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Abstract

We propose a compact data structure for volumetric meshes of arbitrary
topology and bounded valence that offers cell-face, face-edge, and edge-vertex
incidence queries in constant time. Our structure is simple to implement,
easy to use, and allows for arbitrary, user-defined 3-cells such as prisms and
hexahedra, while remaining very efficient in memory usage compared to pre-
vious work. Its time complexity for commonly-used incidence and adjacency
queries such as vertex and dart one-rings is analyzed.

Keywords: 3D mesh, Combinatorial maps, Cell complex, Half-face,
Compact mesh data structure

1. Introduction

Volume meshes are now ubiquitous in solid modeling, physics-based sim-
ulation, computational science, and even rendering of translucent materials.
However, the ever-increasing size and complexity of meshes impose undue
stress on both memory access times and usage, especially since mesh size
typically grows as a cubic function of the resolution. A data structure with
small memory footprint that can efficiently handle queries of incidence and
adjacency would thus benefit a wide range of applications in graphics and
scientific computing in general.

While our data structure is based on the compact, array-based mesh data
structure [1], we provide a simple but generic method for defining volume cell

*Corresponding authors.
Email addresses: weng@cad.zju.edu.cn (Yanlin Weng), ytong@msu.edu (Yiying
Tong)

Preprint submitted to Graphical Models October 8, 2012



types, complete the data structure with a list of edges, and improve incidence
queries within each volume cell.

Figure 1: Upper: tetrahedron cell type; prism cell type; a mesh with 3 cells. Bottom:
full set of combinatorial maps (f; in red, B2 in green), and B3 in blue) among darts. One
example for each of the maps is given with the labels for the darts involved.

Related work. We limit our discussion of previous work to closely related 3D
data structures— for a survey of 2D mesh data structures, see, e.g., [2, 3].
Note, however, that the 2D version of our compact combinatorial map data
structure is equivalent to HEDS [1], which is known to be similar in memory
usage to a number of compact implementation of half-edge data structures.

In scientific computing, 3D volumes are often assumed to be 3D man-
ifolds, i.e., void of degenerate structures such as “shark-fin” or “hanging
rod”. Under this assumption, a table of mesh element connectivity that
maps volume cells to their corner vertices provides complete information



about incidence among vertices, edges, faces, and volume cells. While this
can be sufficient for various geometry processing algorithms[4, 5], many com-
putational applications require constant-time upward or downward incidence
queries (to access lower dimension cells from higher dimension cells, or vice
versa), which cannot be achieved without auxiliary connectivity information.
This requirement was referred to as comprehensiveness in [1]. Some appli-
cations may only require certain incidence queries, e.g., cell-face relations in
ray-tracing [6], cell-vertex relations in Delaunay tetrahedralization. On the
other hand, many Finite Element Method-based applications may need all
incidence queries, including face-edge relations [7].

To address this issue, several data structures were proposed to store suf-
ficient adjacency information to be comprehensive. Guibas and Stolfi [§]
initially proposed a face-edge data structure. A more abstract “cell-tuple”
data structure was formulated in [9] using the idea of boundary representa-
tion for a mesh, based on the fact that it is theoretically possible to “order”
all the (k—1)-cells and k-cells around a (k—2)-cell on the boundary of a (k+1)-
cell. Orientable quasi-manifolds can be also represented by a notion called
Combinatorial Map, originally defined for polygonal meshes [10]. Combina-
torial maps can be extended to generalized d-maps to encode non-orientable
manifolds [11]. Beall and Shephard [12] developed a topology-based mesh
data structure which stores the adjacent information in the boundary rep-
resentation; however, their direct implementation of adjacent relationships
requires a relatively large amount of additional memory storage. Generalized
d-maps can also be compressed [13], but the adjacency information will only
be restored through decompression.

Recently, a number of compact data structures have been proposed. For
instance, [14] introduced a method capable of providing comprehensive con-
nectivity information using only about 7.5 bytes per tetrahedron. However,
this approach is only applicable to simplicial meshes. [1] presented a compact
array-based data structure for 3D orientable manifold cell complexes. With
their concept of anchored half-faces, they were able to compute incident cells
in constant time. However, while they can produce incident cell represen-
tations such as an edge represented by two vertex indices, it is not possible
to find an identifier for the edge using only the proposed connectivity repre-
sentation. [15] independently developed a similar data structure which only
explicitly stores the incidence information of nodes and mesh elements, with
pre-defined element types. Edges and faces are still implicitly represented,
but bit flags are used to ensure uniqueness. They also improved the speed of



adjacency queries with “reverse indices”.

There are a number of libraries providing practical implementations of
volume mesh data structures. [16] already contains an implementation of
Combinatorial Maps; OpenVolumeMesh [17], released recently, is based on
OpenMesh [18], which stores incidence information for cells with those with
one dimension less; libMesh [19] provides a complete but not comprehensive
connectivity description; CGoGN [20] provides an implementation of Gener-
alized Maps. However, none of these existing implementations are optimized
for storage.

Contributions. Our main contributions include:

e a concise local connectivity description of generic 3-cell (volume cell)
types, suitable for both file format and data structure;

e an efficient way to store all the required combinatorial maps for darts
in volume meshes;

e astraightforward way of associating attributes to k-cells (k € {0, 1,2, 3});
and

e a constant time complexity access to adjacency information, including
face-edge incidence.

Note that unique edge identifiers and the face-edge incidence are the main
missing components in the compact array-based mesh data structures [1]
compared to our implementation. On the other hand, one can replace integer
indices with memory pointers and use linked lists to make our data structure
able to handle dynamic connectivity, at the cost of slightly increased mem-
ory usage, possible fragmentation and worse spatial consistency. Array-based
data structure, however, are often more convenient in languages dedicated to
scientific computing, such as FORTRAN. It is also easier to parallelize when
distributed over several CPUs [1]. In fact, most of the afore-mentioned im-
plementations provide the users with the option of using arrays and integers.
Note that while we discuss in this paper the details and implementation of
our data structure to encode orientable 3D manifolds, it can be generalized
to orientable d-dimensional manifold meshes.

The rest of the paper is organized as follows. In Sec. 2, we briefly
introduce the combinatorial maps data structure for volume meshes. In Sec.
3, we describe our compact array-based data structure, and briefly analyze its
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space complexity. In Sec. 4, we discuss adjacency queries and show typical
operations our data structures can efficiently handle, before concluding in
Sec. 5.

2. Combinatorial Maps

In order to introduce the notion of combinatorial maps, we loosely follow
the notation used in [16] and call k-dimensional cells k-cells. Hence, vertices
are 0-cells, edges are 1-cells, faces are 2-cells, and volume cells (such as tetra-
hedra, prims, etc) are 3-cells. Two cells of different dimensions are said to
be incident if one is a subset of the other. Two k-cells of the same dimension
are adjacent if they share a common (k—1)-cell.

A combinatorial map describes the incidence and adjacency relations
among cells of the mesh using a basic element called dart, and a group of re-
lations between darts. For an orientable 3D manifold, a 3D dart corresponds
to a cell tuple (v, e, f,c), where v is a starting vertex of an edge e that lies in
a face f of 3-cell c. For 2D orientable surfaces, a 2D dart would be the same
as the usual half-edge.

An abstract way to define a whole 3D combinatorial map M is to use a
4-tuple M = (D, 1, Po, B3), with:

e D is a finite set of darts;
o fori =1,2.3, 5;,: D — D is a mapping;
e (31 is a permutation;

e (5, B3, and [y o (3 are involutions, i.e., Vd € D, f5 0 f2(d) = d, fs 0
B3(d) = d, and (B 0 B3) o (81 0 B3)(d) = d.

Intuitively speaking, §; maps a dart to another dart with a different ¢-cell
and a different vertex. If we identify the darts with (v, e, f,c) in the reg-
ular cell complex description, f;((v,e, f,c)) = (V. €, f,c), Ba2((v,e, f,c)) =
(v'ye, f';¢), and B3((v, e, f,c)) = (V' e, f, ). Note that 51 and 3, are the 3D
analogues of a half-edge’s next() and opposite() operations, respectively.

In this abstract sense, we can define k-cells by orbits (S)(d), i.e., the set
of darts that can be reached by arbitrary combination of maps m € S:

e the 3-cell containing d is ({51, f2})(d);
e the 2-cell containing d is ({51, B3})(d);
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e the 1-cell containing d is ({2, f5})(d),
e the O-cell containing d is ({51 o 2, B1 0 fB3})(d).

3. Compact Data Structure

3.1. Overview

File format. For a 2D polygonal mesh, the complete connectivity information
can be encoded by a face list, with each entry corresponding to the list of
vertices in the polygon face. However, for a polyhedral mesh, the same list of
vertices can correspond to different polyhedra. For instance, an octahedron
and a prism both have six vertices. As there are only a handful of k-cell
types in most k-dimensional meshes used in practice, we opt to describe all
the k-cell types in the header part of the file, and to describe each polyhedron
by an ordered vertex list and its k-cell type.

Comprehensive data structure. All low dimensional (< k—1) relations (5, . . .
, Brk—1) map darts within the same k-cell. Given the type of a k-cell, we may
assign each dart in that cell a local id, and the maps among the darts can
be precomputed when the k-cell type. One can easily assemble a global ID
for each dart by (C,d), where C' is the global ID of the k-cell, and d is the
local dart ID. Additional auxiliary local incidence mapping to increase effi-
ciency can also be created for each k-cell type at a constant memory cost
(independent of the mesh size).

Br maps a dart in one k-cell C to another dart in an adjacent k-cell Cj.
Noticing the relation among (’s, we only store (3 for one dart in the common
k—1-cell in C. Thus, the size of 5 can be reduced to one dart per pair of
k-cell and k—1-cell.

The relation between k-cells and darts is implicitly given in the way we
express a global ID for each dart (C,d). The mapping from darts to ver-
tices (0-cells) is stored in the vertex lists for k-cells, also called the element
connectivity in array-based methods such as [1], denoted Cv2V below. The
map from each vertex to one of its darts is stored in a table, denoted by V2D
below.

The above information enables constant time incidence/adjacency in-
quiries among vertices, k-cells, and “half”-k — 1-cells, akin to [1] except
some subtle differences. However, no unique IDs are actually given to 1-
cells, 2-cells, through k£ —1-cells, hence no constant time incidence inquiries
involving these cells can be achieved, without additional memory cost.
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We propose to build a minimal set of additional connectivity tables to
provide these incidence relations crucial to real world applications. We de-
scribe them as optional, since often one may only need some of the tables
in this set, although at least one of them is, in many cases, indispensable.
Here we restrict our discussion to 3D. To create a unique edge identifier we
use a table called £2D, which maps a global edge ID to one of its darts.
The map from darts back to edges can be implemented through a table V2FE
mapping a vertex to the edge starting from it with the smallest ID, as elab-

orated below. Similarly, but less frequently required, we assign unique face
IDs through the table F'2D, and the backward mapping by V2F.

3.2. Details for 3D

To illustrate the detailed actual data structure, we use as a running ex-
ample the description of the simple meshes shown in Figure 1, as found in a
mesh file—skipping the list of vertex coordinates since our focus is on connec-
tivity information. As in the compact array-based half-face data structure
(HFDS) [1], we leverage the fact that there are only a few types of cells
typically used in engineering or graphics applications. However, unlike in
HFDS, we will not limit ourselves to 3-cells used in the CFD General Nota-
tion System (tetrahedron, pyramid, prism, and hexahedron): any 3-cell type
for which faces are locally defined can be specified in the header of a mesh
file.

Local information within each 3-cell. Each 3-cell is treated locally as a 2-
manifold cell complex, which can be represented by a local half-edge struc-
ture, i.e., a 2D combinatorial map. For a given type of 3-cell with n, vertices,
n. edges, ny faces:

e locally denote each vertex by v;, with i € {0,... ,n, — 1};
e locally label each face as f,, = (v;,vj, v, ...), withm € {0,...,ny—1}.

e (optionally) locally label each of the 2n. darts as e, = (v;,v;), with
ke{l,...,2n.};

Darts are indexed starting from 1, as 0 is reserved for boundaries.
The mesh file for Figure 1 would thus contain the following information:
Cell type 0 (tetrahedron):

faces | 0:(0,2,1) 1:(0,1,3) 2:(1,2,3) 3:(2,0,3)

darts | 1:(0,1)  2:(1,0)  3:(0,2)  4:(2,0) 5:(0,3) 6:(3,0)

7:(12)  8(2,1)  9:(1,3) 10:(3,1) 11:(2.3) 12:(3,2)
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Cell type 1 (prism):

faces | 0:(0,2,1) 1:(0,1,4,3) 2:(1,2.5.4) 3:(2,0.3.5) 4(3.4.5)

darts | 1:(0,1) 2:(1,0) 3:(0,2) 4:(2,0) 5:(0,3)  6:(3,0)
7(1,2)  &(21)  9:(14)  10:(4,1)  11:(25) 12:(52)
13:(3,4)  14:(4,3)  15:(35)  16:(5,3) 17:(4,5) 18:(54)

Cells:

type 0 | C0:(1,0,2,6) C1:(3,4,5,7)
type 1 | C2:(0,1,2,3,4,5)

In all the tables we list, the information before is for illustration
purposes only, and is thus not stored in memory or files. For each 3-cell
type, defining only the faces would be necessary and sufficient, since we can
build the darts based on faces and give them labels. We then build a lookup
table for 3; and (5 of all darts, with 2n, entries and 2n, possible values in
the range for each entry. In our running example, the 5, and [, tables for
3-cell type 0 are

W

d [1 234 5 6 7 8 9 10 11 12
Bi(d)|9 3 8 5 12 1 11 2 6 7 10 4
Bod) |2 1 4 3 6 5 8 7 10 9 12 11

Here the rows labeled §; and [, contain the images of the darts of the
same column in the rows labeled with d, e.g. £;(1) =9 and (5(1) = 2.

Assuming a small number of 3-cell types compared to mesh size, these
type specifications only use a negligible amount of memory. In fact, storing
all the local incidence and adjacency information directly for improved speed
only requires an additional constant memory cost. We denote local incidence
mappings as follows:

e d2f(d) maps a dart d to its local face ID;

e f2d(f,1) is the i-th dart of the local face f;

e d2v(d) maps a dart d to its starting vertex.

We use lower (resp., upper) case in the name of a map to denote whether the
index is local (resp., global).

Global information. We load the connectivity table that contains, for each
3-cell, the global indices of its vertices. We denote this table by Cv2V (C,v)
since it maps the v-th vertex of 3-cell C to its global index V. Note that
this corresponds to the usual way of storing the bare minimum connectivity
information of 2D polygonal meshes in files. Similarly, one can organize the
file by listing vertex lists of every 3-cell in their order of enumeration; that
is, the file first lists the descriptions of 3-cell types, followed by vertex lists
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of all 3-cells of the first type, the second type, etc. Once we have the 3-cell
connectivity, a dart can be globally indexed by an ordered pair D = (C, d),
where C' is the global 3-cell ID, and d is the local dart index. Note that
instead of using a local face index with a starting vertex (called anchored
half face) as in HFDS, we use local indices of darts; for the common case of
tetrahedron meshes, this means we can cope with meshes twice as large for
the same amount of memory.

To complete incidence and adjacency information in the combinatorial
map, we need to construct f3. We save space by noticing that f3 = 10085001,
which means that S3(D) can be inferred if 53(51(D)) is known. Thus, we
only store f3 for the first dart in each half face H = (C, f), and denote
this additional table by H2D(C, f). If the application requires the use of
boundary darts, their 3 can be stored in a separate list B2D(B), mapping
the first dart of each boundary face B to its corresponding dart in the 3-
cell adjacent to it. We also need to map from a vertex to one of its darts
V2D(v); but the map from a dart to its starting vertex is trivially found by
D2V (C,d) = Cv2V(C,d2v(d)).

The tables for the 3-cell example are
B3 Co f0d3:(2,8) f1d1:(0,0) f2d7:(1,0) £3d4:(2,0)

C1 f0d3:(2,16) f1d1:(3,0) f2d7:(4,0) £3d4:(5,0)

C2 f0d3:(0,8)  f1d1:(6,0) £2d7:(7,0) £3d4:(8,0)

£4d13:(1,2)
B2D | BF0:(0,1) BFI1:(0,7) BF2:(0,4) BF3:(1,1) BF4:(L7)
BF5:(14) BF6:(2,1) BFT7:(2,7) BF8:(24)
V2D | V0:(0,7) V1:(0,1) V2:(0,4)  V3:(1,1)  V4:(1,7)
V5:(14)  V6:(0,10)  V7:(1,6)

Boundary. The map (3 usually returns an internal dart (C,d) with d > 0.
However, if the opposite is a boundary dart, it will return (B,0), i.e., the
boundary half-face ID. We carefully choose V2D so that whether a vertex
V' is on boundary can be determined by examining [3(V2D(V)). Darts
belonging to boundary half-face do not need to explicitly maintained in most
cases .

Edge and face incidence information. If we need to use a unique edge iden-
tifier, a table for F2D(FE) is maintained to map an edge to one of its darts.
We sort the edges in the E2D table by lexicographic order of their vertices
(Vistart, Vena) assuming that it always points from the vertex with a smaller
index to the one with a larger index. A backward mapping D2F can be im-
plemented by a table V2E(V'), mapping vertex V to the first edge starting



from it. We can avoid sorting the edges by using a linked list at the cost of
storing another n; integers. The map V2FE would then be made to map a
vertex to a linked list of edges starting from it.

If only half faces need identifiers, (C, f) can be used instead. Otherwise, a
table F'2D(F') is required. Similar to the edge case, we can sort the faces by
their first three vertices, assuming vertices are in ascending order within each
face F'. Then the backward mapping D2F can be implemented by V2F(V),
mapping vertex V' to the first face that has V' as its smallest-indexed vertex.

For our running example, the (optional) edge tables are
E2D | EO(VO,V1):(0.2)  EL(VO,V2):(2,3)  E2(VO0,V3):(2,5)
E3(VO,V6):(0,9)  E4(VLV2):(0,3)  E5(V1,V4):(2,9)
E6(V1,V6):(0,5) ET(V2,V5):(2,11) ES(V2,V6):(0,11)
E9(V3,V4):(2,13)  E10(V3,V5):(1,3) E11(V3,V7):(1,5)
E12(V4,V5):(2,17) E13(VAV7):(1,9) E14(V5,V7):(1,11)
V2E | VO:0 V14 V2:7 V39 V412 V514 Vé: V7:‘

Example table construction. The construction of most tables is straightfor-
ward since the mesh connectivity information is complete. We only give
an example of how to build £2D in Algorithm 1. Note that the procedure
ensures that a quick counter-clockwise traversal of the edge’s one-ring is pos-
sible even when it is on the boundary, and an easy boundary test through

B3 Oﬁz(E)-

Spatial complexity. Tetrahedron meshes are the easiest to establish compar-
isons between various data structures: for such meshes, we can approximate
all k-cell counts ny as a function of the number of tetrahedra ns; and bound-
ary faces n,—other mesh types must be analyzed using the count of darts,
and its estimated relation with k-cell numbers. Following [12], we assume
the average valence of a vertex is around 47 divided by the solid angle for a
vertex of an equilateral tet 0.5513, i.e., 22.8. Additionally, we assume that
the average solid angles at boundary nodes are about half of the average
angle. Based on these assumptions, the fact that each tetrahedron has 4
vertices and 4 faces, and Euler’s formula, we have

22.8ng = 4ns, 4ns +ny = 2n9, ng — Ny +ng —ng = 0.
The k-cell counts are therefore
ng ~ 0.175n3, ny =~ 1.175n3 + 0.5ny, no = 2ng + 0.5n,,.

For the models shown in Table 1, these estimates are very close to the actual
k-cell counts. Some of the models are shown in Figure 2, with cross-sections
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Algorithm 1 Build E2D table

1: init flag table visited(), E < 0
2: for all non-boundary dart D do

3:  if visited(D) then

4: continue

5. end if

6: Dy <+~ D

7:  while true do

8 D' < B30 B2(D) {rotate clockwise}

9: if Boundary(D') or D' = D, then

10: break

11: end if
12: D« D'
13:  end while
14 E2D(E) ¢+ D, E+ E+1, Dy« D
15:  repeat
16: visited(D) < true, vistied(B2(D)) < true
17: D < (35 0 B5(D) {rotate counter-clockwise}
18:  until Boundary(D) or D = D,
19: end for
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revealing the internal tetetrahedral structure. The memory usage for these
models in OpenVolumeMesh and CGAL combinatorial maps data structures
is listed in Table 2.

In the following analysis, we assume that the lowest four or more bits
are sufficient to encode the local dart index or the local half face index; thus
we need only one integer for (C,d) or (C, f). Alternatively, for tetrahedron
meshes with fixed connectivity, we can use an integer D such that it rep-
resents C' = D/12 and d = D%12. When 3-cells are sorted by type, this
method can be easily extended to cope with hybrid meshes and to include
boundary darts. The memory size required for the various connectivity ta-
bles are listed below:

Table | V2XYZ | Cv2V H2D V2D B2D

Space 3ng 4dng 4ng no g

Table(optional) | E2D  V2E F2D V2F
Space ny o N9 no

By tallying up these numbers, we find that 8n3 + ng + ny, =~ 8.175n3 + n,
integers are required for the basic tables, in par with the basic eight pointers
per tetrahedron (pointing to adjacent tetrahedra and corner vertices) plus one
pointer per node (to one incident tetrahedron) used to encode connectivity
in Pyramid and CGAL, and close to [14]’s tetrahedron mesh structure prior
to difference code compression. Data structures capable of handling generic
polytope meshes require more memory space when used for simplicial meshes,
e.g., Dobkin and Laszlo’s structure [21] would require around 18ng pointers,
while radial-edge, cell-tuple, and G-map representations, as well as CGAL’s
combinatorial map, would use even more memory. If unique edge identifiers
are needed, we require ng + n; ~ 1.35n3 additional integers, which is more
compact than the pure tet mesh encoding of [14] before difference coding.

HFDS [1] uses the same amount of basic space (8.175n3 + ny,). However,
their encoding of a local dart (anchored face) identifier (C, f,v) uses a sepa-
rate local index f for a face within the tetrahedron and a local index v of a
vertex within the face. Thus, it would be less memory efficient when dealing
with generic 3-cells, for example, 3-cells that have 5-edge faces or more. In
addition, even in the common case of tetrahedron meshes, HFDS requires 5
bits for local indices (f = 0 is reserved for boundary), while we only need
4 bits, enabling us to handle meshes with 256M 3-cells with a 32-bit integer
representation, instead of their 128M limit.

Furthermore, and key to runtime efficiency, we provide a simple way to

12



give edges and faces unique identifiers. As we elaborate upon next, this
enables constant time incidence queries, and allows appending attributes to
edges and faces, which are important in simulation and other computational
tasks. The HFDS data structure does not actually provide any means to get
unique adjacent edge IDs in constant time.

4. Incidence/Adjacency Queries

As our data structure can be seen as an internal representation of a com-
binatorial map, it can directly leverage any implementation of combinatorial
maps to get incidence and adjacency information in constant time. In addi-
tion, with integer IDs, additional attributes associated to vertices, darts, half
faces, cells, edges, and faces, can be directly allocated as an array with the
appropriate size, making it highly efficient and flexible for static meshes. We
will first give a few examples of commonly-used neighborhood constructions
such as one-rings in Algorithms 2 and 3 (*.” symbol denotes member access).
Assuming constant maximum valence, both algorithms run in constant time.
To map a dart to a unique edge ID, we find the end vertices (Viare, Vena)
with Viare < Vena- We then perform a linear search in E2D starting from
V2E (Vitart), this again would terminate in constant time.

In most cases, faces do not need a unique ID, as attributes are often
associated to half faces; but if needed, our F2D and V2F tables can be used
to provide a unique face ID.

All other incidence information can be similarly assembled from the map-
pings between cells and darts and the mappings among darts.

5. Conclusion

We presented an efficient internal representation of combinatorial maps.
All necessary components in combinatorial maps can be implemented in

model name ng ny ny n3 +V2XYZ est. +Edges
lmag 95,156 648,969 48,308 529,652 19,858k 18,625k 23,006k
Armadillo | 189,919 1,314,767 77,704 1,085,997 39,502k 38,103k 44,634k
david 140,592 965,377 65,402 792,038 29,486k 27,824k 33,334k
de-wt 550,770 3,819,288 224,024 3,156,497 111,286k 110,742k 125,702k
emd1590 23,419 150,930 19,540 117,736 5,346k 4,175k 6,110k
fertility 341,924 2,385,564 125450 1,980,912 70,098k 69,438k 79,490k
neptune 358,647 2,498,975 133,476 2,073,588 73,622k 72,695k 83,442k

Table 1: Actual memory usage for a variety of meshes.
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model name | OpenVolumeMesh CGAL CM
lmag 246,284k 334,028k
Armadillo 502,028K 673,587k
david 366,988k 483,532k
de-wt 1,402,900K 1,929,379k
emd1590 54,696 K 67,789k
fertility 885,876K 1,205,862k
neptune 921,616K 1,258,291k

Table 2: Actual memory usage for the same meshes as in Table 1 using OpenVolumeMesh
library and CGAL’s combinatorial maps, respectively.

Algorithm 2 One-ring darts and cells around vertex 1}

Ensure: {darts} and {cells} contain darts and cells in the one-ring.
1. C+ (V2D(V,).C)
2: Queue Q.push(C'), save C' in {cells}
3: while ) not empty do
C + Q.pop()
{D;} « all darts starting at V in C'
save {D;} in {darts}
for all D in {D;} do
C <+ (B3(D).C)
if C not in {cells} then
10: Q.push(C), save C' in {cells}
11: end if
12 end for
13: end while

compact form. Compared to previous work, our data structure can han-
dle arbitrary 3-cell types, and it provides adjacency and boundary inquiries
in constant time. Appending attributes to cells of any dimension is also
straightforward.

One limitation of the compact combinatorial map data structure we de-
scribed is its apparent inability to deal gracefully with dynamically changing
connectivity, in particular with possible changes of 3-cell types. (On the
other hand, if 3D cells are kept intact as in the case of cutting or merging
meshes along faces, the mesh can be easily modified accordingly.) However,
we believe that our data structure can be readily altered to efficiently handle
connectivity changes as well: one could use pointers instead of integers for the
IDs of 3-cells and vertices—and the last few bits of the pointer can actually be
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Figure 2: Some of the meshes in the statistics. The cross-sections reveal the internal
tetrahedra. The surface triangles are rendered blue, and the internal triangles red.

used to encode local dart index as in the integer case. The linked list version
of V2F will be necessary, increasing the memory space by n; = 1.175 ns.
Thus, a possible research direction worth exploring is the design of ad-
missible local connectivity changes (such as edge removal or 2-3 flip) that
maintain the validity of our compact data structure. Compression of neigh-
boring information (/33) using difference coding after sorting the cells along
space-filling curves could also lead to further reduction of memory usage.
Additionally, the extension to dimension n > 3 could be done by encoding
the local connectivity (01, .., 8,-1) of n-cell types, and store only f,.
Another future work would be to explore the application of the data

Algorithm 3 One-ring (internal) HF around Edge Ej
Ensure: Array {HF} is the CCW ordered one-ring.
. Dy + E2D(Ey), D « Dy
repeat

C <+ (D.C),d<+ (D.d)

save (C,d2f(d)) and (C,d2f(52(d))) in {HF}

D < (35 0 B5(D) {rotate counter-clockwise}
until Boundary(D) or D = D
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structure in tasks involving volume data, such as 3D field design, solid tex-
turing [22, 23], etc.
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