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Abstract

To fabricate a virtual shape into the real world, the physical strength of the shape is an important consideration. We introduce a
framework to consider both the strength and complexity of 3D frame structures. The key to the framework is a stress-oriented
analysis and a semi-continuous condition in the shape representation that can both strengthen and simplify a structure at the same
time. We formulate a novel semi-continuous optimization and present an elegant method to solve this optimization. We also extend
our framework to general solid shapes by considering them as skeletal structures with non-uniform beams. We demonstrate our
approach with applications such as topology simplification and structural strengthening.
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1. Introduction

We have witnessed many developments in the area of com-
putational fabrication in recent years [1, 2, 3, 4]. As 3D printers
become increasingly common and affordable, there is a great
need for tools that consider the physical properties of virtual ob-
jects. When bringing virtual objects into the real world through
3D printing, the strength of an object is one such important con-
sideration. We present a framework to analyze both the strength
and complexity of 3D frame structures, where a structure con-
sists of a set of beams. The motivations for focusing on frame
structures are that these structures are common in architectural
models, they can also represent general 3D shapes, and they
can be 3D printed as a real-world frame structure to represent
the virtual shape without an excessive amount of printing ma-
terial.

There has been some recent work exploring the idea of struc-
tural analysis of 3D printed shapes [5, 6, 7]. There also exists
work that analyze structural parts and reduce the cost of 3D
printing by building a skin-frame structure [8] or a honeycomb-
cells structure [9]. However, previous methods optimize the
structure problem iteratively between two parts: a geometry op-
timization and a topology optimization. In this paper, we intro-
duce a single stress-oriented framework to analyze the strength
and topology complexity of 3D frame structures simultaneously.
A key contribution different from previous work is that we have
a problem formulation and a semi-continuous condition in our
shape representation. This condition can remove structurally
redundant elements to reduce the overall shape complexity with-
out sacrificing its structural strength.
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We formulate our problem to optimize scalar parameters of
a frame structure such that it is 3D printable with high strength,
while taking into account the volume, semi-continuous, sym-
metric, and sparsity constraints. These constraints are quite in-
tuitive, as they limit the size and complexity of the output struc-
ture while maintaining its aesthetics. The idea is to strengthen
weak parts while maintaining the overall volume of the shape,
and optionally changing the topology and keeping the shape
symmetry. In particular, the semi-continuous constraint is key
to our formulation, as it includes a choice between lower and
upper bounds and a value of zero for each parameter in the
shape representation. An element within a shape with a pa-
rameter value of zero will disappear. Our formulation of this
condition allows us to explore the tradeoffs between strength
and complexity in frame structures. The user can also control
the tradeoff to choose among structures with various simplified
topologies and high strength.

We use stress as a measure of strength of an object. We
consider the frame structure as a set of beam elements and com-
pute the stress of each element. Our stress-oriented structural
optimization then minimizes the maximal stress of all elements.
The semi-continuous condition in our shape representation re-
quires a non-trivial solution to this problem. Hence we formu-
late a novel semi-continuous optimization and present an el-
egant method, the alternation direction method of multipliers
(ADMM) algorithm, to solve it. Based on our framework on
frame structures, we extend it to general tetrahedral meshes.
By considering a tetrahedral mesh as a skeletal structure, the
formulation and optimization method can be easily applied to a
skeletal structure.

We demonstrate our framework over various 3D models of
frame structures. We show the applications of the strengthen-
ing of weak parts and topology simplification while maintaining
structural symmetry. Our results highlight the main concepts of
the stress-oriented structural optimization.
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The contributions of our work are: (i) a stress-oriented frame-
work to analyze both the strength and structural complexity of
3D frame structures with a semi-continuous condition; (ii) a
semi-continuous optimization to minimize the maximal stress
of a structure and an elegant method to solve this optimization;
(iii) an extension to tetrahedral meshes by constructing skeletal
structures and considering as frame structures; and (iv) applica-
tions of our framework to structural strengthening and topology
simplification. Section 3 describes the stress analysis frame-
work and the representation of an input shape as a frame struc-
ture. Section 4 describes our problem formulation including
the objective function, the semi-continuous condition, and var-
ious constraints in our stress-oriented optimization. Section 5
describes a reformulation of the original problem formulation
into a semi-continuous optimization such that it can be solved
with the ADMM algorithm. Section 6 describes the extension
of our framework to tetrahedral meshes.

2. Related Work

Structural Analysis for Fabrication. With the rapid develop-
ment of techniques for 3D printing, many researchers have re-
cently studied geometric processing problems for the purpose
of fabrication. These fabrication-aware methods are typically
led by a stress analysis that uses the finite element method.
Stava et al. [5] introduce a method that analyzes the stress of
a model and deforms it by hollowing, thickening and strut in-
sertion. Zhou et al. [6] present a method to search for the worst-
case stress under forces from all possible directions. Langlois
et al. [10] use a stochastic finite element method to compute
failure probabilities which can analyze the static soundness of
one object. Zhou et al. [11] present a direct shape optimiza-
tion method which penalizes geometric deviation while bound-
ing the stress under specific external loads. Chen et al. [12]
propose a finite element discretization scheme to use a reduced
basis for fast stress analysis. Chen et al. [13] analyze elastic
deformation caused by gravity to solve the inverse problem of
computing a shape that when fabricated deforms naturally to a
target shape. Prévost et al. [3] explore the problem of deform-
ing shapes to make them physically balance. Among this area
of work, we contribute a stress-oriented problem formulation
for automatically strengthening a frame structure while simpli-
fying its structural complexity.

Structural Simplification for Fabrication. There has been work
on problems which aim to simplify the complexity of the struc-
ture of 3D shapes for fabrication. Many methods are based on
decomposing a 3D shape into smaller pieces and then assem-
bling them to form the original shape or a resemblance of it.
Luo et al. [14] suggest a method to 3D print large objects by
first segmenting an object into smaller parts and then assem-
bling the parts to form the larger shape. Hildebrand et al. [15]
create parts from a 3D shape that can then be fabricated and
assembled in an optimal direction. Interlocked planar [16, 17]
or solid pieces [18, 19, 20] can be used to form a shape that re-
sembles the original. Zimmer et al. [21] approximate surfaces
by building physical structures with the Zometool construction

system. Vanek et al. [22] present a method to divide a mesh
into parts which are then efficiently packed into space for 3D
printing. Instead of decomposing a shape into smaller pieces,
we simplify a frame structure by possibly removing elements
from it. We contribute a semi-continuous optimization for this
purpose.

Special Structure Design. Motivated by existing architectural
structures, some types of special 3D printed structures have
been explored. Some structures, like skin-frame structure [8] or
honeycomb-cells structure [9], are designed to reduce the cost
of 3D printing via stress analysis. These methods are used for
constructing the interior supporting structure of a solid object
and these structures are cost-effective and are stable with high
strength. Some structures are designed as the support structure
necessary for 3D printing. The reduction of support structure
can save printing time and material [23, 4]. A bridge struc-
ture [4] can reduce the cost and meet stability conditions. Yang
et al. [24] design a support-free structure to fabricate a balanced
object without interior supports. Recently inspired by some ma-
terials in the nature, microstructures [25, 26, 27, 28] become
popular, which are composed of tileable and printable small
scale assemblies made of one or several materials. A framework
is proposed [29] to generate statically sound and materially ef-
ficient frame structures with different types of cross sections.
In this paper, we focus on strengthening and simplifying frame
structures consisting of beams. We can also extend our frame-
work to converting general meshes to skeletal representations
for our analysis.

3. Preliminaries

This section describes the stress analysis and the representa-
tion of an input 3D shape of our algorithm as a frame structure.
The stress computation described here is used in our optimiza-
tion in Section 4.

3.1. Stress Computation
In continuum mechanics, stress is a physical quantity that

expresses the internal forces that neighboring particles of a con-
tinuous material exert on each other [30, 31]. The strength of a
material is measured in force per unit area, which depends on
its capacity to withstand axial stress, shear stress, bending, and
torsion. A static elastic object satisfies the following equilib-
rium equation: 

− divσ(u) = f, in Ω,

u = 0, on ΓH ,

σ(u) · n = g, on ΓN ,

(1)

where u is the displacement, σ is the stress tensor, f is the body
force, and g is the surface force. This differential equation is
defined in the region of an object Ω, ΓH and ΓN are two open
subsets of the boundary of Ω, such that ∂Ω = ΓH ∪ ΓN and
ΓH ∩ ΓN = ∅. We take the discretized form of this system, i.e.
the linear equilibrium equation:

Ku = F, (2)
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Figure 1: A frame structure consists of nodes and beams. The positions of
nodes and the cross sections of beams defines the shape of a frame structure.
For the sake of simplicity, we set each beam to be a cylindrical shape, which
use a single radius to control the strength of a beam. The elastic properties of a
frame structure are determined by its shape and the material of each beam.

where K is the stiffness matrix and F is the external loads in-
cluding body forces and surface forces. Note that the displace-
ment u is in the finite element space of piecewise linear contin-
uous functions, which is different from the space in the contin-
uous case (Equation 1).

3.2. Frame Structure

As shown in Figure 1, a frame structure consists of a set of
beams and nodes where the beams are connected to each other
at the nodes. In our framework, each beam is regarded as a
simple cylindrical shape with a radius and a length. The beams
defines the topology (i.e. the connectivity between nodes) of the
frame structure. According to theory on frame structures [32,
33], the stiffness matrix K in Equation (2) can be computed for
a frame structure, where K depends on the node positions and
beam radii [8]. The forces in this equation are gravity or exter-
nal loads we specify. We can then solve for the displacement
and compute the stress for each beam in the frame structure. Al-
though the stress varies in different parts of the beam, we only
consider the largest stress for each beam.

4. Problem and Formulation

We describe our problem formally in this section, including
the objective function in our optimization, various constraints,
and the problem formulation. The stress analysis from Sec-
tion 3 allows us to compute the stress in our optimization. The
solution to the optimization is presented in Section 5.

4.1. Problem

Our problem involves two components: stress strengthening
and topology simplification.

Stress strengthening. Structural optimization aims to determine
the best design according to some physical objectives (e.g. great-
est strength, maximum rigidity) under some constraints. A struc-
ture fails the strength criterion when the stress (force divided by
area of material) induced by the load is greater than the capac-
ity of the structural material to resist the load without breaking,
or when the strain (percentage extension) is so great that the
element no longer fulfills its function. As acknowledged in the

literature [34, 35, 36], it is natural to use stress or strain as crite-
ria for the weakness measure of a target structure. Hence we use
stress as a criterion for the purpose of structural strengthening.

Structural complexity. There exists many beams in our frame
structures and some of these beams are not significant to the
stress of the overall structure. We may therefore remove some
of them without affecting the stress of the overall shape and to
simplify its structural complexity.

Problem. The input to our problem is a frame structure of beams
(shown as Figure 1). Considering the above two components,
our problem is to perform simultaneous stress strengthening
and structural complexity reduction of the input shape under
some external loads. The output is a modified frame structure
with a smaller number of beams while the stress of the shape
is maintained or strengthened. The radii of some beams are ad-
justed while some beams are removed. The resulting shape may
be 3D printed as a structure with high strength and simplified
complexity.

4.2. Objective Function
Objective function. Let M be a mesh representing the frame
structure. We adopt stress as a criterion for the weakeness
measure of an object and minimize the maximal stress of the
beams in the structure. The stress-oriented structural optimiza-
tion problem can thus be formulated as:

s∗ = arg min
s∈Θ

max
p∈M(s)

σ(p), (3)

where s is the vector of structural design variables, Θ is the
collection of all feasible design variables, and σ is the stress
function. The solution of the above problem is s∗, andM(s∗) is
then the output shape.

Design variables. The degree of freedom of the structural de-
sign space is large in general. Hence we simplify the problem
by focusing on a piecewise scaling transformation for each el-
ement of the shape. Let K = (VK , EK ) be the frame struc-
ture of a shape, where VK and EK represent the set of nodes
and beams respectively. For every beam, we define a scalar
si, i ∈ {1, · · · , |EK |} which is the scaling factor of the radius of
each beam (See Figure 2). Let s = (s1, s2, · · · , s|EK |) be our set
of structural design variables. We can perform many changes
to the shape by adjusting these scalar variables. For example,
we can adjust si to strengthen weak parts. We can re-distribute
volume in the overall shape by adjusting si for multiple parts. If

R r

Scaling factor s = R/r

L

Volume = π(sr)2L

Figure 2: We choose our variables as the scaling factor for each beam. The
scaling factor s is defined by the ratio of radius and the volume can be computed
by the corresponding scaling factor. A beam vanishes if we simply set s = 0.
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we set so = 1 = (1, 1, · · · , 1), thenM(so) is the original object.
If we set some si = 0 then the corresponding part will disappear
and we can perform topological changes to the overall shape.

4.3. Constraints

We consider various constraints in our framework to main-
tain the size, aesthetics, and complexity of the output shape.

Volume constraint. We compute the shape’s volume by adding
the volume of all beams. Each beam’s volume is estimated as
the cross sectional area multiplied by its length. We can write
the volume constraint as:

Vol(s) ≤ γVol(1), (4)

where γ is a user-specified value which means that the resulting
volume is no more than γ of the original volume.

Symmetry constraint. In many practical applications, it is im-
portant to maintain the symmetry of a shape during its struc-
tural optimization, so as to maintain its overall aesthetics. Our
approach can achieve this by adding symmetry constraints as
follows:

si − s j = 0, (i, j) ∈ S, (5)

where S is the set of index pairs of beams that we wish to main-
tain symmetry with.

Semi-continuous constraint. In order to satisfy the printability
of the object, the scalar si should be within an interval [ai, bi].
For example, the scalar should be set such that the thickness of
the shape is not less than the minimum manufacturable size of
the 3D printer. Each scalar si can also take a zero value. Hence
this leads to a semi-continuous condition:

si ∈ [ai, bi] ∪ {0}, i ∈ I = {1, 2, · · · , |EK |}. (6)

Sparsity constraint. Moreover, we can add a cardinality con-
straint to control the overall complexity of the structure:

‖s‖0 ≤ τ. (7)

4.4. Formulation

We can now formulate our stress-oriented structural opti-
mization as follows:

arg min
s

max
e∈E

σe(s)

s.t. Vol(s) ≤ γVol(1),
si − s j = 0, (i, j) ∈ S,
si ∈ [ai, bi] ∪ {0}, i ∈ I,

‖s‖0 ≤ τ,

(8)

where E is the set of beams in the frame structure, and σe is the
stress function described in the previous section.

5. Semi-Continuous Optimization

In this section, we present the method to solve the opti-
mization described in Section 4. In the formulation of our opti-
mization (Equation (8)), the scaling factors s are a set of semi-
continuous decision variables [37, 38]. Theoretically, it is in
general NP-hard to solve this kind of highly nonlinear optimiza-
tion problem which has combinatorial nature (semi-continuous
sparsity) [39, 40]. Thus we reformulate our problem and then
mathematically derive an algorithm based on the ADMM (al-
ternating direction method of multipliers) strategy [41, 42] to
solve it. The ADMM method is designed to solve convex op-
timization problems by breaking them into smaller pieces, and
it has been applied to a number of problems arising in statistics
and machine learning [43, 44]. The semi-continuous condition
in our problem formulation leads to two sets of variables. The
idea of ADMM is to split the optimization into sub-problems
that iteratively find solutions to the two sets of variables.

5.1. Problem Reformulation

We add a new variable δ to represent the maximum stress
and introduce a variable splitting strategy (and a new variable
y) to reformulate the problem in Equation (8) as:

arg min
(s,δ,y)

δ

s.t. σe(s) − δ ≤ 0, e ∈ E,

Vol(s) ≤ γVol(1),
si − s j = 0, (i, j) ∈ S,
s − y = 0,
y ∈ Y,

(9)

where Y = {y | aizi ≤ yi ≤ bizi, zi ∈ {0, 1}, i ∈ I; 1T z ≤ τ}. The
optimal s∗ is our solution. The advantage of introducing the
variable y is that it allows the decoupling of the continuous con-
straint and the semi-continuous sparsity constraint, since each
of them now applies to one specific optimization variable s or y.
Although we introduce an additional constraint, it is now eas-
ier to solve the reformulated problem (Equation (9)) than the
original one (Equation (8)).

5.2. Solution

Our solution is based on ADMM which is itself based on an
augmented Lagrangian function and two sub-problems within
the overall optimization. We describe these in detail in this sub-
section.

Augmented Lagrangian. One typical way for solving such an
optimization problem is to use an augmented Lagrangian ap-
proach [45]. We use this method and define the problem’s aug-
mented Lagrangian function as follows:

Lρ(s, δ, y, λ) = δ + λT (s − y) +
ρ

2
‖s − y‖2 (10)

with λ being the Lagrangian multipliers and ρ a positive param-
eter that balances the quadratic penalization.
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Algorithm 1 The ADMM algorithm for structural optimization
Input: an initial structureM(so)
Step 0: Set k = 0 and initialize y0, λ0. Set the penalty parameter
ρ and the step-size α;
Repeat

Step 1: Solve the (s, δ)-subproblem

(sk+1, δk+1) = arg min
(s,δ)∈D

Lρ(s, δ, yk, λk);

Step 2: Solve the y-subproblem

yk+1 = arg min
y∈Y

Lρ(sk+1, δk+1, y, λk);

Step 3: Update the Lagrangian multipliers

λk+1 = λk + αρ(sk+1 − yk+1);

Until stopping criterion is met.
Output: an optimized frame structure M(s∗) with its optimal
variable s∗.

Pseudocode. Instead of a joint optimization on the two vari-
ables, the idea of ADMM is to optimize alternatively over (s, δ)
and y. Algorithm 1 gives the pseudocode of our solution with
ADMM. The stopping criterion in the optimization is: the value
of the function has almost no change or the number of iteration
steps reaches a given upper bound.

(s, δ)-subproblem. The (s, δ)-subproblem in ADMM involves a
quadratic objective and the continuous constraint. We use the
interior-point method to solve the subproblem:

min
(s,δ)∈D

δ +
ρ

2
‖s − (yk − λk/ρ)‖2, (11)

where D = {(s, δ) | σe(s) − δ ≤ 0, e ∈ E; Vol(s) ≤ γVol(1); si −

s j = 0, (i, j) ∈ S} is the feasible set of continuous variables.

y-subproblem. We rewrite the y-subproblem as a closed-form
solution, starting with:

min
y∈Y

‖y − (sk+1 + λk/ρ)‖2 =
∑

i

(yi − ti)2
(12)

with ti = sk+1
i + λk

i /ρ. If yi , 0, we denote

ζi = min
y∈Y

(yi − ti)2 =


(ai − ti)2, ti < ai,

0, ai ≤ ti ≤ bi,

(bi − ti)2, ti > bi.

Then this subproblem can be further simplified as:

min
z

∑
i

t2
i (1 − zi) + ζizi =

∑
i

t2
i −
∑

i

(t2
i − ζi)zi

s.t. zi ∈ {0, 1}, i ∈ I; 1T z ≤ τ.
(13)

Let {t2
`1
−ζ`1 , t

2
`2
−ζ`2 , · · · , t

2
`τ
−ζ`τ } be the first τ positive numbers

of sequence {t2
i − ζi}i∈I in descending order. The problem in

Joint part

Bone part

Figure 3: Converting a tetrahedral structure into a skeletal representation. Left:
The input mesh; Middle: The skeleton of the mesh; Right: The mesh is decom-
posed into a set of bone parts (in colors) and joint parts (in gray).

Equation (13) has the solution z`1 = z`2 = · · · = z`τ = 1; zi =

0, i < {`1, `2, · · · , `τ}. Finally, we get a closed-form solution

yi = max(ai,min(ti, bi)) · zi, ∀i ∈ I

for the y-subproblem (Equation (12)).

6. Extensions

We also extend our framework to skeletal shapes, which
need to be converted into a tetrahedral structure for the finite
element analysis. However, the number of tetrahedral elements
in the overall structure may be large which can potentially lead
to a large stiffness matrix and slow computation. Hence we sim-
plify the computation by converting it into a skeletal represen-
tation (Figure 3), which can be considered as a frame structure
of non-uniform beams.

Our skeletal representation and computation of stiffness ma-
trices are similar to that of [7]. We first extract a skeleton from
the input mesh. The mesh is then decomposed into a set of
domains according to the bones of the skeleton, where each do-
main consists of its own set of vertices and tetrahedrons. Each
tetrahedron belongs to only one domain. Some vertices may
exist in multiple domains and these are duplicated. As shown
in Figure 3, each domain is classified as either bone part (in
colors) or joint part (in gray), where most parts of the mesh are
bone parts. A bone part is associated with only one bone and

d D

Scaling factor s = D/d

A bone of skeleton

Original mesh

Deformed mesh

Figure 4: Our design variables are scaling factors related to every bone of the
skeletal structure. All the tetrahedra belonging to a bone can scale at once
according to the scaling factor.
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(a) (b) (c) (d)

Figure 5: The results of a frame structure of a duck. The figures are colored according to the stress for each beam with red meaning large stress and blue meaning
small stress. (a) The input duck model with 1107 beams. Three external loads (marked as red arrows) are applied on the model. (b, c, d) The simplified duck models
(with 1007, 957, 907 beams respectively) obtained with our approach. The resulting models are increasingly simplified while their structures still remain strong.

(a) (b) (c) (d) (e) (f)

Figure 6: Results of the eiffel tower model. (a) The input frame model with 1521 beams. (b) The computed stress (colored with red being large and blue being
small) of the input model under an external load of 2N (shown by red arrow). (c) A photo of the SLS 3D printed model of the input. A small red pin is placed under
the object as a size reference. (d) The simplified frame model with 1341 beams obtained by our approach. (e) The computed stress of the output model under the
same external load as that of the input in (b). The output model has higher strength and reduced complexity. (f) The photo of the SLS 3D printed model of our
output.

we can compute the stiffness matrix from the associated ver-
tices and tetrahedra. A joint part is associated with multiple
bones and the vertex coordinates associated with each bone are
blended.

After the extrusion of the skeletal structure, we apply our
framework to general meshes. The design variables are scaling
factors, so the scaling factor is defined for every bone of the
skeleton (See Figure 4). Then, the formulation and optimization
are similar, except for the computation of stress, i.e. the use of
von Mises stress.

A skeletal mesh shape is represented as a tetrahedral struc-
ture which consists of a set of vertices and a set of tetrahedral el-

ements. For each tetrahedral element, we compute the element
stiffness matrix and then assemble them into the total stiffness
matrix K in Equation (2) as in [5, 6]. To compute the strength of
each element, we use the von Mises yield criterion and compute
the von Mises stress.

7. Experimental Results

We have implemented our algorithm and tested it on various
models. All the examples presented in this paper were created
with a dual-core 3.5 GHz machine with 8G memory. We have
3D printed some of the models to demonstrate our results.
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(a) (b) (c) (d)

Figure 7: Results of the hardstruct model. (a) The input model where external loads are denoted as red arrows. The hardstruct model has 1728 beams. (b) We 3D
printed the input model with a Sinterstation SLS 3D printer. A small red pin is placed under the object as a size reference. (c) The resulting model obtained by our
approach is structurally simplified and strengthened with our approach. The hardstruct model has 1548 beams. (d) We physically demonstrate our results by 3D
printing the output model.

(a) (b) (c) (d)

Figure 8: Our approach analyzes an input 3D frame structure to perform simultaneous structural strengthening and simplification for 3D printing. (a) The input
bunny frame model with 1569 beams. The external loads are denoted as red arrows. (b) A photo of the SLS 3D printed models of the input. A small red drawing
pin is placed under the object as a size reference. (c) The resulting model obtained by our approach. The number of beams is reduced to 1319. (d) A photo of the
SLS 3D printed models of our output.

Parameters. There are several parameters in our formulation.
The user can change the value of the weight γ to control the
volume of the resulting object. We set γ = 1 in our implemen-
tation which means that we do not want to increase the volume
of the result adjusting the shape. Another parameter is τ which
measures the complexity of the structure by measuring the num-
ber of beams. Thus τ can be adjusted by the user and set to a
number less than the total number of beams in the input model.
We specify the external loads manually at various points of the
input shapes. In the optimization, we set the penalty parameter
ρ to be 10 and the step-size α to be 0.6.

Figure 5 shows the results of our algorithm on a frame struc-
ture of a duck model. We set different values of the sparsity
parameter τ and obtain a sequence of results. The resulting
structural shapes in Figure 5(b,c,d) are progressively simplified
in the number of beams while their strengths are maintained.

Frame structures. We have tested our algorithm on various mod-
els of frame structures. Figure 6 shows an example of Eiffel
tower. We give an external load as input and optimize the max-
imal stress. From the color in the figure, we can see that the

maximal stress is lower than it before the optimization. Since
the feet of the tower are fixed, the beams connecting fixed nodes
have zero stress, thereby being removed. Figure 7 and Figure 8
show the results of a complicated ‘hardstruct’ structure and a
bunny. For the ‘hardstruct’ model, we set the external forces
to be evenly distributed downward forces on its top nodes. For
the bunny model, we set three exteranl forces on three specified
positions. These frame structures are structurally strengthened
and topologically simplified while their total volumes are pre-
served.

Figure 9 shows two more examples whose external loads
are vertical down. For the boomerang, since the given external
force is vertical down, some horizontal beams have less contri-
bution to the soundness, thus being removed by our optimiza-
tion. The airport model has a constant gravity on each node.
Note that there are also some horizontal beams removed due to
the reason mentioned before.

Skeletal shapes. As an extension of our algorithm, we also test
our algorithm on more general solid models, which are regarded
as skeletal structures with non-uniform beams. By using our

7



Figure 9: Results of applying our approach on the boomerang model (left) and
the airport model (right). An external load (shown in red arrow) is applied on
the boomerang model. Gravity is applied as external load to the airport model.
The original models (top) have 312 and 5045 beams respectively. Our results
(bottom) have 284 and 4585 beams respectively and they are both structurally
simplified and strengthened compared to the originals.

method, the stress of the models can be automatically enhanced
by thickening the weak parts of the models. We fabricated some
of these models with FDM printers (see Figure 10).

8. Conclusion

We present a novel approach for performing structural anal-
ysis on 3D shapes with simultaneous structural strengthening
and simplification. The optimized shape can be 3D printed
with high strength and reduced complexity. We use stress as
a criterion for measuring strength and minimize the maximal
stress of the shape to formulate an optimization with a semi-
continuous condition. We then derive an algorithm based on
the ADMM method to solve the optimization and show its ap-
plicability and feasibility towards topology simplification and
structural strengthening. Although this paper focuses on frame
structures, our framework can be extended to general meshes
by considering them as skeletal tetrahedral structures.

Our approach has some limitations. One limitation of our
work is that we do not move the positions of the nodes in a
structure. This means that although the structure can be much
simplified, the inherent topology of the original structure re-
mains the same. Moving the positions of the nodes can poten-
tially be done in our optimization framework. However, this
will enlarge the dimensions of the variable space and will need
higher computational cost. We leave this as a future research
direction.

(a) (b) (c)

Figure 10: Examples of applying our approach on skeletal shapes (top: ba-
nanaman; bottom: fishing frog). (a) The original meshes; (b) Our results; (c)
Photos of the FDM printed objects of our results. Note that the color shows the
stress distribution

Another limitation is that the symmetry constraints may be
difficult and/or tedious for humans to specify. In addition, as
humans are able to easily identify any lack of symmetry, some
of our simplified models may not be visually appealing as the
topology may be simplified into non-intuitive patterns. We may
consider this as an aesthetic constraint in the optimization in
future work.

Another area of future work that is relevant for fabrication is
the computation of supporting structures for FDM 3D printing.
There has already been previous work in this area recently. Ap-
plying our stress-oriented structural optimization to this prob-
lem would be an interesting direction.
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