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Abstract

A composite quadric model (CQM) is an object modeled by piecewise linear or quadric patches. We study
the continuous detection problem of a special type of CQM objects which are commonly used in CAD/CAM,
that is, the boundary surfaces of such a CQM intersect only in straight line segments or conic curve segments.
We present a framework for continuous collision detection (CCD) of this special type of CQM (which we
also call CQM for brevity) in motion. We derive algebraic formulations and compute numerically the first
contact time instants and the contact points of two moving CQMs in R3. Since it is difficult to process CCD
of two CQMs in a direct manner because they are composed of semi-algebraic varieties, we break down
the problem into subproblems of solving CCD of pairs of boundary elements of the CQMs. We present
procedures to solve CCD of different types of boundary element pairs in different dimensions. Some CCD
problems are reduced to their equivalents in a lower dimensional setting, where they can be solved more
efficiently.
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1. Introduction

Collision detection is important to many fields involving object interaction and simulation, e.g., computer
animation, computational physics, virtual reality, robotics, CAD/CAM and virtual manufacturing. Its
primary purpose is to determine possible contacts or intersections between objects so that proper responses
may be further carried out accordingly. There has been considerable research in relation to collision detection,
particularly in the field of robotics and computer graphics, regarding the different issues such as intersection
tests, bounding volume computation, graphics hardware speedup, etc. Among these studies, continuous
collision detection (CCD) is currently an active research topic, in which collision status within a continuous
time span is determined.

Quadric surfaces form an important class of objects used in practice. In CAD/CAM or industrial
manufacturing, objects are often designed and modeled using quadric surfaces because of their simple rep-
resentations and ease of handling. Quadric surfaces encompass all degree two surfaces, which include the
commonly used spheres, ellipsoids, cylinders and cones. Ellipsoids, truncated/capped cylinders and cones
are usually used as approximations to complex geometry in graphics and robotics. Furthermore, most me-
chanical parts can be modeled accurately with quadric surfaces. Through composite representation or CSG
(constructive solid geometry) composition, an even wider class of complex objects are modeled by quadric
surfaces.

Most existing collision detection methods are intended for piecewise linear objects such as triangles, boxes,
polyhedrons, or simple curved primitives such as spheres. Collision detection of objects containing quadric
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surfaces may be done by applying these methods to piecewise linear approximations of the objects. This,
however, introduces geometric error and entails large storage space. As a result, exact collision detection
of quadric surfaces is important due to the extensive use of quadric surfaces as modeling primitives in
applications.

In this paper we present a framework for efficient and exact continuous collision detection (CCD) of
composite quadric models, or CQMs for short. CQMs are modeled by piecewise linear or quadric surface
patches. The boundary elements of a CQM may either be a face (a linear or quadric surface patch), an
edge (where two faces meet) or a vertex (where three or more edges meet). A boundary edge of a CQM
is in general a degree four intersection curve of two quadrics. However, there is a special class of CQMs
whose boundary edges are straight line or conic curve segments only (Figure 1). In this paper, we focus on
CCD of this special class of CQMs (which we shall also denote as “CQM” for brevity), which is by itself an
important problem due to the popular use of the class in practice. This work also represents a step towards
tackling CCD of general CQMs, which is difficult to be solved efficiently.

Figure 1: Two CQMs in motion. The objects are typical examples of the special class of CQMs whose boundary edges are
straight line or conics curve segments only.

Our main contributions are as follows.

• We present a framework for exact and efficient continuous collision detection (CCD) of two moving
composite quadric models (CQMs). Given two moving CQMs which are separate initially, our method
computes their first contact time and contact point. The CQMs may undergo both the Euclidean and
affine motions, which means that the objects may either be rigid or change their shapes under affine
transformations.

• Our framework comprises a collection of algebraic methods for CCD of different types of boundary
components of a CQM. In particular,

1. we devise an algorithm for CCD of two moving quadrics (Section 5.1), which is based on our recent
result of detecting morphological change of intersection curve for two moving quadrics ([17]); and

2. we derive algebraic conditions for different configurations of 1D conics in PR and further devise
an algorithm for CCD of two moving conics in 3D (Section 5.7).

2. Related Work

2.1. Continuous collision detection

Different approaches have been proposed for solving continuous collision detection (CCD) for various
types of moving objects. There are CCD methods by equation solving, which include [6] and [22] for
polyhedra, [8] for elliptic disks and [9] for ellipsoids.

Swept volumes (SV) are also commonly used: [5] presents a solution using a four-dimensional space-time
SV; [19] and [23] deal with CCD of articulated bodies by considering SVs of line swept spheres (LSS); and
[15] works on SVs of triangles to solve CCD of deformable models with significant speedup using GPU.
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Efficiency and accuracy are the major concerns for CCD. [33] use the approach of conservative ad-
vancement and achieve acceleration of CCD for articulated objects by using the Taylor model which is a
generalization of interval arithmetic. For deforming triangle meshes, [25] proposes conservative local ad-
vancement that significantly improve CCD performance by computing motion bounds for the bounding
volumes of the primitives. A recent work by [3] uses geometrically exact predicates for efficient and accurate
CCD of deforming triangle meshes.

Our CCD method works on exact representations of CQM models and is based on algebraic formula-
tions. For better efficiency, equation solving for obtaining contact time instants and contact points is done
numerically.

2.2. Intersection and collision of quadrics

Classifications and computations of the intersections of two general quadrics are thoroughly studied in
classical algebraic geometry ([4, 24, 2]) and CAGD ([28, 10, 11, 12, 13, 27, 26]). These results, however,
consider quadrics in the complex or real projective space, and are not applicable to collision detection
problems which concern only the real affine or Euclidean space. There is nevertheless an obvious way
to detect intersection between stationary quadrics by computing their real intersection curves. Various
algorithms have also been proposed (e.g., [20, 21, 32, 30, 29]), whose objectives are to classify the topological
or geometric structure of the intersection curves and to derive their parametric representations. However,
these methods are difficult to extend for collision detection of moving quadrics.

Our previous work in [8, 9] presents algorithms for exact CCD of elliptic disks and ellipsoids, based on
an algebraic condition for the separation of two ellipsoids established by [31]. Although quadrics are widely
used in many applications, CCD of general quadrics has not been addressed in the literature. We propose
recently an algebraic method for detecting the morphological change of the intersection curves of two moving
quadrics in 3D real projective space ([17]). In this paper, we further devise an algorithm for CCD of moving
quadrics which is a subproblem of CCD of CQMs. We also develop a framework to solve CCD of CQMs,
the more general class of objects composed of piecewise linear or quadric primitives.

3. Outline of Algorithm

Two moving CQMs QA(t) and QB(t), where t is a time parameter in the interval [t0, t1], are said to be
collision-free, if the intersection of QA(t) and QB(t) is empty for all t ∈ [t0, t1]; otherwise, they are said to
collide. Two CQMs QA(t′) and QB(t′) at a particular time instant t′ are in contact or touching, if their
boundaries have nonempty intersection while their interiors are disjoint. Given two initially separate CQMs,
our goal is to determine whether the CQMs are collision-free or not; if they collide, their first contact time
instant in [t0, t1] and the contact point will be computed.

We assume that the CQMs undergo artbitrary motions which are expressible as continuous functions
of the time parameter t. Among the various motion types, rational motions are easily handled by CAGD
techniques that deal with splines and polynomials. Our method involves root finding, and in the case of
rational motions, the functions are polynomials whose roots can be efficiently solved for by these techniques.
Moreover, low-degree rational motions are found to be sufficient for modeling smooth motions in most
applications and hence further enhance efficiency. See [18] for a thorough discussion of rational motion
design. While rational motions are used in our examples, our method is also applicable to other motions,
such as helical motions which are transcendental. Numerical solver will then be needed for root finding of
these functions.

CQMs can be viewed as semi-algebraic varieties which are defined by multiple polynomial inequalities.
Their boundary elements are often finite pieces on a quadric or a conic and hence it is difficult to process
CQMs using algebraic methods in a direct manner. To tackle CCD of CQMs, we consider pairwise CCD
between the extended boundary elements (Figure 2) which are defined as follows:

• The complete planar or quadric surface containing a boundary face of a CQM Q is called an extended
boundary face of Q.
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• The complete straight line or conic curve containing a boundary edge of a CQM Q is called the extended
boundary edge of Q.

• An extended boundary element of a CQM Q is either an extended boundary face, an extended boundary
edge, or a vertex of Q.

Figure 2: A capped cylinder (in blue) and its extended boundary elements. The cylinder (in green) and the two planes (in
yellow) are the extended boundary elements of the cylindrical surface and the two disks of the capped ends, respectively. The
circular edge (in orange) is the extended boundary element of itself.

It follows that CCD of CQMs entails solving CCD of different element types. For example, to detect
possible contact between two moving capped cylinders (Figure 8), one should handle CCD of (a) cylinder
vs. cylinder; (b) cylinder vs. ellipse; (c) ellipse vs. plane; and (d) ellipse vs. ellipse.

The major steps of our algorithm are outlined as follows:

1. Given two CQMs, we first identify CCD subproblems between all possible pairs of their extended
boundary elements (Section 4).

2. For each CCD subproblem, we use an algebraic method to compute their first contact instant and point
of contact. We will present a classification of different types of CCD problems that one may encounter
in CCD of CQMs and discuss the detailed solution to each case (Section 5).

3. Once a contact is found between two extended boundary elements, we will check if the contact is valid,
that is, if it lies on both CQMs (Section 6), since a contact found in Step 2 may lie on a portion of an
extended boundary element that is not part of a CQM boundary element. Two CQMs are in contact
only if the contact point between the extended elements lies on both CQMs (see Figure 3).

4. After the CCD subproblems are solved, the first valid contact among all pairs of boundary elements is
then the first contact of the two CQMs.

The main algorithm is given in Algorithm 1 as follows.
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(a) (b)

Figure 3: Contact validation. (a) The extended boundary elements (cylinders) have a valid contact point that lie on both
CQMs, so the capped cylinders are in contact. (b) The contact point of the extended boundary elements is an invalid contact
of the CQMs since it does not lie on both CQMs.

Algorithm 1 The Main Algorithm

Input: Two moving CQMs QA(t) and QB(t), t ∈ [t0, t1], and QA(t0) ∩QB(t0) = ∅
Output: Whether QA(t) and QB(t) are collision-free or colliding, and the first contact

time and contact point in case of collision

Identify all CCD subproblems between the extended boundary elements of QA(t)
and QB(t).
for each CCD subproblem do

Find, if there is any, the first candidate contact time ti with a valid contact point
pi that lies on both QA(ti) and QB(ti).
S ← S ∪ {(ti,pi)}

if S = ∅ then
return QA(t) and QB(t) is collision-free for t ∈ [t0, t1]

else
i∗ ← arg min{ti | (ti,pi) ∈ S}
return (ti∗ ,pi∗) as the first contact time and contact point of QA(t) and QB(t)

4. Identifying subproblems

A contact of two CQMs always happens between a pair of boundary elements, one from each of the
CQMs. Depending on the types of the boundary elements, we have different types of contacts—(F, F ),
(F,E), (F, V ), (E,E), (E, V ) and (V, V ), where F,E and V stand for face, edge and vertex, respectively.
Let Ĩ denote the extended boundary element of a boundary element I of a CQM. The contact types can be
characterized by the geometric configuration of the extended boundary elements of two CQMS as follows:

(F, F )-type: If a contact of type (F, F ) happens between two boundary faces F1 and F2, then the two
extended boundary faces F̃1 and F̃2 either have a tangential contact or are identical.

(F,E)-type: If a contact of type (F,E) happens between a boundary face F1 and a boundary edge E2,
then either the extended boundary face F̃1 and and the extended boundary edge Ẽ2 are in tangential
contact, or Ẽ2 is contained in F̃1.

(F, V )-type: If a contact of type (F, V ) happens between a boundary face F1 and a vertex V2, then V2 must
lie on the extended boundary face F̃1.
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(E,E)-type: If a contact of type (E,E) happens between two boundary edges E1 and E2, then the extended
boundary edges Ẽ1 and Ẽ2 either have a real intersection or are identical.

(E, V )-type: If a contact of type (E, V ) happens between a boundary edge E1 and a vertex V2, then V2

must lie on the extended boundary edge Ẽ1.

(V, V )-type: If a contact of type (V, V ) happens between two vertices V1 and V2, then V1 and V2 must
coincide.

We now show that one only needs to deal with four of the contact types for CCD of two CQMs.

Proposition 1. A contact between two CQMs can be classified into one of the four basic types: (F, F ),
(F,E), (F, V ) and (E,E).

Proof. A contact between two CQMs can be of more than one contact type, since it may lie on two or more
extended boundary elements. Both the (E, V )- and (V, V )-type contacts can be treated as (F, V )-type. In
particular, an (E, V )-type contact between a boundary edge E1 and a vertex V2 is always also an (F, V )-type
contact between V2 and a boundary face on which E1 lies. A (V, V )-type contact between two vertices V1

and V2 is always also an (F, V )-type contact between V2 and a boundary face on which V1 lies.

A CCD subproblem is defined for each pair of extended boundary elements, one from each of the two given
CQMs. As the detection of (F, V )-type contacts would capture all the (E, V )- and (V, V )-type contacts, we
have the following:

Corollary 2. It suffices to consider CCD subproblems of the four basic contact types—(F, F ), (F,E), (F, V )
and (E,E) to solve CCD of two CQMs.

Example 1. Figure 4 shows two CQMs which is (a) a ring constructed by subtracting a cylinder from an
ellipsoid; and (b) a wedge formed by first subtracting three half spaces and then a circular cylinder from an
elliptic cylinder. The CCD subproblems for the two CQMs are as follows:

• 8 (F, F )-type subproblems: {FA,i}2i=1 × {FB,j}4j=1.

• 20 (F,E)-type subproblems: {FA,i}2i=1 × {EB,j}6j=1 and {EA,i}2i=1 × {FB,j}4j=1.

• 8 (F, V )-type subproblems: {FA,i}2i=1 × {VB,j}4j=1.

• 12 (E,E)-type subproblems: {EA,i}2i=1 × {EB,j}6j=1.

5. Solving CCD subproblems

For a pair of extended boundary elements, each from CQMs QA(t) and QB(t), respectively, the next
step is to solve their CCD and compute the first contact time instant with the corresponding contact point.
There is a hierarchy of extended boundary elements, from faces to vertices, in different dimensions. Each
element type also consists of more than one kind of primitives; for instance, a face may either be a quadric
face or be a planar face. A complete classification of the types of element pairs that should be considered
for CCD of two CQMs is listed in Table 1. In this section, we shall present the techniques for resolving CCD
of these cases.

We note here that CCD between two planes can be exempted since any planar face of a CQM must be
delimited by some boundary curves and any possible contact of two planes can be found by CCD between
one planar face and a boundary curve of another. Similarly, CCD between a plane and a line can also be
exempted, since any possible contact between a planar face and a straight edge of two CQMs can be found
by CCD between the boundary curve of the face and the line, or CCD between a boundary vertex of the
line and the plane. Hence, CCD for these two cases are not listed in Table 1.
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(a) (b)

Figure 4: Different types of boundary elements of two CQMs, where F,E and V stand for face, edge and vertex, respectively.

Table 1: Complete classification of different types of element pairs of two CQMs and the technique for solving the corresponding
CCD. Note that CCD between two planes and CCD between a plane and a line can be exempted and therefore are not listed
here.

Type Case Element pairs Techniques Section
(F, F ) I Quadrics vs. Quadrics CCD of quadrics 5.1

II Quadrics vs. Planes CCD of quadrics/planes 5.2
(F,E) III Quadrics vs. Conics Dimension reduction to Case VIII 5.3

IV Planes vs. Conics Dimension reduction to Case X 5.4
V Quadrics vs. Lines Direct substitution 5.5

(F, V ) VI Quadrics/Planes vs. Vertices Direct substitution 5.6
(E,E) VII Conics vs. Conics in R3 Dimension reduction 5.7

VIII Conics vs. Conics in R2 CCD of conics in R2 5.8
IX Conics vs. Lines in R3 Dimension reduction 5.9
X Conics vs. Lines in R2 Direct substitution 5.10
XI Lines vs. Lines CCD of linear primitives 5.11

5.1. Case I — quadrics vs. quadrics

In this section, we deal with CCD of two quadric surfaces in R3. We assume that the quadrics are
irreducible and hence they do not represent planes. CCD between a quadric surface and a plane is discussed
in Section 5.2.

Given two moving quadric surfaces in R3, our goal is to compute the time instants at which there is
a contact between the two quadrics. There are three different local contact configurations between two
quadrics: surface contact, curve contact or point contact (Fig. 5). Two quadrics have a surface contact if
and only if they are identical. They have a curve contact if and only if they are tangent at every point along
a line or conic curve. There is a point contact if and only if they are tangent at an isolated common point. It
is also important that the quadrics do not intersect locally at the neighbourhood of all the tangent points.
Figure 6(a) shows two cylinders that are tangent at a point but also intersect locally at the neigbourhood
of the same point. The tangent point therefore does not constitute a contact.

Let X = (x, y, z, w)T ∈ PR3 and let two moving quadrics be given by A(t) : XTA(t)X = 0 and
B(t) : XTB(t)X = 0, where A(t), B(t) are 4 × 4 matrices with elements as functions in t. The two
quadrics define a moving pencil Q(λ; t) : XT

(
λ(A(t)−B(t))

)
X = 0, with characteristic polynomial f(λ; t) =

det
(
λA(t)−B(t)

)
. We shall differentiate the cases in which the pencil Q(t) is (1) in general nondegenerate

(i.e., f(λ; t) 6≡ 0 for some t), or (2) always degenerate (i.e., f(λ; t) ≡ 0 for all t), and handle these two cases
in different manners to be described in Section 5.1.1 and 5.1.2, respectively.
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(a) (b) (c)

Figure 5: The three different local contact configurations between two quadrics: (a) surface contact; (b) curve contact; and (c)
point contact.

(a) (b)

Figure 6: (a) Two cylinders intersect locally at the neighbourhood of the tangent point. (b) There is no local intersection
between two ellipsoids at the isolated tangent point. Hence, the ellipsoids in (b) are in contact while the cylinders in (a) are
not.

5.1.1. For A(t) and B(t) whose pencil is in general nondegenerate

In this section, we consider two moving quadrics A(t) and B(t) whose pencil is in general nondegenerate,
that is, their characteristic polynomial f(λ) = det

(
λA(t)−B(t)

)
is not always identically zero over the time

domain.
The morphologies of the intersection curves of two quadric surfaces (QSICs) in PR3 have been completely

classified in [26]. For two moving quadrics, the morphologies of their QSIC may change over time, and only
some QSICs may correspond to a contact between the quadrics. Therefore, our strategy is to first detect
the time instants (which we called the candidate time instants) at which two moving quadric surfaces have a
change in their QSIC. Our next step is then to identify whether a QSIC corresponds to a real contact (face,
line or point contact) in R3 at each of the candidate time instants and to compute the contact between the
two quadrics.

Determining candidate contact time instants. The candidate time instants are the moments at which the
QSIC of two moving quadrics change its morphological type. To determine the candidate time instants, we
make use of our recent result in detecting the variations of the QSIC of two moving quadrics in PR3. Here,
we give a brief idea of how this can be done and refer the reader to [17] for the details. The classification
by [26] distinguishes the QSIC types of two quadrics in PR3 from both algebraic and topological points
of view (including singularities, number of components, and the degree of each irreducible component). A
QSIC type can be identified by the signature sequence and the Segre characteristics ([4]) of the quadric
pencil Q(λ; t) = λA(t) − B(t), which are in turn characterized by the algebraic properties of the roots of
characteristic polynomial of Q(λ; t), such as the number of real roots, the multiplicity of each root, and
the type of the Jordan blocks associated with each root. We proved that to detect all the time instants at
which the QSIC changes is equivalent to detecting the time instants when the Segre characteristic of Q(λ; t)
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changes. This leads to an algebraic method using the techniques of resultants and Jordan forms to compute
all the required time instants, which, in our case, will serve as the candidate time instants for the next step.

Remark 3. With the aforementioned algebraic method, we obtain univariate equations defining the candidate
time instants. The positive real solutions of such univariate equations can be computed efficiently by real
root isolation solvers. Checking the sign of a polynomial expression at such a root can be done exactly by
algebraic methods (see for example [1]).

Identifying real contact. For each of the candidate contact time instants ti, the next step is to determine
whether the QSIC corresponds to any real contact between the quadrics A(ti) and B(ti). Table 2 is adapted
from the three classification tables in [26] by showing only those cases1 in which the QSIC of two distinct
quadrics corresponds to a point or a curve contact in PR3. It therefore encompasses all possible contact
configurations of two quadrics. The case of a face contact, that is, the two quadrics being identical, can
be trivially identified and is therefore skipped here. Now, for each candidate time instant ti, we compute
the signature sequence of A(ti) and B(ti). The quadrics have a contact in PR3 if and only if the sequence
matches one of the 12 cases listed in Table 2. The following example shows how we may identify if two
quadrics have a contact at a particular time instant by checking their Segre characteristics and signature
sequence against Table 2.

Example 2. Consider two cylinders, A : x2 +z2 = 1 and B : y2 +z2 = 1, which have two singular intersection
points as shown in Figure 6(a). The characteristic equation is f(λ) = λ(λ−1)2 = 0. The Segre characteristics
is [(11)11]3 and the signature sequence is (2, ((1, 1)), 2, (1, 2), 1, (1, 2), 2) which corresponds to case 13 of [26]
in which the QSIC has two conics intersecting at two distinct non-isolated singular points. This case does
not correspond to a contact configuration and is not listed in Table 2. The two cylinders are therefore not
in contact.

Computing contact. We can proceed to compute a contact once it is identified. The following lemma provides
a means to computing the contact points of two quadrics at a particular time instant:

Lemma 4. Let A : XTAX = 0 and B : XTBX = 0 be two distinct, irreducible quadric surfaces whose
pencil is nondegenerate. Suppose that A and B are in contact (i.e., whose QSIC is listed in Table 2), and
let λ0 be a multiple root of f(λ) = det(λA−B) = 0, the characteristic equation of A and B. Then, we have
the following cases:

1. If rank(λ0A − B) = 3, λ0 corresponds to one singular intersection point p of A and B in PR3. If
λ0 6= 0, A and B are tangential at p; otherwise, B is a cone with p as its apex which lies also on A.

2. If rank(λ0A−B) = 2, λ0 corresponds to singular intersection between A and B that happens at either
one point, two distinct points, or along a straight line in PC3, where A and B are tangential to each
other.

3. If rank(λ0A − B) = 1, λ0 corresponds to singular intersection between A and B along a conic curve
(which can be a reducible one) in PC3, where A and B are tangential to each other.

The proof is given in Appendix A.
Note that when f(λ) = 0 has more than one multiple root, we should consider all its multiple roots in

order to obtain all contact points between the two quadrics. According to Lemma 4, given two touching
quadric surfaces at time ti, the contact points are in general the solutions of

(
λjA(ti) − B(ti)

)
X = 0 for

each multiple root λj of f(λ; ti) = 0. We also need to differentiate between real and imaginary contacts.
For example in both cases 24 and 25 of Table 2, the characteristic equation has two multiple roots λ0 and
λ1, with rank(λ0A − B) = 3 and rank(λ1A − B) = 2; λ0 corresponds to a real contact point while λ1

corresponds to two distinct imaginary contacts which should be discarded.

1We keep the original case numbers for ease of reference.
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Table 2: QSIC corresponding to a point contact or curve contact between two distinct quadrics in PR3. In the illustrations, a
solid line or curve represents a real component while a dashed one represents an imaginary component. A solid dot indicates
a real singular point. A null-homotopic component is drawn as a closed loop, and a non-null-homotopic component is shown
as an open-ended curve. A line or curve that is counted twice is thickened. See [26] for details.

[Segre]r
Case #

r = the # Index Signature Sequence Illus- Representative
of real roots Sequence tration Quadric Pair

[211]3

6

〈1oo−1|2|3〉 (1,((1,2)),1,(1,2),2,(2,1),3) A : −x2 − z2 + 2yw = 0
B : −3x2 + y2 − z2 = 0

7

〈1oo+1|2|3〉 (1,((0,3)),1,(1,2),2,(2,1),3) A : x2 + z2 + 2yw = 0
B : 3x2 + y2 + z2 = 0

[(11)11]3

15

〈1||1|2|3〉 (1,((0,2)),1,(1,2),2,(2,1),3) A : x2 + y2 + z2 − w2 = 0
B : x2 + 2y2 = 0

[(111)1]2

19

〈1|||2|3〉 (1,(((0,1))),2,(2,1),3) A : y2 + z2 − w2 = 0
B : x2 = 0

[(21)1]2

22

〈1oo+|2|3〉 (1,(((0,2))),2,(2,1),3) A : y2 − z2 + 2zw = 0
B : x2 + z2 = 0

[2(11)]2

24

〈1oo−1||3〉 (1,((1,2)),1,((1,1)),3) A : 2xy − y2 = 0
B : y2 − z2 − w2 = 0

25

〈1oo+1||3〉 (1,((0,3)),1,((1,1)),3) A : 2xy − y2 = 0
B : y2 + z2 + w2 = 0

[(11)(11)]2

30

〈1||1||3〉 (1,((0,2)),1,((1,1)),3) A : x2 + y2 = 0
B : z2 − w2 = 0

[(211)]1

32

〈2oo−||2〉 (2,((((1,0)))),2) A : x2 − y2 + 2zw = 0
B : z2 = 0

33

〈1oo−||3〉 (1,((((1,0)))),3) A : x2 + y2 + 2zw = 0
B : z2 = 0

[(22)]1

34

〈2ôo− ôo−2〉 (2,((((2,0)))),2)
A : xy + zw = 0
B : y2 + w2 = 0

35

〈2ôo− ôo+2〉 (2,((((1,1)))),2)
A : xy − zw = 0
B : y2 − w2 = 0
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Example 3. Consider the unit sphere A : x2 + y2 + z2 = 1 and a cylinder B : x2 + y2 = 1. The characteristic
equation of A and B is f(λ) = −λ(λ − 1)3 which has a triple root λ0 = 1. Also, rank(λ0A − B) = 1 and
by Lemma 4, λ0 corresponds to a contact along a conic curve between A and B. Now, (λ0A − B)X = 0
has three linearly independent solutions X0 = (0, 0, 0, 1)T , X1 = (1, 0, 0, 0)T and X2 = (0, 1, 0, 0)T which
span the plane z = 0. Intersecting the plane z = 0 with A yields the circle x2 + y2 = 1, z = 0, which is the
contact between A and B.

Cases 6, 24 and 35 are situations in which the quadrics are tangent at some regions but at the same time
having local real intersection at the others. Since we assume that the CQMs are separate initially and we
seek their first contact, it can be assured that a local real intersection must take place after a proper contact
is found. The real intersections in these cases can therefore be ignored.

The contact points computed so far are between the quadric surfaces but not necessarily between the
CQMs, therefore all contact points are further subject to validation to see if they are on both CQMs. Contact
points at infinity are thus discarded. Validation details will be discussed in Section 6.

5.1.2. For A(t) and B(t) whose pencil is always degenerate

We now consider the case of two moving quadrics which always define a degenerate pencil, that is,
f(λ; t) ≡ 0 for all t. Here, all members of the pencils are projective cones for all t ([14]), which means that
the vertices of the projective cones always lie on a common generator of the cones and the cones are always
tangential along this generator in PC3. Considering any affine realization of the projective space, Figure 7
depicts the three situations of this kind that are only possible in R3: (a) Two moving cones whose apexes
slide along the common generator, (b) two moving cylinders whose axes are always parallel (with their
“apexes” at infinity), and (c) a moving cone and a moving cylinder which always share a common generator.
Note that a cylinder can either be an elliptic, a hyperbolic or a parabolic cylinder. For case (a), we need
only to consider the contact of the vertices, since the cones are initially separate and any other contact
configurations can be detected by CCD of other boundary elements of the CQMs. Hence, the candidate
contact time instants are the contact time instants of the vertices of the cones. For (b), the CCD problem is
transformed to a two-dimensional CCD of two moving conics on a plane P orthogonal to the cylinder axes,
with the conics being the cross-sections of the cylinders on P. CCD of moving conics in R2 will be discussed
in Section 5.8. We may disregard case (c) for a moving cone and a moving cylinder, since a cylinder must be
delimited by a boundary curve on a CQM and any possible first contact can be captured by CCD of other
boundary elements of the CQMs.

(a) (b) (c)

Figure 7: The three possible scenarios of two moving quadrics in R3 whose pencil is always degenerate. (a) Two moving
cones whose vertices always lie on a common generator; (b) two moving cylinders whose axes are always parallel; and (c) a
moving cone and a moving cylinder which always share a common generator. Note that a cylinder may either be an elliptic, a
hyperbolic or a parabolic cylinder. Also, only one nappe of a cone is shown.

5.2. Case II — quadrics vs. planes

We first note that the singular case where a plane is in contact with a cone only at its apex is not
considered here, as the contact can be determined directly by an (F, V )-type CCD of the apex and the
plane.
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Now, consider an irreducible quadric surface A(t) : XTA(t)X = 0 and a plane N (t) : N(t)TX = 0 in R3.
A necessary and sufficient condition for N (t) to be a tangent plane to A(t) at some point X0 ∈ R3 is that{

αN(t) = A(t)X0 for some nonzero α ∈ R, and

N(t)TX0 = 0.

These two equations can be written as (
A(t) N(t)
N(t)T 0

)(
X0

−α

)
= 0,

which has a nonzero solution (X0 α)T if ∣∣∣∣ A(t) N(t)
N(t)T 0

∣∣∣∣ = 0. (1)

Therefore, the roots of Eq. (1) corresponding to a solution (X0 α)T with α 6= 0 yield the candidate time
instants of the quadric A(t) and the plane N (t).

5.3. Case III — quadrics vs. conics

We adopt a dimension reduction technique to reduce CCD of extended boundary elements to CCD of
primitives of lower dimensions. By doing so, we also simplify the algebraic formulations. Figure 8 illustrates
CCD of two moving capped elliptic cylinders. In this example, there are three cases to which the dimension
reduction technique can be applied, namely, quadrics vs. conics (Figure 8(b)), planes vs. conics (Figure 8(c))
and conics vs. conics (Figure 8(d)). The reduction for the latter two cases will be discussed in subsequent
sections.

(a) (b) (c) (d)

Figure 8: Contact configurations of two capped cylinders determined by CCDs of four different types of element pair. (a)
(F, F )-type; (b & c) (F,E)-type; and (d) (E,E)-type. CCDs of (b)–(d) are solved using the dimtension reduction technique.

We first consider CCD of a quadric surface S(t) : XTS(t)X = 0 and a conic curve C(t) defined in the
plane ΠC(t) in R3. Let SΠ(t) be the intersection of S(t) with ΠC(t). We thereby reduce CCD of S(t) and
C(t) to CCD of SΠ(t) and C(t), which are two conics, in the plane ΠC(t). CCD of two conics in R2 is handled
in Case VIII (Section 5.8).

5.4. Case IV — planes vs. conics

Consider CCD of a plane P(t) and a conic curve C(t) defined in a plane ΠC(t) in R3. The case of P(t)
and ΠC(t) being identical for all t can be disregarded, as any possible first contact of the CQMs due to P(t)
and C(t) can then be detected by CCD of C(t) and other boundary elements on P(t). If P(t) and ΠC(t) are
parallel for all t, then there is no contact between P(t) and C(t). Otherwise, with dimension reduction, CCD
of a plane P(t) and a conic curve C(t) is reduced to CCD of C(t) and a moving line which is the intersection
between P(t) and ΠC(t) in R2, and the latter is handled by Case X (Section 5.10) for CCD between conics
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and lines in R2. For the candidate time instants thus found, we will verify and discard those ti at which
P(ti) and ΠC(ti) are parallel.

5.5. Case V — quadrics vs. lines

Suppose S(t) : XTS(t)X = 0 is a quadric surface and L(u; t) is a line in R3. We simply substitute L(u; t)
into S(t) and obtain g(u; t) = L(u; t)TS(t)L(u; t) which is quadratic in u. The line L(u; ti) touches S(ti) at
a particular time ti if g(u; ti) has a double root u0. Hence, the candidate contact time instants of S(t) and
L(u; t) are given by the roots of the discriminant ∆g(t) of g(u; t). For each candidate contact time instant
ti, the contact point is L(u0; ti) where u0 is the double root of g(u; ti). If g(u; ti) is identically zero, we have
L(u; ti) lying entirely on S(ti).

5.6. Case VI — quadrics/planes vs. vertices

Let S(t) : XTS(t)X = 0 be a quadric surface and p(t) be a vertex in R3. By direct substitution, we
obtain the equation pT (t)S(t)p(t) = 0 whose roots give the candidate contact time instants. Similarly, for
CCD of a plane H(t) : H(t)TX = 0 and a vertex p(t), the candidate contact time instants are the roots of
the equation H(t)Tp(t) = 0.

5.7. Case VII — conics vs. conics in R3

We transform the problem of CCD of two conics in R3 into CCD of one dimension in the line where the
containing planes of the conics intersect. Let a moving conic A(t) be defined as the intersection between
a quadric Ã(t) : XTA(t)X = 0 and a plane ΠA(t) in R3. Similarly, B(t) is a moving conic which is
the intersection between a quadric B̃(t) : XTB(t)X = 0 and a plane ΠB(t) in R3. We first assume that
ΠA(t) 6≡ ΠB(t) and let L(u; t) be a parameterization of the line of intersection between ΠA(t) and ΠB(t).

Substituting L(u; t) into the conic equations, we have:

h(u; t) : LT (u; t)A(t)L(u; t) = 0, (2)

g(u; t) : LT (u; t)B(t)L(u; t) = 0.

The solution of h(u; t) = 0 gives the intersection between L(u; t) and A(t). Likewise, the solution of
g(u; t) = 0 gives the intersection between L(u; t) and B(t). Since h(u; t) and g(u; t) are quadratic in u,
we may write h(u; t) = UT Â(t)U and g(u; t) = UT B̂(t)U where U = (u, 1)T and Â(t) and B̂(t) are 2 × 2
coefficient matrices. It means that h(u; t) and g(u; t) can be considered as two moving “1D projective conics”
(i.e., intervals or line segments), denoted by Â(t) and B̂(t), which can be either real or imaginary. Now,
A(t) and B(t) have real tangency in PR3 if and only if there is real tangency between Â(t) and B̂(t) in PR3,
that is, an end-point of Â(t) overlap with an end-point of B̂(t). Hence, we have essentially reduced a 3D
problem (namely, CCD of two moving conics in the space) to a 1D problem (namely, CCD of two moving
intervals in a line).

Let f(λ) = det(λÂ − B̂) be the characteristic polynomial of two static 1D conics Â : XT ÂX = 0 and
B̂ : XT B̂X = 0 in PR. The intersection of Â and B̂ can be characterized by the roots of f(λ), as summarized
in Table 3 (the derivation follows similarly as in [7] for the characterization of the intersection of two 1D
ellipses in R). Hence, we have the following theorem stating the conditions for two conics to have contact
in PR3:

Theorem 5. Given two conics A (on plane ΠA) and B (on plane ΠB) in R3, suppose that ΠA and ΠB

intersect at some line L ∈ R3. Let Â : XT ÂX = 0 and B̂ : XT B̂X = 0 be the “1D conics” characterizing
the intersections of L with A and B, respectively. Furthermore, let f(λ) = det(λÂ− B̂) be the characteristic
polynomial of Â and B̂. Then, the conics A and B are in contact in PR3 if and only if

1. f(λ) has a double root (Figure 9(a-c)); or

2. f(λ) ≡ 0 (Figure 9(d)).
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Table 3: Configuration of two 1D conics Â & B̂ in PR and the roots of their characteristic equation f(λ) = 0. Each 1D conic
is represented in pairs of brackets of the same style. Degenerate conic of one point is represented by either a dot or a cross.

Roots of f(λ) = 0 Configuration

(1) Distinct positive or both Â & B̂ are imaginary and Â 6= B̂

(2) Distinct negative

(3) One zero, one positive

(4) One zero, one negative

(5) One negative, one positive with another conic being imaginary

(6) Positive double or both Â & B̂ are imaginary and Â = B̂

(7) Negative double

(8) Double zero

(9) Complex conjugate

(10) f(λ) is linear with roots = 0

(11) f(λ) ≡ 0

(a) (b) (c) (d)

Figure 9: The four configurations of two touching conics in 3D. Sub-figures (a), (b), (c) & (d) correspond to the cases (6), (7),
(8) & (11) of Table 3, respectively.

Algorithm 2 gives the procedure for solving CCD of two moving conics in R3. First of all, if two moving
conics are found to be contained in the same plane (i.e., ΠA(t) ≡ ΠB(t)) for all t, we may apply a continuous
transformation M(t) to both conics that maps ΠA(t) to R2 and the problem is reduced to a two dimensional
CCD of two moving conics in R2. Otherwise, we reduce the problem to a one dimensional CCD of two 1D
conics using the above formulation and capture the time instants at which the conditions in Theorem 5 are
satisfied. This is done by computing the zeroes of the discriminant ∆f (t) of f(λ; t) which give the instants
ti when f(λ; ti) has a double root (condition 1) or f(λ; ti) ≡ 0 (condition 2). The for loop in the algorithm
handles the special case in which a zero ti of ∆f (t) corresponds to when f(λ; ti) ≡ 0. This may happen
when the containing planes of both conics A(ti) and B(ti) are parallel so that L(u; ti) is a line at infinity,
and the conics are not in contact. The function f(λ; ti) may also be identically zero when A(ti) and B(ti)
lie on the same plane so that L(u; ti) becomes undefined. The two conics may or may not have a contact
in this case and therefore we need to further carry out a 2D static collision detection of A′(ti) and B′(ti),
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the image of A(ti) and B(ti) under a rigid transformation to R2. The conics A(ti) and B(ti) are in contact
if and only if the characteristic equation of A′(ti) and B′(ti) has a multiple root. In any case, a candidate
contact time instant that corresponds to a contact point at infinity is discarded.

Algorithm 2 Computing the candidate time instants for two moving conics in R3

Input: Two moving conics A(t) and B(t) defined in the planes ΠA(t) and ΠB(t) in
R3, t ∈ [t0, t1], respectively.

if ΠA(t) ≡ ΠB(t) for t ∈ [t0, t1] then
Reduce CCD of A(t) and B(t) to that of two moving conics in a plane which is
handled by Case VIII (Section 5.8)

else
Compute the intersection line L(u; t) between ΠA(t) and ΠB(t)
Compute h(u; t) and g(u; t) as in Eq. (2) and obtain Â(t) & B̂(t) by rewriting
h(u; t) = UT Â(t)U and g(u; t) = UT B̂(t)U where U = (u, 1)T

Compute f(λ; t) = det(λÂ(t)− B̂(t)) and the discriminant ∆f (t) of f(λ; t)
for all ti ∈ {t | ∆f (t) = 0} do
if ΠA(ti) = ΠB(ti) then

Transform A(ti) and B(ti) to A′(ti) and B′(ti) in R2

if the characteristic equation of A′(ti) and B′(ti) has a multiple root then
T ← T ∪ {ti}

else if ΠA(ti) and ΠB(ti) are not parallel then
T ← T ∪ {ti}

return T as the candidate contact time instants

5.8. Case VIII — conics vs. conics in R2

CCD of two conics in a plane is handled using the same algebraic approach as in [8] for CCD of two
ellipses in R2. Given two moving conics A(t) : X̄TA(t)X̄ = 0 and B(t) : X̄TB(t)X̄ = 0 in R2, where
X̄ = (x, y, w)T and t ∈ [t0, t1], the characteristic equation f(λ; t) = det

(
λA(t) − B(t)

)
= 0 is cubic in λ.

The equation f(λ; t0) = 0 has a multiple root λ0 if and only if A(t0) and B(t0) have tangential contact
at time t0. Hence, we compute the discriminant ∆f (t) of f(λ; t), and the zeroes of ∆f (t) would be the
candidate contact time instants of A(t) and B(t). For each contact time instant ti, the contact point is given
by the solution of

(
λ0A(t)−B(t)

)
X̄ = 0 where λ0 is a multiple root of f(λ; t) = 0.

5.9. Case IX — conics vs. lines in R3

Consider CCD between a conic C(t) and a line L(u; t) in R3. We assume that C(t) is given as the
intersection between a quadric Ĉ(t) : XT Ĉ(t)X = 0 and a plane ΠC(t) in R3 (so that the axis of Ĉ(t)
is orthogonal to ΠC(t)). We may disregard the case of L(u; t) and ΠC(t) being always identical, as any
possible first contact of the CQMs due to C(t) and L(u; t) can then be detected by CCD of L(u; t) and the
neighbouring boundary elements of C(t). If L(u; t) and ΠC(t) are parallel for all t, then L(u; t) and C(t) have
no contact. Otherwise, we obtain p(t) which is the intersection of L(u; t) and ΠC(t). The conic C(ti) is in

contact with L(u; ti) in R3 at time ti if and only if p(ti) lies on C(ti), that is, p(ti)
T Ĉ(ti)p(ti) = 0, and

p(ti) is not at infinity. Hence, the roots of p(t)T Ĉ(t)p(t) = 0 are the candidate contact time instants; those
of which corresponding to p(ti) at infinity are discarded.

5.10. Case X — conics vs. lines in R2

Let C(t) : X̄TC(t)X̄ = 0 be a conic and L(u; t) be a line in R2, where X̄ = (x, y, w)T ∈ PR2. By
substituting L(u; t) into C(t), we obtain g(u; t) = L(u; t)TC(t)L(u; t) which is quadratic in u. Each root ti of
the discriminant ∆g(t) of g(u; t) is a candidate contact time instant of C(t) and L(u; t), with a corresponding
contact point L(u0, ti), where u0 is a double root of g(u; ti).
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5.11. Case XI — lines vs. lines

For CCD of two lines in R3, we seek the time instants at which the lines intersect in R3. Two lines
L1(u; t) = p1(t)+uq1(t) and L2(v; t) = p2(t)+v q2(t) intersect in PR3 if and only if q1(t), q2(t) and p2(t)−
p1(t) are coplanar. The contact time instants are then given by the roots of g(t) = det[q1(t),q2(t),p2(t)−
p1(t)] = 0. The case of g(t) ≡ 0 is neglected since it corresponds to two moving lines which are always
coplanar; any contact between two moving line segments of this kind for two CQMs can be detected by
CCD of an end vertex of one line segment and a CQM face on which the other line segment lies. For each
candidate time instant t0, the corresponding candidate contact point is given by p = p1(t0) + u′ q1(t0),

where u′ =
(
(p2(t0) − p1(t0)) × q2(t0)

)
·
(
q1(t0) × q2(t0)

)
/
∣∣q1(t0) × q2(t0)

∣∣2 (see [16]). The straight line

L1(u; t0) and L2(u; t0) are parallel and have no contact in R3 if
∣∣q1(t0)× q2(t0)

∣∣2 = 0.

6. Contact Validation

For each contact point computed from the CCD subproblems, we need to check if it is a valid contact
point of two CQMs. A candidate contact point p is a valid contact point if and only if

1. p lies on both CQMs;

2. p constitutes an external contact of the CQMs, which means that the interior of the CQMs does not
overlap.

To ascertain that the first criteria is satisfied, we assume that a CQM is obtained using CSG (constructive
solid geometry) and is represented by a CSG construction tree. Other boundary surface representation may
entail different procedures for the validation, but the idea is essentially the same.

Given a candidate contact point p between two extended boundary elements of two CQMs QA(t0) and

QB(t0) at time t0, let
◦
u = “p is in the interior of u” and ∂u = “p is on the boundary of u” be two Boolean

predicates. For each internal node associated with a CSG object w, we will evaluate
◦
w and ∂w recursively

using the following rules (see Figure 10 for a 2D analogy):

Case w = u ∪ v :
◦
w ↔ ◦

u ∨ ◦v, ∂w ↔ (∂u ∧ ∂v) ∨ (∂u ∧ ¬◦v) ∨ (¬◦u ∧ ∂v)

Case w = u ∩ v :
◦
w ↔ ◦

u ∧ ◦v, ∂w ↔ (∂u ∧ ∂v) ∨ (
◦
u ∧ ∂v) ∨ (∂u ∧ ◦v)

Case w = u \ v :
◦
w ↔ ◦

u ∧ ¬(
◦
v ∨ ∂v), ∂w ↔ (∂u ∧ ∂v) ∨ (∂u ∧ ¬◦v) ∨ (

◦
u ∧ ∂v)

It suffices to consider the three basic Boolean operations, since all other CSG operations can be described
as their compositions. Whether or not a point is inside or on the boundary of a quadric CSG primitive can
be checked using the quadric equation, which can be done exactly (see Remark 3). The answer to whether
p is on the boundary surface of QA(t0) is then given by the truth value of the predicate ∂QA(t0) evaluated
at the root node of the CSG tree of QA(t0). Hence, a candidate contact point p lies on both CQMs if and
only if both ∂QA(t0) and ∂QB(t0) are true.

Regarding the second criteria, since the two given CQMs are separate initially, the first occurrence of a
valid contact point must guarantee an external contact of the CQMs.

7. Two working examples

Example 4. In this example, we solve CCD of two moving capped elliptic cylinders A(t) and B(t), both are
of the same size (Figure 11a). The boundary elements of the cylinders are:

• Face FA,1, FB,1: a cylinder x2

52 + y2

102 = 1, z ∈ [−5, 5].

• Face FA,2, FB,2: a plane z = −5; and face FA,3, FB,3: a plane z = 5.

• Edge EA,1, EB,1: an ellipse x2

52 + y2

102 = 1, z = −5; and edge EA,2, EB,2: an ellipse x2

52 + y2

102 = 1, z = 5.
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Figure 10: Contact validation for CSG objects. Given two objects u and v, and the result w of applying a Boolean operation

to u and v, the boundary and interior of w, denoted by ∂w and
◦
w, respectively, can be determined from ∂u,

◦
u, ∂v and

◦
v

accordingly.

(a) (b)

Figure 11: (a) Two moving capped cylinders. (b) The cylinders are found to have the first contact at t = 0.625.

Cylinder A(t) assumes a linear translation, while cylinder B(t) assumes a degree-2 rotation as well as a
linear translation. The motion matrices of A(t) and B(t) are

MA(t) =


1 0 0 −60t+ 30
0 1 0 20
0 0 1 0
0 0 0 1

 and MB(t) =


−2t2 + 2t 0 −2t+ 1 −120t3 + 180t2 − 120t+ 30

0 2t2 − 2t+ 1 0 160t3 − 260t2 + 180t− 50
2t− 1 0 −2t2 + 2t 0

0 0 0 2t2 − 2t+ 1

 ,

respectively, t ∈ [0, 1]. We refer the readers to [18] for the details of the construction of the rational motion
MB(t). The moving face FA,1 can then be expressed as XTA(t)X = 0, where X = (x, y, z, 1)T and

A(t) = M−TA (t)


1
52

1
102

0
−1

M−1
A (t).

Expressions for other elements can be derived similarly by applying appropriate motion matrices.
The subproblems are listed as follows:

• (F, F ) — (FA,1, FB,1)

• (F,E) — (FA,1, EB,1), (FA,1, EB,2), (FB,1, EA,1), (FB,1, EA,2), (FA,2, EB,1), (FA,2, EB,2), (FA,3, EB,1),
(FA,3, EB,2), (FB,2, EA,1), (FB,2, EA,2), (FB,3, EA,1), (FB,3, EA,2)

• (E,E) — (EA,1, EB,1), (EA,1, EB,2), (EA,2, EB,1), (EA,2, EB,2)

We shall show how four of the above CCD subproblems (corresponding to the four cases in Figure 8) is
solved. For brevity, contact point verification is skipped.
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(F, F ): (FA,1, FB,1)—cylinder vs. cylinder

The characteristic polynomial f(λ; t) = det(λA(t) − B(t)) is quadratic in λ (since det(A(t)) ≡ 0 and
det(B(t)) ≡ 0). The candidate time instants are the roots of Resλ(f, fλ) = 0, which are found to be
t0 = 0.5, 0.625, 0.875.

– For t0 = 0.5, we have f(λ; t0) = 0. The pencil λA(t0)−B(t0) is degenerate. Hence, we transform
A(t0) and B(t0) by M−1

A (t0) so that their axes (which are parallel) are orthogonal to the xy-
plane, and check whether the cross-sectional ellipses on the xy-plane have any contact. Now, the
characteristic polynomial f(λ; t0) = −(16λ− 1)(256λ2 + 112λ + 1) of the cross-sectional ellipses
does not have any multiple root. Hence, there is no contact between the cylinders at t = 0.5.

– For t0 = 0.625, f(λ; t0) has a multiple root and hence the cylinders are in contact. The contact
point is found to be (−7.5, 10, 0)T and is verified to be a point on both capped cylinders. This
is done exactly (see Remark 3). Therefore, a valid first contact at t = 0.625 is found for the
cylinders. We may now skip the other larger roots of ∆f (t) = 0 and also other candidate time
instants later than t0 = 0.625 obtained in the subsequent CCD subproblems. (Note that in the
followings, calculations for the later candidate time instant are still presented for illustrations,
while they are skipped in practice for efficiency considerations.)

(F,E): (FA,1, EB,1)—cylinder vs. ellipse

Both FA,1 and EB,1 are mapped by the same transformation such that EB,1 is an ellipse in standard
form on the xy-plane. The intersection of the transformed FA,1 and the xy-plane is an ellipse E , and
CCD is performed between the two ellipses E and EB,1. The characteristic polynomial of the ellipses
are found to have a double root at t0 = 0, 0.6341, 1.

– For t0 = 0, f(λ; t0) = 0 has a double root 0 which does not correspond to any valid contact and
is hence rejected; E is indeed a line that does not touch EB,1.

– For t0 = 0.6341, f(λ; t0) = 0 has a double root λ0 = −0.2843. A single contact point (−6.623, 10.414,
−4.95)T is found, which is verified to lie on both truncated cylinders.

(F,E): (FA,3, EB,1)—plane vs. ellipse

Let P(t) be the plane FA,3 and E(t) be the ellipse EB,1. Both P(t) and E(t) are simultaneously
transformed such that E(t) is in standard form on the xy-plane. The plane P(t) intersects the xy-
plane in the line L(u; t) = (10t−5, u(1−2t), 0, 4t2−4t+1)T . We now deal with CCD of the line L(u; t)
and the ellipse E(t). Substituting L into the ellipse equation yields h(u; t) and solving the discriminant
∆h(t) gives the roots t0 = 0, 0.5, 1.

– For t0 = 0, solving h(u; t0) = 0 gives u0 = 0, and the contact point is given by X0 = (25,−50, 5)T .
However, since XT

0 E(t)X0 = 49 > 0, X0 is not in the elliptic disk on P(t) and hence t0 = 0 is
rejected.

– For t0 = 0.5, P(t0) is parallel to the xy-plane, and t0 is therefore rejected.

– For t0 = 1, the contact point is found to be X0 = (−25, 30, 5)T which does not lie within the
elliptic disk on P(t) and t0 = 1 is rejected.

– Hence, P(t0) and E(t0) are collision-free.

(E,E): (EA,1, EB,1)—ellipse vs. ellipse

Let EA(t) be EA,1 and EB(t) be EB,1. We transform both ellipses simultaneously such that EB(t) is in
standard form on the xy-plane. The containing planes of the ellipses are not equal for all t and we pro-
ceed with CCD of two 1D ellipses, and the candidate contact times are t0 = 0.5, 0.6342, 0.875, 0.9658.

– For t0 = 0.5, EA(t0) lies on the xy-plane; hence, we perform collision detection for the two static

ellipses E1(t0) : x
2

25 −
y2

100 −
2y
5 +3 = 0 and E2(t0) : x2

400 + y2

1600 + y
80 = 0. The characteristic equation

for E1(t0) and E2(t0) has no multiple root, and hence there is no contact at t0 = 0.5.
18



– For t0 = 0.6342, the characteristic equation f(λ) has a multiple root and the contact point is
found to be (−6.7084, 10.3668,−5)T .

Final result: Combining the results from all 17 subproblems, the two capped cylinders are found to
have the first contact at t = 0.625 for the pair (FA,1, FB,1) at (−7.5, 10, 0)T (Fig. 11(b)). The algorithm is
implemented with Maple using exact algebraic computations for all CCD formulations. We use floating point
evaluation (15 significant digits) for solving the candidate time instants and computing the contact points.
It takes 0.12 seconds to complete on an Intel Core 2 Duo E6600 2.40-GHz CPU (single-threaded).

Example 5. In this example, we solve CCD for two moving CQMs as shown in Figure 13(a). Object A
comprises 45 boundary elements (4 cylinders, 9 planes, 10 circles, 14 lines and 8 vertices) while object B
includes 13 boundary elements (3 cylinders, 1 cone, 3 planes and 6 circles). The specifications of the two
objects are given in Figure 12. Object A translates linearly on the plane while B moves with a linear
translation and a degree-2 rotation (Figure 13(a)). The motion matrices of A(t) and B(t) are

MA(t) =


1 0 0 15− 45t
0 1 0 15− 25t
0 0 1 0
0 0 0 1

 and

MB(t) =



(−u+ 1− 1√
2

)t2

+ (u+
√

2)t− 1√
2

( 1√
2
− v)t2

+ (v −
√

2)t+ 1√
2

−vt2 + vt
(−60u+120)t3+(90u−180)t2

+ (−30u+ 120)t− 30

(v − 1√
2

)t2

+ (
√

2− v)t− 1√
2

(−u− 1√
2

)t2

+ (u+
√

2)t− 1√
2

(1− u)t2 + ut
(9u− 18)t3 + (16− 8u)t2

+ (−7− u)t− 1

−vt2 + vt (u− 1)t2 − ut (1− u)t2

+ (u− 2)t+ 1
(20u− 40)t3 + (60− 30u)t2

+ (−40 + 10u)t+ 10

0 0 0 (2− u)t2 + (u− 2)t+ 1


,

respectively, t ∈ [0, 1]. There are altogether 366 CCD subproblems, and it takes about 5 seconds to
complete the CCD computations under the same Maple environment as in Example 4. The first contact

configuration is found to happen at t = 0.313 between the circle (y+10)2

22 + z2

22 = 1, x = −6, of A and the
cone x2 + z2 = (y − 8)2, y ∈ [6, 7], of B as shown in Figure 13(b).

Figure 12: Specifications of two CQM objects in Example 5.

8. Conclusion

We have presented a framework for CCD of composite quadric models (CQMs) whose boundary surfaces
are defined by piecewise linear or quadric surface patches and whose boundary curves are conic curves or
line segments. A hierarchy of CCD subproblems for various types of boundary element pairs in different
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(a) (b)

Figure 13: (a) CCD of two CQMs in Example 5. (b) The first contact.

dimensions are solved. Some subproblems can be solved using a dimension reduction technique so that
the original problem is transformed to one in a lower dimensional space. In particular, we solved CCD of
moving general quadrics and CCD of moving conics in R3. We also developed procedures for contact points
verification to check if a contact point of the extended boundary elements lies on a CQM surface.

Our algorithm is exact in the sense that no approximation of the time domain or of the geometries
is necessary. It only requires the evaluation of polynomial expressions at real roots of other univariate
polynomials, the operations of which can be performed exactly (see Remark 3). Algebraic formulations
are established for the CCD subproblems. Out of efficiency considerations, contact time instants and the
corresponding contact points are solved for numerically. When the degree of motion is high, numerical
stability problems thus introduced remain to be resolved.

In general, a boundary edge of a CQM may not be a conic curve, but rather a general degree four
intersection curve of two boundary quadrics. Algorithms for CCD of this type of general CQMs still need
to be developed. Major difficulties arise from the handling of degree four intersection curves. An idea is
to reduce the problem of CCD of a moving general boundary edge and a moving quadric to the study of
intersection of three quadrics in 3D (two of which intersect to give the boundary edge). There is a contact
between a quadric surface A and a general boundary edge which is the intersection of two quadrics B and
C, if and only if A, B and C have a common singular intersection. The latter condition is indicated by that
the quartic curve G(α, β, γ) ≡ det(αA + βB + γC) = 0 has a singular point. Hence, we need to develop
methods to detect the time t0 at which the moving planar quartic curve G(α, β, γ) = 0 has a singular point.
The case of CCD of two edges can be treated similarly, but is reduced to the study of the intersection of
four quadrics, that is, the two pairs of quadrics defining two extended boundary curves. This will then lead
to the study of singularity of a quartic surface.
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A. Proof of Lemma 4

Proof. There are at most four singular quadrics in a nondegenerate pencil for all quadrics, since each singular
quadric corresponds to a root of the characteristic polynomial. Hence, we may suppose that A is nonsingular,
for if A is singular we can always find a nonsingular member A′ in the pencil of A and B to replace A, and
the intersection curve of A′ and B is the same as that of A and B.
Case 1: If rank(λ0A − B) = 3, λ0 is associated with exactly one Jordan block of size k × k, k ≥ 2, in
the Jordan canonical form of A−1B. Then there exists a unique real eigenvector X0 6= 0 (up to a scalar
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factor) and a generalized eigenvector X1 6= 0 of A−1B associated with λ0 such that (λ0A − B)X0 = 0 and
(λ0A−B)X1 = X0. Therefore, we have (λ0A−B)2X1 = 0. Then

XT
0 AX0 = [(λ0A−B)X1]TA[(λ0A−B)X1] = XT

1 (λ0A−B)A(λ0A−B)X1 = XT
1 A(λ0A−B)2X1

= 0.

It follows that X0 is a point on A. Similarly, we can show that X0 is a point on B. Since (λ0A−B)X0 = 0,
we have λ0AX0 = BX0. If λ0 6= 0, A and B have a common tangent plane at X0; otherwise, BX0 = 0 and
the tangent plane of B at X0 is undefined which is only possible when B is a cone (since B is irreducible)
and X0 is a vertex of B.
Case 2: First we show that λ0 6= 0. Suppose on the contrary that λ0 = 0. Then we have rank(B) =
rank(0 ·A−B) = 2 which contradicts that rank(B) > 2 since B is irreducible.

Now, since rank(λ0A−B) = 2, the null space of A−1B is of dimension 2 and λ0 is associated with two
linearly independent eigenvectors X0 and X1, such that (λ0A−B)X0 = 0 and (λ0A−B)X1 = 0. Consider a
line X(u; v) = uX0 +vX1. A line in general intersects a quadric in two points (counting multiplicity) in PC3,
or that the line lies on the quadric. We first assume that X(u; v) intersects A at two points. Let X̃ = X(ũ; ṽ)
for some ũ, ṽ ∈ C be such an intersection point on A. Since (λ0A − B)X0 = 0 and (λ0A − B)X1 = 0, we
have

0 = ũ(λ0A−B)X0 + ṽ(λ0A−B)X1 = (λ0A−B)X̃ = X̃T (λ0A−B)X̃ = λ0X̃
TAX̃ − X̃TBX̃

= −X̃TBX̃.

The last equality holds since X̃ is on A. Hence, we have shown that X̃ is also on B. Moreover, since
λ0AX0 = BX0 and λ0AX1 = BX1, we have

λ0AX̃ = λ0A(ũX0 + ṽX1) = ũλ0AX0 + ṽλ0AX1 = ũBX0 + ṽBX1

= BX̃.

Since λ0 6= 0, the tangent planes XTAX̃ = 0 and XTBX̃ = 0 of A and B at X̃ are identical, and hence A
and B are tangential at X̃.

If the line X(u; v) lies on the quadric surfaces, we may show similarly that A and B are tangential at
every point on X(u; v).

Case 3: Again we have λ0 6= 0, or otherwise rank(B) = rank(0 · A − B) = 1 which contradicts that
rank(B) > 2 since B is irreducible.

Now, since rank(λ0A − B) = 1, the null space of A−1B is of dimension 3 and λ0 is associated with
three linearly independent eigenvectors X0,X1,X2 such that (λ0A − B)X0 = 0, (λ0A − B)X1 = 0 and
(λ0A−B)X2 = 0. Now let X(u; v;w) = uX0 + vX1 +wX2 be the plane spanned by the eigenvectors X0,X1

and X2. Then this plane in general intersects A in a conic in PC3. Let X̃ = X(ũ; ṽ; w̃) for some u′, v′, w′ ∈ R
be a point on this conic. We have

0 = ũ(λ0A−B)X0 + ṽ(λ0A−B)X1 + w̃(λ0A−B)X2 = (λ0A−B)X̃ = X̃T (λ0A−B)X̃

= λ0X̃
TAX̃ − X̃TBX̃

= −X̃TBX̃.

The last equality holds as X̃ is on A. Hence, X̃ is also on B. It means that A and B share a common
intersection curve with the plane X(u; v;w). Now, we also have

λ0AX̃ = λ0A(ũX0 + ṽX1 + w̃X2) = ũλ0AX0 + ṽλ0AX1 + w̃λ0AX2 = ũBX0 + ṽBX1 + w̃BX2

= BX̃.
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Since λ0 6= 0, the tangent planes XTAX̃ = 0 and XTBX̃ = 0 of A and B are identical at every point X̃ on
the intersection curve. Hence, we have A and B are tangential along a conic curve in PC3.
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