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Abstract

We show how to combine, into one unified spline compléx,tensor-
product bi-cubic NURBS and bi-cubic rational splines. Thé? splines
are capable of exactly representing basic shapes such as (pieqaadrfcs
and surfaces of revolution, including tori and cyclides. The main chadleng
is to bridge the differing continuity. We transform th# splines to splines
that areC? in homogeneous space. This yields Hermite data for a transi-
tional strip of tensor-product splines of degree (6,5) that guaraotezall
curvature continuity. Key to the construction is thé parameterization of
circles in homogeneous space. We also cover the sinipléo C! transi-
tion.

1 Motivation

Applications, such as ball and socket joints, require destg locally exactly re-
produce parts of basic shapes, such as spheres, or moraljeqerndrics and
rotational objects. Inclusion of such basic shapes cansalsee to define and, for
their extent within the design surface, guarantee fairag@rshape. At the same
time, downstream processing of the resulting design sesféavors representa-
tion of basic shapes and? splines in one standard form, namely as NURBS of
moderate degree. Many downstream problems can be avoidied dombined
NURBS complex, of basic shapes and free-form tensor-proclictes, is one
consistent structure without the piecemeal stitching Ipasste blends and fillets.



This challenge has motivated our recent work [KP11c, KPKR{,1a] whose
constructions are based on a fresh look of both the theorgt@mal geometric
splines and reproducing conics, circles in particular. éteti geometric splines
have been developed as early as [Boe87, GB88] — but this chwssick focused
on algebraic generality and fails to provide constructeeipes. In particular, it
does not address the challenge of setting the many scalezedegf freedom of
geometric continuity and rational weights that determimequality of the result-
ing curves and surfaces. On the other hand, the piecemealregtion of conic
segments by rational pieces in Bernsteiezi®r form (see e.g. [Far88, PBP02])
lacks the built-in smoothness required of a unified strectuith unique control
points. The trilogy [KP11lc, KP11b, KP11a] provides builgliblocks for repro-
ducing multiple basic shapes and automatically joiningrtlenoothly, both for
curves and surfaces. It offef8 continuous constructions of degree (bi-)2, &#d
continuity of degree (bi-)3; the scalars defining geometoictinuity and rational
weights are algorithmically initialized to reproduce thasle shapes.

(a) combined mesh(b) combined surface (c) edited mesh (d) C? ensemble

Figure 1: Sphere to NURBS transition. (a) The light gray control structure
defines a spherical dome, the dark gray structuf& apline. (b) The combined
C? NURBS complex provides an automatic transition from the dored)(with
its spherical top and the spline (green) via a transitidp.sfc) The resulting mesh
can be freely modified as a rational spline resulting in théase (d).

The main contribution of the present paper is to add to trasméwork an
automatic and structurally efficient curvature-continsinansition (the gray strip
in Fig. 1b) between standard? bi-3 tensor-product free-form splines (green)
and the basic shape (red). Note that the unified control rdtaves again like
a NURBS control net (cf. Fig. 1c,d). The underlying challeng¢ai join free-
form splines and basic surfaces when their geometric caityirdiffers in the
direction parallel to the interface and hence a direct nmgyrgif bi-3 pieces as
in [KP11b] is not possible. Fig. 2a illustrates that direet@nd-order Hermite
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interpolation of the boundaries of the two spline compledess not preserve
surface quality. This justifies our more elaborate appro&dl extend ideas for
C? circle parameterization in [KP11c] and [BP97] to conwgftto C? joins and
then use the resulting Hermite data to automatically geeeraransition strip as
in Fig. 2b.

A FIRTR 8 KK

(a) naive Hermite interpolation (b) technique of this paper

Figure 2: Failure of naive Hermite interpolation. (a) Discontinuous reflec-
tion lines when directly interpolating the existing splioemplexes (red,green).
The enlargement (right) shows additionally the control (fpéick) and the non-
matchings; (top vs. bottom vertical red line segment spacing; thick&oandary
control point). (b) Smooth reflection lines of our unified megentation.

Outline In Section 2, we review the constructions that allow basapsis to be
part of a modifiable curvature-continuous rational bi-3replcomplex; and we
explain why we use a parameterization of degree 6 that iseguiy a degree 3
control structure. In Section 3, we introduce the reparanedtion that allows
us to transform, in Section & splines of degree bi-3 as? splines of degree 6.
Section 4 explains how to join these degree 6 splines witidstia bi-3 NURBS to
form a unified spline complex. Section 4 also provides sées@amples of unified
C? spline complexes. In Section 5, we briefly sketch the muclpkinunification

of G* splines with bi-2C' NURBS. Explicit formulas for the reparameterizations
are listed in the Appendix.

2 Rational representation of circles, of basic shapes
and spline constructions
Section 3.1 of [KP11b] gives a recipe for representing a wideety of basic

shapes in homogeneous form, as 4-tuplesigbnometricpolynomials to repre-
sent in particular their prominent rotational featurese3d basic shapes include



quadrics, with or without Nibius transformation, and generalized tori such as
cyclides. A rational piecewise degree 3 model of the cinaaglates these defini-
tions of basic shapes from a trigonometric to a rational potyial G* continuous
representation. Moreover, the representations are tgmeducts so that we can
represent each entry of the 4-tuple as a bi-3 tensor-pradticinal function in
Bernstein-Ezier form (cf. [Far88, PBP02]):

Zi:o Zi:o Wysbys By (1) Bs(v) e e
S Sy wesB(u)By(v) Bi(t) := (k)(l )t (1)

A key contribution of [KP11b] is to show how these tensoréarct patches can
equivalently be defined by a control structure consistingpofnts inR?, weights
and scalars of geometric continuity. This makes them paigeineral curvature-
continuougrational bi-3 spline complex, also derived in [KP11b]. Sacteneral
bi-3 spline complex can be freely manipulated by modifyitgydontrol points,
weights and scalars. The Bi-cubic Construction in [KP11bymles explicit for-
mulas for the spline surface in terms of the control striectiiogether, this allows
for a design work-flow that starts with the designer selgdbasic shapes, an algo-
rithm converting it to the control structure that the desigean manipulate and an
automatic conversion of the modified control structure tavature continuous
complex of surfaces.

Rational 4-tuples representing the basic shapes have a comemominator.
While the common denominators cancel when projecting’atheir existence is
crucial to establishing first? continuity and then transforming t6* continuity
of the rational 4-tuples in homogeneous space. We can placggnominator into
a fifth slot so that all five coordinates are polynomial. In comstructions, the fifth
slot entry is 1 if the shape was expressible as a rationalespdi start with, as is
the case for all conics except the closed circle. Othereige,when constructing
tori, cyclides and quadrics, the fifth slot depends on thevdenator of the circle
representation (2) and we call the representdtimmogeneous rational

The circle representation therefore merits special attenCircle arcsf; with
opening anglesy; can be represented as rational cubic spline pieces with end-
weights equal to 1 and end-poirti§ ' = b{ on the circle:

flu,v) =

i . y 2
f Bo+U]Bl+U)BQ+B3 ( )
w::§+§cos%.



The pieces meet up with second order,(&r Geometric Continuity. By def-
inition f;_; : [0.1] — RYand f; : [0..1] — RY join G* at a common point
fi—1(1) = f;(0) if for some scalag; > 0

f1(0) = Bifi_1 (1), 3)
andG? if additionally there exist; € R
£100) = B2 FL1 (1) +vifia (1), 4)

The curve pieces defined by (2) join wif¥ continuity in each of the two coordi-
nates with scalars

sin &t o1

Bi = smﬁ , i = 2f;(tan
2

t Qi O
+ tan Z) Sin o

Wheng; = 1 andv; = 0in (3) and (4), the pieces are said to join (parametri-
cally) C2.

The homogeneou§? representation of a circle must be of degree at |6ast
according to [BP97] implying parameterizations of degrdeast 6 for the pieces
of the basic shapes in the free-form spline complex. We nowaéx why we
do not use such a parameterization of degree 6 directly, de h guided by a
degree 3 control structure. A degre€8spline can be expressed in B-spline form
with 4-fold knots. If adjacent spline pieces have knot imdds with ratios then
we can encode this ratio by choosifigs the parameter of geometric continuity
[Joe89, Bar93]. If we represent adjacent pieces ofthepline in Bezier form,
their Bézier coefficientd, andb,, are related by

P = (§+1)bs — fb, J?E—%E::P (5)
5:5104—+P Bl:wl (6)

g+1 7 g+1

The Bézier coefficientd,, bs, b, andbs, bs, by are unconstrained and coincide
with the control points of the degree 6 B-spline represemiafP, also free to
choose, is an additional B-spline control point. Howeverfap 4 illustrates,
these B-spline control points modify the curve much belowsttede of individual
spline pieces. We think this makes them unsuited as diresgddiandles; it is
cumbersome to replicate a shape like Fig. 4a. Rather thanass&active device,
we will therefore use th&? sextic spline as alependent representatinrOur
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(@) G? degree 3 (b) C? degree 6 (c) derived C?
spline

Figure 4:Free-form design starting from a circle. (a) Moving two control points
(black disks to hollow disk) of a uniformly partitioned celi? spline yields a
design whose thick segments remain exactly on the circjeCdntrol points of a
uniformly partitioned sextic? spline yield control at a much finer level than the
spline pieces. (c) Control points of a sextié spline derived by the procedure in
Section 4.1 from th&* cubic spline in (a).

construction in Section 4.1 transforms the cuBitspline to a sextic? spline,
offering as design handles the better-spaced control pointhe original cubic.
This yields e.g. the sextic shown in Fig. 4c. This explaing,vih the following,
we do not simply replace the trigonometric expressions efliasic shapes by
C? sextics and then Hermite-interpolate the resultiffgsplines. While simple,
this approach does not afford the familiar bi-3 NURBS or li*3rational spline
manipulation illustrated in Fig. 1c, 4c, 9c, 10c.

3 Rational cubic reparameterizations of the circle

The goal is to merge standa¢¢ bi-3 tensor-product free-form splines and frag-
ments of basic shapes expressed as rational®i-8plines. Our construction is
based on re-parameterizing thé circle parameterizations that are embedded into



homogeneous rational polynomials when translatingndcos terms in the basic
shapes’ definition into a homogeneous rational form — cftiSe®. TheG? repre-
sentation will be replaced by@? representation in homogeneous space. We will
use two different circle parameterizations witf splines of degree 6. The first is
an extension of [KP11c], the second builds on the approafBR87]. For a uni-
form partition of the circle, both yield the same cubic anddeethe same sextic?
presentation of a circle. (In fact, for uniform partitiom®te is yet another option:
composition with the quadratic map of [KP11c, Section 8dekd by multiplica-
tion of the homogeneous quartic by—u)?+2(3 — (1+cos(a/2))v) (1 —u)u+u?
forav defined in [KP11c, Section 8]. This does not contradict thechbf unique-
ness in [BP97] which relies on the assumption that the coatdifunctions have
no common divisor. )

Ternary-split parameterization p. For the first circle parameterization, we con-
sider consecutive circular ar¢é with opening angley; and newly choosable ge-
ometric continuity scalars; between arcg‘~! and fi. (Heuristically, it is good
to preserve the original parameterization of the basicefias much as possible,
i.e. setd; := f3,.) We reparameteriz¢’ by a three-split rational cubic with seg-
mentsp™ : [0,1] — R, j = 0,1, 2. The coefficients of thi€?-connected triplet
of arcs are defined in Section 7.1. (For a uniform partitioth alh3; = 1, a single
piece suffices.) By construction, the piegés p*7/, j = 0, 1, 2 of one arc joinC?.
Analogous to [KP11c], the following lemma asseft$ continuity also between
adjacent rational arcs, not just internally.

Lemma 1 (homogeneou$'? reparameterization for circles) Let fi o pi7, j =
0,1, 2 be the three-piece reparameterization of the circular ArcThen the sextics
F7H(p=12) and f*(p*Y) are C*-connected in homogeneous space with scalar

Numerical Parametrization . For our second reparameterization consider the
partition by pointsp; (black disks) of the unit circle with cent& = (0,0) in

Fig. 5a. These; project on the Northern semi-circle with centér= (0, —1) by
intersecting the semi-circle with the line throughandp;:

Plx,y) = (cx,c—1+cy), c:= ! (7)

Vat+ (y +1)2
(As noticed in [BP97], if the unit circle partition is rotatég « then the projected
partition is rotated byx/2.) The intersections with the blue ‘Southern’ semi-
circle are useful to complete a circle. We interpolate tteggationsp, by a cubic
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(a) ProjectiorP (b) C? spline interpolant (c) partial interpolation

Figure 5:C? circle parameterization. (a) The projection of [BP97]. (b) A cubic
C? spline interpolating the projected points ( this is not &leit). (c) Projection
P applied only to non-uniform parts (black) of the partitiorgt to the uniform
(green) part.

C? spline with scalars3; (cf. Fig. 5b), solving a tridiagonal linear systems of
equations. Then we project the result back to the blackechyl

Pli(zy) = Qe(l+y),(1+y)? — 2% 22 + (y +1)%). (8)

This yields aC? sextic homogeneous parameterization of the circle. Rintat
each segment and its given quadratiave calculater so thatg o o equals the
sextic. The original knot spacings, i.&. = 3;, work well. Where we use other
choices, we do not deviate by much since this can lead to remetone parame-
terizations.

The best of the two approaches. The ternary-splip triples the number of seg-
ments — but this is not visible to the designer. In favorppfits formulas are
explicit, while o requires solving a system of equations that depend on thie par
tion. This is a major drawback af since uniform or symmetric subsequences in
an overall non-uniform circle partition are not preserv&ihcep preserves uni-
formity and symmetry, we combine the approaches by applyitagthe uniform

or symmetric parts and computdor the remainder from smaller tridiagonal sys-
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tems, e.g. for the red sequence in Fig. 5¢. For the trandigbmeerp ando (from

the upper black to the lower green in Fig. 5¢), Section 718 ggplicit formulas.
Given theC?-parameterized circles, we use the formulas of [KP11c, Lamm

1] and Section 7.2 to verify by symbolic computation that tgarameterization

transforms? transitions toC? transitions in homogeneous space.
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(a) parametric difference (b) curvature of Fig. 4a  (c) curvature difference

Figure 6: Perturbation of non-basic shape when changing to degree 6(a)
Parametric difference between culdié spline of Fig. 4a (perturbed unit circle)
and its derived”? sextic shown in Fig. 4c. (b) Curvature plot of Fig. 4a. (c) The
difference in curvature between the cubic and the sextioed in the 1 percent
range.

4 Combining NURBS andG? splines

Reparameterizing fror&? to C? is a subtle task when we want to preserve the ba-
sic shapes and overall fairness. We will transform@fespline so that fragments
of basic shapes are exactly preserved. Elsewhere, to keepvénall polynomial
degree low, the new surface will differ ever-so-slightlgrfr the original bi-cubic
surface, e.g. the non-spherical base of the (red) dome inlbigror a 2D curve,
this difference is quantified in Fig. 6: it is difficult to speven the change in
curvature.



4.1 Switching from G? to C? spline curves

Since we construct surfaces as tensor-products, we firgsfon the univariate
case, i.e. curves. Recall that the circle parameterizatarskates trigonometric
to a rational polynomial representation of the basic shalpeliKP11b] the circle
parameterization was chosen to consistidfconnected pieces of degree 3 (cf.
Section 2). The main task is to replace these rati6ffatubic circle parameteri-
zations in the definition of the basic shapes to homogen€dpsarameterizations.
To this end, we reparameterize the circle using= = wherer is one ofp, o or
their transition constructed in Section 3. The compositibtine cubic spline with

r is of degree 9. We reduce the degree by instead composiith two Bézier
polynomials of degree 2 that match the cubic’s expansioroupder 2 at either
end point. Composing of degree 3 with a Bzier polynomial of degree 2 (with
coefficientsp, and weightsu,) yields, after dropping common denominators, the
following polynomial expansion of degree 6:

q = (gwkpk (z) (r —7)°7 7, é wy <Ii> r—T7)*" k"“) (9)

Here is a good point to recall that the constructions do natcoobrdinates and
hence we treat each coordinate one at a time. That is (9)semione of the
four coordinates. The rational expression of the coordimgin turn written as
a 2-tuple in homogeneous 1-spagg; € R. The last coordinate in (9), i.e. the
second sum, is common to all four homogeneous coordinates. cémmon slot,
corresponding to the denominator of rational expressioisrapresentable as a
fifth polynomial slot, will be eliminated when the 4 homogens coordinates are
projected to 3-space.

Let r* be assigned to theth segment of a cubi€? spline. Where the spline
is alreadyC?, and by default for transition segmentsjs the identity map.

Forri = o, let f%° be the quadratic in &ier form that matches th@? cubic
circle piecef® up to the second derivative at 0 (blue curve segment in Fl@fﬂ)(
and f*! the quadratic matching’ at 1 (green). The compositignt® := f0 o
yields sextic control pointy;” and ¢! := ! o+ yields control pointsh}’,

k=0,...,6. These are merged into one sextiiowith control points
. . ) . ) bi,o bi,l
b :=by" k=0,1,2; bl :=b' k=456 b= % (10)

Wherer? is the identity, the composition amounts to degree-raiaimgjthe spline
remainsC?2. Where the segment is@ cubic homogeneous rational spline piece,
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Figure 7: Connecting quadratic Hermite interpolants. (left) for o; (right) for
p, consisting of three pieces.

r* has been constructed to yigltf-connected pieces of degree 6 and basic shapes
are preserved. Only at the interface between such a sexine spith control
pointsb; and a degree-raised piece with control polmtss the transition jus€®

in homogeneous space. Since, at the transition, we do naidepe basic shapes
anyhow, we adjust the points as follows to obtai@i“atransition there too. With

P andP from (5),

P+P

_ — b; +b
P = ==, by, bydefined by (6) by — by - 25 £ b1

B+1

(11)

b4 b2

Figure 8: Adjustment of the C? join: small black disks are the original sextic
control points, small boxes their adjustment.

Wherer = p, we use two additional quadratics matching the originah @t
u= % (red in Fig. 8b) and: = % (gold) and derive from every consecutive pair a
curve segment, as we did for the single segmentsand
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4.2 Switching from G? to C? spline surfaces

With the re-parameterizations, we can now state the simple

Algorithm for combining NURBS and G? splines.

e Including the transition layer of the mesh (white in Fig.,2ag replace’?
splines by sextic>?-joined splines by the technique in Section 4.1. Here,
we may replacé&? cubics byC? sextics in only one direction, i.e. along the
interface, or in both.

e Both the NURBS surface (green in Fig. 1b) and @tesextic spline (red)
are now well-defined up to the transition and we can collecbsé or-
der Hermite data (three layers oEBer coefficients) across the transition
boundary.

e Both the bi-3 NURBS Hermite data and the sextic spline data agecde
raised to (6,5) to populate the two halves of patches of @e(feéb) that
form the transition (gray in Fig. 1b).

Examples. Fig. 1 shows a sphere and a tensor-product spline in unifigd re
resentation. The continuity scalafsof the sphere in circular direction agree
with those of the tensor-product spline (both are 1). Sotémpting to directly
Hermite-interpolate by a surface ring of piecewise deg8&®)( Indeed, the loss
of smoothness due to the mismatch in the rational composemardly visible;
but for non-matching the mismatch can be very apparent as in Fig. 2a.

Fig. 9 shows a unified’? surface representing parts of a sphere ar@a
spline. TheG? spline itself is the result of merging a circular and two hygmdic
cylinders. The local adjustment (11) is already appliechtodylinder-ensemble
(dark gray part of the mesh), in order €&-join the circular cylinder to the?-
connected hyperbolic cylinders.

Fig. 10 shows how remapping to the sextlé representation allows for addi-
tional flexibility for design starting with basic shapes.€eTiemi-sphere is joined
with a G? spline derived from four circular cylinders. The scaldrare all 1, but
the scalarg and the rational weights do not agree.

Fig. 11 shows a unified representation of two differentlytinaned and per-
turbed cones. Creases of different sharpness meet up. Attigtion we choose

Bi := 1/ BLP ghottem since Sl and gtotom differ strongly (see Fig. 2a).
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a) combined mesh(b) combined surface (c) edited mesh d) C? ensemble
(@)

Figure 9:Sphere and cylinders with free-form spline transition. (a) The light
gray control structure defines a dome with spherical top. ddr& gray structure
itself combines a circular with two hyperbolic cylinderb) > NURBS complex
with gray transition from the dome (red) to the cylinderse@n). (c) The resulting
mesh can be freely modified as free-form spline yielding theisC* surface (d).

(a) combined mesh (b) combined surface (c) design variant  (d) C? ensemble

Figure 10:Increased flexibility after transformation to the unified C? degree

6 representation.(a) Spherical dome (light gray then top of red) and four dacu
cylinders (dark gray then green) define tiiesurface (b). Replacing both surface
pieces by th&? degree 6 representation allows for (c) free-form desigultieg

in the NURBS surface (d).
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(a) unified control net (b) unified surface — two views

Figure 11: Spline surface unifying two G? rational splines (light, dark gray)
defining two differently creased cones.

(@) mesh (b) 2 partitions (c) unified spline

Figure 12:Merging tori with differing cross-sectional partitions (gray vs black
disks in (b)).

Fig. 12 shows a unified representation of t@d tori. Our approach of con-
verting both toC? bi-sextics avoids knot insertion when matching pieces@lon
the transition. As in Fig. 11, we averagg” andgottom,

5 Combining NURBS andG" splines

To combine NURBS of degree 2 with tli¢! basic-shape-reproducing splines of
[KP11a] is a comparatively simpler task. Representatiormetiniformly parti-
tionedcircle in homogeneous cubi¢' form is already possible by replacing each
quadratic segment of th@' spline by twoC-connected cubics [KP11a, Section
7] or a single quartic segment [BP97].

For the general case, we define, analogous to the construgtig for each
segment, a rational quadratic reparameterization camgist C'-connected pieces
n°,n' defined in Section 7.3. Each quadratic segméng then replaced by two
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C'-connected quarticg o n*Y andq’ o n*!. Then

- 7qi71 o 771;71,1’ qz' o 77@',0’ qi o ,,71',17 o (12)
form a piecewise degree @' spline that we can use to re-express (the across-
boundary 1-jet expansion of) the layer adjacent to the sisi(4,2) splines that
are homogenou¢'! and of degree 4 in the direction parallel to the strip. Each
complex provides first-order Hermite data across the baynd@ae double-patch-
wide transition strip of degree (4,2) interpolates the Hegrata. Its centerline is
determined by the constraint that the double strigbe

Unlike the G? to C? transformation, this re-parameterization exactly repro-
duces the quadratic rationaf" spline. Therefore no further adjustment is neces-
sary. This localizes work to the transition strip.

Examples. Fig. 14 illustrates partial preservation and combinatittous pieces
with differing 3; spacing in one direction and T-junctions in the other diogct
Fig. 15 illustrates unified structures of surfaces of retioluand free-formC
splines. By splitting the transversal 1-jet(s) to the finestipon on either side,
the local transition accomodates different partitiondmtivo input structures (cf.
the T-junctions in Fig. 15e).

6 Summary

We obtained a unified spline representation of bi-3 NURBS @hdi-3 splines

that reproduce basic shapes. This comes at the cost of irgpthe degree &>
splines by degree 6 splines with more pieces. The basic shapes continue to be
exactly represented; and we gain additional freedom in fieahcontrol net that
behaves like that of a regular bi-cubic spline. In the simpléto C'* unification

all work is local to the transition strip. While we can alsodtize theG? to C?
transition, construction is more involved than the one gmésd.
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7 Appendix: Reparameterizations

7.1 CubicC? ternary-split parameterization p

Formulas (13) and (14) below enable & construction internal to the ternary-
split arcs. Given the newly choosable scalars of geometmtiguity 5 and the
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opening angles;, we definer; := tan %, and, without loss of generality, focus
on the segment = 0, omitting the indexi below. The homogeneous control
pointspl, k =0...3,7 =0,1,2 of o7 are defined as follows (cf. Fig. 13).

o We set
a_y =1i(1+78) + 2771 (10 + 1) 1 + 1o(1 + 72) B,
ag =271 (10 + 71) + (3 + drom + Tr1) P14+ 3(1 + )BT
ay =3(1 +75)(1 4+ 77) + (6 + 1075 + 877y + 1077 + 67577) B
+3(1+ 1)1+ 73)5,

and define
o

TR B
Todo pray '

d:=

e We define a rational cubic mag (u) : [0, 1] — R by homogeneous control
points
hy = (8], b =[], b= [00] = (1],

and a second, symmetric orlé(u), by replacing inh': 7 — 71, §; —

1/Bo.

Py P1PY Py
Py Pl PSPy o PP P

Figure 13: Coefficients of thetional cubic reparameterization p.

e We obtain the left piece of our reparameterizationpd@:) := h°(u/3)
and the right ag?(u) := h'(2/3 + u/3) with corresponding homogeneous
control pointsy?, p?.

e \We overwrite the end poinis; andp? and set the remaining coefficients of
the middle piece so that the three pieces joim

1 7 1 1 1 1 7 1
Pyi= =3Pl et o= EPs s P gt gt el o0 (19)
Po =03 pL= 20— 09, pyi= 20—t py =g (14)
For a uniform partition and alf; = 1, there is no need for such splitting since
thend andv do not dependent oin
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7.2 CubicC? transition reparameterization

For two neighboring circular arcs with the opening angles. Letr := tan(a/4),

7 := tan(a/4). The homogeneous control poiritg, /., k = 0, ..., 3 of the repa-
rameterizations, p of the quadratic circular arcs yield a homogene6lsoin
with parametep3 as follows, derived and verified by symbolic computation. We
set

e1:=1+72,e:=14+7 e3:= —14+277+ 72 ey := —27(T + 7) ;

aq I:2<€1 + ezl + €4d21/2) , Qg :=—= —€1 — €3] — €4d11/1,
B 261 + a1ﬁ~ e+ alﬁ + (CLl -+ CLQ)/BQ - BTVQ(l — d2)62
V=, gy = 5 dl = — )
261 €1 €171
(Z L BT€2<2V2 — 2d2V2 + (2V2 — 2d21/2 — v+ lel)ﬁ
2 617_'52 '
and define

w
Il
—

h() :[?] i h1 = [Vldl} s hg = [V2d2} 5 h
A 0
1

Vl_ - V2_ _ %
ho == | [vldl} , he = [‘72‘12] . hs=1] .

v2

>
i

vl

7.3 Quadratic C'! reparameterization n

We consider three consecutive quadratic spline segnmfénts ¢ and f**! with
rational weightsl, w;, 1, j € {i — 1,4, + 1} that areG*-connected with geomet-
ric continuity scalars’;, respectivelys; ;. The formulas allow for setting new
continuity scalarsy;, (3,1, for example by averaging old ones. For segmente
define two rational quadratic reparameterizatidrig, ; € {0, 1} with homoge-
neous coefficients

91,45 [ ] 041,

1 ~
wié+wi—l+é+17 Y wiBip Fwips + B + 17

e
ag =

Then the left piece of the reparameterization’i$ := »"°(u/2) and the right is
nt = h(1/2+u/2). Letn,” be the corresponding homogeneous control points.
To guarante€' continuity betweem®° andn®!, we overwrite the common point

. . 0, 4,1
by ni° = nit = % Lemma 2 states that also the connection between
original segments is also smooth.
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(a) mesh (b) C' ensemble (c) edited mesh (d) C* surface

Figure 14:C" torus ensemblewith differing 5; and T-joints.

Lemma 2 (homogeneous’'* reparameterization) Let fi o 0, fi o 5! be the
two-piece reparameterization of the segmg¢ht Then the quarticg ' (n~"')
and f‘(n*Y) are C''-connected in homogeneous space with scalar
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(a) combined mesh (b) combined surface (c) edited mesh (d) C* ensemble

258

(e) combined mesh (f) combined surface  (g) edited mesh (h) C* ensemble

Figure 15: Unified C! representation of degree (4,2). (a) Surface of revolu-
tion with C! quadratic spline profile curve (top) and bic2 spline (bottom). (e)
Surface of revolution with parabola as profile curve (tog) auith hyperbola (bot-

tom). Note the T-joint.
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