
Free-Form Splines Combining NURBS and
Basic Shapes
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Abstract

We show how to combine, into one unified spline complex,C2 tensor-
product bi-cubic NURBS andG2 bi-cubic rational splines. TheG2 splines
are capable of exactly representing basic shapes such as (pieces of)quadrics
and surfaces of revolution, including tori and cyclides. The main challenge
is to bridge the differing continuity. We transform theG2 splines to splines
that areC2 in homogeneous space. This yields Hermite data for a transi-
tional strip of tensor-product splines of degree (6,5) that guaranteesoverall
curvature continuity. Key to the construction is theC2 parameterization of
circles in homogeneous space. We also cover the simplerG1 to C1 transi-
tion.

1 Motivation

Applications, such as ball and socket joints, require designs to locally exactly re-
produce parts of basic shapes, such as spheres, or more generally quadrics and
rotational objects. Inclusion of such basic shapes can alsoserve to define and, for
their extent within the design surface, guarantee fair surface shape. At the same
time, downstream processing of the resulting design surfaces favors representa-
tion of basic shapes andC2 splines in one standard form, namely as NURBS of
moderate degree. Many downstream problems can be avoided ifthe combined
NURBS complex, of basic shapes and free-form tensor-product splines, is one
consistent structure without the piecemeal stitching by separate blends and fillets.
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This challenge has motivated our recent work [KP11c, KP11b,KP11a] whose
constructions are based on a fresh look of both the theory of rational geometric
splines and reproducing conics, circles in particular. Rational geometric splines
have been developed as early as [Boe87, GB88] – but this classical work focused
on algebraic generality and fails to provide constructive recipes. In particular, it
does not address the challenge of setting the many scalar degrees of freedom of
geometric continuity and rational weights that determine the quality of the result-
ing curves and surfaces. On the other hand, the piecemeal reproduction of conic
segments by rational pieces in Bernstein-Bézier form (see e.g. [Far88, PBP02])
lacks the built-in smoothness required of a unified structure with unique control
points. The trilogy [KP11c, KP11b, KP11a] provides building blocks for repro-
ducing multiple basic shapes and automatically joining them smoothly, both for
curves and surfaces. It offersG1 continuous constructions of degree (bi-)2, andG2

continuity of degree (bi-)3; the scalars defining geometriccontinuity and rational
weights are algorithmically initialized to reproduce the basic shapes.

(a) combined mesh(b) combined surface (c) edited mesh (d) C2 ensemble

Figure 1: Sphere to NURBS transition. (a) The light gray control structure
defines a spherical dome, the dark gray structure aC2 spline. (b) The combined
C2 NURBS complex provides an automatic transition from the dome (red) with
its spherical top and the spline (green) via a transition strip. (c) The resulting mesh
can be freely modified as a rational spline resulting in the surface (d).

The main contribution of the present paper is to add to this framework an
automatic and structurally efficient curvature-continuous transition (the gray strip
in Fig. 1b) between standardC2 bi-3 tensor-product free-form splines (green)
and the basic shape (red). Note that the unified control net, behaves again like
a NURBS control net (cf. Fig. 1c,d). The underlying challenge is to join free-
form splines and basic surfaces when their geometric continuity differs in the
direction parallel to the interface and hence a direct merging of bi-3 pieces as
in [KP11b] is not possible. Fig. 2a illustrates that direct second-order Hermite
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interpolation of the boundaries of the two spline complexesdoes not preserve
surface quality. This justifies our more elaborate approach. We extend ideas for
C2 circle parameterization in [KP11c] and [BP97] to convertG2 to C2 joins and
then use the resulting Hermite data to automatically generate a transition strip as
in Fig. 2b.

(a) naive Hermite interpolation (b) technique of this paper

Figure 2: Failure of naive Hermite interpolation. (a) Discontinuous reflec-
tion lines when directly interpolating the existing splinecomplexes (red,green).
The enlargement (right) shows additionally the control net(black) and the non-
matchingβi (top vs. bottom vertical red line segment spacing; thicker at boundary
control point). (b) Smooth reflection lines of our unified representation.

Outline In Section 2, we review the constructions that allow basic shapes to be
part of a modifiable curvature-continuous rational bi-3 spline complex; and we
explain why we use a parameterization of degree 6 that is guided by a degree 3
control structure. In Section 3, we introduce the reparameterization that allows
us to transform, in Section 4,G2 splines of degree bi-3 asC2 splines of degree 6.
Section 4 explains how to join these degree 6 splines with standard bi-3 NURBS to
form a unified spline complex. Section 4 also provides several examples of unified
C2 spline complexes. In Section 5, we briefly sketch the much simpler unification
of G1 splines with bi-2C1 NURBS. Explicit formulas for the reparameterizations
are listed in the Appendix.

2 Rational representation of circles, of basic shapes
and spline constructions

Section 3.1 of [KP11b] gives a recipe for representing a widevariety of basic
shapes in homogeneous form, as 4-tuples oftrigonometricpolynomials to repre-
sent in particular their prominent rotational features. These basic shapes include
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quadrics, with or without M̈obius transformation, and generalized tori such as
cyclides. A rational piecewise degree 3 model of the circle translates these defini-
tions of basic shapes from a trigonometric to a rational polynomialG2 continuous
representation. Moreover, the representations are tensor-products so that we can
represent each entry of the 4-tuple as a bi-3 tensor-productrational function in
Bernstein-B́ezier form (cf. [Far88, PBP02]):

f(u, v) :=

∑3
r=0

∑3
s=0 wrsbrsBr(u)Bs(v)

∑3
r=0

∑3
s=0 wrsBr(u)Bs(v)

. Bk(t) :=

(

3

k

)

(1− t)3−ktk. (1)

A key contribution of [KP11b] is to show how these tensor-product patches can
equivalently be defined by a control structure consisting of: points inR3, weights
and scalars of geometric continuity. This makes them part ofageneral curvature-
continuousrational bi-3 spline complex, also derived in [KP11b]. Sucha general
bi-3 spline complex can be freely manipulated by modifying its control points,
weights and scalars. The Bi-cubic Construction in [KP11b] provides explicit for-
mulas for the spline surface in terms of the control structure. Together, this allows
for a design work-flow that starts with the designer selecting basic shapes, an algo-
rithm converting it to the control structure that the designer can manipulate and an
automatic conversion of the modified control structure to a curvature continuous
complex of surfaces.

Rational 4-tuples representing the basic shapes have a common denominator.
While the common denominators cancel when projecting toR3, their existence is
crucial to establishing firstG2 continuity and then transforming toC2 continuity
of the rational 4-tuples in homogeneous space. We can place this denominator into
a fifth slot so that all five coordinates are polynomial. In ourconstructions, the fifth
slot entry is 1 if the shape was expressible as a rational spline to start with, as is
the case for all conics except the closed circle. Otherwise,e.g. when constructing
tori, cyclides and quadrics, the fifth slot depends on the denominator of the circle
representation (2) and we call the representationhomogeneous rational.

The circle representation therefore merits special attention. Circle arcsfi with
opening anglesαi can be represented as rational cubic spline pieces with end-
weights equal to 1 and end-pointsbi−1

3 = bi
0 on the circle:

fi :=
bi
0B0 + wbi

1B1 + wbi
2B2 + bi

3B3

B0 + wB1 + wB2 +B3

, (2)

w :=
1

3
+

2

3
cos

αi

2
.

4



The pieces meet up with second order, orG2 Geometric Continuity. By def-
inition fi−1 : [0..1] → Rd and fi : [0..1] → Rd, join G1 at a common point
fi−1(1) = fi(0) if for some scalarβi > 0

f ′

i(0) = βif
′

i−1(1), (3)

andG2 if additionally there existγi ∈ R

f ′′

i (0) = β2
i f

′′

i−1(1) + γif
′

i−1(1). (4)

The curve pieces defined by (2) join withG2 continuity in each of the two coordi-
nates with scalars

βi =
sin αi

2

sin αi−1

2

, γi = 2βi

(

tan
αi−1

4
+ tan

αi

4

)

sin
αi

2
.

Whenβi = 1 andγi = 0 in (3) and (4), the pieces are said to join (parametri-
cally)C2.

The homogeneousC2 representation of a circle must be of degree at least6
according to [BP97] implying parameterizations of degree atleast 6 for the pieces
of the basic shapes in the free-form spline complex. We now explain why we
do not use such a parameterization of degree 6 directly, but have it guided by a
degree 3 control structure. A degree 6C2 spline can be expressed in B-spline form
with 4-fold knots. If adjacent spline pieces have knot intervals with ratioβ then
we can encode this ratio by choosingβ as the parameter of geometric continuity
[Joe89, Bar93]. If we represent adjacent pieces of theC2 spline in B́ezier form,
their Bézier coefficientsbk andbk are related by

P := (β + 1)b5 − βb4 =
β + 1

β
b1 −

1

β
b2 =: P̄ (5)

b5 :=
βb4 +P

β + 1
, b1 :=

βP+ b2

β + 1
. (6)

The B́ezier coefficientsb2, b3, b4 andb2, b3, b4 are unconstrained and coincide
with the control points of the degree 6 B-spline representation; P, also free to
choose, is an additional B-spline control point. However, asFig. 4 illustrates,
these B-spline control points modify the curve much below thescale of individual
spline pieces. We think this makes them unsuited as direct design handles; it is
cumbersome to replicate a shape like Fig. 4a. Rather than as a constructive device,
we will therefore use theC2 sextic spline as adependent representation: Our
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b3

b4

b5

b3

b2

b1

b6 = b0

P

Figure 3:C2 join of degree 6 curves according to (5), (6).

(a) G2 degree 3 (b) C2 degree 6 (c) derived C2

spline

Figure 4:Free-form design starting from a circle. (a) Moving two control points
(black disks to hollow disk) of a uniformly partitioned cubic G2 spline yields a
design whose thick segments remain exactly on the circle. (b) Control points of a
uniformly partitioned sexticC2 spline yield control at a much finer level than the
spline pieces. (c) Control points of a sexticC2 spline derived by the procedure in
Section 4.1 from theG2 cubic spline in (a).

construction in Section 4.1 transforms the cubicG2 spline to a sexticC2 spline,
offering as design handles the better-spaced control points of the original cubic.
This yields e.g. the sextic shown in Fig. 4c. This explains why, in the following,
we do not simply replace the trigonometric expressions of the basic shapes by
C2 sextics and then Hermite-interpolate the resultingC2 splines. While simple,
this approach does not afford the familiar bi-3 NURBS or bi-3G2 rational spline
manipulation illustrated in Fig. 1c, 4c, 9c, 10c.

3 Rational cubic reparameterizations of the circle

The goal is to merge standardC2 bi-3 tensor-product free-form splines and frag-
ments of basic shapes expressed as rational bi-3G2 splines. Our construction is
based on re-parameterizing theG2 circle parameterizations that are embedded into
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homogeneous rational polynomials when translatingsin andcos terms in the basic
shapes’ definition into a homogeneous rational form – cf. Section 2. TheG2 repre-
sentation will be replaced by aC2 representation in homogeneous space. We will
use two different circle parameterizations withC2 splines of degree 6. The first is
an extension of [KP11c], the second builds on the approach of[BP97]. For a uni-
form partition of the circle, both yield the same cubic and hence the same sexticC2

presentation of a circle. ( In fact, for uniform partitions there is yet another option:
composition with the quadratic map of [KP11c, Section 8] followed by multiplica-
tion of the homogeneous quartic by(1−u)2+2(3−(1+cos(α/2))ν)(1−u)u+u2

for aν defined in [KP11c, Section 8]. This does not contradict the claim of unique-
ness in [BP97] which relies on the assumption that the coordinate functions have
no common divisor. )

Ternary-split parameterization ρ. For the first circle parameterization, we con-
sider consecutive circular arcsf i with opening angleαi and newly choosable ge-
ometric continuity scalars̃βi between arcsf i−1 andf i. (Heuristically, it is good
to preserve the original parameterization of the basic shapes as much as possible,
i.e. setβ̃i := βi.) We reparameterizef i by a three-split rational cubic with seg-
mentsρi,j : [0, 1] → R, j = 0, 1, 2. The coefficients of thisC2-connected triplet
of arcs are defined in Section 7.1. (For a uniform partition and all β̃i = 1, a single
piece suffices.) By construction, the piecesf i ◦ ρi,j, j = 0, 1, 2 of one arc joinC2.
Analogous to [KP11c], the following lemma assertsC2 continuity also between
adjacent rational arcs, not just internally.

Lemma 1 (homogeneousC2 reparameterization for circles) Let f i ◦ ρi,j, j =
0, 1, 2 be the three-piece reparameterization of the circular arcf i. Then the sextics
f i−1(ρi−1,2) andf i(ρi,0) areC2-connected in homogeneous space with scalarβ̃i.

Numerical Parametrization σ. For our second reparameterization consider the
partition by pointspi (black disks) of the unit circle with centerO = (0, 0) in
Fig. 5a. Thesepi project on the Northern semi-circle with centerC = (0,−1) by
intersecting the semi-circle with the line throughC andpi:

P(x, y) := (cx, c− 1 + cy), c :=
1

√

x2 + (y + 1)2
. (7)

(As noticed in [BP97], if the unit circle partition is rotatedbyα then the projected
partition is rotated byα/2.) The intersections with the blue ‘Southern’ semi-
circle are useful to complete a circle. We interpolate the projectionspi by a cubic
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p1

p2

p1
p2

x

y

O

C

(a) ProjectionP (b) C2 spline interpolant (c) partial interpolation

Figure 5:C2 circle parameterization. (a) The projection of [BP97]. (b) A cubic
C2 spline interpolating the projected points ( this is not a circle!). (c) Projection
P applied only to non-uniform parts (black) of the partition,not to the uniform
(green) part.

C2 spline with scalars̃βi (cf. Fig. 5b), solving a tridiagonal linear systems of
equations. Then we project the result back to the black circle by

P−1 : (x, y) → (2x(1 + y), (1 + y)2 − x2, x2 + (y + 1)2). (8)

This yields aC2 sextic homogeneous parameterization of the circle. Finally, for
each segment and its given quadraticq, we calculateσ so thatq ◦ σ equals the
sextic. The original knot spacings, i.e.β̃i = βi, work well. Where we use other
choices, we do not deviate by much since this can lead to non-monotone parame-
terizations.

The best of the two approaches. The ternary-splitρ triples the number of seg-
ments – but this is not visible to the designer. In favor ofρ, its formulas are
explicit, whileσ requires solving a system of equations that depend on the parti-
tion. This is a major drawback ofσ since uniform or symmetric subsequences in
an overall non-uniform circle partition are not preserved.Sinceρ preserves uni-
formity and symmetry, we combine the approaches by applyingρ to the uniform
or symmetric parts and computeσ for the remainder from smaller tridiagonal sys-

8



tems, e.g. for the red sequence in Fig. 5c. For the transitionbetweenρ andσ (from
the upper black to the lower green in Fig. 5c), Section 7.2 lists explicit formulas.

Given theC2-parameterized circles, we use the formulas of [KP11c, Lemma
1] and Section 7.2 to verify by symbolic computation that thereparameterization
transformsG2 transitions toC2 transitions in homogeneous space.

0
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(a) parametric difference
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(b) curvature of Fig. 4a
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-0.002
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0.002
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0.008
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(c) curvature difference

Figure 6: Perturbation of non-basic shape when changing to degree 6.(a)
Parametric difference between cubicG2 spline of Fig. 4a (perturbed unit circle)
and its derivedC2 sextic shown in Fig. 4c. (b) Curvature plot of Fig. 4a. (c) The
difference in curvature between the cubic and the sextic spline is in the 1 percent
range.

4 Combining NURBS andG2 splines

Reparameterizing fromG2 toC2 is a subtle task when we want to preserve the ba-
sic shapes and overall fairness. We will transform theG2 spline so that fragments
of basic shapes are exactly preserved. Elsewhere, to keep the overall polynomial
degree low, the new surface will differ ever-so-slightly from the original bi-cubic
surface, e.g. the non-spherical base of the (red) dome in Fig. 1b. For a 2D curve,
this difference is quantified in Fig. 6: it is difficult to spoteven the change in
curvature.

9



4.1 Switching fromG2 to C2 spline curves

Since we construct surfaces as tensor-products, we first focus on the univariate
case, i.e. curves. Recall that the circle parameterization translates trigonometric
to a rational polynomial representation of the basic shapes. In [KP11b] the circle
parameterization was chosen to consist ofG2-connected pieces of degree 3 (cf.
Section 2). The main task is to replace these rationalG2 cubic circle parameteri-
zations in the definition of the basic shapes to homogeneousC2 parameterizations.
To this end, we reparameterize the circle usingr := r

r
wherer is one ofρ, σ or

their transition constructed in Section 3. The compositionof the cubic spline with
r is of degree 9. We reduce the degree by instead composingr with two Bézier
polynomials of degree 2 that match the cubic’s expansion up to order 2 at either
end point. Composingr of degree 3 with a B́ezier polynomial of degree 2 (with
coefficientspk and weightswk) yields, after dropping common denominators, the
following polynomial expansion of degree 6:

q :=
(

2
∑

k=0

wkpk

(

2

k

)

(r − r)2−krk,
2

∑

k=0

wk

(

2

k

)

(r − r)2−krk
)

. (9)

Here is a good point to recall that the constructions do not mix coordinates and
hence we treat each coordinate one at a time. That is (9) represents one of the
four coordinates. The rational expression of the coordinate is in turn written as
a 2-tuple in homogeneous 1-space:pk ∈ R. The last coordinate in (9), i.e. the
second sum, is common to all four homogeneous coordinates. This common slot,
corresponding to the denominator of rational expressions and representable as a
fifth polynomial slot, will be eliminated when the 4 homogeneous coordinates are
projected to 3-space.

Let ri be assigned to thei-th segment of a cubicG2 spline. Where the spline
is alreadyC2, and by default for transition segments,ri is the identity map.

For ri = σ, let ḟ i,0 be the quadratic in B́ezier form that matches theG2 cubic
circle piecef i up to the second derivative at 0 (blue curve segment in Fig. 7 (left))
andḟ i,1 the quadratic matchingf i at 1 (green). The compositiongi,0 := ḟ i,0 ◦ ri

yields sextic control pointsbi,0
k andgi,1 := ḟ i,1 ◦ ri yields control pointsbi,1

k ,
k = 0, . . . , 6. These are merged into one sexticbi with control points

bi
k := b

i,0
k , k = 0, 1, 2; bi

k := b
i,1
k , k = 4, 5, 6; bi

3 :=
b
i,0
3 + b

i,1
3

2
. (10)

Whereri is the identity, the composition amounts to degree-raisingand the spline
remainsC2. Where the segment is aG2 cubic homogeneous rational spline piece,
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Figure 7:Connecting quadratic Hermite interpolants. (left) for σ; (right) for
ρ, consisting of three pieces.

ri has been constructed to yieldC2-connected pieces of degree 6 and basic shapes
are preserved. Only at the interface between such a sextic spline with control
pointsbj and a degree-raised piece with control pointsb̄j is the transition justC0

in homogeneous space. Since, at the transition, we do not reproduce basic shapes
anyhow, we adjust the points as follows to obtain aC2 transition there too. With
P andP̄ from (5),

Pnew :=
P+ P̄

2
, b5,b1defined by (6), b6 = b0 :=

βb5 + b1

β + 1
. (11)

P P̄

b5

b4

b1

b2

Figure 8: Adjustment of the C2 join : small black disks are the original sextic
control points, small boxes their adjustment.

Wherer = ρ, we use two additional quadratics matching the original data at
u = 1

3
(red in Fig. 8b) andu = 2

3
(gold) and derive from every consecutive pair a

curve segment, as we did for the single segment andσ.
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4.2 Switching fromG2 to C2 spline surfaces

With the re-parameterizations, we can now state the simple

Algorithm for combining NURBS and G2 splines.

• Including the transition layer of the mesh (white in Fig. 1a), we replaceG2

splines by sexticC2-joined splines by the technique in Section 4.1. Here,
we may replaceG2 cubics byC2 sextics in only one direction, i.e. along the
interface, or in both.

• Both the NURBS surface (green in Fig. 1b) and theC2 sextic spline (red)
are now well-defined up to the transition and we can collect second or-
der Hermite data (three layers of Bézier coefficients) across the transition
boundary.

• Both the bi-3 NURBS Hermite data and the sextic spline data are degree-
raised to (6,5) to populate the two halves of patches of degree (6,5) that
form the transition (gray in Fig. 1b).

Examples. Fig. 1 shows a sphere and a tensor-product spline in unified rep-
resentation. The continuity scalarsβ of the sphere in circular direction agree
with those of the tensor-product spline (both are 1). So it istempting to directly
Hermite-interpolate by a surface ring of piecewise degree (3,5). Indeed, the loss
of smoothness due to the mismatch in the rational component is hardly visible;
but for non-matchingβ the mismatch can be very apparent as in Fig. 2a.

Fig. 9 shows a unifiedC2 surface representing parts of a sphere and aG2

spline. TheG2 spline itself is the result of merging a circular and two hyperbolic
cylinders. The local adjustment (11) is already applied to the cylinder-ensemble
(dark gray part of the mesh), in order toC2-join the circular cylinder to theC2-
connected hyperbolic cylinders.

Fig. 10 shows how remapping to the sexticC2 representation allows for addi-
tional flexibility for design starting with basic shapes. The hemi-sphere is joined
with aG2 spline derived from four circular cylinders. The scalarsβ are all 1, but
the scalarsγ and the rational weights do not agree.

Fig. 11 shows a unified representation of two differently partitioned and per-
turbed cones. Creases of different sharpness meet up. At the transition we choose

β̃i :=
√

βtop
i βbottom

i sinceβtop
i andβbottom

i differ strongly (see Fig. 2a).
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(a) combined mesh(b) combined surface (c) edited mesh (d) C2 ensemble

Figure 9:Sphere and cylinders with free-form spline transition. (a) The light
gray control structure defines a dome with spherical top. Thedark gray structure
itself combines a circular with two hyperbolic cylinders. (b)C2 NURBS complex
with gray transition from the dome (red) to the cylinders (green). (c) The resulting
mesh can be freely modified as free-form spline yielding the sexticC2 surface (d).

(a) combined mesh (b) combined surface (c) design variant (d) C2 ensemble

Figure 10:Increased flexibility after transformation to the unified C2 degree
6 representation.(a) Spherical dome (light gray then top of red) and four circular
cylinders (dark gray then green) define theC2 surface (b). Replacing both surface
pieces by theC2 degree 6 representation allows for (c) free-form design resulting
in the NURBS surface (d).
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(a) unified control net (b) unified surface – two views

Figure 11: Spline surface unifying twoG2 rational splines (light, dark gray)
defining two differently creased cones.

(a) mesh (b) 2 partitions (c) unified spline (d) design variant

Figure 12:Merging tori with differing cross-sectional partitions (gray vs black
disks in (b)).

Fig. 12 shows a unified representation of twoG2 tori. Our approach of con-
verting both toC2 bi-sextics avoids knot insertion when matching pieces along
the transition. As in Fig. 11, we averageβtop

i andβbottom
i .

5 Combining NURBS andG1 splines

To combine NURBS of degree 2 with theG1 basic-shape-reproducing splines of
[KP11a] is a comparatively simpler task. Representation of the uniformly parti-
tionedcircle in homogeneous cubicC1 form is already possible by replacing each
quadratic segment of theG1 spline by twoC1-connected cubics [KP11a, Section
7] or a single quartic segment [BP97].

For the general case, we define, analogous to the construction of ρ, for each
segment, a rational quadratic reparameterization consisting ofC1-connected pieces
η0, η1 defined in Section 7.3. Each quadratic segmentqi is then replaced by two
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C1-connected quarticsqi ◦ ηi,0 andqi ◦ ηi,1. Then

. . . , qi−1 ◦ ηi−1,1, qi ◦ ηi,0, qi ◦ ηi,1, . . . (12)

form a piecewise degree 4C1 spline that we can use to re-express (the across-
boundary 1-jet expansion of) the layer adjacent to the stripas (4,2) splines that
are homogenousC1 and of degree 4 in the direction parallel to the strip. Each
complex provides first-order Hermite data across the boundary. The double-patch-
wide transition strip of degree (4,2) interpolates the Hermite data. Its centerline is
determined by the constraint that the double strip beC1.

Unlike theG2 to C2 transformation, this re-parameterization exactly repro-
duces the quadratic rationalG1 spline. Therefore no further adjustment is neces-
sary. This localizes work to the transition strip.

Examples. Fig. 14 illustrates partial preservation and combination of torus pieces
with differing βi spacing in one direction and T-junctions in the other direction.
Fig. 15 illustrates unified structures of surfaces of revolution and free-formC1

splines. By splitting the transversal 1-jet(s) to the finest partition on either side,
the local transition accomodates different partitions in the two input structures (cf.
the T-junctions in Fig. 15e).

6 Summary

We obtained a unified spline representation of bi-3 NURBS andG2 bi-3 splines
that reproduce basic shapes. This comes at the cost of replacing the degree 3G2

splines by degree 6C2 splines with more pieces. The basic shapes continue to be
exactly represented; and we gain additional freedom in a unified control net that
behaves like that of a regular bi-cubic spline. In the simpler G1 to C1 unification
all work is local to the transition strip. While we can also localize theG2 to C2

transition, construction is more involved than the one presented.
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7 Appendix: Reparameterizations

7.1 CubicC2 ternary-split parameterization ρ

Formulas (13) and (14) below enable theC2 construction internal to the ternary-
split arcs. Given the newly choosable scalars of geometric continuity β̃ and the
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opening anglesαi, we defineτi := tan αi

4
, and, without loss of generality, focus

on the segmenti = 0, omitting the indexi below. The homogeneous control
pointsρjk, k = 0 . . . 3, j = 0, 1, 2 of ρj are defined as follows (cf. Fig. 13).

• We set

a−1 :=τ1(1 + τ 20 ) + 2τ0τ1(τ0 + τ1)β̃1 + τ0(1 + τ 21 )β̃
2
1 ,

a0 :=2τ1(τ0 + τ1) + (3 + 4τ0τ1 + 7τ 21 )β̃1 + 3(1 + τ 21 )β̃
2
1 ,

a1 :=3(1 + τ 20 )(1 + τ 21 ) + (6 + 10τ 20 + 8τ0τ1 + 10τ 21 + 6τ 20 τ
2
1 )β̃1

+ 3(1 + τ 20 )(1 + τ 21 )β̃
2
1 ,

and define

d :=
a−1

τ0a0
, ν :=

(1 + τ 20 )(1 + β̃1)a0

β̃1a1
.

• We define a rational cubic maph1(u) : [0, 1] → R by homogeneous control
points

h1
0 := [ 01 ] , h

1
1 := [ νdν ] , h1

2 := [ ν(1−d)
ν ] , h1

3 := [ 11 ] ,

and a second, symmetric one,h0(u), by replacing inh1: τ1 → τ−1, β̃1 →
1/β̃0.

ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

Figure 13: Coefficients of therational cubic reparameterization ρ.

• We obtain the left piece of our reparameterization asρ0(u) := h0(u/3)
and the right asρ2(u) := h1(2/3 + u/3) with corresponding homogeneous
control pointsρ0k, ρ

2
k.

• We overwrite the end pointsρ03 andρ20 and set the remaining coefficients of
the middle piece so that the three pieces joinC2:

ρ03 := −
1

3
ρ01+

7

6
ρ02+

1

3
ρ21−

1

6
ρ22 , ρ20 := −

1

6
ρ01+

1

3
ρ02+

7

6
ρ21−

1

3
ρ22, (13)

ρ10 := ρ03, ρ11 := 2ρ03 − ρ02, ρ12 := 2ρ20 − ρ21, ρ13 := ρ20. (14)

For a uniform partition and all̃βi = 1, there is no need for such splitting since
thend andν do not dependent oni.
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7.2 CubicC2 transition reparameterization

For two neighboring circular arcs with the opening anglesα, ᾱ. Letτ := tan(α/4),
τ̄ := tan(ᾱ/4). The homogeneous control pointshk, h̄k, k = 0, . . . , 3 of the repa-
rameterizationsρ, ρ̄ of the quadratic circular arcs yield a homogeneousC2 join
with parameter̃β as follows, derived and verified by symbolic computation. We
set

e1 :=1 + τ 2 , e2 := 1 + τ̄ 2 , e3 := −1 + 2τ τ̄ + τ 2 , e4 := −2τ(τ + τ̄) ;

a1 :=2(e1 + e3ν2 + e4d2ν2) , a2 := −e1 − e3ν1 − e4d1ν1,

ν̄1 :=
2e1 + a1β̃

2e1
, ν̄2 :=

e1 + a1β̃ + (a1 + a2)β̃
2

e1
, d̄1 :=

β̃τν2(1− d2)e2
e1τ̄ ν̄1

;

d̄2 :=
β̃τe2(2ν2 − 2d2ν2 + (2ν2 − 2d2ν2 − ν1 + d1ν1)β̃

e1τ̄ ν̄2
.

and define

h0 := [ 01 ] , h1 :=
[

ν1d1
ν1

]

, h2 :=
[

ν2d2
ν2

]

, h3 := [ 11 ] ;

h̄0 := [ 01 ] , h̄1 :=
[

ν̄1d̄1
ν̄1

]

, h̄2 :=
[

ν̄2d̄2
ν̄2

]

, h̄3 := [ 11 ] .

7.3 QuadraticC1 reparameterization η

We consider three consecutive quadratic spline segmentsf i−1, f i andf i+1 with
rational weights1, wj , 1, j ∈ {i− 1, i, i+ 1} that areG1-connected with geomet-
ric continuity scalarsβi, respectivelyβi+1. The formulas allow for setting new
continuity scalars̃βi, β̃i+1, for example by averaging old ones. For segmenti, we
define two rational quadratic reparameterizations,hi,j, j ∈ {0, 1} with homoge-
neous coefficients

[ 01 ] , a
i
j

[

1

2

1

]

, [ 11 ] ,

ai0 :=
2(1 + 1

β̃i
)

wi
1
βi
+ wi−1 +

1
βi
+ 1

, ai1 :=
2(1 + β̃i+1)

wiβi+1 + wi+1 + βi+1 + 1
.

Then the left piece of the reparameterization isηi,0 := hi,0(u/2) and the right is
ηi,1 := hi,1(1/2+u/2). Letηi,jk be the corresponding homogeneous control points.
To guaranteeC1 continuity betweenηi,0 andηi,1, we overwrite the common point

by ηi,02 = ηi,10 :=
η
i,0

1
+η

i,1

1

2
. Lemma 2 states that also the connection between

original segments is also smooth.
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(a) mesh (b) C1 ensemble (c) edited mesh (d) C1 surface

Figure 14:C1 torus ensemblewith differing βi and T-joints.

Lemma 2 (homogeneousC1 reparameterization) Let f i ◦ ηi,0, f i ◦ ηi,1 be the
two-piece reparameterization of the segmentf i. Then the quarticsf i−1(ηi−1,1)
andf i(ηi,0) areC1-connected in homogeneous space with scalarβ̃i.
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(a) combined mesh (b) combined surface (c) edited mesh (d) C1 ensemble

(e) combined mesh (f) combined surface (g) edited mesh (h) C1 ensemble

Figure 15: Unified C1 representation of degree (4,2). (a) Surface of revolu-
tion with C1 quadratic spline profile curve (top) and bi-2C1 spline (bottom). (e)
Surface of revolution with parabola as profile curve (top) and with hyperbola (bot-
tom). Note the T-joint.
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