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Abstract

We present a new agent-based system for detailed traffic animation on urban arterial networks with diverse junctions like signalized
crossing, merging and weaving areas. To control the motion of traffic for visualization and animation purposes, we utilize the
popular follow-the-leader method to simulate various vehicle types and intelligent driving styles. We also introduce a continuous
lane-changing model to imitate the vehicle’s decision-making process and dynamic interactions with neighboring vehicles. By ap-
plying our approach in several typical urban traffic scenarios, we demonstrate that our system can well visualize vehicles’ behaviors
in a realistic manner on complex road networks and generate immersive traffic flow animations with smooth accelerating strategies
and flexible lane changes.
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1. Introduction

An efficient traffic transportation system is always indispens-
able to the functioning and prosperity of a modern, industrial-
ized society. Due to the fast growing volume of vehicular traf-
fic and the complex road topologies in modern cities, there are
many traffic problems, such as traffic jams, incident manage-
ment, signal control optimization and network design, which
cannot be solved by traditional tools based on analytical meth-
ods. Many research activities have focused on modeling, sim-
ulation and visualization of modern traffic by taking advantage
of the advanced computer technology, either to evaluate alter-
natives in traffic management or to assist traffic system con-
struction in urban development. Additionally, along with the
3D urban visualizing tools like Google Maps and Virtual Earth,
and the increasing need of constructing vivid 3D worlds in en-
tertainment industry (mostly in 3D films and games), there is
a rapidly growing demand to incorporate immersive traffic sce-
narios into these 3D environments.

There are massive mathematical descriptions on modeling
and simulating the traffic flow, which typically can be classified
into microscopic (agent-based) or macroscopic (continuum-
based) models. While microscopic methods try to model the
dynamics of each vehicle under the influence of its surrounding
vehicles, macroscopic models treat the collection of vehicles as
a continuous flow, using formulas inspired by gas-kinetic flow
or hydrodynamic flow equations. Since the continuum models
are mainly designed to simulate large-scale road networks in
parallel, focusing on aggregate behaviors and collective quanti-
ties like spatial density and traffic flux, they are not very suitable
for detailed, non-uniform traffic simulation on road system with
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many junctions and signalized intersections. Instead, many mi-
croscopic models are adopted for specific urban traffic simula-
tions due to their flexibility to integrate heterogeneous agents,
to generalize to diverse road topologies and to concentrate on
various interactions between adjacent vehicles according to lo-
cal road situations.

Two main challenges exist when simulating realistic urban
traffic scenarios: automatic motion control in connection re-
gions and natural lane-changing behaviors on multi-lane roads
(particularly when approaching the critical junctions such as the
merging, weaving areas and signalized crossings). The existing
traffic simulators are typically designed to observe overall traf-
fic phenomena on simple hypothetical road networks for experi-
menting and analyzing purposes. Therefore, the driving behav-
iors are highly abstract and simplified. Their control and dis-
play modules are comparatively coarsely implemented, which
cannot be directly applied to produce a fine realistic traffic an-
imation. In addition, the existing lane-changing techniques,
which were proposed mainly for single-lane freeway traffic and
idealized merging regions, handle the vehicle’s lane change as
an instant jump in one simulation step. There are few detailed
3D implementations that account for the natural continuous in-
teractions between the involved vehicles in the dynamic lane-
changing process.

In order to produce vivid traffic animations, we present a
novel microscopic traffic simulation system which incorporates
several intelligent agent-based techniques. The system can vi-
sualize various traffic behaviors realistically on complex road
networks with typical signalized crossing, merging and weav-
ing areas. Two sub-models are utilized: the intelligent driver
model and the continuous lane-changing model.

Our detailed implementation extends the car-following
model to better handle the vehicle’s reaction to other vehicle’s
cut-in and the stop-and-go signals in junctions, showing smooth
speedup and slowing down actions in a realistic manner. We
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(a) An elevated road with several merging and weaving areas.

(b) A typical traffic scenario with signalized crossing.

(c) A global view of the road network.

Figure 1: Various traffic scenarios with different junction types.

also use a flexible continuous lane-changing model to safely
simulate the driver’s free or imperative lane-changing behaviors
in order to overtake or to get into the intended lane for turning
and merging when approaching the junctions.

We have built a typical urban arterial network consisted of
multi-lane roads, signalized crossings, merging junctions and
elevated highways with several merging and weaving areas (see
Figure 1). By applying our approach to this network, we pro-
duce an immersive traffic flow animation with realistic driv-
ing behaviors and flexible lane changes, demonstrating our sys-
tem’s ability to visualize complex urban traffic with a rich vari-
ety of vehicle types, driving styles and road topologies.

2. Related Work

The studies and research on traffic dynamics have started
since 1935. During the following decades, lots of traffic models
have been proposed and extended to explain traffic phenomena,
such as traffic jams and stop-and-go effects. Recently, many re-
searchers and engineers have started to employ advanced com-
puter technology to simulate and visualize their traffic models
to obtain direct, visible results for practical applications, such
as city road planning, traffic regulation and congestion analysis.

Helbing [1] reviewed the history of traffic modeling and
broadly classified the modeling approaches into microscopic
descriptions and macroscopic descriptions.

Macroscopic models view traffic flow as continuum dynam-
ics like fluid or gas. The popular LWR model [2] is the first
hydrodynamic model which uses a first-order partial differen-
tial equation. Newell [3], Daganzo [4] and Lebacque [5] subse-
quently developed several variants of the LWR model to make
it suitable for more general situations and to avoid shock fronts.
Payne [6] and Whitham [7] proposed a gas-like dynamic rep-
resentation, a second-order system of equation known as PW
model in 1970s. This model was further extended by Aw [8]
and Zhang [9] to eliminate nonphysical behavior, referred as
ARZ model. In computer graphics, Sewall [10] proposed a real-
time large scale continuum traffic model for 3D scenes, includ-
ing a discrete multi-lane changing method. Their approach de-
scribes each single lane as a separate one-dimensional flow, and
the vehicle’s speed is determined by the fluid cell containing it.
Since the flowing speed varies little, this technique is limited to
idealized connected roads and cannot cover many details such
as comparatively sharp slowing down, stopping, or imperatively
cutting-into adjacent lanes.

While the macroscopic models deal with collections of vehi-
cles and are therefore computationally more efficient than mi-
croscopic ones, they are mainly used for macroscopic analytical
investigations, rather than finer level of detailed simulation like
the microscopic ones.

Microscopic models, also known as agent-based approaches,
assume that the acceleration of a vehicle is determined by its
neighboring vehicles, especially the one ahead. Pipes [11]
introduced a car-following model, which was later vali-
dated by Chandler [12]. Gerlough [13] summarized a set
of car-following rules in his dissertation about traffic sim-
ulation in 1955. These approaches were followed by an
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avalanche of extensions, such as the non-linear car-following
model [14], the optimal velocity model [15], the intelligent
driver model [16] [17] and the cellular automaton model [18].
These agent-based models have been tested and applied to
many traffic simulation systems, such as CORSIM [19], MIT-
SIM [20], PARAMICS [21], VATSIM [22] and SUMO [23]. In
addition, Sewall [24] proposed a traffic reconstruction and vi-
sualization method from discrete spatio-temporal data detected
by sensors. This method scatters the whole state-time space and
searches for an approximate trajectory for each vehicle. The
time and memory required by this reconstructing process grow
quickly when the volume of vehicles and the discrete states in-
creases.

The lane-changing models are introduced in traffic simula-
tion to investigate their effects on traffic flow and also to make
the simulation more realistic. Since the lane-changing behav-
iors often act as initial perturbations, it is crucial to simulate
their impact on the capacity, stability and breakdown of traf-
fic flows. Kesting [25] introduced the freeway based MOBIL
lane-changing model which is suitable for the intelligent driver
model [16], taking acceleration as a primary consideration. Hi-
das [26] investigated and modeled the lane-changing behaviors
around the merging and weaving regions. Since these models
were designed for ideal analytical purposes, they implemented
the lane change action as an instantaneous jump from current
lane to the target lane in one simulation update. However, to
achieve realistic animation results in 3D urban scenarios, it is
vital to simulate the continuous lane-changing process with a
smooth curve trajectory and dynamic interactions between the
involved vehicles to keep safe.

3. Overview

Our system aims to visualize various urban traffic scenarios
in a realistic manner, in which the transport network is mainly
composed of multi-lane roads connected by diverse junctions.
The system can be divided into three components: motion in-
structed by follow-the-leader model, lane-changing behaviors
determined by the adaptive continuous lane-changing model
and transition guided by connection information in the junc-
tion regions. The vehicle’s kinetic behavior is manipulated by
the first two components. The last one makes the vehicles flow
naturally on the whole road network.

Our follow-the-leader model utilizes Martin Treiber’s
freeway-based intelligent driver model [16] (IDM) and the en-
hanced model [17], which closely imitates a driver’s response to
gaps and the relative speed with his leading vehicle (the vehicle
ahead in the same lane). The vehicles’ accelerating and braking
actions happen more frequently around the signalized intersec-
tions, merging and weaving sections. The original IDM model
would lead to a slow accelerating process for the vehicles that
once stopped before the signalized crossing. We make a mod-
ification on the IDM model to generate more fluent speedup
around the stop-and-go regions in animation.

Inspired by the investigation of Hidas [26], we classify
drivers’ lane-changing behaviors into two types: free lane-
changing and imperative lane-changing based on local traffic

situation. The drivers’ motivations include speedup and getting
into a lane that allows their intended turning movement at sig-
nalized crossing or merging movement around merging (weav-
ing) areas. The current methods either implemented the lane
change as an instant jump or a predefined curve on a road map,
and didn’t cover all the lane-changing situations in urban road
networks. Since we attempt to generate detailed 3D urban traf-
fic animations, we propose a flexible model to create realistic
lane-changing actions in various traffic situations. Moreover,
we design a reliable checking procedure to estimate the safety
of the continuous lane-changing process.

In our simulator, the traffic network is divided based on three
basic types: the multi-lane road, unsignalized junction and sig-
nalized junction. Each road structure contains a list recording
the vehicles driving on it and some basic information about
lanes, speed limit and density. Both junction structures con-
tain the descriptions about detailed lane connections between
the incoming and outgoing roads. The signalized junction is
implemented by simulating the functioning of traffic lights in
real-life situation. When a vehicle approaches the end of the
road, it checks the information in the connected junction to de-
cide where to go and when to go.

4. Motion Control on Vehicles

In this section we discuss about the intelligent agent-based
techniques we used to control the vehicle’s motion. Two im-
portant sub-models are implemented in the simulator: the mod-
ified follow-the-leader model and the continuous adaptive lane-
changing model. In our implementation, the existing models
are more or less modified to enhance their suitability for our
system to produce fast and appealing traffic animations on both
freeways and signalized urban arterial networks.

4.1. Extended Follow-the-leader Model

The follow-the-leader model, the most popular used agent-
based model, assumes that the acceleration of a vehicle is de-
pendent on the front vehicle (named as its leader). The locomo-
tion of a vehicle is usually formulated as a function of its de-
sired velocity, the relative speed and the gap to its leader. Gen-
erally, it accelerates when their gap increases and brakes when
the gap decreases. Treiber’s IDM model [16] well describes
each vehicle’s action according to its leader’s motion state, and
shows a stable crash-free dynamics with an intelligent braking
strategy. However, it is proposed based on freeway traffic for
one-lane road simulation and would lead to a visually slow ac-
celerating process for the vehicles that once stopped before the
signalized crossing. We modified the IDM model to make it
more suitable for signalized urban road networks. Figure 2 is
an illustration of the involved vehicles.

In our simulator, each intelligent vehicle is equipped with the
constant parameters (vd, smin, amax, bcom,T, δ, p f ) that describe
the basic driving capability, and the dynamic motion parame-
ters (p(t), v(t), a(t)) that stand for the position on the road, the
velocity and acceleration of the vehicle respectively at the mo-
ment t. The constant parameters of the vehicle are initialized
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Table 1: Basic vehicle parameters.

Parameter Meaning Common value

vd Desired speed 100 ± 20km/h
smin Minimum safe distance 2.5 ± 1.0m
amax Maximum acceleration 3.0 ± 1.0m/s2

bcom Comfortable deceleration 2.2 ± 1.0m/s2

T Driver’s response time 1.0 ± 0.5s
δ Free acceleration exponent 4
p f Driver’s politeness factor 0 ∼ 1.0

Figure 2: The relationship between the involved vehicles: the Subject (S), the
Leader (L), the Follower (F) and their gaps. The leader gap s is a key factor in
the subject vehicle’s locomotion determination.

when it is created. Their meanings and the commonly used data
ranges are shown in Table 1. Their effects on simulation result
are illustrated in Table 2. The dynamic motion parameters are
updated in each time step. We view each vehicle’s motion as a
single path in the middle of the lane, and define its lane chang-
ing trajectory as a dynamic curve between the adjacency paths.

By specifying the vehicles’ individual parameters, we are ca-
pable of simulating a vast variety of vehicle types and driv-
ing styles. Each individual reacts differently based on both the
hardware capacity and subjective intention, which could greatly
augment the vehicles’ diversity in locomotion.

The IDM acceleration is a continuous function of the cur-
rent speed v, desired speed vd, the gap s and relative speed
∆v = v − vl to the leader. Compared with the original for-
mulation in [16], we modified the deceleration term by adding
an activation governing control part, in order to produce visu-
ally smoother reactions for the vehicles that once stopped. The
modified expression is given by:

aidm =

free acceleration term︷              ︸︸              ︷
amax

1 − (
v
vd

)δ −

deceleration term to keep safe︷                                  ︸︸                                  ︷
bcom

(
s∗

s

)2

(Θ(∆v) + Θ(sb − s))

(1)

s∗ = smin + vT +
v∆v

2
√

amaxbcom
(2)

The acceleration can be separated into a free road term
(describing the driver’s behavior to reach its desired velocity
vd) and a deceleration term (describing the driver’s behavior
to keep safe clearance) with an activation governing control
(Θ(∆v) + Θ(sb − s)):

afree = amax

1 − (
v
vd

)δ (3)

abrake(t) = −bcom

(
s∗
s

)2
(Θ(∆v) + Θ(sb − s))

= −bcom

(
smin+vT

s + v∆v
2s
√

amaxbcom

)2
(Θ(∆v) + Θ(sb − s))

(4)

The free acceleration term is determined by the desired speed
vd, the maximum acceleration amax and the acceleration expo-
nent δ. The deceleration term is well-defined to show an intelli-
gent braking strategy with smooth transitions between acceler-
ation and deceleration behaviors. It is relevant to the actual gap
s and the desired gap s∗. s∗ is calculated by equation (2) and
it consists of three terms: the minimum required distance smin,
the braking response distance vT and the dynamic control part

v∆v
2
√

amaxbcom
.

The natural and intelligent control exhibited by this model
can be observed when considering the following situations 1)-
4).

1) On a nearly empty road, where the gap to the leading ve-
hicle is very large (s ≫ vT, s ≫ v∆v ), the IDM acceleration

is dominated by afree = amax

[
1 −

(
v
vd

)δ]
. The driver attempts to

reach his desired speed vd. The acceleration gradually vanishes
as v approaches vd. The change of the acceleration is controlled
by the acceleration exponent δ. δ = 4 has been verified as a
reasonable value to produce realistic behavior in Treiber [27].

2) In traffic with small net distances, for negligible velocity
difference ∆v ≈ 0, v < vd and small constant distance s ≈
smin + vT < sb, the deceleration term is approximately equal
to −bcom

(
smin+vT

s

)2
, which resembles a simple repulsive force

such that the gap is quickly enlarged towards an equilibrium
distance (characterizing by a minimum distance plus a velocity-
dependent headway).

3) In a situation where the vehicle is approaching a
standing vehicle or obstacle with a high approaching rate
(∆v is very large), the deceleration term is dominated by

−bcom

(
v∆v

2s
√

amaxbcom

)2
= − 1

amax

(
∆v2

2s

)2
= − a2

shall
amax

. In such an emer-
gency situation, drivers brake heavily to get their vehicles un-
der control. This term will dynamically adjust the braking value
used in simulation inside the maximum braking range (we use
the same value with amax based on the assumption that the vehi-
cle with larger maximum acceleration capacity also has a larger
maximum braking ability).

4) In a signalized crossing region, a vehicle stops and waits
before the line when the corresponding traffic light is red. When
the light turns green, standing vehicles need to react quickly to
pass through the crossing. The original model makes vehicles
accelerate very slowly with too much cautiousness. We add
a new activation governing control part (Θ(∆v) + Θ(sb − s)) so
that the deceleration term only plays its role when necessary.

In our simulation, the deceleration part starts to play its role
only when the vehicle is approaching its leader (∆v ≥ 0) or the
gap s is smaller than a threshold sb (sb = hs∗, h ≥ 1.0 in our ex-
periment). We use a step function Θ(t) to govern the activation.
By modifying the deceleration term to react in a more relaxed
way, the vehicle willaccelerate faster in the restarting process
(see the velocity comparison by using the original IDM model

4



(in green) and our modified model (in blue) in Figure 15). In
the final animation result, we find that this accelerating control
is close to realistic action and the vehicle’s reaction is smooth
when the traffic light turns green.

The dynamic control part in the deceleration term reflects the
driver’s smooth reaction to keep crash-free in advance. When
the vehicle’s speed or approaching rate is large (v∆v is large),
or the braking ability (amax, bcom) is small, this part will lead
to a large desired gap, and vice versa. In emergency situations
(see situation 3), it will dynamically adjust the braking response
within the maximum braking range.

In most situations, updating vehicles using the above mod-
ified IDM accelerating term shows a satisfactory result with
smooth accelerating and braking motions. However, when we
add the lane-changing actions on multi-lane roads, the IDM ac-
celeration would lead to the lane-changing subject’s unneces-
sary slow down and its new follower’s unrealistic sharp braking
in the target lane. These overreacting behaviors are caused by
the sudden drop of the actual involved gaps at the moment the
subject inserts into the target lane.

To eliminate the vehicle’s overreaction due to the cut-in ac-
tion, we apply the method proposed by Kesting [17], which in-
troduces a constant-acceleration-heuristic model (CAH) to deal
with these unnecessary strong braking reactions. The CAH
model takes the leader’s current acceleration value into account
and leads to zero deceleration for some cases that clearly re-
quire a moderate braking reaction. For example, in a stationary
car-following situation (∆v = 0, al = 0), acah might be zero for
arbitrary values of the gaps s and v.

The CAH model is proposed based on the following assump-
tions: firstly, the accelerations of the subject and the leading
vehicle will not change in the relevant future. Secondly, no safe
headway or minimum distance is required at any moment and
drivers will react without delay (driver’s response time is zero).

For the given actual values of the gap s, velocity v, velocity vl

and acceleration al of the leading vehicle, the CAH acceleration
expression is given by:

acah =


v2ãl

v2
l −2sãl

, vl∆v ≤ −2sãl

ãl − ∆v2Θ(∆v)
2s , otherwise,

(5)

where ãl = min (al, amax) is used to make sure that the effective
acceleration is within the subject’s acceleration capability amax.

When calculating the maximum possible acceleration while
keeping crash-free, the CAH model first predicts whether the
velocity of the leading vehicle is zero or nonzero at the time
when the minimum gap (smin = 0) is reached. When vl∆v ≤
−2sãl, vehicles have stopped before smin = 0 is reached. The
subject vehicle will try to use maximum safe acceleration and

expect zero extra gap. Therefore,
(
− v2

2acah

)
−

(
− v2

l
2ãl

)
= s, from

which we can obtain acah =
v2ãl

v2
l −2sãl

. Since the negative ap-
proaching (∆v < 0) does not make sense to the CAH model,
we eliminate it using Θ(∆v).

Our final model is based on the assumption that drivers al-
ways try to utilize the maximum crash-free acceleration. For the

situations (like the stationary car-following situation) where the
IDM model leads to unnecessarily strong braking reactions, the
CAH acceleration is much larger and results in a more relaxed
reaction. However, since the CAH model does not consider safe
headway, minimum distance and response time, it cannot be di-
rectly used as a complete model (it fails on other situations). In
the final model, we use the CAH model only as an indicator to
determine whether the IDM model will lead to unrealistically
high decelerations or not. Since the final acceleration should be
a continuous and differentiable function of the IDM and CAH
accelerations, the most simple functional form is given by equa-
tions (6)-(7).

aadjust = acah + bcom tanh
(

aidm − acah

bcom

)
(6)

afinal =


aidm, aidm ≥ acah

(1 − c)aidm + caadjust, otherwise
(7)

Kesting [17] has experimented and verified that the weight c ∈
[0.95, 1.0] can produce realistic actions. c = 0.99 is the most
commonly chosen value.

In each update step, we use the final acceleration calculated
from equation (7) to update the vehicle’s speed and position as
shown below:

v(t + ∆t) = v(t) + afinal∆t (8)

p(t + ∆t) = p(t) + v(t + ∆t)∆t (9)

In order to generate real-time animation, we set ∆t = 0.04s
(25 frames/second). We use the semi-implicit Euler integration
to update the vehicle’s velocity and position. All the simula-
tions and experiments have showed stable results since the ve-
hicle’s acceleration value is independent of its position value.

4.2. Continuous Lane-changing Model

Based on Hidas’s study [26] and our visual simulation pur-
pose, we roughly divide the lane-changing behaviors on urban
roads into two categories: free lane-changing and imperative
lane-changing. The first type frequently happens in a com-
paratively free road condition, in which the gaps between the
involved vehicles are large enough for safe lane change, indi-
cating that the subject vehicle’s cut-in action happens indepen-
dently and there is little interference between the subject and
follower vehicle. This kind of lane change is normally triggered
by the subject’s intention to take the speed advantage in the tar-
get lane. The other type is more complicated since we need to
model the involved vehicles’ interactions due to the local con-
gested situation. It is applied when the subject vehicle demands
a lane-changing action because of some imperative factors such
as end of lane or intended turning movement around the cross-
ing (Figure 3), while the current gaps are not large enough for
free lane change.

Unlike 2D simulators that mainly aim at observing traffic
flows and abstract the lane-changing process as an instant jump
in one single simulation update, the lane-changing behaviors in
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Figure 3: Typical mandatory situations where a vehicle must change its lane.

Figure 4: An illustration of free lane-changing process.

(a) At the beginning of the imaginary lane change (Tc = 0.0), check
two gaps: gap′nl and gap′n f .

(b) In the middle of the imaginary lane change (Tc = 0.5Tlc), check
three gaps: gapol, gap′nl and gap′n f .

(c) At the end of the imaginary lane change (Tc = Tlc), check two
gaps: gap′nl and gap′n f .

Figure 5: In the estimating procedure, three critical moments are estimated to
decide whether a possible lane change would be safe based on an imaginary
lane-changing process.

our system is a continuous process with a safety pre-checking
procedure. The final visual lane-changing trajectory is a curve
determined by the involved vehicles’ speeds and gaps. Com-
pared with those 3D methods proposed by Sewall et al. [10],
[24], our main benefit is that we employ the imperative lane
change to deal with typical mandatory situations where a vehi-
cle must change its lane (Figure 3). As shown by our supple-
mentary videos, many cooperative lane-changing actions take
place naturally in these situations.

Kesting’s MOBIL model [25] is a general free lane-changing
model proposed for a wide class of car-following models. It
evaluates the utility of a given lane and the risk associated with
lane changes in terms of accelerations calculated with micro-
scopic models. We incorporate our checking procedure to this
model and implement continuous lane changes. To visualize the
imperative lane-changing behaviors, we simplify Hidas’s inter-
action model [26] and implement the cooperative process by
two steps: the new follower’s deceleration to give way and the
subject’s adjustment to cut into a suitable gap.

4.2.1. Free Lane-changing Action
We extend Kesting’s double-lane MOBIL model [25] to im-

plement the multi-lane free lane-changing actions. The estima-
tion process includes the safety check and the incentive com-
parison. We first compare the acceleration the subject vehicle
could get in current lane and its adjacent lanes in the next time
step, and weigh the possible advantages (self speedup) and dis-
advantages (others slow down) of the lane-changing behavior.
If the benefit is larger than a preferred threshold and the gaps
are safe enough, the subject vehicle will move from its current
lane to the more beneficial target lane (Figure 7(a)).

Figure 4 shows an illustration of free lane-changing process.
The checking procedure on involved gaps during an assumed
imaginary lane-changing process is demonstrated in Figure 5.

Take the left lane-changing process as an illustration (the
right lane-changing is similar). The motivation and requirement
of free left lane-changing process are given by:

(a) a′n f ≥ −bn f

(b) gap′ol ≥ gap′min(s, ol,Tc)

gap′nl ≥ gap′min(s, nl,Tc) gap′n f ≥ gap′min(n f , s,Tc)

gapmin(a, b,Tc) = smin(a) + w1 (s∗(a) − (v(a) − v(b)) Tc)

(c) ∆advleft = as
′ − as︸  ︷︷  ︸

subject

+p f

a′n f − an f︸     ︷︷     ︸
new−follower

+ a′o f − ao f︸     ︷︷     ︸
old−follower


≥ ∆athr

All the accelerations are calculated using our follow-the-
leader model, and the variables with superscript (′) are calcu-
lated based on the assumption that the lane-changing action had
already happened.

Condition (a) is the safety criterion and guarantees that after
the lane change, the deceleration of the new follower a′n f in the
target lane does not exceed its preferred comfortable value.
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Condition (b) estimates the safety of the continuous lane-
changing process by checking the gaps between the affected ve-
hicles at three imaginary moments: Tc = 0.0, 0.5Tlc, Tlc, where
Tlc stands for the total time needed for the subject to complete
the lane change (in inverse proportion to the subject’s speed).
See Figure 5. Theoretically speaking, the more moments we
check, the more accurate the estimation would be. However,
since all these checks are based on inaccurate predictions by us-
ing constant accelerations, it is not worth spending much time
on checking numerous moments. By simulation, we find that in
most cases the lane-changing behavior would be safe when the
gaps at these three moments are large enough. However, colli-
sion may happen in regions that close to the merging point and
signalized crossing when the velocities of the involved vehicles
are quite uneven. We solved this problem by checking several
additional moments during the process.

The minimum clearance gap to vehicle b required by vehicle
a at moment Tc during an imaginary lane change is calculated
by gapmin(a, b,Tc). We need to consider the vehicle’s desired
gap and politeness to show the intelligent and diversity. Since
the desired gap is only calculated (using equation (2)) and ac-
curate at the beginning of the imaginary lane change, we should
further predict the gap variance at moment Tc (expressed as
(v(a) − v(b)) Tc, which we assume that the vehicle should tol-
erate). Therefore, we design this equation with three parts: the
driver a’s minimum safe distance smin, the predicted desired gap
with variance tolerated at moment Tc: (s∗(a) − (v(a) − v(b)) Tc)
and his extra space preference sp = p f ∗smin. w1, w2 are weight-
ing factors.

To calculate the future gaps in an imaginary lane change, we
make the following assumptions. Firstly at the evaluating mo-
ment Tc = 0.0, we insert a clone of the subject vehicle into the
target lane assuming the clone vehicle’s length is zero (Figure
5(a)). The clone vehicle’s parameters are identical with the sub-
ject except the vehicle length. The subject’s acceleration value
is then updated according to its clone’s relationship to the new
leader using equation (7). Secondly at moment Tc = 0.5Tlc, we
change the subject vehicle’s length in original lane and its clone
vehicle’s length in the target lane to half of the vehicle length
(Lens) (Figure 5(b)). Finally, we change the clone vehicle’s
length to Lens and check the safety after the lane change(Figure
5(c)).

Condition (c) is the incentive criterion that estimates whether
a lane change will improve the subject’s local situation, typi-
cally measured in acceleration values. The first term denotes
the utility of a possible lane change for the subject, and the
other terms indicate the influence on the involved neighbors
(the original and new followers). The politeness factor p f (nor-
mally ∈ [0, 1]) determines the degree the subject driver con-
cerns about the followers that might be influenced when mak-
ing a lane-changing decision. We set ∆athr to make a certain
inertia and prevent lane changes for marginal advantage.

The considered lane change is favorable if the three condi-
tions are all satisfied. If both left and right lane changes are
favorable, we choose the one with larger advantage as the final
lane change direction. Note that, the value of p f can be inter-
preted as the degree of altruism. It is interesting to notice that

Figure 6: An illustration of imperative lane-changing process.

when p f is large enough, the subject may change its lane even
if this change will lower its speed, just in order to benefit its
original follower. This giving way situation can be observed in
realistic scenarios when the follower urges the slower subject to
speed up too often.

In conclusion, the free lane change aims at increasing overall
accelerations of involved vehicles, not only the subject. In daily
road traffic, vehicles are always likely to stay in their lanes for a
while after a lane-changing behavior. Hence, we add a waiting
interval for each vehicle, forcing it to stay in its lane for some
time. Furthermore, we notice that city drivers always prefer
choosing a sparser lane for long term consideration. To sim-
ulate this tendency, we could put the lane’s traffic density as
an additional consideration when evaluating the advantage of a
possible lane-changing.

4.2.2. Imperative Lane-changing Action
We utilize the simplified imperative lane-changing model to

imitate the interactions between the involved vehicles when the
subject needs to change its lane but the interspaces around the
local road do not allow for free lane change. Since our system
aims at visual simulation of massive urban traffic, we pay more
attention to the visual effects rather than model accuracy (com-
pared with Hidas’s model [26]). We simplify this cooperative
process as the new follower’s slowing down to make larger gap
for cut-in and the subject’s reaction to catch up the new leader
(Figure 7(b)). Figure 6 shows an illustration of imperative lane
change.

The imperative lane-changing is typically motivated by
mandatory lane-changing situations (Figure 3), large speed ad-
vantage or queue advantage (related to lane density). There-
fore, the forced position can be the end of the lane, the merging
point, the waiting line before the signalized crossing or a po-
sition close to the leader vehicle where the subject insists to
change its lane for large speed or queue advantage.

The feasibility is measured by the new follower’s willingness
to slow down. The safety checking procedure is similar with the
free lane change (Figure 5), except that the minimum accept-
able gaps (gapmin(a, b,Tc)) are much smaller than in free lane
change case and the new follower would decelerate for a pe-
riod. In fact, it is safe to set all required gapmin(a, b,Tc) to smin.
However, in order to augment the diversity of imperative lane
change behaviors, we still use the equation of gapmin(a, b,Tc)
described in section 4.2.1 but set w1,w2 to small values in this
case.

We first choose the nearest follower in the target lane as the
subject’s new follower, and estimate its feasibility. The estima-
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(a) (b)

Figure 7: Snapshots of two types of lane-changing motions: (a) The white vehicle’s (in yellow frame) free lane change to speedup. (b) The white vehicle’s (in
yellow frame) imperative lane change due to the reduction of lane number. It needs the new follower’s slowing down.

(a) (b)

Figure 8: Snapshots of a merging point with imperative lane change disabled (a) and enabled (b): (a) Without imperative lane change, the merge lane can be blocked
by those vehicles waiting for large gaps. (b) With imperative lane change, we generate fluent traffic flow.

tion criteria for imperative lane change are briefly described as
follows:

(a) Dt = Dvn f

bn f
≤ MAX T IME LC

(b) gap′ol ≥ gap′min(s, ol,Tc)

gap′nl ≥ gap′min(s, nl,Tc) gap′n f ≥ gap′min(n f , s,Tc)

Condition (a) means that we first check the willingness of
the chosen new follower to slow down. Dvn f is the speed value
that the chosen follower agrees to decrease. It mainly depends
on the follower driver’s politeness and the urgency of the sub-
ject’s lane-changing maneuver (expressed as Dis f p - the dis-
tance to the forced lane-changing location). bn f is the chosen
new follower’s comfortable deceleration. If the required coop-
erating period Dt is larger than MAX T IME LC (the maximum
lane-changing time selected based on observation), discard this
choice and wait for another available and more cooperative fol-
lower. Otherwise, go further to check criterion (b).

Condition (b) checks the future gaps based on an assumed
lane-changing process (similar with condition b) in section
4.2.1 and Figure 5). In this imaginary lane change, the chosen
follower’s acceleration would be −bn f for time period Dt. If the
involved gaps are safe enough in those checking moments, in-
dicating that this collaborative process for lane change will suc-
ceed, the subject will carry on this lane change in the next step
and force the follower to decelerate as assumed above. Oth-
erwise, continue to repeat the evaluating process for the next
chosen follower until hitting on a workable one.

The implementation of the actual lane change process is sim-

ilar with the imaginary process in Figure 5: first insert an in-
visible clone of the subject vehicle into the target lane with
zero vehicle length at the starting moment, then update the sub-
ject’s acceleration according to the new leader, gradually re-
duce the subject vehicle’s length and enlarge the clone’s length
used in calculation, meanwhile visually adjust the subject’s po-
sition and orientation towards its clone according to the dy-
namic turning angle (first increasing then decreasing linearly),
finally delete the subject from the old lane and make the clone
visible when they coincide. As shown in our supplementary
videos, our method could reproduce the visual effect that the
lane-changing vehicle modifies its behavior in order to move
into the target lane and approaches its new leader naturally.

When the local traffic around the merging point is congested,
the imperative lane-changing actions play an important role be-
cause the gaps in adjacent lanes are often not large enough for
free lane change. Many vehicles in the merge lane may stop
and wait if no vehicle’s willing to cooperate in target lane (Fig-
ure 8(a)). By applying the imperative lane changes, the traf-
fic becomes more fluent (Figure 8(b)). However, during the
simulation, we find that when the local traffic is heavy con-
gested, the vehicles could still be blocked in the merge lane.
This is mainly caused since they begin to consider imperative
lane change when they are quite close to the blocked region,
the evaluation processes are more likely to fail. To alleviate
this situation, we set an advantage bias in the inner lane and
let some vehicles to consider lane change some distance away
from the blocked region, leading some vehicles in the merge
lane to move into the inner lane a little earlier. By properly
integrating the free lane-changing model and imperative lane-
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changing model, we demonstrated vehicles’ natural and adroit
lane-changing maneuvers in our traffic animation.

Discussions on our lane-changing model

The main difference between our lane-changing model and
the MOBIL model [25] is that ours is a continuous lane-
changing process, rather than an instant jump that finishes in a
single simulation update. The final visual trajectory is a smooth
curve. We have designed a reliable checking procedure to pre-
dict the safety of the continuous lane-changing process.

The original Hidas’s model [26] proposed a classification
of manoeuvres into free, forced and cooperative lane changes.
It only describes the final lane-changing action without initial
evaluation on driver’s lane-changing intention. For forced and
cooperative lane change, it first selects a gap, then evaluates the
feasibility of new following vehicle to slow down, and finally
calculates the merge-acceleration and merge-point to reach the
gap. The action is simulated as an instant jump. It also has a
complex procedure to check and deal with the conflicting traffic
situation (where at the same time the vehicles in the target lane
may also need to change into the subject’s lane).

Our modification and simplification on Hidas’s model can
be summarized as follows. Firstly, we abstract the forced and
cooperative lane changes into one type, the imperative lane
change, since their final visual actions appear identical even
through their decision procedures are different. Secondly, we
implement the continuous lane-changing actions based on a
more reliable checking procedure to ensure the safety during
the continuous lane-changing period. Finally, compared to Hi-
das’s abstracted hypothetical roads, much more vehicles are in-
volved in imperative lane changes in our simulating scenarios.
Therefore, in order to accelerate this part, we do not calcu-
late the merge-point and merge-acceleration at the beginning
of each evaluation process. Instead, we insert an imagery clone
of the subject vehicle into the target lane and update the sub-
ject’s acceleration according to the new leader (Figure 5(a)).
Therefore, the subject will automatically accelerate and merge
into the target lane by approaching its new leader. To avoid the
complicated process of checking and resolving potential con-
flicts, we force the chosen new follower to wait until the subject
has changed its lane. Our modified model, although not very
accurate in theory when compared to Hidas’s model, is able to
produce visually appealing animation with flexible and natural
lane-changing actions (see supplementary videos).

5. Road Structures

In our simulator, the urban road network is composed of
multi-lane roads with various types of junctions (Figure 1 and
18). We define three basic data structures to represent the multi-
lane road, unsignalized junction and signalized junction respec-
tively. Normally each road is related to one junction either
unsignalized or signalized, defined as Junctioninto. The detailed
lane connections between the incoming and outgoing roads are

stored in the junction structure. The connections in the signal-
ized junction are further organized to simulate the signal control
of traffic lights.

The basic road structure is a section with the same number
of lanes and driving directions. A straight road is simply rep-
resented by one line segment with its starting and end point,
while the winding one is described as a sequence of connected
line segments. Besides the spatial information and the pointer
to the related junction, the road structure also contains some
information that might be queried, such as speed limit, densi-
ties and lane-changing biases for each lane. The bias (related to
lane density) will be added to the condition (c) in section 4.2.1
in order to demonstrate the vehicles’ ability to take the queue
advantage and to better deal with the lane blockage situation as
we have described at the end of section 4.2.2. The speed limit
indicates the road quality and permitted speed. We compare
the vehicle’s desired speed with the current road’s speed limit,
and choose the lower one as the desired speed vd used in the
follow-the-leader model (section 4.1).

In order to quickly respond to the numerous vehicles’ queries
about the road, the connection and adjacent information, we de-
sign a vehicle list for each road to record all the vehicles cur-
rently driving on it and make the road to check the answers.
The road’s vehicle list is sorted based on the vehicles’ positions
along the path to efficiently handle the subsequent search for
neighboring vehicles in the lane-changing process. In addition,
we only periodically check the first vehicle in each road’s list to
find the vehicles that arrive at the road’s end and need to be set-
tled according to the junction. Keeping such a list for each road
significantly reduces the searching time required in our simula-
tion algorithm. Since the order of the vehicles varies little after
one simulation step, we use the bubble sort algorithm to update
the list quickly.

The unsignalized junction is an abstract node without con-
crete spatial structure. According to the driving flow, the junc-
tion stores the explicit connections between lanes, for example,
the 4th lane of road A is connected to both the 4th lane of road
B and the 1st lane of road C. When the vehicle arrives at the
end of road, the road checks the structure Junctioninto to find
the right outgoing road and lane. Currently, since our system
does not support the routing procedure for the vehicle’s desti-
nation, if there are more than one outgoing lanes, we randomly
select one.

The signalized junction is a structure with concrete paths
stored as line segments, such as a typical crossing. In this case,
the lane connections will vary according to the repeated signal
sets. To simulate the signal control of traffic lights, we first
separate the lane connections (defined as tunnels) into several
groups according to their passing time, add one timer to each
group counting its open interval (green period), and then define
the changing sequence of these groups (same with the sequence
of signal sets). Each tunnel keeps a list recording the vehicles
in it. We can see the visualized traffic scenario around a typical
signalized crossing in the supplementary video.

In each update step, we calculate the vehicles’ locomotion
using the follow-the-leader model, evaluate and process their
lane change actions according to the continuous adaptive lane-
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changing model, update their positions on the road and sort the
vehicle list. For the vehicles inside the tunnels of signalized
junction, we just update and advance their position along the
tunnel paths. After checking the first vehicle in each vehicle
list, we further settle those vehicles that arrive at the end of the
road using the linking information stored in Junctioninto and
advance those vehicles that finish their tunnel paths:

1) If there is no junction at the road’s end, just discard the
vehicle since we assume it has finished the driving task on our
focus network.

2) If Junctioninto is an unsignalized junction, insert the vehi-
cle into the connected road’s vehicle list according to the lane
connection stored in the junction, modify the vehicle’s param-
eters including lane index, road index and position along the
road path, and finally delete it from the old road’s vehicle list.

3) If Junctioninto is a signalized junction, find the tunnel for
the vehicle’s lane and throw the vehicle into this tunnel’s vehi-
cle list, modify the related parameters and delete it from the old
road’s vehicle list.

4) If the vehicle in the signalized junction reaches the end of
its tunnel path, push it into the vehicle list of the outgoing road
related to this tunnel, modify the related parameters and delete
it from the tunnel’s vehicle list.

For the border roads without incoming roads, we continu-
ously insert vehicles into them based on the in-flow quantity.
Users can set the initial traffic density and adjust the in-flow
quantity during simulation to obtain sparse or dense traffic sce-
narios. It is also flexible for traffic analysts to modify the control
signal’s timer values to regulate the traffic.

6. Experimental Results

We have performed our experimental tests on a desk-
top PC equipped with Intel(R) Core(TM)2 Duo CPU
E7500@2.93GHz, 4GB main memory (3.25GB available) and
an NVIDIA GeForce GTX260 graphics card.

6.1. Performance Test

We have tested the update rate of our method on a long
road with four lanes. The initial traffic density on the road is
about 0.05vehicles/m/lane. The vehicle gap in a single lane
is around 10 − 35m. The gap between two vehicles in adja-
cent lanes is about 2.5 − 7.5m. During the experiment, we
maintained a constant number of vehicles on the road by in-
serting a new vehicle whenever there’s a vehicle that finished
the road. The vehicles’ parameters were randomly set accord-
ing to the normal range defined in Table1. We applied our
continuous lane-changing model and chose the related vari-
ables as follows: ∆athr ∈ [0.08, 0.12]m/s2, p f ∈ [0.1, 0.4],
MAX T IME LC ∈ [1.8, 3.7]s, Dvn f ∈ [2.8, 4.8]m/s. The time
step ∆t used in the update is 0.04s, and the vehicle will stop the
lane-changing estimating process for 5 − 20 seconds (waiting
interval) when it has just changed the lane.

We first chose the number of testing vehicles, and then ran
our program for 120 seconds, recording the update counts and
the number of vehicles performing lane-changing actions in 20
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Figure 9: The average simulation time per frame for N vehicles.
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Figure 10: The simulation time per frame when enabling (blue line) and dis-
abling (purple line) lane-changing behaviors.

randomly sampled updates. We calculated the average simula-
tion time of these vehicles for each frame and showed the result
in Figure 9. The maximum number of vehicles we can simulate
in real time is around 40000. According to the statistics of our
experiments with the above settings, the success rate of lane-
changing estimating process is about 20%, the average percent-
age of vehicles performing lane-changing actions in each frame
is 5.53%, in which, the imperative behaviors occupy 23.61%.
This means in each update of 100 vehicles, there are about five
vehicles changing their lanes and one of them needs its neigh-
bor’s cooperation.

We have introduced a continuous lane-changing model to
our microsimulation scheme, resulting in an additional time ex-
pense. We have further quantified this expense by testing the
computation time of the lane-changing model. The result is
shown in Figure 10. It compares the simulation time used per
frame when enabling and disabling the lane-changing behaviors
respectively in different simulation scales. The computing time
proportion relevant to lane-changing roughly increases with the
simulation scale, from 36% to 51% out of the total simulation
time.

In our algorithm, the estimating procedure of possible lane
changes is a comparatively time-consuming part. Raising the
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Figure 11: The influence of the lane-changing estimating frequency (set by the
waiting interval for next estimating procedure) on both the simulation time for
each update and the final proportion of vehicles performing lane changes.

frequency of the vehicle’s estimating process increases the sim-
ulation time for each update and also the number of success-
ful lane-changing actions. In the second experiment, we have
tested the impact of the frequency of the estimating process on
the simulation time and final lane-changing actions in each up-
date. The frequency was set by the vehicle’s waiting interval
between two estimating processes. Most experimental parame-
ters remained unchanged except that in this case, we have tested
1000 vehicles for 180 seconds. In Figure 11, we show that both
the simulation time for each update and the number of vehicles
performing lane-changing actions decrease when we increase
the waiting interval (which means we lower the lane-changing
estimating frequency).

In the subsequent experiment, we varied the traffic density
on a road with four lanes and 40km long to see its influence
on the lane-changing actions using our continuous lane change
model. The waiting intervals were set to be 10 seconds for all
vehicles to eliminate their impact on lane changes. From Figure
12(a), we can see that when we increase the traffic density, the
percentage of vehicles performing lane-changing actions de-
creases since more lane-changing estimating processes would
fail. Among these lane-changing actions, the proportion of im-
perative lane changes increases when increasing traffic density
(as shown in Figure 12(b)). This phenomenon can be observed
in real-life situations: when the road becomes congested, there
will be less lane-changing behaviors and more of them would
require other vehicles’ cooperation.

The success rate of the lane-changing estimating process is
more or less influenced by some other factors besides the traf-
fic density, such as the vehicle’s parameters and driver’s pref-
erence (∆athr, p f , MAX T IME LC, Dvn f ). Users can adjust
these parameter ranges to obtain higher or lower lane-changing
possibility.

There are mainly two differences between the free lane-
changing action and the imperative lane-changing action. The
first difference is that the imperative type will require the new
follower in the target lane to slow down first. The second one is
that the gap available for the subject vehicle to insert into in the
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Figure 12: (a) The influence of traffic density on final lane-changing actions.
(b) The influence of traffic density on imperative lane-changing proportion in
total lane changes.

imperative action is usually smaller than the free situation. We
have verified these differences by tracking the new follower’s
velocity variance and its gap to the subject vehicle during the
lane-changing process. The results are shown in Figure 13.
From Figure 13(a), we can see that the subject’s cut-in action
has little effect on the new follower in the free lane change (blue
line) since their gap is very large. However, for the imperative
lane change (red line), the new follower first slows down to en-
large their gap. From Figure 13(b), we can see that the gap in
the imperative action is smaller than the free case and it will
increase to allow for the subject’s cut-in.

For comparison, we have recorded the vehicle’s speed on a
straight road by using our method and SUMO [23] separately
with the same initial conditions (including the same neighbor-
ing gaps and the vehicles’ equal driving abilities). The road is
500m long and is blocked at the end. The traced vehicle is ini-
tially set around the beginning of the road and will stop before
the blockage. The result shows that our extended driving model
can produce more realistic motion by accelerating and braking
more smoothly than SUMO (see Figure 14(a)). We have also
traced a randomly selected vehicle’s lane-changing trajectory
on a multi-lane road in our simulation and SUMO [23] respec-
tively. Figure 14(b) illustrates that our lane-changing path is
a smooth curve while the lane-changing used in SUMO is an
instant jump finished in a single simulation step.

11



 

5 

7 

9 

11 

13 

15 

17 

19 

21 

0 0.5 1 1.5 2 2.5 3 

Vel_NF1(Free) 

Vel_NF1(Imperative) 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Our method 

SUMO 

(a)

 

0 

5 

10 

15 

20 

25 

30 

0 0.5 1 1.5 2 2.5 3 

Gap_NF1(Free) 

Gap_NF2(Imperative)

1.5

Vel_NF1(Free) 

Vel_NF1(Imperative) 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Our method 

SUMO 

(b)

Figure 13: (a) A comparison on the new follower’s speed variance of free lane change in blue vs. imperative lane change in red. (b) A comparison on the new
follower’s front gap variance of free lane change in blue vs. imperative lane change in red.
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Figure 14: (a) A comparison on accelerating strategy of SUMO in red vs. our method in blue. The vehicle first accelerated for its desired velocity and then
decelerated when approaching the blockage at the end of the road. (b) A comparison on lane-changing trajectory of SUMO in red (an instant jump) vs. our method
in blue (a smooth curve).

 

-5

0

5

10

15

20

25

0 5 10 15 20 25 30 35

V
eh

ic
le

  
sp

ee
d

 (
m

/s
)

Simulation time (s)

M_IDM

SUMO

IDM

0.0125 0.025 0.05 0.075 0.1 0.125

Vehicles performing imperative lane change (%)

Vehicles performing free lane change (%)

Figure 15: A comparison on velocity variance between several follow-the-
leader models in a scenario when the vehicle first stopped before a crossing
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model [16] in green, our modified model in blue and Sumo [23] in red.

Moreover, we have recorded the vehicle’s velocity in a cross-
ing scenario for a period using the original IDM model, our
modified model and SUMO separately. The vehicle first decel-
erated and stopped before the crossing, and later accelerated
when the traffic light turned green. The comparison in Fig-
ure 15 shows that the vehicle will accelerate faster when using
our relaxed deceleration term (modified from the original IDM
model). Our modification can produce a smoother restarting
process in our animation.

The diversity of the drivers’ behaviors is determined by the
parameter variation. Table 2 is a summary of the effect on the fi-
nal simulation of the basic vehicle parameters. Additionally, we
have compared the simulation results using different parameter
variations (Figure 16 and more comparisons in the accompa-
nying demo). To investigate a parameter’s effect, we have per-
formed simulations by changing its variation range from ±5%
to ±40% (while keeping other parameters varying within ±5%).

The experiment demonstrates that larger parameter variation
will result in more diverse actions in the final simulation.

6.2. Simulation Results

We have built a typical urban road network with signalized
crossings, merging junctions and elevated roads, and visualize
the various traffic scenarios using our agent-based system with
continuous lane-changing implementation (see Figure 1, 7 and
18). Our system can motivate each vehicle intelligently as if a
real driver was in it. You can observe the various driving styles
and natural lane-changing behaviors on diverse roads and junc-
tions in the supplementary videos. All the presented anima-
tion results are rendered in real time by using the open source
Horde3d Engine [28].

Compared with other microscopic simulators like
SUMO [23], our approach is computationally less effi-
cient due to the continuous lane-changing interactions for
realistic 3D animation purpose. However, the performance is
still competitive and is able to simulate 40000 vehicles in real
time. In addition, we have covered a rich variety of vehicle
types, driving styles and urban road topologies, integrated
more intelligent lane-changing behaviors and overcome the
limitations in other 3D traffic visualizations ( [10] [24]). More
detailed comparisons are shown in Figure 17.

7. Conclusion

We have presented a new microscopic system to gener-
ate detailed 3D traffic animations on complex road networks
with diverse junctions by using an improved intelligent driver
model together with a continuous lane-changing technique. We
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Minimum safe distance variation

smin: +/-5% other: +/-5% smin: +/-40% other: +/-5%

(a)

Maximum acceleration capability variation

amax: +/-5% other: +/-5% amax: +/-40% other: +/-5%

(b)

Figure 16: The effect on the final result caused by different parameter variations (see the vehicles in red box): (a) larger variation of s0 resulted in larger static gap
variance. (b) larger variation of amax resulted in more diverse accelerating reactions.

Table 2: A summary of vehicle parameters’ effects on simulation results.

Parameter Effect on the simulation result

vd The speed the driver desires to reach. Larger values result in faster driving motions on roads.
smin It can be viewed as the safe distance in traffic jam.
amax The vehicle with a larger value accelerates more quickly especially when restarting from a static state.
T It determines the clearance (velocity-dependent) the driver prefers to keep for relax driving.
bcom It has more intuitive meaning in the lane-changing model, see condition (a) in Section 4.2.1 and 4.2.2. The

vehicle with a larger value reacts more supportively for others to cut into the position in front of it.
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Figure 17: A comparison on several traffic simulation methods: Sumo (a representative of common traffic simulators), CTS (a continuum method [Sewall et al.
2010b]), VTR(a reconstruction framework [Sewall et al. 2010a]) and our method.

(a) (b) (c) (d)

Figure 18: Some images captured in the road network: (a) A merging/weaving part. (b) A junction with lane number reduction. (c) Driving down from the elevated
road. (d) Approaching a signalized crossing.
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demonstrate how our method can be applied to produce believ-
able urban traffic animations with more flexible driving styles
and realistic lane-changing behaviors. Since our method is
agent-based, we can deal with each vehicle individually and
motivate it as an autonomous particle that can play decision-
making roles and take corresponding actions to drive as fast as
possible, and meanwhile, keep safe from possible collisions and
pass the junctions naturally.

In our current implementation, the vehicle has no specific
destination. The driving direction is determined by the road it
follows and the random selections when approaching the junc-
tions. To simulate a driver’s real actions to reach his specific
destination, an effective route searching part can be added for
the simulator in future. Furthermore, the current simulation is
limited to private vehicles and does not take public transporta-
tion tools into consideration, such as BRT (Bus Rapid Transit)
which has its own specific driving lane, and motorcycle charac-
terized with a freer driving style. Lastly, we can add pedestrians
into our framework to simulate more appealing scenarios in fu-
ture.
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