig. 6).

Let us see the 33 templates in question:

� If p is deleted by Ui (i = 0, 1, . . . , 8), then q = u(p) may be
deleted by templates N6 or W4. The two possible config-
urations are depicted in Fig. 16a and b.
� If p is deleted by Ni (i = 0, 1, . . . , 8), then q = n(p) may be

deleted by templates U6, W6, US, USE, or USW. The four
possible configurations are depicted in Fig. 17.
� If p is deleted by Wi (i = 0, 1, . . . , 8), then q = w(p) may

be deleted by templates U4, N4, UE, NE, UNE, or USE.
The four possible configurations are depicted in
Fig. 18.
c) (d)

1, . . . , 8) and q is to be deleted by templates U4 or UE (a), N4 or NE (b), UNE

c) (d)

, . . . , 8) and q is to be deleted by templates W6 (a), U6 or US (b), USE (c), and

c) (d)

q is to be deleted by templates Ni (i = 0, 1, . . . , 8) (a), NW (b), and NE (c).
eleted by template NE (d). Each black point marked ‘‘€’’ is not deletable by



(a) (b) (c)

Fig. 20. Possible configurations in which point p is deleted by template NW and q is to be deleted by templates UE (a) and US (b). Possible configuration in
which point p is deleted by template NE and q is to be deleted by templates Wi (i = 0, 1, . . . , 8) (c). Black point marked ‘‘€’’ is not deletable by R1. The sets of
black points {p, q, r} in (b) and {p, q, r, s} in (c) are not contained in a 2 � 2 � 1, a 2 � 1 � 2, or a 1 � 2 � 2 subset of Z3. The 2 � 2 � 2 cube that contains a
black component C (right).
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� If p is deleted by UN, then q = n(u(p)) is not deletable by
R1.
� If p is deleted by UE, then q = e(u(p)) may be deleted by

templates Wi (i = 0, 1, . . . , 8) or NW. The two possible
configurations are depicted in Fig. 16c and d.
� If p is deleted by US, then point q = s(u(p)) may be

deleted by templates Ni (i = 0, 1, . . . , 8), NW, or NE.
The three possible configurations are depicted in
Fig. 19a,b, and c.
� If p is deleted by UW, then point q = w(u(p)) may only be

deleted by template NE. The possible configuration is
depicted in Fig. 19d. It is not hard to see that p remains
simple after the deletion of q.
� If p is deleted by NW, then point q = w(n(p)) may be

deleted by templates UE or US. The two possible config-
urations are depicted in Fig. 20a and b.
� If p is deleted by NE, then q = e(n(p)) may be deleted by

templates Wi (i = 0, 1, . . . , 8). The possible configuration
is depicted in Fig. 20c.

It is easy to see that p remains simple after the deletion of
q in all cases. h
Lemma 4. No black component C contained in a 2 � 2 � 2
cube can be deleted completely by the operator R1.
Proof. Let us examine the 2 � 2 � 2 cube depicted in
Fig. 20.

It is easy to check that if c1 2 C, then c1 is not deletable
by R1, and if ck 2 C (k = 2, . . . , 8), then there exists a cj 2 C
(j = 1, . . . , k � 1) that is not deletable by R1. Thus C cannot
be deleted completely. h

We are now ready to state our main theorem.

Theorem 3. Operator R1 is topology preserving for (26, 6)
pictures.
Proof. We need to show that both conditions of Theorem 2
are satisfied:

1. Let us examine the simplicity of a deletable point p in
ðZ3;26;6;B n QÞ, where the set of deletable points
Q # (N18(p)n{p}) \ B is contained in a 2 � 2 � 1, a
2 � 1 � 2, or a 1 � 2 � 2 subset of Z3. It is clear that
the number of elements in Q (denoted by #(Q)) is less
than or equal to 3.
The following points have to be checked:
� #(Q) = 0 (Q = ;):Condition 1 of Theorem 2 is satisfied

by Lemma 1.
� #(Q) = 1 (Q = {q}): Condition 1 of Theorem 2 is satis-

fied by Lemma 3.
� #(Q) = 2,3: If elements of Q coincide with template

elements marked ‘‘�’’ or ‘‘j’’, then point p is simple
after Q is deleted by Lemmas 1 and 2. If an element
of Q coincides with a template element marked ‘‘�’’,
then all possible configurations are depicted in Figs.
16–20. It is easy to check that point p is simple after
the deletion of Q. Thus Condition 1 of Theorem 2 is
satisfied.

2. Condition 2 of Theorem 2 (i.e., no black component con-
tained in a 2 � 2 � 2 cube can be deleted completely) is
satisfied by Lemma 4. h
7. Conclusions

In this paper we presented an advanced contour
smoothing algorithm for reducing the noise sensitivity of
3D thinning algorithms and the associated new thinning
scheme with iteration-by-iteration smoothing. An efficient
and fairly general implementation method was also
sketched. We proved that the proposed smoothing algo-
rithm is topology preserving for (26, 6) pictures, hence it
cannot alter the topological correctness of the applied thin-
ning algorithms. We gave some examples to illustrate that
the proposed thinning scheme can produce skeletons with
less unwanted parts.
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