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Abstract

We show the decidability of model checking PA-processes against several first-order
logics based upon the reachability predicate. The main tool for this result is the
recognizability by tree automata of the reachability relation. The tree automata
approach and the transition logics we use allow a smooth and general treatment of
parameterized model checking for PA. This approach is extended to handle a quite
general notion of costs of PA-steps. In particular, when costs are Parikh images of
traces, we show decidability of a transition logic extended by some form of first-order
reasoning over costs.
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1 Introduction

Verification of infinite-state systems is a very active field of research where one
studies how the decidability results that underly the successful technology of
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model checking for finite state systems can be extended to more expressive
computational models. In this field, many different models have been studied,
ranging from infinite-data models (like channel systems) to infinite-control
models (like process algebras), including timed automata and hybrid systems.

Infinite-state process algebras can have decidable verification problem, as was
first shown by Baeten et al. [3]. Since then many results have been obtained,
applying to more and more complex process algebras (see [8] for a recent sur-
vey). These results have applications to the static analysis of programs, in situ-
ations where one is willing to abstract from the data and concentrate on control
where complex recursive behavior involving parallelism is at hand [16,17].

Among such process algebras, PA is one of the most expressive: PA [4] allows
recursive definitions, sequential and parallel compositions. Actions are unin-
terpreted and do not synchronize. Recently, several verification problems have
been shown decidable for PA (or extensions of PA) using a variety of fairly
involved techniques (see, e.g., [6,5,24,25,22,21,30]).

An example PA process. Fig. 1 shows a toy program (in some imperative
syntax) that computes the weight of a binary tree.

function W (T) function W_seq (T)

l0: if T->size > 100 l5: if T->size > 1

then then

cobegin l6: w1 := W_seq (T->left)

l1: w1 := W (T->left) l7: w2 := W_seq (T->right)

l2: [] w2 := W (T->right) l8: return T->val + w1 + w2

coend else

l3: return T->val + w1 + w2 l9: return T->val

else

l4: return W_seq (T)

Fig. 1. A divide-and-conquer program that uses coroutines

The program applies a simple divide-and-conquer strategy based on weight(T) =
weight(T->left) + weight(T->right). There is a twist however: the recursive
calls are made in parallel (using coroutines in a “cobegin .. [] .. coend”
block) for large trees, and in sequence for small trees (say, because one con-
siders that for small trees the overhead for parallelism is discouraging).

PA is a natural formalism for modeling the behavior of programs like Weight

at an abstract level. Typically, the PA process associated with such a program
abstracts away from the data (so that if .. then .. else constructs re-
duce to non-determinism) but it keeps track of the flow of control, even when
coroutines run concurrently.
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For example, we can model the Weight program with the following PA system
(the semantics of which is defined in section 2):

r1 : Xl0 −→ (Xl1 ‖ Xl2).Xl3, r7 : Xl5 −→ Xl6.(Xl7.Xl8),

r2 : Xl0 −→ Xl4, r8 : Xl5 −→ Xl9,

r3 : Xl1 −→ Xl0, r9 : Xl6 −→ Xl5,

r4 : Xl2 −→ Xl0, r10 : Xl7 −→ Xl5,

r5 : Xl3 −→ 0, r11 : Xl8 −→ 0,

r6 : Xl4 −→ Xl5, r12 : Xl9 −→ 0.

(∆Weight)

This PA system uses 9 constant names, one per statement in the Weight

program, and 12 rewrite rules (named r1, . . . , r12 for further reference).

Now, the behavior of the Weight program is mimicked by the PA term Xl0.
Of course, since we abstracted away from the data in a drastic way, the PA
term Xl0 exhibit “more” behavior. Still, any safety property of Xl0 also holds
for the Weight program.

Examples of such properties are (stated informally) “at any time, the degree
of parallelism (largest number of parallel active subterms) is smaller than the
number of pending Xl3”. Later we describe logics in which to express such
properties, and methods to check them algorithmically.

Regular model checking for PA systems. In [27], we advocated regular
tree languages and tree automata as an easy-to-use tool for tackling (some)
problems about PA, and we proved that the reachability sets (both forward
and backward) of a PA process (and more generally of a regular set of pro-
cesses) is regular. Our proofs are effective and give simple polynomial-time
algorithms which can be used for a variety of problems based on reachability
among PA-processes (see [16,17] for applications in data-flow analysis). Our
approach has been applied to other process algebras [20,26]. These automata
techniques have also been applied to a subset of PRS [7].

Here we extend our previous work in several ways:

Recognizable tree relations: We move from automata for tree languages
to tree relations and show that

∗
−→ over PA-processes is recognizable.

First-order transition logic: Recognizability of
∗
−→ immediately gives a de-

cision method for the first-order transition logic of PA-processes, i.e., the
first-order logic having −→,

∗
−→, and equality as basic predicates (plus any

other recognizable predicates). The method actually computes the set of
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solutions of a given formula, and thus allows parameterized model check-
ing, model measuring, . . .

Costs: We enrich PA with a notion of “cost of steps” which is more general
than traces (the sequence of action names). These costs allow to encode
various measures (e.g., degree of parallelism) and view PA as a truly con-
current model (e.g., costs can encode timing measures where parallelism
is faster than interleaving). We extend the transition logic so that it can
handle decomposable cost predicates and show several applications (e.g.,
decidability for various timed transition logics).

Parameterized constraints over
∗
−→: Finally, we define TLC , the transi-

tion logic where costs are the Parikh images of traces and where integer
variables and Presburger formulas are freely used to state constraints on
reachability. Over PA-processes, TLC is not decidable but we isolate a rich
fragment which is. This last result relies on regular tree grammar with costs.
A similar logic PTTL with (parameterized) costs encoding timing measures
is shown to have similar properties.

Related work. Dauchet and Tison introduced the idea of using recogniz-
able related in the study of ground rewrite systems [12]. They show that the
first-order theory of the (iterated) rewrite relation of a ground rewrite system
is decidable, using ground tree transducers (or GTT’s, a class of tree automata
that accept pairs of terms). PA processes are defined via ground rewrite rules,
but there are restrictions on the application of transitions to sequential compo-
sitions, and this forbids using GTT’s: indeed, the relation induced by a ground
rewrite system is stable under context, which is not the case of the relation
induced by PA processes. But the strong similarity between PA processes and
ground rewrite systems suggested looking further into recognizable relations
for PA.

Several temporal logics with cost constraints have been proposed for finite
state systems (see [14,1] for recent proposals). Bouajjani et al. exhibit some
decidable (fragments of) temporal logics over PA-processes [6,5], but temporal
logics deal with paths and are quite different from transition logics where a
first-order theory of states is available (more explanations in Section 6.1).

For costs that are Parikh images of traces, [15] shows recognizability of the
ternary relation s

c
−→ t over BPP (PA without sequential composition) but

does not consider applications to the first-order transition logic. [11] shows
recognizability of the reachability relation between configurations of timed
automata, introduces the transition logic and uses it for model measuring and
parameterized model checking. An important technical difference is that our
automata recognize pairs of trees (PA-processes) while [15] handles tuples of
integers (markings of BPP’s) and [11] handles tuples of reals (clock values).
For prefix word rewriting, [9] shows several applications of the recognizability
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of the transition relation.

Reachability in PA is investigated in [28,30]. The underlying methods apply
to more general systems (like PRS [29]) but they are quite complex since they
view terms modulo structural congruence. As explained in [27], we believe it
is better to only introduce structural congruence at a later stage.

The combination of costs and tree automata has been studied by Seidl [36]
with compiler optimization in mind (involving more general costs than ours),
not decidability of logics on trees (where the relevant problem is the combina-
tion of cost automata). Actually our construction for decomposable predicates
coincides with his construction for embedded costs in automata.

Plan of the article. We define PA in Section 2 and show simple recogniz-
ability results in Section 3. Recognizability of the reachability relation is dealt
with in Section 4, opening the way to the decidability of several transition
logics (Sections 6 and 7). We finally introduce TLC , a rich transition logic
with Parikh costs in Section 8, and show decidability (of fragments) via regu-
lar tree grammars with costs. Then we describe PTTL a transition logic with
costs measuring time (Section 9).

2 The PA process algebra

PA may be defined in several (essentially equivalent) ways. Our definition:

(1) uses rewrite rules à la Moller [32],
(2) does not identify terms modulo structural congruence,
(3) incorporates a notion of costs for steps,
(4) is a big-steps semantics (in the sense of [34]).

(1) is now quite common in the field of infinite state systems. In [27], we
showed the usefulness of (2) in the tree-automata view of PA. (3) is a general
concept that allows measuring PA steps in decidable logics. (4) is required by
our definition of costs (and makes things clearer as seen, e.g., in [17]).

2.1 Syntax

Assume M = {c1, c2, . . .} is a finite set of constant names called cost units.
We write TM to denote the set {c, c′, . . .} of cost terms over M , given by the
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following abstract syntax

c, c′ ::= 0M | c⊕ c′ | c⊗ c′ | c1 | c2 | · · ·

We say a cost term is null if it is only made of 0M ’s, ⊕’s and ⊗’s (i.e., contains
no ci from M).

Given a set Const = {X,Y, Z, . . .} of process constants, TConst , or T when
the underlying Const is clear, is the set {s, t, . . .} of PA-terms, given by the
following abstract syntax

s, t ::= s.t | s ‖ t | 0 | X | Y | Z | · · ·

A PA declaration is a finite Const with a finite set ∆ ⊆ Const × TM × T
of process rewrite rules. A rule (X, c, t) ∈ ∆ is written X

c
−→ t. For technical

convenience, we require that all X ∈ Const appear in the left-hand side of at
least one rule of ∆. Similarly, we assume that for any rule X

c
−→ t, the cost

c ∈ TM is not null.

For t ∈ T , we let Const(t) denote the set of process constants occurring in
t, and Sub(t) denote the set of all subterms of t. Similarly, we write Sub(∆)
for the finite set of all subterms of (some term from) ∆. The size of a term
is |t|

def

= Card(Sub(t)) (i.e., the number of its subterms), and the size of a PA
declaration is |∆|

def

= Card(Sub(∆)).

2.2 Semantics

A PA declaration ∆ defines a labeled transition system (T ,→) with →⊆
T × TM × T . We write s

c
−→ t when (s, c, t) ∈→. The transition relation is

defined by the following SOS rules:

(Rε)
0

0M−→ 0

(R′
ε)

X
0M−→ X

(RS)
t1

c1−→ t′1 t2
c2−→ t′2

t1.t2
c1⊕c2−−→ t′1.t

′
2

if Const(t′1) = ∅ or c2 is null

(RC)
t
c′
−→ t′

X
c⊕c′
−→ t′

if X
c
−→ t ∈ ∆

(RP)
t1

c1−→ t′1 t2
c2−→ t′2

t1 ‖ t2
c1⊗c2−−→ t′1 ‖ t

′
2
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where the condition “Const(t′1) = ∅” is a syntactic way of stating that t′1 is
terminated, as can be understood from the following useful lemmas.

Lemma 2.1 Assume t
c
−→ t′ and c is null. Then t′ = t.

PROOF (Sketch). By structural induction on the derivation of the step
t

c
−→ t. There (RC) cannot be used since we assumed that null costs do not

appear in rules in ∆. 2

Lemma 2.2 For all t, there is exactly one transition t
c
−→ t′ such that c is

null.

PROOF (Sketch). By structural induction on t. 2

Lemma 2.3 Assume t
c
−→ t′ and Const(t) = ∅. Then c is null.

PROOF (Sketch). By structural induction on t. 2

Lemma 2.4 Assume Const(t) 6= ∅. Then there exists a step t
c
−→ t′ with a

non-null c.

PROOF (Sketch). By structural induction on t. Here we use the assumption
that each X ∈ Const appears in the left-hand side of at last one rule in ∆. 2

The intuition formalized by s
c
−→ t is that s can evolve into t by some derivation

of cost c. In general there may exist several different derivations between a s

and a t: they may have same cost or not. For instance, if ∆ = {X
c
−→ Y,X

c′
−→

Y }, then the cost of reaching Y from X is either c or c′.

We write s
∗
−→ t when s

c
−→ t for some c. For t ∈ T , the set Post ∗(t)

def

= {t′ |
t

∗
−→ t′} and Pre∗(t)

def

= {t′ | t′
∗
−→ t} denote the set of iterated successors and

(resp.) iterated predecessors of t. Post ∗(t) is also called the reachability set of
t.

Remark 2.5 Our definition is a big-steps semantics in which one cannot ex-
press directly the usual one-step transitions classically used for process algebra.
Small-steps can usually be recovered through the cost labels. For example, if all
rules in ∆ carry a same cost unit cu ∈ M , then a step s

c
−→ t is a small-step

iff cu occurs exactly once in c.
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2.3 About the costs of PA steps

The cost c in a PA step s
c
−→ t is an uninterpreted term. In later sections,

we shall interpret cost terms in some semantic domain M. Each cost unit is
interpreted by some element of M, and ⊕, ⊗ are interpreted by operations in
M that admit as neutral element the interpretation of 0M . This is extended
in the standard way so that every cost term c ∈ TM denotes some c ∈ M,
written [[c]] = c. It is then possible to define a new transition relation where
costs are interpreted: we write s

c

⇒ t when s
c
−→ t for some c with [[c]] = c.

In such interpretations for costs, ⊕ and ⊗ will usually be associative and
commutative. One may want that, e.g., corresponding steps from (t1 ‖ t2) ‖ t3
and from t1 ‖ (t2 ‖ t3) have the same costs.

Interpretations for cost terms will be not used until section 5. However, in
order to illustrate the potential of this mechanism, we now provide a few
example possibilities.

Example 2.6 (Traces as costs) The usual definition of PA has transitions
labeled with action names from some Act = {a, b, . . .} (and big-steps labeled
with traces, i.e., sequences of action names).

This can be recovered through cost labels: take finite non-empty subsets of Act ∗

as concrete costs, with ⊕ interpreted as language concatenation, ⊗ as language
shuffle (both having (0 =){ε} as neutral element). If rules in ∆ have the form

X
{a}
−→ t then t

w
−→ t′ in the usual PA semantics iff w ∈ L for some L s.t. t

L
−→ t′

in our semantics with costs.

Example 2.7 (Parikh costs) By interpreting costs in M = Np with both
⊕ and ⊗ denoting vector addition, we obtain another set of concrete costs.
This can be used for counting occurrences of actions of each type (assuming
Act = {a1, . . . , ap} contains p distinct actions). Here a rule X

c
−→ t ∈ ∆, where

c = (0, . . . , 0, 1, 0, . . . , 0) has a 1 in position i, records one occurrence of ai.

Example 2.8 (Costs for timing) It is natural to choose M to be a time
domain T that can be N, or Q+, or R+, . . . . A rule X

c
−→ t from ∆ is labeled

with its duration c ∈ T and one can, for example, interpret ⊕ as addition and
⊗ as max. This interpretations assumes that the time it takes for the parallel
composition of t1

∗
−→ s1 and t2

∗
−→ s2 is the maximum of the times any one of

them takes.
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3 Tree languages, regular tree grammars, and regular cost gram-
mars

We assume familiarity with finite trees (or terms) and only recall the basic
notions from regular tree languages and tree grammars. We refer to [10] for
more details.

Given a finite ranked alphabet F = F0 ∪F1 ∪ · · · ∪ Fm, TF denotes the set of
terms (or finite trees) built from F . A tree language is any subset L of TF .

Example 3.1 With F0 = {a, b}, F1 = {g, h} and F2 = {f}, TF contains
terms like a, f(a, b), and f(g(f(h(b), a)), b).

The sets TM and T from section 2.1 are two more examples.

3.1 Regular tree grammars and regular cost grammars

A regular tree grammar is a tuple G = 〈F ,Q, QAx , δ〉 where F is a finite
ranked alphabet, Q = {Q1, . . .} is a finite set of non-terminals, QAx ∈ Q is

the axiom, and δ ⊆
(

Q×
⋃

n∈N(Fn×Q
n)

)

∪ Q×Q is a finite set of derivation

rules. A rule of the form 〈Q, f,Q1, . . . , Qn〉 (where f has arity n) is usually
denoted by Q −→ f(Q1, . . . , Qn), while a rule of the form 〈Q,Q′〉 is denoted
by Q −→ Q′ (and is called an ε-rule). Below we follow the standard practice,
when writing down a grammar, of grouping rules that share a same left-hand
side and list the right-hand sides separated by a “|”.

Example 3.2 Take F as in Example 3.1 and let Q = {Qo, Qe} be a set of
non-terminals, Qe being the axiom. The following 10 rules make a regular tree
grammar

Qo −→ a | b | g(Qe) | h(Qe) | f(Qe, Qe) | f(Qo, Qo)

Qe −→ g(Qo) | h(Qo) | f(Qo, Qe) | f(Qe, Qo)

Grammar rules are rewrite rules between mixed terms, i.e., terms built on F∪Q
where non-terminals can appear as nullary symbols. A one-step derivation,
written s ` t, is possible when t is obtained from s by replacing one occurrence
of some non-terminal Q in s by a term u that comes from a rule (Q −→ u) ∈ δ.
A derivation of tn from t0 is a sequence of steps t0 ` t1 ` · · · ` tn, denoted by
t0`

∗tn.
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Example 3.3 With the above grammar, a possible derivation is

Qe ` f(Qe, Qo) ` f(h(Qo), Qo) ` f(h(Qo), a) ` f(h(b), a),

so that Qe`
∗f(h(b), a). More generally, one proves that Qe`

∗t (resp. Qo`
∗t)

iff t is a mixed term built with an even (resp. odd) number of symbols.

Below we shall also use regular tree grammars for cost terms, and call them
regular cost grammars. This profits from the fact that cost terms are just trees
over the signature FM consisting of M augmented by 0, ⊕ and ⊗.

3.2 Regular tree languages

The tree language generated by a non-terminal Q (assuming some underlying
grammar) is L(Q)

def

= {t ∈ TF | Q`
∗t}. Note that L(Q) has no mixed terms.

The language L(G) generated by the grammar G is L(QAx ), where QAx is the
axiom of G.

The size |G| of a regular tree grammar G is defined in the usual way, as the
number of symbols it takes to write the rules. One can decide if L(G) is empty
or not in time O(|G|).

We say that L ⊆ TF is a regular tree language, if L = L(G) for some regular
tree grammar G. For example, the language of F -terms having an even number
of symbols is regular, as explained by Example 3.3. It is well-known that reg-
ular tree languages are closed under union, intersection, and complementation.

Considering PA-processes as trees allows developing symbolic approaches based
on regular languages, as in [23]. Regular sets of PA-terms are easy to manipu-
late symbolically, but they are expressive enough to denote many interesting
sets. For example, by Lemmas 2.3 and 2.4, the set of terminated processes is
Final

def

= {t | Const(t) = ∅}, which is easily seen to be regular.

A more general result is given by the Regularity Theorems of [27]: if L is a
regular set of PA-terms, then Post ∗(L) and Pre∗(L) are regular too.

3.3 Regular tree grammars vs. bottom-up tree automata

Reversing the arrows in the derivation rules of a regular tree grammar trans-
forms the generating device into an accepting device, i.e., a bottom-up tree
automaton, and the recognizable tree languages are defined as the languages
accepted by these automata. Both devices have the same power in the sense
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that a language is regular iff it is recognizable (see [10] for details). Actually,
the algorithms used for combining regular languages, deciding the emptiness
of L(G), etc., have been designed for tree automata. However, we use regular
tree grammars in this article because they fit our approach better. Since mov-
ing from a grammar to a tree automaton, and vice versa, is straightforward
(simply reverse the arrows!) we still have at hand all the algorithmics designed
for tree automata.

3.4 Regularity of Post∗(X)

We now show that, for any PA-declaration ∆, and any X ∈ Const , the set
Post∗(X) is a regular tree language. This result is already present in [27] but
we recall it since the construction will be extended later in this paper (and
the definitions in section 2 are slightly different from those in [27]).

Describing Post∗(t) for a given t is easy after we make some observations.
Consider some t ∈ T and write t under the form C[X1, . . . , Xn] where C[ ],
the skeleton, is a n-holes context made out of “0”s, “‖”s and “.”s, and where
X1, . . . , Xn are the n different occurrences of process constants in t (note that
the Xi’s need not be distinct).

Assume now t
∗
−→ u. Then the skeleton C[ ] of t has been preserved in u, and

u is some C[u1, . . . , un] where Xi
∗
−→ ui. This is illustrated in Fig. 2.

C[ ]

X1 X2 Xn· · ·

C[ ]

u1
u2 un· · ·

= t
∗
−→ u =

Fig. 2. A step from t to u

However, not every such C[u1, . . . , un] is reachable from t: the priority rule
for sequential composition must be obeyed, i.e., a Xi to the right of some
sequential composition operator “.” can only be transformed if the left-hand
side of that “.” is terminated. More formally, we have

Lemma 3.4 C[X1, . . . , Xn]
∗
−→ C[u1, . . . , un] iff Xi

∗
−→ ui for i = 1, . . . , n and,

for any i, j such that Xi and Xj occur respectively to the left and to the right
of a same occurrence of “.” in C[ ], either ui is terminated, or uj = Xj.

For example, assume t = (X1 ‖ X2).X3, u1 ∈ Post∗(X1), u2 ∈ Post∗(X2)
and u3 ∈ Post∗(X3). Then (u1 ‖ u2).u3 ∈ Post∗(t) iff u3 = X3 or u1 ‖ u2 is
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terminated (i.e., u1 and u2 are terminated).

It is now easy to write a regular grammar for Post ∗(X): the non-terminals
are all Qs, Q

′
s and Is for s ∈ Sub(∆) and we give rules such that for any

s ∈ Sub(∆) we have:

L(Is) = {s},

L(Qs) = Post∗(s),

L(Q′
s) = {t ∈ Post∗(s) | Const(t) = ∅}.

(1)

In other words, Q′
s generates all terminated processes in Post ∗(s).

The following rules ensure L(Is) = {s}:

I0 −→ 0 if 0 ∈ Sub(∆)

IY −→ Y for all Y ∈ Sub(∆)

Is1‖s2 −→ Is1 ‖ Is2 for all s1 ‖ s2 ∈ Sub(∆)

Is1.s2 −→ Is1 .Is2 for all s1.s2 ∈ Sub(∆)

(δ1)

We now need rules for the Qs and Q′
s non-terminals, ensuring (1). When s

is not some Y ∈ Const , the rules keep track of the structure of s, relying on
Lemma 3.4:

Q0

Q′
0

−→

−→

0

0







if 0 ∈ Sub(∆)

Qs1‖s2

Q′
s1‖s2

−→

−→

Qs1 ‖ Qs2

Q′
s1
‖ Q′

s2







for all s1 ‖ s2 ∈ Sub(∆)

Qs1.s2

Q′
s1.s2

−→

−→

Qs1 .Is2 | Q
′
s1
.Qs2

Q′
s1
.Q′

s2







for all s1.s2 ∈ Sub(∆)

(δ2)

When s is some Y ∈ Const , we rely on

Post∗(Y ) = {Y } ∪
⋃

Y
c
−→t∈∆

Post∗(t)

which leads to the following grammar rules (note that the last rules are ε-
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rules):

QY −→ Y

}

for all Y ∈ Sub(∆)

QY

Q′
Y

−→

−→

Qs

Q′
s







for all Y
c
−→ s ∈ ∆

(δ3)

Finally, the rules in δ1∪δ2∪δ3 ensure (1), and Post∗(X) is the language gen-
erated by axiom QX .

3.5 A cost grammar for derivations

It is possible to provide a regular cost grammar that generates exactly the cost
terms labeling possible PA steps. The cost grammar (called CPost∗) is obtained
with the same techniques that provided a regular tree grammar (called GPost∗)
for Post∗(X), and the rules in the two grammars are in close correspondence.

Here we give the two grammars side by side:

I0

Q0

Q′
0

−→

−→

−→

0

0

0

CI
0

C
Q
0

C
Q′

0

−→

−→

−→

0M

0M

0M







if 0 ∈ Sub(∆)

IY

QY

−→

−→

Y

Y

CI
Y

C
Q
Y

−→

−→

0M

0M







for all Y ∈ Sub(∆)

QY

Q′
Y

−→

−→

Qs

Q′
s

C
Q
Y

C
Q′

Y

−→

−→

c⊕ CQ
s

c⊕ CQ′

s







for all Y
c
−→ s ∈ ∆

Is1‖s2

Qs1‖s2

Q′
s1‖s2

−→

−→

−→

Is1 ‖ Is2

Qs1 ‖ Qs2

Q′
s1
‖ Q′

s2

CI
s1‖s2

C
Q
s1‖s2

C
Q′

s1‖s2

−→

−→

−→

CI
s1
⊗ CI

s2

CQ
s1
⊗ CQ

s2

CQ′

s1
⊗ CQ′

s2







for all s1 ‖ s2 ∈ Sub(∆)
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Is1.s2

Qs1.s2

Q′
s1.s2

−→

−→

|

−→

Is1 .Is2

Qs1 .Is2

Q′
s1
.Qs2

Q′
s1
.Q′

s2

CI
s1.s2

CQ
s1.s2

CQ′

s1.s2

−→

−→

|

−→

CI
s1
⊕ CI

s2

CQ
s1
⊕ CI

s2

CQ′

s1
⊕ CQ

s2

CQ′

s1
⊕ CQ′

s2







for all s1.s2 ∈ Sub(∆)

GPost∗ and CPost∗ describe the intended reachability sets and the associated
sets of costs in the following sense:

Proposition 3.5 For all t ∈ Sub(∆):

(1) It`
∗s iff s = t (and hence t

0M−→ s). Furthermore, CI
t `

∗c iff c = 0M .
(2) Qt`

∗s iff t
∗
−→ s. Furthermore, if t

c
−→ s then C

Q
t `

∗c, and if CQ
t `

∗c then
t
c
−→ s′ for some s′.

(3) Q′
t`

∗s iff t
∗
−→ s and s is terminated. Furthermore, if t

c
−→ s then C

Q′

t `
∗c,

and if CQ′

t `
∗c then t

c
−→ s′ for some terminated s′.

The proof (omitted) is by structural induction and is similar to the proof of
the regularity theorems in [27].

4 Regular tree grammars and n-ary relations

In this section, we explain how one can go beyond the regularity of Post ∗(t)
and Pre∗(t): the relation

∗
−→ itself can be generated by a regular tree grammar.

But this development requires that we first define a notion of recognizable tree
relations.

4.1 Recognizable tree relations

We follow [12]. Given two terms s, t ∈ TF , the pair (s, t) can be seen as a
single term over a product alphabet F×

def

= (F ∪{⊥})× (F ∪{⊥})−{(⊥,⊥)}
where ⊥ is a new symbol with arity 0. A symbol (f, g) in F× is written shortly
fg and its arity is the maximum of the arities of f and g. Formally we define

14



s× t as the term in TF×
given recursively by

f(s1, . . . , sn)×g(t1, . . . , tm)
def

=







fg(s1×t1, . . . , sn×tn,⊥×tn+1, . . . ,⊥×tm)

if n < m,

fg(s1×t1, . . . , sm×tm, sm+1×⊥, . . . , sn×⊥)

otherwise.

For instance the product f(a, g(b))× f(f(a, a), b) is ff(af(⊥a,⊥a), gb(b⊥)).
This definition is extended to products of n terms s1× . . .× sn in the obvious
way.

Definition 4.1 A n-ary relation R ⊆ TF ×· · ·×TF is recognizable iff the set
of all s1×. . .×sn for 〈s1, . . . , sn〉 ∈ R is a regular tree language (seen as a set
of terms built on the product alphabet).

For instance Id
def

= {〈s, s〉 | s ∈ TF} is a recognizable relation and a tree gram-
mar generating Id needs only one non-terminal I, and rules I −→ ff(I, . . . , I)
for all f ∈ F .

Intersections, unions, and complements of recognizable n-ary relations are also
recognizable. For 1 ≤ i ≤ n, the ith projection of a n-ary relation R is the
(n−1)-ary relation obtained by suppressing the ith component in any n-tuple
of R. For 0 ≤ i ≤ n, the ith cylindrification (also called inverse projection)
of R is the largest (n + 1)-ary relation whose (i + 1)th projection is R. Both
the ith projection and the ith cylindrification of a recognizable relation R are
recognizable.

The important corollary is that the first-order theory of recognizable relations
over finite trees is decidable, or, more precisely:

Theorem 4.2 ([37, Lemma 19]) Let ϕ(x1, . . . , xn) be a first-order formula
over F-trees where the predicates denote recognizable relations R1, . . .. Let
Sol(ϕ) denote {〈t1, . . . , tn〉 | |= ϕ(t1, . . . , tn)}, the set of n-tuples described
by ϕ, or “the solutions of ϕ”. Then Sol(ϕ) is a recognizable subset of T n

F .
Furthermore, from regular grammars G1, . . . generating R1, . . ., one can build
a regular tree grammar Gϕ recognizing Sol(ϕ).

Remark 4.3 The construction of Gϕ may require nested exponential steps
(for each alternation of universal and existential quantifications in ϕ) but this
probably cannot be avoided since the first-order logic of finite trees has a non-
elementary decision problem [31].
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4.2 Recognizability of the reachability relation

Once the notion of recognizable relations is understood, our earlier construc-
tion for the recognizability of Post ∗(X) is easily extended into a construction
for the recognizability of

∗
−→. For non-terminals we consider all I⊥,s, QX,s, Q⊥,s,

Q′
X,s and Q′

⊥,s for X ∈ Const and s ∈ Sub(∆), to which we add three specific
non-terminals I, R and R′.

We shall give rules ensuring that for any s,X ∈ Sub(∆)

L(I⊥,s) = {⊥ × s}

L(QX,s) = {X × t | s
∗
−→ t}

L(Q′
X,s) = {X × t | s

∗
−→ t and t is terminated}

L(Q⊥,s) = {⊥ × t | s
∗
−→ t}

L(Q′
⊥,s) = {⊥ × t | s

∗
−→ t and t is terminated},

(2)

and

L(I) = {s× s}

L(R) = {s× t | s
∗
−→ t}

L(R′) = {s× t | s
∗
−→ t and t is terminated}.

(3)

Hence a non-terminal like QX,s recognizes {X×t | Qs`
∗t in GPost∗} so that the

corresponding rules are small variants of the rules given in (δ1–δ3) for GPost∗

(we give them in full in Section 4.3 when costs are accounted for).

Now, if we assume (2), the rules for R, R′ and I are straightforward 2 :

I −→ ‖‖ (I, I) | ..(I, I) | 00 | XX | Y Y | . . .

R −→ ‖‖ (R,R) | ..(R, I) | ..(R′, R) | 00 | QX,X | QY,Y | . . .

R′ −→ ‖‖ (R′, R′) | ..(R′, R′) | 00 | Q′
X,X | Q

′
Y,Y | . . .

(δ4)

The interesting consequence is:

Proposition 4.4 For any ∆, the relation
∗
−→ between PA terms is a recog-

nizable relation, and there is a regular tree grammar with size O(|∆|2) that
generates it.

2 The reader must understand that symbols like “‖‖”, “..”, “00”, etc., belong to the
product alphabet F×. The full grammar (see Fig. 3) uses further product symbols
like “⊥0”, “Y ‖”, “X.”, etc.
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Since the image of a recognizable language via a recognizable relation is recog-
nizable, the regularity theorems of [27] are direct corollaries of Proposition 4.4.
Since the non-terminals of the grammar are indexed by pairs u, v where u is
a name of ∆ or ⊥ and v a subterm of ∆ or ⊥, the size of the grammar is
O(|∆|2).

Remark 4.5 The recognizability of
∗
−→ is a stronger result than the regularity

of Post∗(L) and Pre∗(L) for regular L. In particular, there exist alternative
ways of defining PA, where regularity theorems hold but where

∗
−→ is not rec-

ognizable.

For example, an alternative definition of PA is obtained by replacing the rule
(R′

S) from Section 2 with

(R′′
S)

t1
c1−→ t′1 t2

c2−→ t′2

t1.t2
c1⊗c2−−→ t′2

if Const(t′1) = ∅

(indeed, why not get rid of these useless terminated processes?). With this new
definition, it is still true that, for regular L ⊆ T , Pre∗(L) and Post∗(L) are
regular tree languages, but the relation

∗
−→ is in general not recognizable (see

Appendix A). This is one more justification for our choice of SOS rules for
PA.

4.3 Costs for reachability

It turns out we can easily write a cost grammar side by side with the regular
tree grammar for

∗
−→. The whole construction is given in Fig. 3, where the

usual quantifications “for all Y
c
−→ s ∈ ∆, etc.” have been collected at the

bottom of the page but are exactly like everywhere else in this work.

The fundamental property of this tree grammar and the associated cost gram-
mar is:

Proposition 4.6 For any s, t ∈ T :

i. R`∗s × t iff s
∗
−→ t. Furthermore, if s

c
−→ t then CR`∗c, and if CR`∗c then

s
c
−→ t for some s, t such that R`∗s× t.

ii. R′`∗s× t iff s
∗
−→ t and t is terminated. Furthermore, if s

c
−→ t then CR′

`∗c,
and if CR′

`∗c then s
c
−→ t for some s, t such that R′`∗s× t.

PROOF (Idea). One completes i. and ii. with other similar statements that
cover the other non-terminals of the grammar. This gives nine statements
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(1) I −→ ‖‖ (I, I) CI −→ CI ⊗ CI

(2) | ..(I, I) | CI ⊕ CI

(3) | 00 | 0M

(4) | Y Y | 0M

(5) I⊥,s1‖s2 −→ ⊥ ‖ (I⊥,s1 , I⊥,s2) CI
⊥,s1‖s2

−→ CI
⊥,s1
⊗ CI

⊥,s2

(6) I⊥,s1.s2 −→ ⊥.(I⊥,s1 , I⊥,s2) CI
⊥,s1.s2

−→ CI
⊥,s1
⊕ CI

⊥,s2

(7) I⊥,0 −→ ⊥0 CI
⊥,0 −→ 0M

(8) IX,0 −→ X0 CI
X,0 −→ 0M

(9) I⊥,Y −→ ⊥Y CI
⊥,Y −→ 0M

(10) R −→ ‖‖ (R, R) CR −→ CR ⊗ CR

(11) | ..(R, I) | CR ⊕ CI

(12) | ..(R′, R) | CR′

⊕ CR

(13) | 00 | 0M

(14) | QX,X | C
Q
X,X

(15) Q⊥,s1‖s2 −→ ⊥ ‖ (Q⊥,s1 , Q⊥,s2) C
Q

⊥,s1‖s2
−→ C

Q
⊥,s1
⊗ C

Q
⊥,s2

(16) Q⊥,s1.s2 −→ ⊥.(Q′
⊥,s1

, Q⊥,s2) C
Q
⊥,s1.s2

−→ C
Q′

⊥,s1
⊕ C

Q
⊥,s2

(17) | ⊥.(Q⊥,s1 , I⊥,s2) | C
Q
⊥,s1
⊕ CI

⊥,s2

(18) QX,s1.s2 −→ X.(Q′
⊥,s1

, Q⊥,s2) C
Q
X,s1.s2

−→ C
Q′

⊥,s1
⊕ C

Q
⊥,s2

(19) | X.(Q⊥,s1 , I⊥,s2) | C
Q
⊥,s1
⊕ CI

⊥,s2

(20) Q⊥,0 −→ ⊥0 C
Q
⊥,0 −→ 0M

(21) QX,0 −→ X0 C
Q
X,0 −→ 0M

(22) Q⊥,Y −→ ⊥Y C
Q
⊥,Y −→ 0M

(23) | Q⊥,s | c⊕ C
Q
⊥,s

(24) QX,Y −→ XY C
Q
X,Y −→ 0M

(25) | QX,s | c⊕ C
Q
X,s

(26) R′ −→ ‖‖ (R′, R′) CR′

−→ CR′

⊗ CR′

(27) | ..(R′, R′) | CR′

⊕ CR′

(28) | 00 | 0M

(29) | Q′
X,X | C

Q′

X,X
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(30) Q′
⊥,s1‖s2

−→ ⊥ ‖ (Q′
⊥,s1

, Q′
⊥,s2

) C
Q′

⊥,s1‖s2
−→ C

Q′

⊥,s1
⊗ C

Q′

⊥,s2

(31) Q′
X,s1‖s2

−→ X ‖ (Q′
⊥,s1

, Q′
⊥,s2

) C
Q′

X,s1‖s2
−→ C

Q′

⊥,s1
⊗ C

Q′

⊥,s2

(32) Q′
⊥,s1.s2

−→ ⊥.(Q′
⊥,s1

, Q′
⊥,s2

) C
Q′

⊥,s1.s2
−→ C

Q′

⊥,s1
⊕ C

Q′

⊥,s2

(33) Q′
X,s1.s2

−→ X.(Q′
⊥,s1

, Q′
⊥,s2

) C
Q′

X,s1.s2
−→ C

Q′

⊥,s1
⊕ C

Q′

⊥,s2

(34) Q′
⊥,0 −→ ⊥0 C

Q′

⊥,0 −→ 0M

(35) Q′
X,0 −→ X0 C

Q′

X,0 −→ 0M

(36) Q′
⊥,Y −→ Q′

⊥,s C
Q′

⊥,Y −→ c⊕ C
Q′

⊥,s

(37) Q′
X,Y −→ Q′

X,s C
Q′

X,Y −→ c⊕ C
Q′

X,s

Fig. 3. Regular tree grammar for
∗
−→ and associated cost grammar. The rules are

given for all X, s1.s2, s1 ‖ s2 ∈ Sub(∆), and for all Y
c
−→ s ∈ ∆.

(omitted, but they follow the pattern of Equations (2–3)) that we prove si-
multaneously.

Then the proof is in several steps:

1. We first prove all statements of the form “R`∗s × t implies s
c
−→ t and

CR`∗c” by induction over the derivation of R`∗s × t. There are 37 cases to
consider, depending on which grammar rule is used first. Let us mention a few
typical cases:

rule (11): the derivation is some R ` ..(R, I)`∗s× t. Then s× t has the form
(s1.s2) × (t1.t2), with R`∗s1 × t1 and I`∗s2 × t2. By ind. hyp. s1

c1−→ t1 for
some c1 with CR`∗c1, and s2 = t2 with s2

c2−→ t2 for a null c2 s.t. CI`∗c2.
Then, writing c for c1 ⊕ c2, we deduce s

c
−→ t, by PA rule RS, and CR`∗c by

rule (11).
rule (25): the derivation is some QX,Y ` QX,s`

∗u× t. Then by ind. hyp. u× t

has the form X × t and s
c′
−→ t with C

Q
X,s`

∗c′. Since Y
c
−→ s is a rule in ∆,

Y
c⊕c′
−→ t is a valid step, and rule (25) entails CQ

X,Y `
∗c⊕ c′.

2. We prove all statements of the form “s
∗
−→ t implies R`∗s× t”. This is done

simultaneously for all non-terminals by induction over the derivation of s
∗
−→ t.

We only mention two typical cases:

non-terminals R and rule RC: the derivation s
∗
−→ t is X

∗
−→ t deduced

from a derivation of u
∗
−→ t and the existence of a rule X −→ u in ∆. Then

QX,u`
∗X × t by ind. hyp., so that R ` QX,X`

∗X × t using rule (14) and
then (25).

non-terminal Q⊥,s and PA rule RS: the derivation s
∗
−→ t is s1.s2

∗
−→ t1.t2

deduced from a s1
c1−→ t1 and s2

c2−→ t2 with null c2, entailing t2 = s2
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(Lemma 2.1). Then, by ind. hyp., Q⊥,s1`
∗⊥ × t1 and I⊥,s2`

∗⊥ × s2. So
that Q⊥,s1.s2 ` ⊥.(Q⊥,s1 , I⊥,s2)`

∗⊥× t1.s2 using rule (15).

3. We finally prove all statements of the form “CR`∗c implies that there are
some s and t s.t. s

c
−→ t” (and then R`∗s× t has already been proven). This is

done by induction on the derivation of CR`∗c, by case analysis of the 37 rules.
We only mention one typical case:

rule (37): we have CQ′

X,Y `
∗c from c = c1⊕c2 where c1 appears in a rule Y

c1−→ s

from ∆ and CQ′

X,s`
∗c2. By ind. hyp. there is a t s.t. s

c2−→ t and t is terminated.

Then we deduce that Y
c
−→ t thanks to rule RC. 2

5 Regular tree grammar with costs

Inspecting Fig. 3, one realizes that rules for trees and rules for costs are differ-
ent enough to prevent recognizability of the ternary relation defined by s

c
−→ t

in T × TM × T . For instance, rules (25) combine an ε-rule for trees with a
normal rule for costs, thereby allowing a structural difference between PA-
terms and the associated costs. This slight difference is enough to cause the
undecidability of transition logics with costs (see Prop. 8.1).

In order to better capture the relationship between grammar rules for PA-
terms and grammar rules for the associated costs, we now introduce tree
grammars with costs, a new device designed to deal with the ternary rela-
tion s

c
−→ t. These grammars aim at capturing simultaneously the derivation

on terms and the derivation on costs in a synchronous way.

5.1 Basic definitions

Operation on terms. Positions are sequences of integers used to point
inside terms: the subterm of t at position i is denoted by t|i, and the term
obtained from t by replacing the subterm of t at position i by s is denoted
t[i ← s]. For instance, if t = X ‖ (Y.Z) then t|2.1 = Y and t[2.1 ← X.X] =
X ‖ ((X.X).Z). For more details on these classical notions, the reader is
referred to [13].

Costs. For tree grammar with costs, we assume that the interpretation do-
main for costs is M = Np for some p, i.e., each c ∈ TM , is interpreted as some
[[c]] in Np. Furthermore, and since we shall have to combine costs in various
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ways, we consider a more general notion of cost terms where we have a larger
set of binary function symbols instead of only ⊕ and ⊗.

Formally, let p be some fixed positive integer, let M = {c1, c2, . . .} be a finite
set of cost names. The set TM of cost terms is given by the abstract syntax

c, c′ ::= 0M | c�I c
′ | c1 | c2 | · · ·

where I is any subset of {1, . . . , p}. These costs terms are interpreted in
M = Np in the following way: [[0M ]] = 〈0, . . . , 0〉, each constant name is inter-
preted by some constant tuple of Np, and the �I operations are interpreted as
follows (we use the same notation �I for the interpretation): 〈x1, . . . , xp〉 �I
〈y1, . . . , yp〉 = 〈z1, . . . , zp〉 with, for i = 1, . . . , p, zi = max(xi, yi) if i ∈ I, and
zi = xi + yi otherwise. Observe that all �I are associative-commutative and
admit 〈0, . . . , 0〉 as neutral element. In this setting, we often write “+” instead
of “�∅”.

Grammars. A regular tree grammar with costs is a tuple G = 〈F ,Q, C, QAx , δ〉
where Q is a set of non-terminals for trees, C = {CQ | Q ∈ Q} is a set of non-
terminals for costs, QAx ∈ Q is the axiom, and δ is a set of rules r of the form

Q
cr,�Ir−→ f(Q1, . . . , Qn) (when f ∈ F has arity n > 0), Q

cr−→ f (when f ∈ F

has arity n = 0), or Q
cr,�Ir−→ Q′ (called ε-rules).

Example 5.1 Let F = {‖, ., X}, then G = 〈F , {Q,Q′}, {CQ, CQ′}, Q, δ〉 with
δ given by

Q
c,+
−→ Q ‖ Q′ Q

0M−→ X Q′ c,+
−→ Q

is a regular tree grammar with costs.

As appears in this example, the rules carry a cost term c and (sometimes) a
cost operation �I . The intuition is that applying such a rule incurs a given
amount, namely c, to be combined using �I with the cost of the rest of the
derivation.

The derivation relation. Before defining formally what are derivations for
tree grammars with costs, we consider one example derivation, based on the
grammar of Example 5.1:

(Q,CQ) ` (Q ‖ Q′, c+ (CQ + CQ′)) ` (Q ‖ Q, c+ (CQ + (c+ CQ)))

Observe that mixed terms and mixed cost terms are rewritten alongside, in
pairs. Here, the first step has replaced Q by a parallel composition Q ‖ Q′ and
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the cost has been updated to c + (CQ + CQ′) (i.e., the cost c of parallelizing,
plus the cost for the future derivations from Q plus the cost for the future
derivations from Q′.

For the second step, we choose a non-terminal in Q ‖ Q′, say Q′, that is derived

into Q using the rule Q′ c,+
−→ Q. This means that the cost CQ′ corresponding

to Q′ must be replaced by c+ CQ. In the result (Q ‖ Q, c+ (CQ + (c+ CQ)))
we have now two occurrences of Q and two occurrences of CQ, but the first
occurrence of Q is related to the first occurrence of CQ and the second occur-
rence of Q is related to the second occurrence of CQ. These dependencies must
be remembered in further derivations, which makes the notion of derivation
more complex.

We now define derivations more formally. Firstly, we extend the signature
for terms with Q and the signature for cost terms with C. Given a term
t (resp. a cost term c), we define PosQ(t) (resp. PosC(c)) to be the set of
positions of occurrences of symbols of Q in t (resp. C in c). For instance
PosQ(X ‖ (Q1.Q2)) = {2.1, 2.2}.

Secondly, we consider triples (t, c, σ) where σ is a 1-to-1 mapping from PosQ(t)
to PosC(c) such that t|i = Q iff c|σ(i) = CQ: in other words for each occurrence
of the non-terminal Q in t, there is a corresponding unique occurrence of the
non-terminal CQ.

By definition (t, c, σ) ` (t′, c′, σ′) iff

• either there exists a position i ∈ PosQ(t) and a rule Q
cr,�Ir−→ f(Q1, . . . , Qn)

s.t.





t|i = Q and t′ = t[i← f(Q1, . . . , Qn)]

c′ = c[σ(i)← cr �Ir (CQ1
�Ir . . .�Ir CQn

)]

σ′(i.l) = σ(i).2.l for l = 1, . . . , n

σ′(j) = σ(j) otherwise

• or there exists a position i ∈ PosQ(t) and a rule Q
cr−→ f s.t.







t|i = Q and t′ = t[i← f ]

c′ = c[σ(i)← cr]

σ′(j) = σ(j) for j 6= i

• or there exists a position i ∈ PosQ(t) and a rule Q
cr,�Ir−→ Q′ s.t.
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





t|i = Q and t′ = t[i← Q′]

c′ = c[σ(i)← cr �Ir CQ′ ]

σ′(i) = σ(i).2

σ′(j) = σ(j) otherwise

For simplicity, we usually drop the third component which is merely a technical
way to relate occurrences of Q and CQ and we simply write (t, c) ` (t′, c′).
Given a sequence (Q,CQ) ` (t1, c1) ` . . . ` (tn, cn), we write (Q,CQ)`∗(tn, cn)
and (tn, cn) ∈ L(Q). The language generated by G is L(G) = L(QAx ).

Since we are interested in interpreted costs, we define L(Q)
def

= {(t, [[c]]) | (t, c) ∈
L(Q)} and LC(Q)

def

= {[[c]] | (t, c) ∈ L(Q)}. We let L(G)
def

= L(QAx ).

Example 5.2 Let G be as in example 5.1, let + be the cost operation associ-
ated to ‖. A sequence of derivation is

(Q,CQ) ` (Q ‖ Q′, c+ (CQ + CQ′)) ` (Q ‖ Q, c+ (CQ + (c+ CQ)))

` (X ‖ Q, c+ (0M + (c+ CQ))) ` (X ‖ X, c+ (0M + (c+ 0M)))

Therefore (Q,CQ)`∗(X ‖ X, c + (0M + (c + 0M))) and (X ‖ X,d) ∈ L(Q)
where d = [[c+ (0M + (c+ 0M))]] = [[c]] + [[c]] ∈M.

Let G = 〈Q, C, QAx , δ〉 be a regular tree grammar with costs. G can be seen as
the blending of a tree grammar and a cost grammar, and it is easy to extract
these components:

• The regular tree grammar induced by G is GR = 〈F ,Q, QAx , δR〉 where δR is

the set of rules Q −→ f(Q1, . . . , Qn) for Q
c,�I−→ f(Q1, . . . , Qn) ∈ δ, Q −→ f

for Q
c
−→ f ∈ δ, and rules Q −→ Q′ for Q

c,�I−→ Q′ ∈ δ.
• The regular cost grammar GC induced by G has CQ = {CQ | Q ∈ Q} as set

of non-terminals and the rules CQ −→ c�I (CQ1
�I . . . �I CQn

) for Q
c,�I−→

f(Q1, . . . , Qn) ∈ δ, CQ −→ c for Q
c
−→ f ∈ δ and the rules CQ −→ c�I CQ′

for Q
c,�I−→ Q′ ∈ δ.

The link between these grammars is established by the next proposition:

Proposition 5.3 If (t, c) ∈ L(G) then t ∈ L(GR) and c ∈ L(GC). Conversely,
for any t ∈ L(GR) there is some c ∈ L(GC) such that (t, c) ∈ L(G), and for
any c ∈ L(GC) there is some t ∈ L(GR) such that (t, c) ∈ L(G).

PROOF. (⇒:) By construction (Q,CQ)`∗(t, c) implies that t ∈ LGR
(Q) and

c ∈ LGC
(CQ).
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(⇐:) We prove it for costs and leave the proof for terms to the reader. Let
CQ`

∗c̄ in the grammar GC . We prove the result by induction on the length of
the derivation.

• Base case: the derivation uses a rule CQ −→ c (c a constant cost, possibly
0M). By definition of GC and GR there exists a rule Q

c
−→ f ∈ G and a rule

Q −→ f ∈ GR. This yields a derivation (Q,CQ) ` (f, c) and a derivation
Q ` f .
• For the induction step, assume the derivation has the form CQ ` c �I
CQ′`∗c̄, using a rule CQ −→ c �I CQ′ in GC . Then c̄ is some c �I c

′ and

CQ′`∗c′. By definition of GC there exists a rule Q
c,�I−→ Q′ in G. By induction

hypothesis, (Q′, CQ′)`∗(t, c′) for some t. Therefore (Q,CQ)`∗(t, c�I c
′), i.e.,

(Q,CQ)`∗(t, c̄).
Otherwise the derivation has the form CQ ` c�I (CQ1

�I . . .�ICQn
)`∗c̄ for

a rule Q −→ c�ICQ1
�I . . .�ICQn

in GC . Then CQi
`∗ci for i = 1, . . . , cn and

c̄ = c�I(c1�I . . .�Icn). By definition there exists a ruleQ
c,�I−→ f(Q1, . . . , Qn)

in G. By induction hypothesis, (Qi, CQi
)`∗(ti, ci) for some ti. Therefore

(Q,CQ)`∗(f(t1, . . . , tn), c�I (c1 �I . . .�I cn)), i.e., (Q,CQ)`∗(t, c̄). 2

In general the sets LC(Q) can be quite arbitrary and are usually not decidable
subsets of Np. However, with Parikh costs (only use the + operation), these
sets are semilinear sets 3 according to the next proposition:

Proposition 5.4 Let G = (F ,Q, C, QAx , δ) be a regular tree grammar with
Parikh costs. Then the set LC(Q) is an effectively computable semilinear set
of Np for any Q ∈ Q.

PROOF (Idea). The LC(Q)’s are the Parikh images of a context-free lan-
guage for which a grammar can be read out of the cost rules, and hence is an
effectively computable semilinear set of Np [33]. 2

5.2 Operations on tree grammars with costs

We shall later need closure results, stating that sets defined by tree grammars
with costs are closed under product, conjunction and projection. These results
are proved by exhibiting the constructions on tree grammars with costs that
realize these operations. In this subsection we assume G and G ′ are two tree

3 A subset L ⊆ Np is linear if it is has the form L = {c0 + a1c1 + · · · +
alcl | a1, . . . , al ∈ N} for a base c0 ∈ Np and some periods c1, . . . , cl ∈ Np. It is
semilinear if it is a finite union of linear sets. Semilinear subsets of Np are exactly
the sets definable in Presburger arithmetic. See [18] for more details.
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grammars with costs recognizing, respectively, F -terms with costs in M = Np,
and F ′-terms with costs in L = Nq.

Product. We show how to construct a product grammar G ×G ′ that recog-
nizes terms built over the signature F ×F ′, with costs interpreted in M×L =
Np+q.

Firstly, we define products of cost terms and we show that their interpretations
fits our previous definition. Let TM be a set of cost terms interpreted in M =
Np, let TL be a set of cost terms interpreted in L = Nq. The set TM×L is the
set of terms build from 〈0M , 0L〉, 〈c, 0L〉 for c ∈ M , 〈0M , d〉 for d ∈ L, and
functions �i,j for all pairs �i of TM and �j of TL. The interpretation of these
costs is done in Np+q with the obvious meaning for the constants, and �i,j is
interpreted as

〈c, d〉 �i,j 〈c
′, d′〉

def

= 〈c�i c
′, d�′

j d
′〉.

By construction an interpretation 〈c, d〉 is a tuple such that the first p compo-
nents are the interpretation of a cost term of TM and the last q components
are the interpretation of a cost term of TL.

Secondly, we define product of terms (not cost terms) as in Section 4 on the
product signature

F × F ′ def

= (F ∪ {⊥})× (F ′ ∪ {⊥})− {⊥⊥}

The non-terminals of the product grammar G × G ′ are all (Q,Q′) with Q ∈
Q ∪ {⊥} and Q′ ∈ Q′ ∪ {⊥}. We usually write QQ′ instead of (Q,Q′). The
axiom is QAxQ

′
Ax . The rules of G × G ′ are defined as follows:

• For every rule r = Q
c,�i−→ f(Q1, . . . , Qn) in δ and r′ = Q′ c

′,�j
−→ g(Q′

1, . . . , Q
′
m)

in δ′ s.t. m ≥ n, G × G ′ has a rule

rr′ = QQ′ 〈c,c′〉�i,j
−→ fg(Q1Q

′
1, . . . , QnQ

′
n,⊥Q

′
n+1, . . . ,⊥Q

′
m)

• We have similar rules when m < n.
• For every rule r = Q

c,�i−→ f(Q1, . . . , Qn) in δ and r′ = Q′ c′
−→ g in δ′, G ×G ′

has a rule

rr′ = QQ′ 〈c,c′〉�i,∅
−→ fg(Q1Q⊥, . . . , QnQ⊥)

• We have similar rules for the symmetric case.

• For every rule r = Q
c,�i−→ f(Q1, . . . , Qn) in δ, G × G ′ has a rule 4 .

r⊥ = Q⊥
〈c,0L〉�i,∅
−→ f⊥(Q1⊥, . . . , Qn⊥)

4 We use �i,∅ but any other �i,j is possible since 0L is neutral for all �′
j ’s.
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• We have similar rules from r′ ∈ δ′.
• For every rule r = Q

c
−→ f in δ, G × G ′ has a rule

r⊥ = Q⊥
〈c,0L〉
−→ f⊥

• We have similar rules from r′ ∈ δ′.
• For every ε-rule r = Q1

c,�i−→ Q2 in δ, and every non-terminal Q′ ∈ Q′, G×G ′

has the ε-rules

rQ′ = Q1Q
′ 〈c,0L〉�i,1
−→ Q2Q

′ and r⊥ = Q1⊥
〈c,0L〉�i,1
−→ Q2⊥

• We have similar rules from ε-rules in δ′.

All this is made to ensure that:

Proposition 5.5 Let s ∈ TF and t ∈ TF ′, let c ∈ M, c′ ∈ L. Then (s ×
t, 〈c, c′〉) ∈ L(QQ′) iff (s, c) ∈ L(Q) and (t, c′) ∈ L(Q′).

The proof is omitted and is similar to the proof for product of regular tree
grammars (without cost). It uses two additional properties:

• The interpretation of any null term of TM (resp. TL) is the tuple 〈0, . . . , 0〉
in M (resp. L) which is the neutral element of all operations of M involved.
• Derivations involving ⊥ on one component have a null cost on this compo-

nent by definition of the rules.

The reader may notice that the proposition is false for uninterpreted costs
(because extraneous null cost terms occur).

The same construction can be used in a slightly more general framework, where
the product G × G ′ of a grammar G generating an x-ary relation (instead of
only a ternary relation) with a grammar G ′ generating an y-ary relation gives
an grammar generating an (x+ y)-ary relation.

Similarly, the product of a grammar with costs over M with a normal regular
tree grammar (without costs) G ′ gives a regular tree grammar with costs G×G ′

with costs over M since G ′ can be seen as a tree grammar with a trivial cost
set.

Projection. Given a product G = G1 × . . . × Gn of grammars with costs
generating the language L(G), the i-th projection of this language is {(t1 ×
. . . × ti−1 × ti+1 × . . . × tn, 〈c1, . . . , ci−1, ci+1, . . . , cn〉) | ∃ti, ci s.t.(t1 × . . . ×
tn, 〈c1, . . . , cn〉) ∈ L(G)}. This language can be generated by the regular tree
grammar with costs obtained by erasing components i of symbols f1f2 . . . fn
and symbols �j1j2...jn in the grammars rules of G. The proof that this grammar

26



generates indeed the i-th projection of G is similar to the proof for regular tree
languages and is omitted.

Conjunction. The conjunction of G (with costs in M) and G ′ (with costs in
L) is obtained by computing G × G ′, discarding all rules with symbols fg for
f 6= g and replacing symbols ff by f . The resulting grammar is a grammar
G∧ for terms of TF and costs in M × L. We have that (t, 〈c, c′〉) ∈ L(G∧) iff
(t, c) ∈ L(G) and (t, c′) ∈ L(G ′). The proof of this equivalence is similar to the
correctness proof done for the construction computing the intersection of two
regular tree languages. The main change lies in the treatment of costs since
we keep track of costs related to each grammar.

Concluding remark. The cost grammars given in Fig. 3 for T use rules of
the form C −→ C ′ ⊕C ′′ that yield grammars with cost that have rules of the

form Q
�I−→ f(Q1, . . . , Qn) or Q

�I−→ Q′. Such rules don’t fit our framework
since there is no cost term c involved. We could easily adapt our definition
to allow this rules but this leads to a lot of additional cases in the product
construction and, in some case, we need to introduce some extraneous 0M ’s
terms.

Since we use tree grammar with cost with interpreted costs in mind, we shall

merely replace such rules by rules Q
0M�I−→ f(Q1, . . . , Qn) or Q

0M�I−→ Q′. Since
0M is neutral for all operations, this preserves the set L(G).

6 TL, the first-order transition logic

The results of Sections 4 and 5 have applications to the decision of process
logics over PA.

Assume ∆ is fixed. The (first-order) transition logic TL is the first-order logic
of the structure 〈T ; =,

∗
−→, P1, . . .〉 where the binary predicates = (equality) and

∗
−→ (reachability) have the obvious interpretation, and where P1, P2, . . . are any
additional predicates provided they are recognizable (i.e., their interpretation
is a recognizable relation over T : in particular, membership predicates “∈ L”
with L a regular tree language are recognizable predicates). Since in our PA
framework

∗
−→ and = are recognizable predicates, the transition logic is “just”

a first-order logic of trees with recognizable predicates.

We use u, v, . . . to denote variables, and s, t, . . . to denote trees in T . The
satisfaction relation t1, . . . , tn |= ϕ(u1, . . . , un) is defined as usual in first-order
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logic. Observe that the relation |= depends on the underlying PA declaration
∆ (since

∗
−→ does).

6.1 The difference between TL and temporal logics

Because quantifiers can be used freely, and because equality and other predi-
cates are available, transition logics are more expressive than the modal logic
EF handled in [30,27].

The ability to refer to states is the specific feature of transition logics: these
logics can distinguish between otherwise bisimilar processes. For instance, it
is possible to state the confluence of

∗
−→ through the TL formula

∀u, v, v′
[(

u
∗
−→ v ∧ u

∗
−→ v′

)

⇒ ∃v′′
(

v
∗
−→ v′′ ∧ v′

∗
−→ v′′

)]

(Confl)

Temporal logics do not have such a mechanism for identifying states precisely
and relate them. On the other hand, they can refer to a given path, state prop-
erties that hold along this path, and relate paths. This is not possible with
transition logics: writing u

∗
−→ v, one states that u may go to v via some path,

but one cannot isolate this path and refer to it again. Additionally, tempo-
ral modalities are recursive by nature, while transition logics only have some
built-in fixed points like

∗
−→. As a consequence, simple temporal modalities like

EF can be expressed in the transition logic but more complex constructions
like E U cannot.

In our PA framework, TL can deal with several simultaneous PA declarations
(since any

∗
−→∆ is a recognizable relation). E.g., one can states that all the

terms reachable from X via ∆ = ∆1 ∪∆2 are also reachable using rules from
∆1 first, followed by rules from ∆2. One uses the following formula:

∀u
[

X
∗
−→∆ u ⇔ ∃v

(

X
∗
−→∆1

v ∧ v
∗
−→∆2

u
)]

.

TL does not explicitly allow using constants like “X ‖ 0”, or terms with process
variables like “u ‖ u”. However, such terms could be allowed at no extra cost
since they can be eliminated via simple transformations based on recognizable
predicates encoding the function symbols. For instance, the following formula

∃u(u ‖ u
∗
−→ X ‖ 0)

is rewritten into

∃u ∃v, v′(P‖(v) ∧ Pl(u, v) ∧ Pr(u, v) ∧ PX‖0(v
′) ∧ v

∗
−→ v′)

28



where P‖ is a (recognizable) unary predicate stating that its argument is a term
with “‖” as its root, Pl and Pr are (recognizable) binary predicates stating
that their first argument is the left-hand side (resp. right-hand) of its second
argument, and where PX‖0 states that its argument is X ‖ 0. Observe that
this encoding only requires a finite number of predefined predicates: PX‖0 can
be defined by combining P‖, PX , P0 with Pl and Pr.

6.2 Solving TL formulas

Theorem 4.2 immediately gives decidability of TL, or more precisely:

Corollary 6.1 There is an effective procedure that, given ∆ and a TL formula
ϕ(u1, . . . , un), computes a regular tree grammar that generates Sol(ϕ).

Being able to compute Sol(ϕ) is more general than deciding validity or satisfia-
bility of ϕ, or than model checking (telling whether t |= ϕ(u) for a given t and
ϕ). In particular, this allows the verification of parameterized systems, i.e.,
verifying that all instances of a parameterized system satisfy a given property.
In our framework, this assumes that the set of instances is a regular language.

Example 6.2 Let’s write t‖n for

n copies of t
︷ ︸︸ ︷

t ‖ (t ‖ (t · · · ‖ t) . . .)) where t ∈ T and n ∈

N. The set L
def
= {t‖n | n = 0, 1, 2, . . .} is regular and one checks that t‖n |= ϕ(u)

for every n by checking L ⊆ Sol(ϕ). What is more, the set of all n s.t. t‖n |= ϕ

can be computed simply by building the grammar for L ∩ Sol(ϕ).

7 DTL and decomposable constraints

In this section we extend TL with “decomposable” predicates that can express
properties of the cost c in steps s

c
−→ t.

7.1 Decomposable cost predicates

A cost predicate P is a unary predicate over cost terms, or equivalently a
subset of TM . We write P (c) when P holds for c.

Decomposable cost predicates generalize the notion of “decomposable regular
languages” we introduced in [27] (see also [35,29,19]).

Definition 7.1 A set DP of cost predicates is a decomposable family if
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seq-decompositions: for all P ∈ DP there is a finite index set I and a
family of predicates {P 1

i , P
2
i ∈ DP | i ∈ I} such that for all c, c′ ∈ TM ,

P (c⊕ c′) iff
∨

i∈I P
1
i (c) ∧ P 2

i (c′).
par-decompositions: for all P ∈ DP there is a finite family of predicates
{P 1

i , P
2
i ∈ DP | i ∈ I} such that for all c, c′ ∈ TM , P (c⊗c′) iff

∨

i∈I P
1
i (c)∧

P 2
i (c′).

unit-decompositions: for all P ∈ DP and all cost terms c appearing in ∆,
there is a finite family of predicates {P c

i ∈ DP | i ∈ I} such that for all
c′ ∈ TM , P (c⊕ c′) iff

∨

i∈I P
c
i (c

′).

A predicate P is decomposable if it belongs to a finite decomposable family.

Example 7.2 (Counting constraints) With Parikh costs (see Example 2.7)
c ∈ TM denotes a p-tuple of integers [[c]] = 〈x1, . . . , xp〉 ∈ Np and we have
[[c1 ⊕ c2]] = [[c1]] + [[c2]] (and a similar property for ⊗). Useful decomposable
predicates for this cost set are, for example, all Boolean combinations of the
basic predicates xi = k and xi > k (for k ∈ N), and xi ≡ k (m) (congruence
modulo some integer m).

Example 7.3 (Timing constraints) With costs for timing (cf. Example 2.8)
c ∈ TM denotes some duration c in a time domain T. One obtains a decom-
posable family of costs predicates by fixing a maximal duration K ∈ T beyond
which precise values are not important. Let D ⊆ T be the set of costs that ap-
pear in ∆ and write Ω for the set {α1, α2, . . .} of all linear combinations (with
coefficients from N) of costs from D such that αi ≤ K: then Ω is finite and
the predicates “c = α”, “c < α” and “c > α” for α ∈ Ω, form a decomposable
family in a straightforward way.

7.2 The decomposable transition logic DTL

DTL (“Decomposable” Transition Logic) is the first-order logic that extends

TL by allowing all binary predicates of the form “
∃c P (c)
−−−→”, where P is any

decomposable cost predicate.

u
∃c P (c)
−−−→ v is short for “∃c

(

u
c
−→ v∧P (c)

)

” and holds iff there is some derivation

u
c
−→ v with P (c). Observe that DTL is only a fragment of a first-order logic

with two sorts and a ternary −→ predicate, where cost variables cannot be
freely used. They are quantified upon whenever they are introduced (as with

the freeze quantification of [2]). This explains why we often shortly write u
∃P
−→ v

for u
∃c P (c)
−−−→ v.

The negation of an atom u
∃P
−→ v states that for any path u

c
−→ v between u

and v, P (c) is false. This will be later written ∀c (u
c
−→ v ⇒ ¬P (c)).
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Proposition 7.4 For any decomposable predicate P , the relation
∃P
−→ is recog-

nizable.

PROOF (Sketch). The construction of the required grammar (called C ′) is
just an elaboration of the grammar C for

∗
−→ (Prop. 4.4 and Fig. 3).

Assume DP is a decomposable family. The non-terminals of C ′ are the non-
terminals of C decorated with a predicate P ∈ DP (except that we keep I,
I⊥,s and IX,s without any decoration). The intention is that RP recognize all

products t× t′ s.t. t
∃P
−→ t′.

The rules for C ′ are similar to the rules for C. For example, the rules for R

R −→ ‖‖ (R,R) | ..(R, I) | ..(R′, R) | 00 | QX,X | QY,Y | . . .

found in (δ4) are replaced by all rules of the following form, where P is any
predicate from DP :

R P −→ ‖‖ (R Pi, R P ′
i )

R′ P −→ ‖‖ (R′ Pi, R
′ P ′

i )







for all (Pi, P
′
i ) in the par-decomposition of P ,

R P −→ ..(R P, I)

R P −→ ..(R′ Pi, R P ′
i )

R′ P −→ ..(R′ Pi, R
′ P ′

i )







for all (Pi, P
′
i ) in the seq-decomposition of P ,

R P −→ 00

R′ P −→ 00







when P (0),

R P −→ QY,Y P

R′ P −→ Q′
Y,Y P







for all Y ∈ Const .

The rules for the QX,s P etc. are built similarly, extending the corresponding
rules in Fig. 3. For instance the rule Q⊥,Y −→ Q⊥,s, associated with a rule
Y

c
−→ s ∈ ∆, is replaced by all Q⊥,Y P −→ Q⊥,s P

c
i where the P c

i are obtained
by unit-decomposition of P w.r.t. c.

With this we can prove a lemma similar to Prop. 4.6: for all s, t ∈ T , R P`∗s×t
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iff s
∃P
−→ t. 2

The corollary is that DTL is decidable, or more precisely:

Theorem 7.5 For any decomposable family of costs predicates, there is an
effective procedure that, given ∆ and a DTL formula ϕ(u1, . . . , un), outputs a
tree grammar generating Sol(ϕ).

7.3 The timed transition logic TTL

DTL and Theorem 7.5 can be instantiated in meaningful ways. In the rest of
this section we consider a situation where costs denote some kind of durations.

More precisely, we adopt the framework of Example 2.8 and look at TTL
(Timed Transition Logic), an instance of DTL based on the timing constraints

from Example 7.3. Thus TTL extends TL by allowing all atoms u
∃c τ
−→ v where

τ is a time constraint built according to the following grammar:

τ ::= c < C | ¬τ | τ ∧ τ

where the C’s can be any numerical constant from T (and where c is the
free cost variable of τ). (Observe that c < C is really a short way of writing
[[c]] < C.)

In TTL, one may write formulas expressing properties like from any state
reachable from an initial state in less than 5 time units, it is possible to reach
a final state in less than 10 time units as follows:

∀s, t (s ∈ Initial ∧ s
∃c c≤5
−−−→ t⇒ ∃s′ : s′ ∈ Final ∧ t

∃c c≤10
−−−−→ s′).

Then, because these time constraints are decomposable, we have

Proposition 7.6 For any time constraint τ , the relation s
∃c τ
−→ t is recogniz-

able.

We also have the following instantiation of Theorem 7.5:

Theorem 7.7 The logic TTL is decidable.

TTL can be enriched. Consider, for example, the binary predicate u
Unbounded
−−−−−→ v,

meaning that there exists steps u
c
−→ v with arbitrarily large costs c (i.e., going

from u to v may take arbitrarily long time).

Lemma 7.8 The relation
Unbounded
−−−−−→ is recognizable.
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PROOF (Idea). s
Unbounded
−−−−−→ t iff it there is a derivation s

∗
−→ t that involves a

loop X
c
−→ X with [[c]] > 0 (and X ∈ Const). Such loops are easy to compute

and list, and it is then easy to adapt our automaton for
∗
−→ so that it keeps

track of whether an opportunity for the loops has been encountered. 2

Example 7.9 (Two other “timed” logics for free) Using the same time
domain and the same time constraints, we may change the definition of ⊗ and
interpret it as addition (like ⊕), thereby reducing parallelism to interleaving.
Another variant is to exchange the roles of ⊕ and ⊗: then the costs measure
the maximal degree of parallelism rather than the elapsed time. In both cases
the constraints remain decomposable and we still have a decidable TTL.

8 TLC , a parameterized transition logic with Parikh costs

Extending transition logics like we did in the previous section allows refer-
ring to the underlying costs in reachability predicates, but it only provides a
limited way of stating properties of these costs. In this section, we consider
adding a first-order logic of costs to transition logic. The resulting two-sorted
logic, called TLC , is very expressive. In verification settings, it allows stating
parameterized properties with parameters ranging over costs (and processes)
rather than only processes as in section 6.2.

For TLC , we fix a precise notion of costs: we assume Parikh costs, as in
Example 2.7. Here M = Np and the cost [[c]] = (n1, . . . , np) of a derivation
s

∗
−→ t can be used to record the number of occurrences of each action of Act

along the derivation. Since [[c]] is now a p-tuple of integers, we often write
x1, . . . , xp, or x̄, instead of [[c]].

We also fix the cost constraints we shall allow: we use Presburger formulas over
the components of costs. This allows to state properties such as “s reaches t
using as many actions a than actions b”.

Formally, TLC allows three kinds of atoms:

• all R(u1, . . . , un) where R is a recognizable relation (and u1, . . . , un are pro-
cess variables),
• all ψ(ȳ) where ψ is a Presburger formula,

• all u
∃x̄ψ(x̄,ȳ)
−−−−→ v where ψ(x̄, ȳ) is a Presburger formula whose free variables

are partitioned into x̄ (a tuple of p integer variables, for the cost of the
derivation) and the rest ȳ (an arbitrary number of parameters).

u
∃x̄ψ(x̄,ȳ)
−−−−→ v is short for “∃c, u

c

⇒ v∧ψ(c, ȳ)”. Observe that only u, v, ȳ are free
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in u
∃x̄ψ(x̄,ȳ)
−−−−→ v. In practice we omit writing the variables from x̄ that are not

used in ψ. The negation of u
∃x̄ψ(x̄,ȳ)
−−−−→ v can be written ∀x̄

(

u
x̄
−→ v ⇒ ψ′(x̄, ȳ)

)

where ψ′ is ¬ψ, another Presburger formula, and we shall use this notation
freely.

Finally, TLC formulas are given by the abstract syntax:

ϕ ::= Atom | ϕ ∧ ϕ | ¬ϕ | ∃uϕ | ∃yϕ

Even with our restriction to Parikh costs and Presburger constraints, the full
TLC is undecidable (see Prop. 8.1). Therefore we introduce two fragments
that will be shown decidable (Theo. 8.2):

the parameterized existential fragment: which is the set of closed for-
mulas that can be written under the form (∃|∀ ȳ)∗(∃ u)∗[∨∧Atoms], 5 and

the parameterized universal fragment: which is the set of closed formu-
las that can be written under the form (∃|∀ ȳ)∗(∀ u)∗[∨ ∧ ¬Atoms].

Observe that the two fragments are dual: a formula in one fragment is equiv-
alent to the negation of a formula in the other fragment.

Further, and since the complement of a recognizable relation is recognizable
(similarly the negation of a Presburger formula is a Presburger formula),
the restriction on the polarity of atoms only applies to reachability atoms

“u
∃x̄ψ(x̄,ȳ)
−−−−→ v” with some non-empty ȳ (hence u

∗
−→ v, etc., can be negated

freely).

8.1 Expressing properties with TLC

We consider the PA example ∆Weight that abstracts the divide-and-conquer
Weight program from Fig. 1.

This system is decorated with Parikh costs by isolating the following actions:
sp, seq , sw and add . sp is associated with rule r1, and allows counting the
number of times parallel coroutines are spawned. Similarly seq , associated
with rule r7, allows counting recursive calls in the sequential part. sw is as-
sociated with rule r6, when computation sw itches from W to W seq, and add
is associated with rules r5 and r11 where an add ition of subweights is per-
formed. Formally, we consider M = N4 and let rules in ∆ carry costs of the

5 That is, process variables may only be existential, and the corresponding quan-
tifications must occur under the quantification over integer parameters. Negations
of atoms are not allowed.
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form csp = (1, 0, 0, 0), cseq = (0, 1, 0, 0), csw = (0, 0, 1, 0), cadd = (0, 0, 0, 1), or
0̄ = (0, 0, 0, 0).

TLC can now be used to state properties that refer to the number of times
the given actions have been used. For example, the following formula

∀u ¬
(

Xl0

∃x̄.xsw=0∧xadd>0
−−−−−−−−−→ u

)

states that “runs from Xl0 never do add ’s without doing a sw”. The formula

∀u ¬
(

Xl0

∃x̄.xsp+xseq<xadd
−−−−−−−−−→ u

)

states that “runs from Xl0 never use less sp’s and seq ’s than add ’s”. Finally,
the formula

∀u
(

Xl0

∃x̄.xsp+xseq=xadd
−−−−−−−−−→ u ⇒ u ∈ Final

)

further states that these figures coincide only when we reach “terminated”
situations.

Observe that these three TLC formulas belong to the parameterized universal
fragment and do not even use parameters.

An example illustrating the usefulness of parameters is:

∀y1, y2∀u, v
[(

u
∃x̄.y1=xadd−−−−−→ v ∧ u

∃x̄.y2=xadd−−−−−→ v

)

⇒ y1 = y2

]

stating that all paths from a same u to a same v contain the same number of
add ’s. This last formula belongs to the parameterized universal fragment.

8.2 Decidability for TLC

We are interested in whether, given a PA declaration ∆, a given closed TLC
formula is valid.

The problem is undecidable in general:

Proposition 8.1 (see Appendix B) The problem whether, given some ∆,
a closed TLC formula ϕ is valid, is undecidable, even when restricted to for-
mulas ϕ of the fragment without parameters and with only ∃∀ quantification
for process variables.

This result motivated the isolation of the parameterized fragments of TLC ,
for which we get the following decidability results:
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Theorem 8.2 The parameterized existential and the parameterized universal
fragments of TLC are decidable.

The proof of Theorem 8.2 relies on the classical result that semilinear sets are
exactly the sets definable in Presburger arithmetic (see [18]). This is used to
prove the next proposition for which we introduce the following definition. Let
Φ be a parameterized existential TLC formula. Φ is some (∃|∀ ȳ)∗(∃ u)∗ϕ: we
write φ(y1, . . . , yk) for the “(∃ u)∗ϕ” part and let Sol(φ) = {〈n1, . . . , nk〉 | |=
φ(n1, . . . , nk)}.

Theorem 8.3 Let Φ be a parameterized existential TLC formula, then Sol(φ)
is an effectively computable semilinear set.

For proving this, we begin by linking the atomic predicates of TLC to tree
grammars with costs: this is easy to do since the grammars we used in Prop. 4.4
already formed a cost grammar. To fit precisely our framework, we simply
consider the cost rules given in Fig. 3 where we replace rules C −→ C ′ � C ′′

by rules C −→ 0M ⊕ (C ′�C ′′) and similarly for ⊗ (which doesn’t change the
set of interpreted costs, see the last remark of section 5). Then we merge the
resulting grammar with the regular tree grammar given in Fig. 3 in order to
obtain a regular tree grammar with costs G that generates

∗
⇒. The grammar

has the following properties:

Lemma 8.4 For any s, t, u, v ∈ (T ∪ {⊥}),

(1) (s× t, c) ∈ L(R) iff s
c
⇒ t,

(2) (s× t, c) ∈ L(R′) iff s
c
⇒ t and t is terminated,

(3) (s× t, c) ∈ L(Qu,v) iff s = u and v
c
⇒ t,

(4) (s× t, c) ∈ L(Q′
u,v) iff s = u and v

c
⇒ t and t is terminated.

Furthermore,

(1) for each c ∈ LC(R) (resp. LC(R
′)) there are some s and t and a derivation

s
c
⇒ t s.t. (s× t, c) ∈ L(R) (resp. R′),

(2) for each c ∈ LC(Qu,v) (resp. LC(Q
′
u,v)) there is some t and a derivation

v
c
⇒ t s.t. (u× t, c) ∈ L(Qu,v) (resp. ∈ L(Q′

u,v)).

(The proof is just a rehash of the proof of Prop. 4.6, where the use of inter-
pretation allows to get rid of the extraneous 0M ’s).

This lemma must be handled cautiously since, as with Prop. 5.3, we cannot
simultaneously choose a s× t ∈ L(R), a c ∈ LC(R), and assume s

c

⇒ t.

We now turn to the proof of Theorem 8.3. It goes through a succession of
steps:
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Input formula. Consider the TLC formula φ(y1, . . . , yk). It has the form
(∃ u)∗ϕ. For simplicity, we assume ϕ only contains reachability atoms (the
proof is the same when R(ū) atoms for recognizable R’s are allowed) and has
no disjunctions (this is no loss of generality since φ is an existential formula).

Hence ϕ is some ∃ū, v̄
(
∧n
i=1 ui

∃x̄iψi(x̄i,ȳi)
−−−−−−→ vi

)

where, after some renaming, we
may assume that the x̄i’s are all disjoint.

Linearization. The linearization ϕL of ϕ is the formula computed from ϕ

by renaming all term variables such that they occur only once in ϕL. We
still write ui, vi for the renamed variables (and let uri , v

r
i denote the original

variables in ϕ).

The resulting ϕL is not equivalent to ϕ, but if we conjunct ϕL with Idϕ (a
formula stating equality of the relevant components) and apply a projection
to get rid of the extra components, we obtain a formula that is equivalent to ϕ.

For instance a formula ϕ ≡ u
∃xψ1(x)
−−−→ v ∧ v

∃xψ2(x)
−−−→ u is linearized in ϕL ≡

u1
∃xψ1(x)
−−−→ v1∧u2

∃xψ2(x)
−−−→ v2. The formula Idϕ is u2 = v1∧u1 = v2 which defines

a recognizable relation. Projecting the solutions of ϕL ∧ Idϕ on the first and
third component yields the solution of ϕ.

The associated tree grammar with costs. To each reachability atom

ui
∃x̄iψi(x̄i,ȳi)
−−−−−−→ vi from ϕL, we associate a copy Gi of the grammar with costs

from Lemma 8.4. Now let G = (
∏n
i=1 Gi) ∧ GIdϕ

, where GIdϕ
is the grammar

generating all tuples satisfying Idϕ (here ∧ denotes the conjunction of the
grammars defined in section 5, furthermore we discard the costs coming from

GIdϕ
). By construction this grammar accepts the solutions of

(
∧n
i=1 ui

∃x̄i true−−−−→

vi
)

∧ Idϕ (a set of products s̄× t̄, or s1× · · · × sn× t1× · · · × tn) and the cost

set LC(G) records all 〈z̄1, . . . , z̄n〉 ∈ Np × · · · ×Np s.t. si
z̄i⇒ ti for all i. The set

LC(G) is an effectively computable semilinear set (by proposition 5.4).

Computation of the solutions of arithmetical constraints. Define

ϕG,PA(ȳ)
def

= ∃x̄1 . . . x̄n
(

〈x̄1, . . . , x̄n〉 ∈ LC(G) ∧
n∧

i=1

ψi(x̄i, ȳi)
)

This is a Presburger formula that can be built effectively.

Lemma 8.5 Sol(φ) = {z̄ | |= ϕPA(z̄)}.
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PROOF. (⊆:) Assume z̄ ∈ Sol(φ). Then there exist some s̄, t̄ s.t. ϕ(z̄, s̄, t̄)

holds, i.e., for any i there is a cost term c̄i s.t. si
c̄i−→ ti ∧ ψi(c̄i, z̄i) (remember

that c̄i denotes the interpretation of c̄i). By construction of G, this means
that (s̄ × t̄, c̄) ∈ L(G) for c̄ = 〈c̄1, . . . , c̄n〉, therefore c̄ ∈ LC(G). Hence c̄ is

a witness for ∃x̄1 . . . x̄n
(

〈x̄1, . . . , x̄n〉 ∈ LC(G) ∧
∧n
i=1 ψi(x̄i, ȳi)

)

, which proves
that z̄ satisfies ϕPA.
(⊇:) Assume that ϕPA(z̄), i.e., ϕG,PA(z̄), holds. Then there exists some c̄ =
(c̄1, . . . , c̄n) ∈ LC(G) s.t. for any i = 1, . . . , n, ψi(c̄i, z̄i) holds. Since c̄ ∈ LC(G)
there exist s̄, t̄ s.t. (s̄× t̄, c̄) ∈ L(G). By definition of G as a product grammar,
this implies that for all i, there exists a cost term c̄i with interpretation c̄i

s.t. si
c̄i−→ ti ∧ ψ(c̄i, z̄i). Thus si

∃x̄iψi(x̄i,z̄i)
−−−−−−→ ti. Finally φ(s̄, t̄, z̄) holds, hence

z̄ ∈ Sol(φ). 2

The results on the universal fragment is a direct consequence since the com-
plement of a semilinear set is a semilinear set (see [18]).

9 PTTL, a parameterized timed transition logic

In this section we consider PTTL, a transition logic that combines parameters
(as in section 8) with an interpretation of costs as durations in N, as in TTL

(from section 7.3). PTTL allows atoms like s
∃c c>x+2
−−−−−→ t where x represents

some unknown duration.

The main difference between PTTL and TLC is that PTTL interprets costs
as (integer) durations, instead of seeing them more abstractly as counting
the number of occurrences of actions. As in Example 2.8, the duration of a
sequential composition (resp. a parallel composition) of steps is the sum (resp.
the maximum) of the durations of each component.

Formally, PTTL is the transition logic build from atoms u
∃xφ(x,ȳ)
−−−−→ v where

• x is the cost of the derivation,
• y1, . . . , yn are parameters ranging over N,
• φ(x, ȳ) is a time constraint of the form x ≥

∑m
i=1 aiyi with ai ∈ N,

and formulas of PTTL are given by the abstract syntax:

ϕ ::= Atom | ϕ ∧ ϕ | ¬ϕ | ∃uϕ | ∃yϕ.

As before, it is possible to allow predicates given by arbitrary recognizable
relations, for example all relations defined by a TTL formula (the parameter-
free fragment of PTTL).
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9.1 Decidability for PTTL

As in section 8, we show decidability for restricted fragments of PTTL: 6

the parameterized existential fragment: which is the set of closed for-
mulas that can be written under the form (∃|∀ ȳ)∗(∃ u)∗[∨ ∧ Atoms], and

the parameterized universal fragment: which is the set of closed formu-
las that can be written under the form (∃|∀ ȳ)∗(∀ u)∗[∨ ∧ ¬Atoms].

The following theorem is the counterpart for PTTL of Theorem 8.2 for TLC :

Theorem 9.1 The parameterized existential (resp. universal) fragment of PTTL
is decidable.

The rest of the section is devoted to a proof of Theorem 9.1. Our approach
follows the earlier proof for TLC (tree grammars with costs are associated with
basic atoms, and then combined and/or transformed). There is a difference
however: we are in a situation where we do not know how to compute the cost
sets generated by cost grammars. Thus our method uses approximations of
costs sets and relies on the fortunate fact that, for the fragments we consider,
cost sets can be safely replaced by their approximations.

9.2 Approximating the language generated by cost grammars

We consider cost terms on a cost set M with operations �I for all I ⊆
{1, . . . , p}. As in section 5, the interpretation domain is M = Np and the
interpretation of �I is given by 〈z1, . . . , zp〉 = 〈x1, . . . , xp〉 �I 〈y1, . . . , yp〉 iff
zi = max(xi, yi) when i ∈ I and zi = xi + yi otherwise.

For each I ⊆ {1, . . . , p}, for each c = 〈x1, . . . , xp〉 ∈ Np the projection ΠIc is

defined by ΠI〈x1, . . . , xp〉
def

= 〈y1, . . . , yp〉 where yi = 0 when i ∈ I and yi = xi

otherwise. For L ⊆ Np, ΠIL
def

= {ΠIc | c ∈ L}.

We shall use another set of cost names M ′ = {ΠIc | I ⊆ {1, . . . , p}, c ∈ M}
and the corresponding set TM ′ . The interpretation is done in M′ = Np by
[[ΠIc]] = ΠI([[c]]), and the �I are interpreted as previously.

Let G be a cost grammar generating a subset L(G) ⊆ TM yielding an inter-
pretation L(G) = {[[c]] | c ∈ L(G)} ⊆ M. We show how to transform the cost
grammar G into an approximated GA that generates a larger (interpreted) cost

6 However, contrary to the TLC case, the decidability of full PTTL is open.
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set L(GA) but such that any cost d ∈ L(GA) is less than or equal to a cost
c ∈ L(G).

Assume G has non-terminals C1, . . . , Cn and rules of the form C −→ C1�JC2,
or C −→ C ′, or C −→ c. We denote by L(C) the language of TM generated by
any non-terminal C and by L(C) its interpretation in M. The approximation
process proceeds in two steps. We first compute a new grammar GΠ from G
that will generate ΠIL(C) for all I ⊆ {1, . . . , p} and non-terminal C of G. The
grammar GΠ is defined as follows:

• the non-terminals are all CI for C a non-terminal of G and I a subset of
{1, . . . , p},
• it contains the rules CI −→ CI

1 �J C
I
2 for C −→ C1 �J C2 a rule of G and

I ⊆ {1, . . . , p},
• similarly, it contains all rules CI −→ C ′I for C −→ C ′ an (epsilon-)rule of
G and I ⊆ {1, . . . , p},
• and all rules CI −→ ΠIc for C −→ c a rule of G and I ⊆ {1, . . . , p}.

We let the reader check that G is embedded in GΠ (when renaming C by C∅)
and that (GΠ)Π is embedded in GΠ (when renaming (CI)J by CI∪J).

The following proposition is proved by a straightforward induction on deriva-
tion length:

Proposition 9.2 For each non-terminal C of G, and subset I of {1, . . . , p},
the following properties hold:
– For each derivation C`∗c in G (resp. CI`∗ΠIc in GΠ) there is a derivation
CI`∗ΠIc in GΠ (resp. C`∗c in G) having the same length.
– L(CI) = ΠIL(C).

After dealing with projections, we now deal with the effective approximation
step. Our goal is to transform a cost grammar G with operations �I that mix
additions and maximums to a cost grammar GA with Parikh costs. The set
L(GA) is a superset of L(G) but the approximation is “safe” in that, for every
cost c in L(GA) \ L(G), we can find a c′ ∈ L(G) with c ≤ c′.

The idea underlying the construction of GA is to replace a rule C −→max(C1, C2)
by two rules C −→ C1 and C −→ C2 and see that the safety criterion is pre-
served through rules involving maxima or sums. However, while this simple
scheme works in dimension 1, the general case has to deal with mixed opera-
tions �I that take maxima on positions i ∈ I and sums on positions i 6∈ I.

We now describe a construction that generalizes the previous idea in higher
dimensions. Let GΠ be constructed from G as seen above. If X = CI is a
non-terminal of GΠ, we denote by XJ the non-terminal CI∪J . GA is defined
by:
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• its non-terminals are exactly the non-terminals of GΠ,
• the rules X −→ X1 �I X2 with I 6= ∅ in GΠ are replaced by all rules
X −→ XJ

1 +XK
2 where J ∪K = I and J ∩K = ∅ (here “+” denotes �∅).

By construction, GA is a cost grammar with Parikh costs, therefore the lan-
guage L(X) generated by any non-terminal X of GA is a semilinear set.

The next two propositions relate G and GA.

Proposition 9.3 L(C(G)) ⊆ L(C(GA)) for any non-terminal C of G.

PROOF. Actually we prove that L(CI
(GΠ)) ⊆ L(CI

(GA)) for all C and I. The

proof is by induction on the length of minimal derivations C I
(GΠ)`

∗c for [[c]] ∈

L(CI
(GΠ)). Assume c ∈ L(CI

(GΠ)). By definition c = [[c]] with c ∈ L(CI
(GΠ)) and

we choose c such that the length of the derivation is minimal.

• Assume X ` X1�IX2`
∗c is a derivation in GΠ. Then c is some c1�I c2 and,

for i = 1, 2, Xi`
∗ci is a sub-derivation in GΠ.

The derivations Xi`
∗ci induce derivations XJ

1 `
∗ΠJc1 and XK

2 `
∗ΠKc2.

Furthermore, the new derivations have the same lengths (Prop. 9.2).
For i = 1, 2, write [[ci]] under the form (x1

i , . . . , x
p
i ).

Let J = {j ∈ I | xj1 < x
j
2} and K = I \ J : this entails c = ΠJc1 + ΠKc2.

By construction, the rule X −→ XJ
1 +XK

2 is in GA.
By induction hypothesis, XJ

1 `
∗ΠJc1 and XK

2 `
∗ΠKc2 are derivations in GA

(where c1 = [[c1]], c2 = [[c2]]).
Therefore X`∗ΠJc1 + ΠKc2 in GA and [[c1]] + [[c2]] = c.

• In case the derivation starts with a rule of the form C −→ c or C −→ C ′,
the proof is similar (even simpler). 2

Proposition 9.4 For any non-terminal C of G and cost c ∈ L(C(GA)) there
exists some d ∈ L(C(G)) s.t. c ≤ d.

PROOF. Actually we prove the result for all non-terminals of GΠ. Assume
c ∈ L(X(GA)). We prove c ≤ d for some d ∈ L(X(GΠ)) by induction on the
length of minimal derivations of cost terms c such that [[c]] = c.

• Assume X ` XJ
1 + XK

2 `
∗c is a derivation in GA, where the rule X −→

XJ
1 +XK

2 comes from a rule X −→ X1 �J∪K X2 in GΠ.
Then there exists c1, c2 such that c = [[c1]] + [[c2]] and two sub-derivations

XJ
1 `

∗c1 and XK
2 `

∗c2.
By induction hypothesis, there are d1 ≥ c1 = [[c1]] and d2 ≥ c2 = [[c2]] s.t.

d1 ∈ L(XJ
1 ) and d2 ∈ L(XK

2 ).
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By definition there exists d1 ∈ L(XJ
1 ) and d2 ∈ L(XK

2 ) s.t. XJ
1 `

∗d1 and
XK

2 `
∗d2 are derivations in GΠ.

By Prop. 9.2, d1 = ΠJd
′
1 and d2 = ΠKd

′
2 for some derivations X1`

∗d′1 and
X2`

∗d′2 in GΠ: we deduce [[d1]] + [[d2]] ≤ [[d′1]]�J∪K [[d′2]].
Let us write d for d′1 �J∪K d′2. We have X`∗d in GΠ and d = [[d]] ≥

[[d1]] + [[d2]] ≥ c1 + c2 = c.
• In case the derivation start with a rule of the form C −→ c or C −→ C ′,

the proof is similar (even simpler). 2

PROOF (of Theorem 9.1). The proof is similar to the proof of theorem 8.3.

To a parameterized formula ϕ of the form ∃ū, v̄
(
∧n
i=1 ui

∃xi>ψi(ȳi)
−−−−−→ vi

)

we
associate Gϕ, a regular tree grammar with costs which generates the solution

of ∃ū, v̄
(
∧n
i=1 ui

∃true
−−→ vi

)

. According to Propositions 9.3 and 9.4, for each set of

costs L(CQ) of Gϕ, we can compute a semilinear set L(CA
Q) which approximates

L(CQ).

We claim that ϕ is satisfiable iff the Presburger formula

∃〈x′1, . . . , x
′
n〉 ∈ L(CA

QAx
) ∧

i=n∧

i=1

x′i > ψi(ȳi)

is satisfiable:

• ⇒ direction: since L(CQAx
) ⊆ L(CA

QAx
), then xi ∈ L(CQAx

) implies that
xi ∈ L(CA

QAx
). Therefore the Presburger’s formula holds.

• ⇐ direction: If 〈x′1, . . . , x
′
n〉 ∈ L(CA

QAx
) and x′i > ψi(ȳi) for 1, . . . , n, there

exists 〈x1, . . . , xn〉 ∈ L(CQAx
) such that xi ≥ x′i > ψi(ȳi) for i = 1, . . . , n.

Therefore ϕ is satisfiable. 2

10 Conclusion

The recognizability of
∗
−→ extends our earlier results on reachability sets. This

also opens new directions for automata-theoretic approaches to the verification
of PA-processes, since being able to compute the set of solutions of a transition
logic formula allows a smooth and general approach to the verification of
parameterized properties for parameterized systems.

Additionally, the automata-theoretic approach relies on quite simple construc-
tions. The consequence is that we can easily extend it in various ways, as
we demonstrated with reachability under decomposable cost predicates, with
various timed extensions of the transition logic, and with TLC where both
PA-processes and Parikh costs can be constrained via parameterized formulas.
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An important open problem is the complexity of the decision problem for the
logic TL. The decision procedure that we gave is non-elementary since each
quantifier alternation yields an exponential blowup but we don’t know whether
a lower complexity can be obtained. This should help understand what cost
sets and what decomposable predicates can be handled in practice, and what
restrictions may be fruitfully imposed on transition logics so that they remain
computationally tractable.
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A About Remark 4.5

We provide an example ∆ where, assuming the SOS rules given in Remark 4.5,
∗
−→ is not regular.

Let Const
def

= {X,Y } and ∆
def

= {X −→ X,Y −→ 0}. WriteXn forX.(X.(X . . .X))
︸ ︷︷ ︸

n

and Y mXn for Y.(Y.(. . . Y
︸ ︷︷ ︸

m

.Xn)).

For any n,m > 0, the pair 〈Y mXn, Xn〉 is in
∗
−→ so that any regular grammar

generating
∗
−→ must generate the products Y mXn × Xn. For m > n, this

product has the form

Y X..(Y X..(· · · (Y X
︸ ︷︷ ︸

n

..(Y⊥..(· · ·Y⊥..(Y⊥.. (Y X..(X⊥..(· · ·X⊥)
︸ ︷︷ ︸

n

))))))))

Here a standard pumping argument shows that, for n large enough, there must
be some k s.t. the product term

Y X..(Y X..(· · · (Y X
︸ ︷︷ ︸

n+k

..(Y⊥..(· · ·Y⊥..(Y⊥.. (Y X..(X⊥..(· · ·X⊥)
︸ ︷︷ ︸

n

))))))))

is also accepted.

This would imply Y m+kXn ∗
−→ Xn+k, in contradiction with ∆. Hence no regular

tree grammar G can generate
∗
−→.

B Proof of Proposition 8.1

The proof is a reduction from PCP, the Post Correspondence Problem: let
P = 〈α1, . . . , αm, β1, . . . , βm〉 be an instance of PCP. W.l.o.g. we can assume
the αi’s and βi’s are non-empty words over the two-letters alphabet Σ = {a, b}.

We define a PA system that can look for solutions to P . The set of actions
has two copies of a and b and two copies of all numbers from 1 to m, plus a
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special purpose marker #: Act
def

= {#, a+, b+, 1+, . . . ,m+, a−, b−, 1−, . . . ,m−}.

∆P has a rule X+ #
−→ 0 and, for every αi of the form a1 · · · ani

, there are rules

X+ a+
1−→ Z+

i,1, Z
+
i,1

a+
2−→ Z+

i,2, . . . , Z+
i,j−1

a+

j
−→ Z+

i,j , . . . , Z+
i,ni−1

a+
ni−→ X+.Y +

i , and finally

Y +
i

i+
−→ 0.

X+ is then able to perform a sequence of αi’s (all the while storing the i’s),
then stop with #, and then emit the i’s in reverse order. Formally, for any
sequence i1 . . . ip of indexes in {1, . . . ,m} there is one way to perform

X+
u+

i1
...u+

ip
−−−−→ t

#
−→ t′

i+p ...i
+
1−−−→ t′′

Furthermore this behavior is completely determined by i1 . . . ip: t, t
′ and t′′

are unique, e.g., t′ is (· · · ((O.Y +
i1

).Y +
i2

) · · · ).Y +
ip

), and t′′ is now a terminated
process.

We define X− with similar rules, this time using the βi’s instead of the αi’s,
and using the letters with “−” superscripts replacing the +’s. Now if P has a
solution i1 . . . ip, then X+ ‖ X− may display it via some

X+ ‖ X− w
−→ t1

##
−→ t2

w′

−→ s

where w is a sequence of matched a+
i .a

−
i , w′ is a sequence of matched i+.i−,

and s is terminated. This is obtained by shuffling behaviors from X+ and X−.
Conversely, X+ ‖ X− has such a behavior only if P admits a solution.

We now write the TLC formula

ϕ(t0)
def

= ∃t1∃t2∃t3











t0
∃x̄ψ(x̄)
−−−→ t1 ∧ t1

##
−→ t2 ∧ t2

∃x̄ψ(x̄)
−−−→ t3 ∧ t3 ∈ Final

∧
∀s






¬(t0
∗
−→ s) ∨ ¬(s

∗
−→ t1) ∨ t0

∃x̄ψ′(x̄)
−−−→ s

∧
¬(t2

∗
−→ s) ∨ ¬(s

∗
−→ t3) ∨ t2

∃x̄ψ′(x̄)
−−−→ s
















where ψ(x̄) is a Presburger formula stating that the number of + letters equals
the number of − letters, and ψ′(x̄) states that if ψ(x̄) then, for each individual
letter, the number of +’s agrees with the number of −’s. Formally, if x̄ =
〈n1, . . . , nk,m1, . . . ,mk〉 is the cost (omitting the #’s) ψ is n1 + · · · + nk =
m1 + · · ·+mk and ψ′ is ψ(x̄)⇒ (n1 = m1 ∧ · · · ∧ nk = mk).

Observe that the negations in ϕ only occur inside atoms “¬(s −→ t)” denoting
some recognizable R(s, t) since the complements of

∗
−→ and −→ are recognizable

relations. Hence ϕ is a TLC formula.

Lemma B.1 P admits a solution iff ϕ(X+ ‖ X−) is true (in the context of
∆P ).
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PROOF. (⇒:) We choose t1, t2 and t3 corresponding to the sequence i1 . . . ip
solving P . Any s between X+ ‖ X− and t1 (resp. between t2 and t3) is reached
by interleaving some prefix of some w+ and some other prefix of the corre-

sponding w−, hence the two “t...
∃x̄ψ′(x̄)
−−−→ s” hold since if the prefix have same

length, i.e., “ψ(x̄)”, then they match.
(⇐:) Assume ϕ(X+ ‖ X−) is true. Then t1, t2 and t3 are reached by inter-

leaving X+ w+
1−→ t+1

#
−→ t+2

w+
2−→ t+3 and X− w−

3−→ t−1
#
−→ t−2

w−
4−→ t−3 . By construction

of ∆P , w2 and w4 are sequences of indexes from {1, . . . ,m}, and w1 (resp.
w3) is the corresponding concatenation of αi’s (resp. of βi). We show w1 = w3

and w2 = w4, i.e., P admits a solution: since all interleaving are allowed when
moving from X+ ‖ X−, ϕ states that every prefix w′

1 and w′
2 of, resp., w1

and w2 with same length have same Parikh image. Since this holds for every
prefix, this entails that they have the same letters at the same position, and
hence are equal. The same holds for w3 and w4. 2

Hence PCP can be reduced to satisfiability of TLC , concluding the proof of
Prop. 8.1.
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