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Abstract

Shape registration has a wide range of applications in geometric modeling, medical imaging, and computer vision. This paper

focuses on the registration of the genus-3 vestibular systems and studies the geometric differences between the normal and Ado-

lescent Idiopathic Scoliosis (AIS) groups. The non-trivial topology of the VS poses great technical challenges to the geometric

analysis. To tackle these challenges, we present an effective and practical solution to register the vestibular systems. We first extract

six geodesic landmarks for the VS, which are stable, intrinsic, and insensitive to the VS’s resolution and tessellation. Moreover,

they are highly consistent regardless of the AIS and normal groups. The detected geodesic landmarks partition the VS into three

patches, a topological annulus and two topological disks. For each pair of patches of the AIS subject and the control, we compute

a bijective map using the holomorphic 1-form and harmonic map techniques. With a carefully designed boundary condition, the

three individual maps can be glued in a seamless manner so that the resulting registration is a homeomorphism with exact land-

mark matching. Our method is robust, automatic and efficient. It takes only a few seconds on a low-end PC, which significantly

outperforms the non-rigid ICP algorithm. We conducted a student’s t-test on the test data. Computational results show that using

the mean curvature measure EH , our method can clearly distinguish the AIS subjects and the normal subjects.

Keywords: registration, landmark matching, vestibular system, discrete geodesic, harmonic map, holomorphic 1-form

1. Introduction

Surface registration is the process that aligns a source 3D

surface to a target. It has a wide range of applications in geo-

metric modeling, medical imaging, and computer vision. This

paper focuses on registration of the vestibular systems (VS)

and studies the geometric differences between the normal and

Adolescent Idiopathic Scoliosis (AIS) groups. The vestibular

system is the sensory system situated in the inner ear, which

contributes to balance and the sense of spatial orientation. The

VS is a genus-3 structure with three semicircular canals (see

Figure 1(a)) and the morphometry of VS plays an important

role in the analysis of various diseases such as the AIS dis-

ease, which is a 3D spinal deformity affecting about 4% school

children worldwide. The etiology of AIS is still unclear but

believed to be a multi-factorial disease. One popular hypoth-

esis was suggested to be the structural changes in the VS that

induce the disturbed balance perception, and further cause the

spinal deformity [1, 2]. Some recent works have revealed the

statistical differences in global morphology of the VS between

right-thoracic AIS and normal controls [3, 4]. In order to per-

form shape analysis effectively, meaningful one-to-one corre-
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spondence between different VSs must be obtained. Landmark-

matching based registration techniques, in which landmark fea-

tures were required to be consistently matched to guide the

registration, have proven to be effective in obtaining accurate

point-wise correspondences between 3D medical data. How-

ever, the non-trivial topology of the VS poses great challenges

for the landmark based registration. The existing surface reg-

istration algorithms either work only for shapes with simple

topology (e.g., simply or multiply connected domains) or are

too time consuming and memory inefficient, which are not suit-

able for our problem.

(a) The labyrinth of the inner (b) The homology basis

ear (courtesy of wikipedia) of the genus-3 VS

Figure 1: The vestibular system is a genus-3 structure (colored in brown) in

the inner ear. Its homology basis {ai, bi}
3
i=1

of the genus-3 vestibular system

contains 6 loops. Among them, the three geodesic tunnel loops ai are highly

consistent regardless of the AIS/normal subjects. The locations of the geodesic

handle loops bi, however, may vary significantly.

This paper presents a computational framework to register

the vestibular systems. Our contributions are two-folded:
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• First, we present a robust algorithm to extract the salient

geodesic landmark features from the vestibular systems.

Thanks to its intrinsic nature, the geodesic landmarks are

totally determined by the metric and are highly consistent

regardless of the AIS and normal groups.

• Second, we present an efficient algorithm to register the

vestibular systems with exact landmark correspondence.

We first partition each VS into three patches, a topologi-

cal annulus and two topological disks, using the extracted

landmark features. Then for each pair of patches of the

AIS subject and the control, we compute a bijective map

using the holomorphic 1-form and harmonic map tech-

niques. With a carefully designed boundary condition, the

three individual maps can be glued in a seamless manner.

The resulting registration is guaranteed to be a homeomor-

phism with exact landmark correspondence.

To our knowledge, this is the first work to address the landmark

based registration of the vestibular systems. Our method is ro-

bust, automatic and efficient, which takes only a few seconds on

a low-end PC. We have tested our algorithms on 13 normal sub-

jects and 15 AIS patients. Computational results show that our

method can distinguish the AIS subjects and normal subjects by

using the mean curvature measure.

2. Related Work

As a fundamental problem in medical imaging, digital ge-

ometry processing and graphics, surface registration has been

studied extensively in the past two decades. Most of the ex-

isting registration algorithms focus on rigid registration, where

the motion between the source and the target is rigid. Repre-

sentative work is the iterative closest point (ICP) algorithm [5],

which iteratively computes correspondence between the source

and the target, and performs a rigid motion in response to these

correspondences. Rigid registration and non-rigid registration

under small deformation are ideal for 3D scanning systems, in

which the source and the target are the overlapped scans of

static model. However, they are not suitable for our problem,

where the deformation between the source and the target could

be large.

Recently, non-rigid registration dealing with large deforma-

tion has attracted increasing attention. Huang et al. [6] for-

mulated non-rigid registration as an optimization problem and

solved it by alternating correspondence computation and defor-

mation optimization in terms of the resulting correspondences.

By enforcing the geodesic distances between sets of corre-

sponding points, their method is highly stable and works well

for aligning partially overlapping point clouds, which are sam-

pled from models under isometric deformation. However, the

mapping between two VS surfaces are in general not isometric,

their method cannot be applied to our problem.

Amberg et al. [7] proposed the optimal step non-rigid ICP

algorithm, which recovers global and local deformations of the

mesh by successive application of ICP. Starting with a stiff tem-

plate, the algorithm successively relaxes the stiffness to recover

more local deformations. To find the optimal deformation for

a given stiffness, optimal iterative closest point steps are used.

Their method can handle missing data robustly and is also in-

sensitive to initial conditions. However, their method is mem-

ory inefficient and time consuming.

Salzmann et al. [8] focused on 3D shape recovery of de-

formable surfaces from individual images. Unlike the other

approaches that require initial shape estimates and track defor-

mations from image to image, their method produces the non-

rigid registration in a closed-form solution. Their method as-

sumes the to-be-recovered shape is of rectangular shape (i.e.,

a topological disk) under isometric deformation, therefore, it

cannot work for the VS due to its non-trivial topology and non-

isometric deformation.

The large deformation diffeomorphic metric mapping (LD-

DMM) framework [9, 10, 11] places the shapes in a metric

space, and provides a diffeomorphic transformation by solv-

ing the transport equation of a time dependent vector field. The

LDDMM framework is theoretically sound and elegant, which

can guarantee a diffeomorphism with exact landmark matching.

However, the high computational cost and memory requirement

diminish its application to large surfaces.

The above-mentioned registration methods are extrinsic in

the sense they align the source to the target via computing

the transformation in the embedding space R
3. In contrast,

the parameterization based methods find the mapping between

the source and the target in an intrinsic manner. Conformal

maps [12, 13] have received increasing attention due to their

smooth and angle preserving features. Zeng et al. [14] tack-

led the non-rigid registration problem using slit map, where

the source and the target are multiply connected domains (i.e.,

genus-0 surface with n(≥ 2) boundaries). Each surface is con-

formally mapped to a rectangular domain with n − 2 horizontal

slits. Then they computed a harmonic map between two rectan-

gular domains such that the boundaries and slits are mapped

to each other. Their method solves only a few sparse lin-

ear system, therefore, it is very efficient. However, the topol-

ogy constraint diminishes its applications to only multiply con-

nected domains. Furthermore, conformal maps do not allow

for boundary positions to be prescribed. As a result, landmarks

cannot be exactly matched and bijectivity cannot be ensured

when large number of landmark constraints are enforced.

The space of quasi-conformal map [15, 16] naturally extends

the space of conformal maps by allowing bounded angle dis-

tortion. Among all quasi-conformal maps, the extremal quasi-

conformal map [17][18] is of particular interest, due to its many

promising features, such as uniqueness, minimizing the max-

imal angle distortion, and allowing for solution of boundary

value problems. Unfortunately, only techniques for comput-

ing the extremal quasi-conformal maps on planar domain or 3D

surfaces of simple topology (i.e., genus zero or one) are avail-

able. Computing such maps for 3D surfaces with genus g ≥ 2

(as required in our application), however, is non-trivial.

Table 1 lists the features of the major non-rigid surface reg-

istration methods. Most of the existing methods either work

only for models with simple topology or do not support land-

mark matching. The LDDMM algorithm [9] and the optimal
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Method Application Landmark Map Computational

domain matching quality cost

Huang et al. [6] 3D surfaces under isometric deformation no isometric transformation high

LDDMM [9] 2D/3D grids yes diffeomorphism high

Extremal quasi-conformal map [17] simply/multiply connected domain, genus-0 or 1 surfaces yes diffeomorphism low

Holomorphic differentials [14] multiply connected domain yes diffeomorphism low

Salzmann et al. [8] simply connected domain yes homeomorphism low

Optimal step non-rigid ICP [7] general 3D surfaces yes no guarantee for bijection high

Our method genus-3 VS surface yes homeomorphism low

Table 1: Comparison to the existing non-rigid surface registration algorithms.

step non-rigid ICP algorithm [7] are not practical either, due

to their extremely high computational costs. Unlike to the ex-

isting methods that aim at solving the general non-rigid regis-

tration problem, the proposed method is an ad hoc solution to

the genus-3 VS. It is fully automatic and highly efficient, which

takes only a few seconds on a low-end PC. Besides, it guaran-

tees the exact landmark matching and bijectivity, which makes

it a practical solution to our problem.

3. Algorithm

Our framework contains two stages, the first stage is to detect

the landmarks using stable geodesic loops and the second one

is to parameterize the VS surface using holomorphic 1-form

and harmonic maps. Our registration method can guarantee the

bijection and the exact correspondence between the landmarks.

(a) System of loops (b) Homology basis

Figure 2: Computing the geodesic homology basis on the 3-torus model.

3.1. Landmark Extraction

Let us denote S the boundary surface of the vestibular sys-

tem, which is a closed oriented 3D surface of genus g = 3.

S is topologically equivalent to a sphere with three handles,

which are horizontal canal, anterior canal, and posterior canal,

denoted by γ1, γ2 and γ3 respectively. The horizontal canal γ1,

is roughly orthogonal to the other two regardless of the nor-

mal/AIS groups, see Figure 1(a).

It is well known that one can cut a genus g surface S into a

topological disk by 2g loops, which form the basis of the ho-

mology group. Dey et al. [19] defined two classes of loops,

called tunnel and handle loops in terms of a homology group.

A loop is a tunnel (resp. handle) if it spans a surface, say D, in

the unbounded (resp. bounded) space bordered by S and does

not do so in S . Intuitively speaking, if one cuts S along a tunnel

loop and fills the boundaries with two copies of D, one elimi-

nates a handle. Similarly, removing a handle loop eliminates a

tunnel. See Figure 2.

Xin et al. observed that the geodesic tunnels on the VS sur-

face can be used to study the geometric differences between

the normal and AIS groups [4]. In this paper, we adopt Xin

et al.’s approach [4] to compute the three geodesic tunnels a1,

a2 and a3 (see the red curves in Figure 1). As a byproduct,

Xin et al.’s algorithm also produces the dual geodesic loops bi,

i = 1, 2, 3. Together {ai, bi}
3
i=1

form the homology basis of the

genus-3 VS, such that the intersection numbers of the paths are

ai · a j = bi · b j = 0 and ai · b j = δi j.

It is worth noting that the geodesic tunnel loops ai, i = 1, 2, 3,

are highly stable, regardless of the AIS and normal groups.

However, the locations of the dual loops bi may vary signif-

icantly (see Figure 1(b)). To obtain consistent landmark fea-

tures, we adopt the following strategy: for each pair of handles,

say γi and γ j, we find a pair of points pi ∈ bi and p j ∈ b j. Then

we use Dijkstra’s algorithm to find a path li j connecting pi and

p j. The path ci j , bili jb jl
−1
i j

is homotopic to bi + b j. Next,

we apply Xin et al.’s curve shortening algorithm [20] to deform

ci j into a geodesic loop (see Figure 3). As Xin et al.’s algo-

rithm keeps the curve’s topology during the length shortening

process, ci j is homotopic to bi + b j. Furthermore, as geodesic

is intrinsic and geometry aware, the computed loop ci j is in-

sensitive to the initial curve bili jb jl
−1
i j

. We observe the geodesic

loops ai, ci j are highly consistent among AIS/normal subjects,

thus, can be used as the landmark features (see Figure 4). The

pseudocode of landmark extraction is shown in Algorithm 1.

Input: A vestibular system (VS) surface S

Output: Six geodesic landmark features

1. Compute the geodesic homology basis {ai, bi} for each

handle γi, i = 1, 2, 3.

2. For any two handles γi and γ j,

3. Choose two arbitrary points pi ∈ bi and p j ∈ b j.

4. Find a path li j connecting pi and p j using Dijkstra’s

shortest path algorithm.

5. Deform bili jb jl
−1
i j

into a geodesic loop ci j using [20].

6. End For

7. Output {a1, a2, a3, c12, c23, c31}.

Algorithm 1: Extracting the six geodesic landmarks from a

VS surface.

The extracted geodesic landmarks naturally induce a surface

segmentation: cutting S along the geodesic loops c12, c23 and

c31 produces a genus-1 surface with three boundaries and a

genus-0 surface with three boundaries. Further cutting the two
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Figure 3: Computing the stable geodesic loop ci j across two handles γi and γ j. From left to right: the initial curve bili jb jl
−1
i j

(in red) is continuously deformed into

a stable geodesic loop ci j (in blue). The intermediate loops are rendered in green. Note that the final geodesic loop is homotopic to the initial curve, since the curve

shortening method [20] keeps the curve’s topology during the deformation.

surfaces along the geodesic tunnel loops a1, a2 and a3, we ob-

tain three patches, i.e., a topological annulus P1 and two topo-

logical disks P2 and P3 (see Figure 5). The six feature points,

a1∩c12, a1∩c31, a2∩c12, a2∩c23, a3∩c23, a3∩c31, are defined as

the intersection of two landmark curves. Note that each bound-

ary ∂Pi, i = 1, 2, 3, has exactly 6 feature points, which allows

us to define a boundary condition in the registration so that the

landmark curves can be matched.

(a) Normal subjects

(b) AIS subjects

Figure 4: Thanks to the intrinsic and geometry-aware nature of the geodesic

loops, the extracted landmarks are stable and highly consistent among the AIS

and normal subjects.

3.2. Registration

Given two VS surfaces S 1 and S 2 with the extracted land-

marks {ai
1
, ai

2
, ai

3
, ci

12
, ci

23
, ci

31
}, i = 1, 2, our goal is to find a bi-

jective map φ : S 1 → S 2 with exact landmark correspondence,

i.e., φ(a1
1
) = a2

1
, φ(c1

12
) = c2

12
, etc. As each VS surface can be

segmented into three genus-0 patches, S i
=
⋃3

j=1 Pi
j
, i = 1, 2,

our idea is to find a bijective map φi : P1
i
→ P2

i
between each

pair of patches. With a carefully designed boundary condition

for each individual map, we can “glue” them together to form

the bijective map with exact landmark correspondence. See Al-

gorithm 2 for the pseuocode of the registration algorithm.

3.2.1. Computing the map between two topological annuli

The patch P1 containing three semicircular canals is the ma-

jor component of the VS. Its geometry resembles a long tube

and its topology is equivalent to an annulus. We first param-

eterize the patch P1 to a canonical annulus (with outer radius

equals 1) using the Gu-Yau method [21]. Then we cut the annu-

lus open and map it to a rectangle using the complex logarithm

function z 7→ log z. Let t denote the conformal map from the

patch P1 to the annulus and g denote the conformal map from

the annulus to a rectangle. Then the composite map g ◦ t maps

P1 to a rectangular domain R.

Now given two patches P1
1

and P2
1
, we compute the maps

g1 ◦ t1 : P1
1
→ R1 and g2 ◦ t2 : P2

1
→ R2. Then we com-

pute a harmonic map r : R1 → R2 between the two rectangles.

Similar to the harmonic function d in the disk map, we specify

the Dirichlet boundary condition by matching the feature points

and parameterize the non-feature points using arc length param-

eterization. Finally, the annulus map φ1 : P1
1
→ P2

1
is defined

as φ1 = t−1
2
◦ g−1

2
◦ r ◦ g1 ◦ t1, See the commutative diagram in

Figure 6(a).

3.2.2. Computing the map between two topological disks

Observe that both P2 and P3 are topological disks and the

boundary of each disk has 6 feature points, which are the inter-

section points of landmark curves. Here we present the method

to compute the map φ2 : P1
2
→ P2

2
. The other map φ3 : P1

3
→ P2

3

can be constructed in the same way. Let qi
j
, j = 1, · · · , 6 denote

the six feature points on ∂Pi
2
. We map each disk Pi

2
to the unit

disk D by computing a harmonic function fi : Pi
2
→ D, ∆ fi = 0.

The Dirichlet boundary condition is specified by using the arc
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Figure 5: Cutting the VS surface along the geodesic landmarks we obtain 3 genus-0 patches. g: genus, b: number of boundaries.

length parameterization: set the feature point qi
1

as the reference

point with fi(q
i
1
) = ei0. Then for any boundary point q ∈ ∂Di,

fi(q) = eiθ(q), where θ(q) = 2πl(q, qi
1
)/L, and l(s, t) measures

the boundary length from s to t, and L is the total length of

the boundary ∂Di. Next, we compute another harmonic map

d : D → D, which aligns two unit disks such that the images

of the feature points d( f1(q2
i
)) = f2(q2

i
) are matched and the

non-feature boundary points are determined by the arc-length

parameterization. Finally, the map φ2 : P1
2
→ P2

2
is constructed

by the composite map φ2 = f −1
2
◦ d ◦ f1. See Figure 6(a) for the

commutative diagram.

3.2.3. Constructing the global map

The global map φ : S 1 → S 2 is simply constructed by glu-

ing all three individual maps together, i.e., φ =
⋃3

i=1 φi. Here

we show the map φ is a homeomorphism with exact landmark

correspondence. In the disk maps φ2, φ3 and the annulus map

φ1, the harmonic functions f1, f2, d and r are all diffeomor-

phic, since the domains and co-domains are all convex and the

Dirichlet boundary conditions are homeomorphisms. The holo-

morphic 1-form induced mappings t1, t2 are conformal and dif-

feomorphic. The complex log functions g1 and g2 are also dif-

feomorphic when restricting the argument to [0, 2π]. Thus, all

three maps φ1, φ2 and φ3 are diffeomorphic for all the interior

points.

Although the maps φi’s are calculated individually, they can

be glued seamlessly, since we use the arc-length parameterized

boundary condition in computing the harmonic maps. Note that

each boundary has exactly 6 feature points, which are guaran-

teed to be matched as required in the Dirichlet boundary con-

ditions used in the harmonic functions f1, f2, d and r. For

the non-feature points on the boundary, their images are com-

pletely determined by the metric since we parameterize them

using the arc-length parameterization. Thus, for two adjacent

patches sharing a common boundary, both the feature and non-

feature points can be matched exactly, which implies that all

the boundary maps are homeomorphic. Putting it altogether,

the global map, φ =
⋃3

i φi, is in fact a homeomorphism with

exact landmark correspondence.

Input: Two vestibular system surfaces S 1 and S 2

Output: The homeomorphism φ : S 1 → S 2 with

guaranteed landmark correspondence

1. Compute the six geodesic landmarks for each VS

surface using Algorithm 1.

2. Cut each VS surface into three genus-0 patches P1, P2,

and P3, along the extracted landmark features.

3. Compute the map φ1 : P1
1
→ P2

1
between two

topological annuli.

4. Compute the map φ2 : P1
2
→ P2

2
between two

topological disks.

5. Compute the map φ3 : P1
3
→ P2

3
between two

topological disks.

6. Output the map φ =
⋃3

i=1 φi.

Algorithm 2: Registration of vestibular system surfaces

registration with guaranteed landmark correspondence.

4. Results & Comparisons

4.1. Experimental results

We implemented our algorithm in C++ on a PC with an In-

tel Core2 Quad CPU 2.83GHz and 16GB RAM. TAUCS1 is

adopted as the linear system solver for the harmonic map and

holomorphic 1-form methods.

We tested 28 VS surfaces (15 AIS patients and 13 normal

subjects), which were extracted from the MRI. Each VS sur-

face is modeled as a triangle mesh with about 4K vertices.

Our method is automatic and efficient: computing the geodesic

landmark features takes less than 1 second for each VS surface

and registering two VS surfaces takes roughly 6 seconds.

To evaluate the difference of VS between the AIS and nor-

mal subjects, we computed the average shape for all 13 normal

subjects, which is used as our control model (see Figure 8(a)).

Let f : M → N be the mapping from the control M to a VS

subject N. Then we defined the following functionals to mea-

sure the difference between M and N based on various types of

1http://www.tau.ac.il/˜stoledo/taucs/
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(a) (b)

Figure 6: Registration. (a) The commutative diagram for the map between two topological annuli. (b) The commutative diagram for the map between two topological

disks. The red dots are the images of the feature points. To avoid label congestion, only two feature points and their images are labeled, the others can be implied

according to the order.

geometric properties,

EA =

∫
M

|dσ − d(σ ◦ f )|2

EK =

∫
M

|K − K ◦ f |2dσ

EH =

∫
M

|H − H ◦ f |2dσ

EC =

∫
M

|λ − λ ◦ f |2 + s|H − H ◦ f |2dσ

where ◦ denotes the function composition, σ is the area ele-

ment, K is the Gaussian curvature, H is the mean curvature, λ

is the conformal factor. The scalar s > 0 balances the terms of

conformal factor and mean curvature. The functionals EA, EK

and EH measure the distortion of area, Gaussian curvature and

mean curvature, respectively. The functional EC extends EH by

considering the conformal factor λ, which measures the stretch

distortion of the conformal representation (λ,H). Some results

are shown in Figure 10. Figure 9 visualizes the various distor-

tion measures on an AIS subject and a normal subject. Clearly,

the AIS subject has larger distortion measures than that of the

normal subject.

To verify whether the proposed geometric measures can dis-

tinguish the AIS subjects and the normal subjects, we con-

ducted a student’s t-test on the 13 normal subjects and 15 AIS

subjects. As shown in Figure 7 (row 1), our method produces

EH with a P-value 0.029, which is less than the commonly used

threshold 0.05. As a result, the mean curvature difference EH

can be used to distinguish the two groups. Our results also show

that the other three measures EC , EA and EK are not statistically

important in terms of distinguishing the two groups.

4.2. Comparisons

As discussed in Section 2, most of the existing non-rigid reg-

istration algorithms work only for surfaces either under iso-

metric transformations or with simple topology, only the LD-

DMM algorithm [9] [22] and the optimal step non-rigid ICP

(a) Our result (b) Non-rigid ICP result

Figure 8: Computing the control shape by averaging the 13 normal subjects.

Our method guarantees a bijective mapping between any two subjects, whereas

the optimal step non-rigid ICP algorithm has no such guarantee. As a result,

our result is smoother and has less distortion than that of the ICP algorithm.

algorithm [5] could be used in our problem. In this subsection,

we compare our method to these alternative methods.

The LDDMM algorithm aims to quantify metric distances

on anatomical structures in medical images. It is a gradient de-

cent algorithm using the Euler-Lagrange equation to minimize

a non-linear energy functional. It guarantees that the computed

map is a diffeomorphic and the user-specified landmarks are

matched exactly. The LDDMM algorithm can be extended to

3D surfaces by 3-dimensional rasterization (a.k.a. voxelization)

so that the velocity field is computed on the voxels. Each iter-

ation takes O(mn3) time, where m is the number of discretized

time intervals, and n is the voxel resolution. In order to ob-

tain an accurate registration, high voxel resolution (i.e., large n)

and small time step (i.e., large m) are often desired. Since the

LDDMM algorithm is a gradient decent algorithm, it converges

very slowly. As a consequence, the LDDMM algorithm is very

time consuming and space inefficient. Moreover, implementing

the LDDMM algorithm for 3D models with complicated ge-

ometry and non-trivial topology is difficult. To our knowledge,

only results of models with simple geometry and topology have
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Our method EH: p = 0.029, t = 2.29 EK : p = 0.86, t = 0.17 EC: p = 0.35, t = 0.97 EA: p = 0.34, t = 0.98

Non-rigid ICP EH: p = 0.59, t = 0.53 EK : p = 0.91, t = 0.10 EC: p = 0.15, t = 1.47 EA: p = 0.36, t = 0.91

Figure 7: We measure the difference between the AIS subjects and the control model in terms of various geometric features, such as area EA, Gaussian curvature

EK , mean curvature EH , and conformal representation EC . With our method (row 1), the mean curvature difference EH is statistically significant with a P-value

less than 0.05, which implies that we can use mean curvature EH to distinguish these two groups. Note that the results of the non-rigid ICP method (row 2) are not

statistically important, since all the resulting P-values are much bigger than the commonly used threshold 0.05.

Figure 9: Visualizing the shape distortion measures on an AIS subject and a

normal subject. The AIS subjects have larger distortion than the normal sub-

jects.

been reported to date.

The classic ICP algorithm [5] alternates between computing

correspondences between the source and target and performing

a rigid motion in response to these correspondences. The opti-

mal step non-rigid ICP algorithm [7] extends the ICP algorithm

so that it loops over a series of decreasing stiffness weights, and

incrementally deforms the template towards the target, recover-

ing the whole range of global and local deformations. The op-

timal step non-rigid ICP algorithm is extrinsic, since the defor-

mations are carried out in R
3. Their method terminates when all

the template vertices are on the target. However, their method

cannot guarantee the bijectivity. As shown in Figure 11, when

the non-rigid ICP algorithm deforms a smooth template (the

control VS) to a target, the part near the features can be easily

stuck. Since the nearby vertices are already on the target, the

algorithm cannot further improve the mapping. As a result, the

deformed shape fails to capture the features. As Figure 10(b)

shows, the results of the non-rigid ICP algorithm cannot distin-

guish the AIS subjects and the normal subjects. For example,

an AIS subject (left) has EH = 14.8, but, one normal subject

(a) Control

AIS Normal Normal

(0.133, 14.8, 1.78, 1.44) (0.145, 17.7, 1.97, 1.52) (0.147, 13.8, 1.22, 1.62)

(b) Non-rigid ICP results

AIS Normal Normal

(0.097, 11.2, 1.13, 1.19)(0.093, 10.03, 0.82, 1.08)(0.094, 9.82, 0.94, 1.12)

(c) Our results

Figure 10: Experimental results. We map the control model M to a VS subject

N and then measure various types of geometric difference between M and N.

The landmarks can be matched exactly. The 4-tuple under each model shows

the measures EK , EH , EC and EA, respectively. Using our approach, the AIS

subjects have consistently larger distortion measures than the normal subjects.

However, the results of the non-rigid ICP algorithm are not consistent.
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(middle) has EH = 17.7 and the other normal subject (right) has

EH = 13.8. Our method, in sharp contrast, is intrinsic and can

guarantee that the resulted map is a homeomorphism. We ob-

served that the majority of our results are very stable so that the

distortion measures of the AISs are consistently higher than the

normal subjects. In particular, using the mean curvature mea-

sure EH , our method can clearly distinguish the AIS subjects

and the normal subjects, whereas the non-rigid ICP algorithm

fails (see Figure 7 row 2).

Another limitation of the non-rigid ICP algorithm [5] is its

high computational cost. In each iteration, the algorithm solves

a linear system AT AX = AT B, where A is of size (4E+V)×4V

and B of size (4E+V)×3, V and E are the number of vertices and

edges of the target mesh. Experimental results show that the

non-rigid ICP algorithm converges in 200 to 300 iterations and

each iteration takes 5 seconds on average. Our method com-

putes the harmonic maps and holomorphic 1-forms, which are

all based on solving sparse linear systems of size V × V . Thus,

our implementation is straightforward and the performance of

our method is much better than the non-rigid ICP algorithm.

We should point out that the existing methods aim at solv-

ing the registration problem for general 3D surfaces, whereas

our application domain is limited to the genus-3 vestibular sys-

tem, since both our landmark extraction and registration take

advantage of the unique geometric as well as topological fea-

tures of the VS. Our ad hoc solution is robust, fully automatic

and highly efficient.

Figure 11: Comparison. The optimal step non-rigid ICP algorithm [7] iter-

atively deforms the control VS towards the target. The deformation is carried

out in an extrinsic manner, which cannot guarantee the bijectivity. Furthermore,

since the control VS is very smooth and the target VS has features (see the red

close-up view), the template (the control shape) can easily stuck into a local

optimal, which produces large distortion. One can clearly see the difference

between the target and the result by the non-rigid ICP algorithm. In contrast,

our method is completely intrinsic and guarantees the registration is a homeo-

morphism. All the features on the target are well preserved by our algorithm.

5. Conclusion

This paper presents an effective and practical solution to reg-

ister the genus-3 vestibular systems. Our method first extracts

six geodesic landmarks for the VS, which are stable, intrinsic,

and insensitive to the VS’s resolution and tessellation. More-

over, they are highly consistent regardless of the disease and

normal groups. The detected geodesic landmarks partition the

VS into three patches, a topological annulus and two topolog-

ical disks. For each pair of patches of the AIS subject and the

control, we compute a bijective map using the holomorphic 1-

form and harmonic map techniques. With a carefully designed

boundary condition, the three individual maps can be glued in

a seamless manner so that the resulting registration is a home-

omorphism with exact landmark matching. Our method is ro-

bust, efficient and fully automatic. It takes only a few seconds

on a PC, which significantly outperforms the non-rigid ICP al-

gorithm. We conducted a student’s t-test on the test data. Com-

putational results show that using the mean curvature measure

EH , our method can clearly distinguish the AIS subjects and the

normal subjects.

Acknowledgement

This project was partially supported by Singapore Ministry

of Education (MOE) grants RG40/12 and MOE2013-T2-2-

011, China NSF grants No. 61170170 and No. 61271366,

and the Capital Science and Technology Platform project No.

Z131110000613062. We thank the anonymous reviewers for

their valuable comments.

References

[1] N. N. Byl, J. M. Gray, Complex balance reactions in different sensory

conditions: adolescents with and without idiopathic scoliosis, Journal of

Orthopaedic Research 11(2) (1993) 215–227. 2

[2] M. Simoneau, V. Lamothe, E. Hutin, P. Mercier, N. Teasdale, J. Blouin,

Evidence for cognitive vestibular integration impairment in idiopathic

scoliosis patients, BMC Neuroscience 10 (1) (2009) 1–7. 2

[3] W. Zeng, L. M. Lui, L. Shi, D. Wang, W. C. Chu, J. C. Cheng, J. Hua,

S.-T. Yau, X. Gu, Shape analysis of vestibular systems in adolescent id-

iopathic scoliosis using geodesic spectra, in: Medical Image Computing

and Computer-Assisted Intervention MICCAI 2010, Vol. 6363 of Lecture

Notes in Computer Science, 2010, pp. 538–546. 2

[4] S.-Q. Xin, Y. He, C.-W. Fu, D. Wang, S. Lin, W. C. Chu, J. C. Cheng,

X. Gu, L. M. Lui, Euclidean geodesic loops on high-genus surfaces ap-

plied to the morphometry of vestibular systems, in: Proceedings of MIC-

CAI ’11: Part II, 2011, pp. 384–392. 2, 4

[5] P. J. Besl, N. D. McKay, A method for registration of 3-d shapes, IEEE

Trans. Pattern Anal. Mach. Intell. 14 (2) (1992) 239–256. 3, 7, 8, 9

[6] Q.-X. Huang, B. Adams, M. Wicke, L. J. Guibas, Non-rigid registration

under isometric deformations, in: Proceedings of the Symposium on Ge-

ometry Processing, SGP ’08, 2008, pp. 1449–1457. 3, 4

[7] B. Amberg, S. Romdhani, T. Vetter, Optimal step nonrigid icp algorithms

for surface registration, in: Computer Vision and Pattern Recognition,

2007. CVPR ’07. IEEE Conference on, 2007, pp. 1–8. 3, 4, 8, 9

[8] M. Salzmann, F. Moreno-Noguer, V. Lepetit, P. Fua, Closed-form solution

to non-rigid 3d surface registration, in: Computer Vision ECCV 2008,

Vol. 5305 of Lecture Notes in Computer Science, 2008, pp. 581–594. 3,

4

[9] M. F. Beg, M. I. Miller, A. Trouve, L. Younes, Computing large defor-

mation metric mappings via geodesic flows of diffeomorphisms, Interna-

tional Journal of Computer Vision 61(2) (2005) 139–157. 3, 4, 7

[10] S. C. Joshi, M. I. Miller, Landmark matching via large deformation diffeo-

morphisms, IEEE Transaction on Image Processing 9 (8) (2000) 1357–

1370. 3

[11] A. Qiu, L. Youne, M. I. Miller, Principal component based diffeomorphic

surface mapping, IEEE Transactions on Medical Imaging 31 (2) (2012)

302–311. 3

9



[12] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, S.-T. Yau, Genus zero

surface conformal mapping and its application to brain surface mapping,

IEEE Transactions on Medical Imaging 23 (8) (2004) 949–958. 3

[13] Y. Wang, L. M. Lui, T. F. Chan, P. M. Thompson, Optimization of brain

conformal mapping with landmarks, in: Proceedings of MICCAI ’05:

Part II, 2005, pp. 675–683. 3

[14] W. Zeng, Y. Zeng, Y. Wang, X. Yin, X. Gu, D. Samaras, 3d non-rigid

surface matching and registration based on holomorphic differentials, in:

Computer Vision ECCV 2008, Vol. 5304 of Lecture Notes in Computer

Science, 2008, pp. 1–14. 3, 4

[15] W. Zeng, F. Luo, S.-T. Yau, X. Gu, Surface quasi-conformal mapping by

solving beltrami equations, in: Mathematics of Surfaces XIII, Vol. 5654

of Lecture Notes in Computer Science, 2009, pp. 391–408. 3

[16] L. M. Lui, T. W. Wong, P. Thompson, T. Chan, X. Gu, S.-T. Yau, Shape-

based diffeomorphic registration on hippocampal surfaces using beltrami

holomorphic flow, in: Proceedings of MICCAI ’10: Part II., 2010, pp.

323–330. 3

[17] L. M. Lui, K. C. Lam, S.-T. Yau, X. Gu, Teichmuller mapping (t-map)

and its applications to landmark matching registrations, arXiv:1211.2569

(2012). 3, 4

[18] O. Weber, A. Myles, D. Zorin, Computing extremal quasiconformal

maps, Comp. Graph. Forum 31 (5) (2012) 1679–1689. 3

[19] T. K. Dey, K. Li, J. Sun, D. Cohen-Steiner, Computing geometry-aware

handle and tunnel loops in 3d models, ACM Transactions on Graphics

27 (3) (2008) 45:1–45:9. 4

[20] S.-Q. Xin, Y. He, C.-W. Fu, Efficiently computing exact geodesic loops

within finite steps, IEEE Transactions on Visualization and Computer

Graphics 18 (6) (2012) 879–889. 4, 5

[21] X. Gu, S.-T. Yau, Global conformal surface parameterization, in: Pro-

ceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Ge-

ometry Processing, 2003, pp. 127–137. 5

[22] M. Miller, A. Trouve, L. Younes, On the metrics and euler-lagrange equa-

tions of computational anatomy, Annual Review of Biomedical Engineer-

ing 4 (2002) 375–405. 7

10


