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Abstract

The Counting Constraint Satisfaction Problem (#CSP) can be expressed as follows:
given a set of variables, a set of values that can be taken by the variables, and a
set of constraints specifying some restrictions on the values that can be taken si-
multaneously by some variables, determine the number of assignments of values to
variables that satisfy all the constraints. The #CSP provides a general framework
for numerous counting combinatorial problems including counting satisfying assign-
ments to a propositional formula, counting graph homomorphisms, graph reliability
and many others. This problem can be parametrized by the set of relations that may
appear in a constraint. In this paper we start a systematic study of subclasses of the
#CSP restricted in this way. The ultimate goal of this investigation is to distinguish
those restricted subclasses of the #CSP which are solvable in polynomial time from
those which are not. We show that the complexity of any restricted #CSP class
on a finite domain can be deduced from the properties of polymorphisms of the
allowed constraints, similar to that for the decision constraint satisfaction problem.
Then we prove that if a subclass of the #CSP is solvable in polynomial time, then
constraints allowed by the class satisfy some very restrictive condition: they need
to have a Mal’tsev polymorphism, that is a ternary operation m(x,y, z) such that
m(x,y,y) = m(y,y,z) = x. This condition uniformly explains many existing com-
plexity results for particular cases of the #CSP, including the dichotomy results
for the problem of counting graph homomorphisms, and it allows us to obtain new
results.
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1 Introduction

In a counting combinatorial problem the objective is to find the number of fea-
sible solutions to a certain search problem. Similar to its decision counterpart,
the Counting Constraint Satisfaction Problem (#CSP) can be used to pro-
vide a generic framework for numerous counting combinatorial problems that
arise frequently in a wide range of areas from logic, graph theory, and artificial
intelligence [4,13,21,26,33,41,45,51,52,55,56], to statistical physics [3,11,39].

The prototypical counting problem, #SAT, i.e. the problem of counting the
number of assignments that satisfy a CNF formula, constitutes an important
particular case of the #CSP. Since the pionnering papers of Valiant [55,56] the
computational complexity of counting satisfying assignments to propositional
formulas of various types [13,41,51,52,55,56] has been intensively investigated.
In particular, it has been found that #SAT is much more computationally
demanding than its decision counterpart SAT, and is #P-complete even for
Horn or monotone formulas, and even when the size of clauses and the number
of occurrences of a variable in the formula are extremely limited. In [13],
Creignou and Hermann obtained a dichotomy theorem for #SAT, similar to
that of Schaefer [53] for (decision) SAT.

The formalism of constraint networks introduced by Montanari [43] provides a
natural generalization of propositional formulas to domains with more than 2
elements. A constraint network is given by a collection of variables, a domain,
and a family of constraints where a constraint is a pair given by a list of
variables, called the scope, and a relation indicating the valid combinations
of values for the variables in the scope. The problem of deciding whether
there exists a solution to a constraint network, i.e., an assignment of values to
variables satisfying all the constraints, is known as the constraint satisfaction
problem (CSP). This problem received considerable attention in theoretical
computer science and it also constitutes one of the major lines of research in
artificial intelligence.

The class of counting constraint satisfaction problems is defined as the count-
ing version on CSP, i.e. the problem of finding the number of solutions to a
constraint network. This problem can also be reformulated as (1) the problem
of finding the number of models of a conjunctive formula, as (2) the problem
of counting the number of homomorphisms between two finite relational struc-
tures A and B, and also as (3) the problem of computing the size (number of
tuples) of the evaluation (D) of a conjuntive query (without projection) @
on a database D; see [24,37].

Further examples of combinatorial problems expressible in a natural way in
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#CSP terms include problems from propositional logic [13,52], classical com-
binatorial problems such as #CLIQUE, GRAPH RELIABILITY, ANTICHAIN,
PERMANENT [41,51,55,56], counting graph homomorphisms, and many others
[4,21,26,33].

A particular case of the counting graph homomorphisms problem, the class of
# H-COLORING problems, attracts a special attention. In a # H-COLORING
problem the goal is to count the number of homomorphisms from a graph G
(the input) to a fixed graph H. Recently, Dyer and Greenhill [21] proved that,
for every undirected graph H, its associated # H-COLORING problem is either
in FP or #P-complete (even when restricted to graphs of bounded degree) and
they have also provided a complete characterization of the tractable problems.
This result has been extended to the counting LiST # H-COLORING problem
[19], which allows additional restrictions on possible images of a node. Fur-
thermore, some other variants of the # H-COLORING problem for undirected
graphs have been intensively studied during last several years [17,18].

In general, there are two most usual ways to parametrize the constraint satis-
faction problem and its variants: by restricting either the scopes or the rela-
tions that may appear in a constraint. It is perhaps more usual to think of it as
of restricting the left side or the right side of the homomorphism formulation
of the CSP. Constraint problems with restrictions on both sides have also been
investigated, especially in graph theory. However, studying such problems in
general seems to be very challenging.

Left side restrictions of the #CSP are studied in [16]. In this paper we study
restrictions on the right side. Most of the previous results on the #CSP, such
as the dichotomy theorem for #SAT [13], or the work in # H-COLORING,
fit in this framework. More precisely, we embark on a systematic study of
the computational complexity of the subclasses of the #CSP parametrized
by the set of allowed constraint relations. The ultimate goal of this study
is to identify those restrictions which being imposed on the possible form of
constraints lead to a problem solvable in polynomial time. To this end, we
prove a somewhat surprising result claiming that the restricted classes of the
#CSP can be parametrized by sets of operations, polymorphisms, so that
certain properties of the polymorphisms determine the complexity of a class.
An analogous approach has proved to be very fruitful in the study of the
decision constraint satisfaction problem [8-10,34-36], and we expect that it
will also be useful for the study of counting problems.

This algebraic approach allows us to identify a common property of all tractable
restricted #CSPs: we show that every #CSP-class having no polymorphism
of a certain special type is #P-complete. Operations of this type are said to
be Mal’tsev; these are ternary operations m(x,y, z) such that m(x,y,y) =
m(y,y,x) = x. Mal’tsev operations have been an object of intensive investi-



gation in algebra for many years. We therefore get a new simple and powerful
method of proving hardness results which has always been the most difficult
part of any study of counting problems. Using this result we give a generic
explanation to many existing complexity results on counting CSP and its par-
ticular cases including different types of #H-COLORING [17-19,21], and con-
straints considered in [15,23,24]. It is worth noticing that in all these examples
the frontier between tractability and intractability is given by invariance under
Mal’'tsev operations. It is therefore very natural to conjecture that the exis-
tence of such a polymorphism is a sufficient condition for tractability, and so
we did in the conference version of this paper [5]. Now we know that the con-
jecture is false. We finish the present paper by presenting a concrete Mal’tsev
operation that gives rise to a #P-complete problem.

The paper is organized as follows. In Section 2, we give basic definitions and
examples and also formulate the main research problem. The primary goal of
Section 3 is to show that, similar to the case of the decision CSP, polymor-
phisms of constraint languages capture the complexity of restricted #CSPs.
In Section 4, we develop the algebraic approach by introducing the notion of a
“#-tractable algebra” and showing that the usual algebraic constructions pre-
serve the tractability of an algebra. Then we use these results to show that the
presence of a Mal’tsev polymorphism is a necessary condition for a problem
to be solvable in polynomial time. Then, in Section 5, we use this necessary
condition to obtain short and simple proofs for many existing results and also
characterize the # H-COLORING problems solvable in polynomial time, when
H is an oriented cycle. Finally, in Section 6, we discuss the possible form of a
general criterion for polynomial time solvability of #CSPs.

We should note that in the conference version of this paper [5] we mistak-
enly claimed that we obtained a dichotomy theorem for counting CSPs on
a 3-element set. That result is incorrect, and the problem of characterizing
tractable counting CSPs on a 3-element set remains open.

2 The Counting Constraint Satisfaction Problem

2.1 Definitions and Examples

Let A be a finite set. An r-ary, r > 1, relation R on A is any subset of A”.

Definition 1 The counting constraint satisfaction problem (#CSP) is the
combinatorial function problem with

INSTANCE: a triple (V; A;C) where V is a finite set of variables, A is a finite



set of values [domain], C is a finite set of constraints. Fach constraint C' € C
is a pair (s, o), where
o 5= (V1,...,Un.) 1S a tuple of variables of length m¢, called the constraint
scope;
e 0 is an mg-ary relation on A, called the constraint relation.
OBJECTIVE: compute the number of solutions, i.e. functions @, from V to A,
such that, for each constraint (s,0) € C, with s = (v1,...,Un), the tuple

(p(v1),...,¢(vm)) belongs to .

Example 1 (#k-SAT, [13,14,55,56]) An instance of the #k-SAT prob-
lem is specified by giving a propositional logic formula in k-CNF, and asking
how many assignments satisfy it.

Suppose that ® = FiA- - -AF, is such a formula, where the F; are clauses with k
literals. The satisfiability question for ® can be expressed as the constraint sat-
isfaction problem instance (V;{0,1};C), where V is the set of all variables ap-

pearing in the clauses F;, and C is the set of constraints {(s1, 01), ..., (Sn, 0n)},
where each constraint (s;, 0;), [ = 1,...,n is constructed as follows:
o 5= (z},...,2}) where 2}, ..., ! are the variables appearing in clause Fy;

e o, ={0,1}*\ {(ay,...,ar)} where a; = 1 if 2 is negated in F; and a; = 0
otherwise (i.e., ¢; contains exactly those k-tuples that make Fj true).

The solutions of this instance are exactly the assignments which make the
formula ¢ true.

It is well known [55,56] that #k-SAT is #P-complete for k > 2. O

Throughout the paper we use the standard correspondence between predicates
and relations: a relation consists of all tuples of values for which the corre-
sponding predicate is true. We will use the same symbol for a predicate and
its corresponding relation, since the meaning will always be clear from the
context.

Let vq,..., v, be variables. A first order formula with free variables vy, ..., v
is said to be conjunctive if it is a finite conjunction of clauses Fy A --- A F},
such that each clause, F;, is an atomic formula of the form o(v;,,...,v;.)
where v;,, ..., v;, are variables in {vy,...,v;} and g is a predicate on A. An

atomic formula o(vy, ..., v,) is satisfied by a variable assignment ¢ : V — A
if and only if (¢(v1),...,0(v.)) € p, and a conjunctive formula is satisfiable
if and only if there exists an assignment satisfying all its clauses. Sometimes
another formulation of the #CSP, given in terms of conjunctive formulas, is
more convenient.

Definition 2 Let A be a finite set. An instance of the #CSP is a conjunctive
formula Fy A\ ... N\ F,, where each F; is an atomic formula. The objective is to



find the number of satisfying assignments to the formula.

Example 1 (continued) In the #k-SAT problem, a CNF can obviously be
viewed as a conjunctive formula with predicate symbols interpreted as the
corresponding Boolean predicates. O

Note: In this paper we use the notion of completeness based on Turing reduc-
tion, as in [41,51,55,56], rather than parsimonious reduction, as in [46]. In fact,
this notion of reduction was used also in [14], as its #P-completeness results
relies upon the results of [41,51,55,56]. Thus, throughout the paper ‘reduction’
always means ‘Turing reduction’.

The general #CSP is known to be #P-complete, as follows from [56] and the
example above. However, some restricted problems have been shown to be
computable in polynomial time. One of the most natural and useful ways to
restrict the CSP is to impose restrictions on the allowed constraint relations.

A constraint language on a set A is just a set of relations on A.

Definition 3 For any constraint language ', the #CSP(I") is defined to be
the class of counting problems with:

INSTANCE : A constraint satisfaction problem instance P, in which all con-
straint relations are elements of T'.
OBJECTIVE : compute the number of solutions to P.

If the #CSP is defined in the logic form, that is as in Definition 2, then
#CSP(I') is defined similarly: the instances of #CSP(I") are restricted to those
instances of the #CSP which include predicates from I' only.

Example 1 (continued) If we define I'j._g , to be the constraint language
on {0, 1} consisting of all relations expressible by k-clauses, then any instance
of #k-SAT can be expressed as an instance of #CSP(I';._q ,) and vice versa.
In other words, #k-SAT is equivalent to #CSP(I'y._g ) O

Example 2 (ANTICHAIN, [51]) In the problem ANTICHAIN we are given
a finite poset (P;<), and we aim to compute the number of antichains in
P. This problem can be expressed in the #CSP-form as follows. Let o~ be
the relation that encodes the natural order on A = {0,1}, that is, o5 =
{(0,0),(0,1),(1,1)}. To each element a € P, we assign a variable z,. We
shall denote by V the set of all such variables. Then the #CSP({o<}) in-
stance P = (V;{0,1};{{(xq, z), 0<) | @ < b}) is equivalent to the original
ANTICHAIN instance.

To show this, notice that every solution ¢ to P satisfies the following condition:
if p(z,) =1 and a < b then ¢(x;) = 1. This means that the set F,, = {a €



P | o(x,) = 1} is a filter of P, that is a set such that if a € F, and a < b
then b € F,. Finally, notice that there is a one-to-one correspondence between
antichains of the poset P and its filters. Indeed, for any antichain H C P, the
set {q € P | there is p € H such that p < ¢} is a filter. Conversely, for a filter
F C P, theset {g€ F |if p € F and p < g then p = ¢} of minimal elements
from F' forms an antichain. Thus the solutions of P one-to-one correspond to
the filters of P, and consequently, to the antichains of P.

On the other hand, any #CSP({o<}) instance is reducible to an ANTICHAIN
instance, though not so straightforwardly. (The set of variables of the instance
can be turned into a digraph, whose edges are the constraint scopes. Then the
required ANTICHAIN instance is the poset of the strongly connected compo-
nents of this digraph.) Thus ANTICHAIN is equivalent to #CSP({o<}). O

Example 3 ( #H-COLORING, [21,30,40]) Let H be a (directed) graph. In
the H-COLORING problem we are asked, given a graph G, whether there is a
homomorphism from G to H. Correspondingly in its counting version, # H-
COLORING, the objective is to find the number of such homomorphisms.

For every (directed) graph H we shall denote by Vj its set of nodes and by
op its set of edges.

Then every instance G = (Vi, 0¢) of the # H-COLORING problem corresponds
to the instance P = (Vig; Viy; C) of #CSP({og}) constructed in the following
way: The set of variables V; of P is the set of nodes of GG, the domain V of P
is the set of nodes of H. Finally, for every edge (a, b) in gg, C contains the con-
straint ((a,b), og). Therefore every homomorphism from G to H corresponds
to a solution of P.

Note that this framework does not allow us to study # H-COLORING problems
with input graphs of restricted types, such as graphs of bounded degree, pla-
nar, and so on. To express problems of this type we need to impose restrictions
on both relational structures involved in a #CSP. O

Definition 4 A constraint language I is called #-tractable if for any finite
[V C T the problem #CSP(I") is solvable in polynomial time.

A constraint language T' is called #P-complete if #CSP(I) is #P-complete
for a certain finite I C T,

Notice that this ‘local’ notion of tractability perfectly suits our aims, since,
on the one hand, it deals with potentially infinite sets of predicates, that
makes it possible to obtain general theoretical results; on the other hand, it
is applicable to practical problems, because those mostly use finite sets of
allowed predicates.



We are in a position to pose the main problem we tackle in this paper.

Problem 1 (Classification problem) Characterize #-tractable and #P-complete
constraint languages on finite sets.

This problem is completely solved in the Boolean case, that is when a con-
straint language is on a 2-element set.

Theorem 1 ([13,14]) A Boolean constraint language ' is #-tractable if and
only if every relation from T is the solution space of a system of linear equa-
tions over a 2-element field. Otherwise, 1" is #P-complete.

3 Invariance properties of #CSP

3.1 Relational clones

The main idea in tackling Problem 1 is to reduce the number of constraint
languages to be considered by determining which predicates can be added
to a #-tractable constraint language so that the obtained language remains
#-tractable. This idea was used in [13,14] for #SAT, where new predicates
are derived by the construction of faithful implementation. The following con-
struction is equivalent to faithful implementation when |A| = 2, and, in fact,
is prompted by the form of #CSP instances in the logic form.

Let I" be a (possibly infinite) constraint language on a finite domain A. The
relation o defined by a conjunctive formula ®(vy,...,v;) with free variables
v1,...,0 is  the  k-ary relation that contains the  tuple
(p(v1),...,p(vg)) for each satisfying assignment ¢ to ®. If ® involves only
predicates from I' we say that o is definable by a conjunctive formula over I'.
Let =4 denote the relation of equality on the set A.

Proposition 1 Let I" be a constraint language on a finite set A. If o is defin-
able by a conjunctive formula over I', then #CSP(I'U{o}) and #CSP(I'U{=4
}) are reducible to #CSP(I).

Proof: Take an instance P from #CSP(I' U {p}) in the logic form, that is P
is a conjunctive formula. For every constraint o(vy, ..., v,,) from P we do the
following: Rewrite the conjunctive formula ®, that expresses g so that its free
variables are precisely vy, ..., v,. So we have that ®, is of the form:

01(V11, -+, Ving ) A v oo A 0k (Ut + -+ Uk ) (1)



where 01,...,0r € I depend only on the predicate g, and vi1,..., V1,
Vo1, vy Ukny, € {V1,..., 0 }. Replace o(vy, ..., v,) with (1). We obtain a prob-
lem instance with the identical set of solutions.

Now let P be an instance of #CSP(I' U {=4}). In order to get rid of the
relation of equality, =4, we use the procedure introduced in [34]: For every
constraint of the form =4 (u,v) in P, we remove it from P and replace every
occurence of v with wu.

The obtained problem instance P* belongs to #CSP(I"). Obviously, the re-
duction can be fulfilled in polynomial time. Furthermore, although the set of
solutions to P* differs from the set of solutions to P (since some variables are
removed), both have the same cardinality. O

Further constructions preserving #-tractability are much less easy and obvi-
ous. If we also allow existential quantification for conjunctive formulas then
we obtain a larger class of formulas, called primitive positive or pp- formulas.
The semantics and the relation expressed by a pp-formula is defined similarly
to those for conjunctive formulas.

Proposition 2 Let I' be a constraint language, let o be a relation in I' and
let o be the relation defineded by 3z, 0(xy, ..., xm). Then #CSP(I'U {c}) is
reducible to #CSP(T).

To prove Proposition 2 and some other results in this paper, we use the inter-
polation technique introduced in [56]. This technique is based on the following
lemma that we borrow from [21].

Lemma 1 (Lemma 3.2, [21]) Letwy,...,w, be known distinct nonzero con-
stants. Suppose that we know values fi, ..., f, such that

r
fs = Z Ciwf
=1

for1 < s <r. The coefficients ¢y, ..., c, can be evaluated in a time polynomial
inr and max,_, _,{logws,log f,}.

Remark 1 In most cases we are interested not in the individual values of the
ci, but rather in the sum of them. This allows us to deal with a situation when
not all of wy, ..., w, are distinct. Indeed, if w; = w; then we replace c¢; and c;
with their sum, and so shorten the sums above.

Proof (of Proposition 2):

For each tuple (aj,...,a,_1) € o there are several b such that (aq,...,



an—1,b) € o. If 0 = {ay,...,a,} where every a; is an (n — 1)-tuple over
A, then let u; be the number of extensions of a;. Clearly, u; > 0 for all j.

Take a problem instance P = Cy A...ACy in #CSP(I'U{c}). Without loss of
generality we may assume that Cf, ..., Cs, s < t, are the constraints containing
0. Then n; =n —1fori € {1,...,s}. Let { > 1 and let P be the problem
instance from #CSP(I') in which each constraint C; = o(z;,,...,z;, ,) with
1 <1 < sisreplaced with constrainsts C’Z-l, e C’f , where each Cij 1 <5<, is
the constraint o(z;,,...,%;, ,,¥:;) such that the variables y;; are all different
and do not occur in P.

For a solution ¢ to P, let a,(j) denote the number of constraints C; =
o(Tiyy -y iy ), © < s, such that (o(z,),...,¢(z;,_,)) = a; € o. Clearly,
ay,(1) + ... 4+ ax(q) = s. Furthermore, let N(by,...,b,) denote the number
of those solutions ¢ for which a,(j) = b;, 1 < j < ¢. To solve the problem
P it suffices to find the sum of all numbers of this form. Each N(by,...,b,)
corresponds to a partition of s in ¢ nonnegative summands b, +. ..+ b,. Hence
the number p of Ns does not exceed (s + 1)%. Since ¢ depends only on I' and
o, this number is bounded by a polynomial in the size of P.

Every solution ¢ of P can be extended to a solution of PY. To this end, for
each constraint C; = o(z4,,..., 2, ), 1 < s, of P, let (o(xy), ..., 0(xi,_,)) =
a; € 0. The tuple a; can be extended to a tuple from p in one of u; ways. As
C; corresponds to [ constraints in P%, the number of extensions for a; is ué
Since the same holds for each constraint, we get

(uh)®e @ . (uhyee® . (ué)av(Q) _ (uflw(l) .u;w@) . ugv(Q))l

extensions of ¢ to a solution of P®. The problem instance P® belongs to
#CSP(T") and the number of its solutions is

Ny= > N(bi,....by)(u] - ... ul)’.

b1+...+bq:8

By Remark 1 we may assume that all the numbers u4* - ... - ugq are different.
The determinant of the linear system

> N(by,....bgul .. culr =N,

bi+...4+bg=s
ST N(brye bl - ubn)? = N,
bi+...+bg=s

> N(by,....b)(ult ... ul)P =N,

b1+...+bq:8
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is Vandermonde, and therefore by Lemma 1 the system can be solved in poly-
nomial time. a

Constraint languages containing the relation of equality and closed with re-
spect to pp-formulas definability have been intensively studied (see e.g. [47—
49]) and have provided strong assistance in the study of the decision constraint
satisfaction problem [9,10,34,36].

Definition 5 A constraint language A on a set A is said to be a relational
clone if it contains =4 and every relation expressible by a pp-formula over A.

For a constraint language I, the relational clone, consisting of =4 and all
relations definable by a pp-formula over T' is denoted by (T').

Propositions 1,2 imply the first main result of the paper.

Theorem 2 Let I'1,I's be constraint languages on a finite set A such that I'y
is finite and 'y C (I'y). Then #CSP(I'y) is reducible to #CSP(I'y).

Corollary 1 A constraint language T is #-tractable (#P-complete) if and
only if so is (I').

3.2 Polymorphisms

The results of the previous section show that the class of constraint lan-
guages to be studied can be considerably reduced. To reduce it even fur-
ther we use the invariance properties of relations [34,36,49]. Any operation
on a set A can be extended in a standard way to an operation on tuples
over A, as follows. For any (m-ary) operation f, and any collection of tuples
ap,...,a, € A" where a; = (ay;,...,a,) (i = 1...m), define f(ay,...,a,)
to be (f(ait,---,a1m), -, flant, - aum))-

Definition 6 An m-ary operation f preserves an n-ary relation o (or o is
invariant under f, or f is a polymorphism of g) if for any ay, ..., a,, € o the
tuple f(ay,...,a,) belongs to o.

For a given set of operations, C, the set of all relations invariant under every
operation from C' is denoted by Inv C. Conversely, for a constraint language,
I, the set of all operations preserving every relation from I' is denoted by Pol T'.

Example 4 ([54]) Let p be the solution space of a system of linear equations
over a finite field F'. Then the operation m(z,y, z) = x — y + z is a polymor-
phism of p. Indeed, let A - x = b be the system defining p, and x,y,z € p.

11



Then
A-mx,y,z)=A- (x—y+z)=A-x—A-y+A-z=b—-b+b=h.

In fact, the converse can also be shown: if ¢ is invariant under m then it is the
solution space of a certain system of linear equations. a

The sets of the form Inv C' are relational clones, and every relational clone can
be represented in this form [49,54].

Proposition 3 ([49,54]) For any constraint languages T'1,Ts on the same
finite set, I'y C (I'y) if and only if Pol I'y C Pol I'y.

As a consequence of Theorem 2 and Proposition 3 we deduce the following
important result that constitutes the basis of the algebraic approach to the
counting CSP.

Theorem 3 Let ', 'y be constraint languages on a finite set such that 'y
is finite and Pol T'y C Pol T'y. Then #CSP(I'y) is reducible to #CSP(I'y).
Therefore, if #CSP(I'1) is #-tractable then so is #CSP('y), and if #CSP(I'y)
is #P-complete then so is #CSP(I').

Thus, all the information about the complexity of #CSP(I") can be extracted
from the family of polymorphisms of I'. Sets of polymorphisms often provide a
more convenient and concise way of describing a class of constraint satisfaction
problems. In particular, the dichotomy result for Boolean constraint languages
can be reformulated as follows.

Theorem 4 ([14]) A Boolean constraint language I' is #-tractable if and
only if every relation from T' is invariant with respect to the operation v —
Yy + z where 4+, — are addition and subtraction modulo 2. Otherwise I' is #P-
complete.

The operation x — y + z is one of the simplest examples of so called Mal’tsev
operations: A ternary operation m(x,y, z) on a set A is said to be Mal’tsev if
it satisfies the condition m(z,y,y) = m(y,y,z) = x for any =,y € A. Another
well known example of a Mal’tsev operation that generalizes operation x—y+z
is the operation zy~ 'z of a group.

The following theorem, our second main result, shows that Mal'tsev operations
play, possibly, a crucial role in the study of the #CSP.

Theorem 5 If I is a constraint language which is invariant under no Mal’t-
sev operation then I' is #P-complete.

In the next section we develop an algebraic machinary sufficient to prove
Theorem 5. Then, in Section 5, we apply Theorem 5 to some particular cases

12



of #CSP, obtaining new algorithms, reproving and sometimes generalizing
existing results.

4 Algebraic Structure of #CSP

4.1 Algebraic constructions and #CSP

In this subsection we give basic algebraic definitions. We also introduce the
notion of a “#-tractable algebra” and show how it relates to the complexity
of problem classes of the form #CSP(I"). In our algebraic definitions we follow
[12,42]. For algebraic notions and results concerning the decision CSP the
reader is referred to [8,10].

A (universal) algebrais an ordered pair A = (A, F') where A is a non-empty set
and F is a family of finitary operations on A. The set A is called the universe
of A, the operations from F' are called basic. An algebra with a finite universe
is referred to as a finite algebra.

Any constraint language I' on a set A can be converted into an algebra
Ar = (A;Pol T'), and vice versa, for any algebra (A; F'), there is a corre-
sponding constraint language, Inv F'. By Theorem 3, if Pol I'y = Pol I'y or,
equivalently, Ap, = Ap,, then I'1, 'y are #-tractable or #P-complete simul-
taneously. Therefore all the problem classes can be parametrized by finite
algebras so that classes with the same parameter have the same complexity.
We make the following definition.

Definition 7 An algebra A = (A; F) is said to be #-tractable [#P-complete]
if the constraint language Inv F' is #-tractable [#P-complete].

We shall slightly abuse the notation and denote by #CSP(A) the problem
class #CSP(Inv F).

Making use of Definition 7 we reformulate Problem 1.

Problem 2 (Classification problem) Characterise the #-tractable and # P-
complete finite algebras.

Theorem 4 provides the first step towards a solution of this problem, because
it yields a complete classification of two-element algebras with respect to #-
tractability.

An operation f is said to be a term operation of an algebra A = (A; F) if
f € Pol Inv F. It is straightforward that, if a relation o is invariant under F'
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then it is also invariant under every term operation of A.

Theorem 6 ([13,14]) A two-element algebra A = ({0,1}; F) is #-tractable
if and only if x —y + z (mod 2) is a term operation of A. Otherwise A is
#P-complete.

The main idea of the algebraic approach is to use some properties of an algebra
in order to determine the complexity of the associated #CSP. To identify
these properties, some connections between the complexity of an algebra and
standard algebraic constructions will be very helpful.

Definition 8 (1) Let A = (A; F') be an algebra. The k-th direct power of A
is the algebra A* = (A¥; F) where we treat each (n-ary) operation f € F as
acting on AF.

(2) Let A = (A; F) be an algebra, and let B be a subset of A such that, for
any (n-ary) f € F, and for any by,...,b, € B, we have f(by,...,b,) € B.
Then the algebra B = (B; F‘B), where F‘B consists of restrictions of operations
f € F to B, is called a subalgebra of A.

(3) Let Al = (Al;Fl) and AQ = (AQ;FQ) such that Fl = {fll | S [},
Fy, = {f? | i € I}, and f}, f? are of the same arity, i € 1. A mapping
¢ : Ay — Ay is called a homomorphism from Ay to Ay if pfl(ay,... a,,) =
f2(p(ar), ..., p(a,,)) holds for alli € T and all ay, ..., a,, € Ay. If the map-
ping @ is onto then Ay is said to be a homomorphic image of A;.

A property of algebras such that if an algebra enjoys the property then any its
subalgebra, homomorphic image, and direct power also enjoys it, is said to be
hereditary. Universal algebra mostly deals with hereditary properties [32,42].
Therefore, the next theorem allows us to apply the methods of modern algebra
to the study of the complexity of the counting CSP.

Theorem 7 Let A = (A; F) be a finite algebra. Then

(i) if A is #-tractable then so is every subalgebra, homomorphic image, and
direct power of A.

(ii) if A has an #P-complete subalgebra, homomorphic image, or direct power,
then A is #P-complete itself.

Proof: We show that for each of the mentioned constructions the resulting
problem is reducible to #CSP(A). Thus we prove both parts (i) and (ii). The
proof is subdivided in accordance with the construction considered.

(1) Let B = (B; F‘B) be a subalgebra of A. This means that any relation
0 € Inv F ‘B is also invariant with respect to F. Therefore Inv F‘B Clnv F', and
#CSP(B) is trivially reducible to #CSP(A).
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(2) Let A* = (A%, F) be a direct power of A. Then any (n-ary) ¢ € Inv F on
A¥ can be encoded in the form

6(@) = {(an, e, A1k, A2, -4 ey ank) | (al, Ceey an) c o = (CLil, ceey aik)},
and it is well known and easy to check that e(p) € Inv F.

Take a problem instance P = (V; A¥;C) from #CSP(AF), and transform it to
P’ = (V'; A;C") where

o V) =Lyl wF| v € V}is a disjouint union of k copies of V;
e every (s,0) € C where s = (vy,...,v;) is replaced with (s, e(p)),
s'=(vi,...,oF vl ... oF) and e(p) is constructed as above.

The instance P’ has the same number of solutions as P, and P’ € #CSP(A).

(3) Let B = (B; F’) be a homomorphic image of A = (A; F') under a ho-
momorphism ¢. We prove that for any finite I' C Inv F’, there is a finite
A C Inv F such that #CSP(I") is reducible to #CSP(A). The result then
follows straightforwardly. Take a finite constraint language I' C Inv F’. By
Proposition 1, we may assume that =g€ I'. Denote by A = ¢~ (") the set
consisting of full preimages of relations from I'. In particular, ¢~ 1(=3p) is an
equivalence relation on A, the kernel of . It is easy to check that A C Inv F.
We solve the problem #CSP(I') with oracle #CSP(A) in polynomial time.

Let P = (V; B;C) be a problem instance from #CSP(T"); and, for any k > 1,
let P®) = (V®): A;C0)) € #CSP(A) be defined as follows

o V) =Lyl wF| v € V}is a disjoint union of k copies of V;

e for any (s,0) €C, s = (v1,...,v,), we include in C® the constraints
(5,07 (0, -, (5", ¢~ (o)) where si = (v, ..., 0});

e for every variable v € V and every pair 1 < 4,j < k we include in C* the
constraint ((v%, v7), o~ (=pg)).

Notice that for a solution 7 to P%*) and any i, 1 < i < k, the mapping
"V — B defined through the rule ¢*(v) = ¢(¢(v")), is a solution to P, and
moreover, 1)' = 17 for any 1 <i,j < k.

Let the classes of p~!(=p) be Uy,...,U,, and their sizes uy, ..., u,, respec-
tively. For any natural numbers t1,...,t,, with t; +ts +--- +t,, = |V| let us
denote by N(t1,ts,...,t,) the number of solutions ¥ to P such that the num-
ber of variables that take value in U; is t; for ¢ = 1,...,n. We shall obtain the
number of solutions of P as the sum of all numbers of the form N(¢y,...,ty).
Observe that the number of such numbers does not exceed (n+ 1)™, which is
polynomial in the size of P as m is fixed.

In order to compute the numbers N(ty,...,t,,), we shall construct and solve
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a system of linear equations.

First, observe that the number of solutions to P®*) is

Ne= S N, ta) @) ()= (uf)

t1+t2+---+tm:‘v‘

Since each P®) belongs to #CSP(A), the numbers N, can be found in poly-
nomial time.

By Remark 1, we may assume all the numbers u{'u% ... ulm to be different for

different tuples (¢, ..., ;).

The determinant of the system constructed is Vandermonde, and hence we
can use Lemma 1 to solve the system in polynomial time. a

An operation f on a set A is said to be idempotent if the equality f(z,...,z) =
x holds for all z from A. Algebras whose basic (and therefore term) operations
are idempotent posess many useful properties that will assist in our investi-
gation. The full idempotent reduct of an algebra A = (A; F) is the algebra
Id(A) = (A; Flq) where Fiq consists of all idempotent term operations of A.
There is another way to characterize Fiq: Fig = Pol (Inv FU{C, | a € A})
where C, = {(a)} means the unary relation containing only one tuple, namely
(a). Such a relation is sometimes called constant

Theorem 8 A finite algebra A is #-tractable [#P-complete] if and only if so
is Id(A).

Proof: Let A = (A; F) be a finite algebra. We show that, for every finite
constraint language I" on A, the problem #CSP(I'U{C, | a € A}) is reducible
to #CSP(I"). Consequently, if Inv F' is #-tractable then so is Inv FU{C, | a €
A}. Finally, since Fig = Pol (Inv F U {C, | a € A}), the result follows.

Let A = {a4,...,a,} (assuming ay,...,a, are different) be a finite set and
let " be a finite constraint language on A. It is known [49,54] that the n-ary
relation o1 = {(h(ay),...,h(a,)) | h: A— A /h € Pol I'} is in (I').

Let P = (V;A;C) be a problem instance in #CSP(I' U {C, | @ € A}) and
let P’ be the problem instance (V'; A;C’') in #CSP(I' U {=4,01})), where
V' =V U{v, | a€ A}, (v, for a € A are variables not in V'), and C’ contains
every constraint C' = (s,0) in C, such that ¢ € T'. Furthermore, for every
constraint (v,{a}) in C, the set C' contains the constraint ((v,v,),=4), and
also C' contains the constraint ((vg,, ..., %, ), 01)-

The number of solutions to P equals the number of solutions ¢ to P’ such that
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©(v,) = afor all a € A. Let N be the set of all such solutions. The cardinality
of N can be computed in two stages. For the first stage, we consider the set
Part(A) of all partitions of A and the partial order < on Part(A): for partitions
n,0 € Part(A), we have n < 0 if and only if every class of 7 is a subset of a
certain class of §. The least element 0 of Part(A) is the partition every class of
which is a singleton. The partitions that cover the least element (such elements
are sometimes called atoms of Part(A)) have one 2-element class and the other
classes are singletons. For a partition 0, let I(0) denote the principal ideal
generated by 6, that is the set {n € Part(A) | n < 0}.

For every partition # € Part(A) we define P, as the problem (V' A ,C" U
{{(va,var),=4) | a,d’ belong to the same class of #}). Notice that any function
¢ is a solution of Py if ¢ is a solution of P’ and, for every a,a’ from the same
class of 6, p(v,) = @(vy ). Let us denote Ny the number of solutions to Pj. The
number N, can be computed with the oracle #CSP(I") since {=4, 01} C (I').

In the first stage we compute how many solutions ¢ of P’ assign v,, a € A,
pairwise different values. Let us denote by M the set of all such solutions. The
cardinality of M can be obtained using Md&bius inversion formula for poset
Part(A) as follows. We define a function w: Part(A) — Z inductively:

-—w(0) =1;
— for any partition 6 # 0, w(f) =— > w(n). We claim that
nel(6)—{6}

M= > w(O)Ns.

OcPart(A)

Indeed, for any solution ¢ of P’, we can relate a partition 6(y) such that a, a’
belong to the same class of 6(p) if and only if ¢(v,) = @(ve). Then ¢ is a
solution of P’,, if and only if n € I(6(p)). Therefore, ¢ is counted in the sum

above
> w(n)

nel(0(¢))

times. As is easily seen, this number equals 1 if the values ¢(v,) are all different
and equals 0 otherwise.

In the second stage we express the cardinality of A via the cardinality of M.
Let G be the set of all permutations in Pol I'. It is well known [49,54] that,
since A is finite, G constitutes a permutation group.

We show that M = {gp | g € G, € N}. For every solution ¢ in N and
every g € G, gp is also a solution of P’ [36] and, since g is one-to-one, gy
is in M. Conversely, for every v € M, there exists some g € G such that
g(a) = ¥(vs),a € A. Notice that g~! € G implies ¢ = g% € N, and
therefore ¢ = gop.
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Ft>

E D’
Fig. 1. The structure of the relation obtained in Lemma 2

Finally, for every ¢, ¢’ € N and every g,¢' € G, if ¢ # ¢ or g # ¢ then
gp # ¢'¢'. In consequence, |IM| = |G| - |N]. O

4.2 Hard cases of #CSP

In this section we prove the main hardness result that later will allow us to
obtain a necessary condition for tractability. Such a benchmark #P-complete
problem arises from binary reflexive, but not symmetric relations.

Theorem 9 If o is a binary reflexive but not symmetric relation on a finite
set then #CSP({c}) is #P-complete.

Let o be reflexive but not symmetric binary relation on a set A. We split a
proof of Theorem 9 into three lemmas. The first one shows that relation o can
be ‘improved’, that is it suffices to prove the theorem for relations of a certain
restricted form. The second lemma reduces ANTICHAIN to #CSP(co) in the
case when o is a relation on a 3-element set. Finally, the third lemma reduces
a problem on such a small domain to #CSP (o) in the general case.

Lemma 2 There exists a relation o’ on a set A" C A such that #CSP (o)
is reducible to #CSP (o), relation o' is reflexive but no symmetric, and A’
consists of 3 disjoint parts: B, E, and D" such that (c,d) & o if and only if
c€Bandde D, see Fig 1.

Proof: By Theorem 2 and Theorem 8, for any relation o from the relational
clone R generated by ¢ and the constant relations C,, a € A, the problem
#CSP(p) is reducible to #CSP(o). Therefore it is enough to find a required
relation ¢’ in R. As o is no symmetric, there are a,b € A such that (a,b) € o
and (b,a) € 0. Such a pair of elements will be called antisymmetric for o.

We shall prove that there exist a relation o € R on some set F' C A containing
some some antisymmetric pair {a, b} for « satisfying the following conditions:
(P1) (a,c),(c,b) € a for any ¢ € F,
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(P2) (¢,a) € o implies (¢, d) € o for any ¢,d € F, and
(P3) (¢,a) ¢ o implies (d, ¢) € o for any ¢,d € F};

Let a be a minimal (with respect to inclusion) relation in R containing an
antisymmetric pair. We shall show that a contains an antisymmetric pair
satisfying properties (P1)-(P3) (indeed, we shall prove that any antisymmetric
pair satisfies conditions (P1)-(P3) although we do not need this stronger fact
in our proof).

Let {a,b} be an antisymmetric pair for «. Let us assume that {a,b} does
not satisfy (P1). Let F’ be the set of all ¢ € F' such that (a,c),(c,b) € a.
Observe that since the pair {a, b} does not satisfy (P1), F’ # F. Notice also
that a,b € F’. The unary relation F’ belongs to R, as the following formula
shows:

F'(z) =3y,2 o(y,x) A Co(y) Ao(x,2) A Cy(z)

where Cy is the predicate corresponding to the relation Cy, d € A. Let us
define o to be a N F’?. Relation &’ contradicts the minimality of « since, by
its construction o’ belongs to R, o/ C «, and ¢’ contains the antisymmetric

pair {a, b}.

Assume now that {a, b} does not satisfy (P2). Consequently, there exist some
¢,d € F such that (c,a) € a and (c¢,d) ¢ «. In this case, set F' = {d € F |
(c,d) € a}. Relation F’ belongs to R:

F'(z) = 3y aly, x) A Ce(y),

Since F’ # F, relation o/ = a N F'* contradicts again the minimality of a.

Finally, if {a,b} does not satisfy (P3) there exist some ¢,d € F' such that
(c,a) € a and (d,c) € a. We set I/ = {d € F | (d,c) € a}. The relation F’
belongs to R:

F'(z) =3y alz,y) A Cy),

and a,c € F'. Note that {a, ¢} is an antisymmetric pair for o/ = aNF’. Again
o/ contradicts the minimality of .

To proceed further we need some additional notation. Let a,b be an anti-
symmetric pair for a. Set D = {¢ € F' | (¢,a) € a}, B = F — D, and
Dy ={ce D] (d,c) € a})forde B. Thena € D,b € B, and a € D, for
no ¢ € B. The only thing that remains to prove is that « is such that for any
d € B we have D, = D,
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Choose an element d € B such that Dy is maximal, and set B’ = {c € B |
D. = Dg}. Tt is straightforward to see that relation B’ U D belongs to R:

(B'UD)(z) =3y1,- -, ye Nlal(@,y:) A Co, (i)

i=1

where Dy = {ay,...,ax} (the conjunction in the brackets tells that (z,a;) €
03). The relation ¢/ = a N (B’ U D)? on the set A’ = B’ U D satisfies the
conditions of Theorem 9 for B chosen as above, £ = Dy, and D' = D — E,
because a,d € B’ U D is an antisymmetric pair for o’. a

Lemma 3 The problem ANTICHAIN is reducible to #CSP(o’), where o' 1is
such that |B| = |D'| =1 and |E| < 1.

Proof: Notice first that if £ = @ then #CSP(¢’) is equivalent to ANTICHAIN
by Example 2. So we assume |E| = 1. Let us denote the only element from
D’ by 0, the element from B by 1, and the element from F by 2. Let (P; <)
be a problem instance of ANTICHAIN. As is observed in Example 2, there is a
one-to-one correspondence between antichains of the poset P and its filters.

Consider the problem instance P = (V2); 4;C?) defined as follows.

o V® = P UP, where P, P, are disjoint copies of P, and if P = {p1, ..., pn}
then P, = {p%,...,p!}.

e C® comprises the constraints of the form
- (pj. p3): 0", (05, p5), 0") for j € {1,....n}, and
' <(p§'17p§',2)70/> for Pj < Pja> jl 7£ j27 ivi, € {17 2}'

We observe some properties of a solution ¢ of P®.

(1) If pj, <pj, and @(p;i) =1 then gp(pﬁ) € {1,2} for any i, if j; # j5, and for
iy > 1y if j1 = Ja. '

(2) If 4 is the least number such that o(p}) = 1, then for any i’ < i, we have
p(py) €{0,2}.

Furthermore, let H, be the set of elements p; € P that are minimal amongst
the elements with the property that {¢(p;), ¢(p3)} contains elements equal to
1. Clearly H, is an antichain, so, let F}, denote the corresponding filter. By
properties (1),(2), for any pj- such that p; € F,, and p; € H, or p; € H, and
i > i’ for some i’ such that (p) = 1, we have o(p) € {1,2}, and for any p}
with p; & Fo, or p; € H, and @(pé’) =1 for no 7 < i, we have p(p’) € {0,2}.
Moreover, if p; ¢ H,, then there are no further restrictions on go(pz-); however,
if p; € Hy, then at least one of ¢(p}), ¢(p7) must be equal to 1. Therefore, for
an antichain H and the corresponding filter F', the number of solutions ¢ to
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P such that H, = H, F, = F, equals
(2P=FN2 . (2. 2)IHI . (glF=HI)2,
where 2 is the size of both {0,2} and {1, 2}.

Let M(x,y, z) denote the number of antichains H of P such that |P—F| = z,
|H| =y, |F — H| = z. Obviously, the sum of all numbers of this form equals
the number N of antichains in (P, <). The number N, of solutions to P®
satisfies the identity

> M(z,y,2)2% - 2% 2% = Ny,

wty+z=|P|

and thus
N . 22IP — No,

that completes the proof. O

Let us fix a relation ¢” satisfying the conditions of Lemma 3; and as before we
let the only element from D’ be denoted by 0, the element from B by 1, and
the element from F (if any) by 2. We now reduce the problem #CSP(c”) to
#CSP(0’), where ¢’ is on a set A’, ¢’ satisfies the conditions of Lemma 2, and
the sizes of the sets B, F, D' for ¢’ are unconstrained. Let us denote a = |D/'|,
b=|B|, and c = |E|.

Lemma 4 The problem #CSP(d”) is reducible to #CSP(o").

Proof: Let P = (V;{0,1,2};C) be a problem instance of #CSP(¢”). Let
N(z,y, z) denote the number of solutions ¢ of P such that z, y, and z are
the sizes of the preimages of 0, 1, and 2 correspondingly. We show that these
numbers can be computed in polynomial time with oracle #CSP(d’).

Consider the problem instance P = (V®; A;C"), for a natural number I,
defined as follows.

e VO =1,uViU...UV, where V,, Vi, ..., V; are disjoint copies of V, and if
V ={vy,...,v,} then V; = {vi, ... v’}

e C comprises the constraints of the form
(W9 0h), 0y, (Vi 0Y), 0') for i € {1,...,1}, 5 € {1,...,n}, and

]07 ]O / .7 "
(W], v3,), ") for ((vj,,v5,),0") € C.

We observe some properties of a solution ¢ to P®). Recall that D denotes the
set D'U E.

(1) If {(vj,,vj,),0") is a constraint in P, then (¢(v),), ¢(v3,)) € o’.
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(2) If p(v7) € D', then, for any i, we have p(v}) € D.
(3) If ©(v}) € B, then, for any 4, we have ¢(v;) E BUE.
(4) 1f go(v?) € E, then, for any 4, the value ¢(v}) can be any.

Every solution 1 to P is associated with a set of solutions ¢ to P% such that
if (v) = 0 then ¢(v°) € D', if ¥(v) = 1 then ¢(v°) € B, and if ¥(v) = 2
then ¢(v°) € E. Obviously, the sets associated with distinct solutions to P
are disjoint, and every solution of P" is associated with some solution of P.

The number of solutions of PY associated with solutions ¢ of P such that
foeV [y =0}t =z [{veV|dw) =1} =y, and [{v eV [ ¢(v) =

2}| = z, can now be computed:

[D'[*(|D)* | BIY(|BUEL) - |EF(JA[) = a®(a+e) -0 (b+0)"" - ¢*(a+b+c).

The number N, of solutions to P%) satisfies the identity

> N(z,y,2)a"bc - ((a+c)*(b+c)(a+b+c)*) = N

w+y+a=lV|

Let p denote the number of triples (z,y, z) with =+ y + 2z = |V/|. The number
of solutions of P can be found as the sum of solutions to the following system
of linear equations

> N(z,y,2)a 0 ((a+ ) (b+ o) (a+b+)*) =Ny

r+y+z=|V|
> N(z,y,2)a"t’¢ - ((a+c)*(b+c)(a+b+c))> =N,
r4y+z=|V|

Y. N(z,y,2)a"0"c” - ((a+¢)*(b+ ¢)’(a+ b+ ¢)*)P = N,
r+y+z=|V|

Note that inside each column of the determinant of this system the factors of
the form a®bYc* are all equal. Moreover, by Remark 1, we may assume all the
numbers (a + ¢)*(b+c¢)¥(a+ b+ c¢)? to be different. Therefore the determinant
of this system can easily be transformed to a Vandermonde determinant. By
Lemma 1, we can find the numbers N(z,y, z). This completes the proof. O

Now Theorem 9 follows from Lemmas 3 and 4, and the #P-completeness of
the problem ANTICHAIN.

Theorems 7 and 9, and results from [32] provide a link between the complexity
of #CSP and Mal’tsev operations. The next statement follows from the results
of [28] (see also Lemma 9.13 of [32]).
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Theorem 10 ([28]) For a finite algebra A the following conditions are equiv-
alent.

1. A does not have a Mal’tsev term operation.

2. There is B = (B; F'), a homomorphic image of a subalgebra of a direct power
of A, such that Inv F' contains a binary reflexive but not symmetric relation.

By Theorem 9, the algebra B from Theorem 10(2) is #P-complete. Further-
more, Theorem 7 implies that A is also #P-complete.

Corollary 2 If A is a finite algebra that has no Mal’tsev term operation then
A is #P-complete.

Finally, Theorem 5 is just Corollary 2 expressed in terms of constraint lan-
guages.

5 Applications

5.1 2-element domains

By making use of Theorem 5 we may obtain a very easy proof of the dichotomy
theorem for #SAT [13]. On the one hand, by the results of [50], if a Boolean
constraint language I' is invariant with respect to a Mal’tsev operation it is
also invariant with respect to x — y + z. Therefore, any #-tractable Boolean
constraint language is invariant with respect to  — y 4 2. On the other hand,
any relation from such a language is the solution space of a system of linear
equation over a 2-element field. Hence it is possible to find a basis of this
space in polynomial time, and furthermore, the number of solutions equals 2"
where n is the number of vectors in the basis. Thus, we have obtained another
equivalent characterization of tractable Boolean #CSPs.

Theorem 11 A constraint language I' over a 2-element set is #-tractable if
and only if it has a Mal’tsev polymorphism. Otherwise it is #P-complete.

5.2 Rectangularity and permutability

Relations invariant with respect to a Mal’tsev operation satisfy strong restric-
tions on their form. One of them is especially useful. Let o be an (n-ary) re-
lation and I = {iy,... it} C {1,...,n}. Then pr;o denotes the k-ary relation
{(@iy,...,a;) | (a1,...,a,) € o}. The relation p is said to be rectangular if, for
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any partition of {1,...,n} into subsets I, J, and any a,b € pr;p, c,d € pr,p,
if (a,c), (a,d), (b,c) € g, then (b,d) € p, see Fig. 2 (here (a,c) denotes the
tuple e such that e; = a; if 1 € [ and e; = ¢; if i € J).

aT T b
=
cT T d
Fig. 2. The property of rectangularity

If p is invariant under a Mal’tsev operation m then p is rectangular. Indeed,
if (a,c), (a,d), (b,c) € o then

By Theorem 5, we get

Corollary 3 If I' is a #-tractable constraint language, then every relation
from T is rectangular. If I contains a non-rectangular relation, then 1" is #P-
complete.

Unfortunately, the rectangularity of a relation or a set of relations does not
guarantee the existence of a Mal'tsev polymorphism. For instance, if I" is a
constraint language, m is a Mal'tsev polymorphism of T', and ¢, 02 € (I') are
equivalence relations, then, in spite of the fact that they are always rectangu-
lar, they also must be permutable, that is 01 0 09 = 2 0 p1. A proof of this fact
is non-trivial and can be found e.g. in [12,42].

5.3 F#H-Coloring problem

The problem GRAPH HOMOMORPHISM [25] and its counting counterpart are
among the most well established combinatorial problems. H-COLORING and
# H-COLORING problems constitute their subproblems when the target graph
H is fixed. A massive work has been done in the study of the complexity of
H-COLORING and #H-COLORING for different types of graph H, and also
for restrictions on the class of source graphs [1,2,18-20,27,29,31,57].

In particular, undirected graphs H for which H-COLORING is tractable have

been characterized in [30]. An analogous result for #H-COLORING has been
obtained by Dyer and Greenhill.
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Theorem 12 ([21]) If every connected component of an undirected graph H
15 either an isolated vertex, or a complete graph with all loops present, or a
complete unlooped bipartite graph, then #H-COLORING is tractable. Other-
wise, it is #P-complete.

This theorem can be easily derived from Theorem 5. Note that in [21] a
stronger version of Theorem 12 was proved. In that stronger version #P-
complete problems remain #P-complete even when restricted to simple graphs
with a constant degree bound. We prove a weaker version stated above, in
which the degree of vertices is not bounded and loops are allowed.

Proof: Undirected graphs correspond to symmetric binary relations. Observe
that graphs of rectangular symmetric binary relations are precisely those speci-
fied in Theorem 12. Indeed, a complete graph with all loops present correspond
to the total binary relation which is rectangular, and if p is a relation corre-
sponding to a complete bipartite graph and  (a,c), (a,d),
(b,c) € o then b,d are in different classes of the bipartition and therefore
the edge (b, d) presents.

Conversely, let H be a connected graph such that gy (see Example 3) is
rectangular. Suppose first that H has a loop at vertex a and (a,b) is an
edge. Then (a,a), (a,b), (b,a) € oy and, by rectangularity, we get (b,b) € op.
Therefore, all loops in H are present. Furthermore, if (a,b), (b, c) is a path
then (b,a), (b,c), (a,a) € oy implies (a,c) € gy, and we conclude that H is
complete. If H has no loops then notice that, for any path (a,b), (b, ¢), (¢, d),
the edge (a,d) also presents, because (a,b), (¢,b), (¢,d) € og. Therefore if H
contains a cycle of odd length then it also has a loop, a contradiction. Thus H
is bipartite, and completeness follows straightforwardly from rectangularity.

Making use of Theorem 5, one may easily derive the #P-completeness part of
Theorem 12. The tractability part of this theorem is fairly simple. a

As an easy implication of the proof above and an observation that any graph
satisfying the conditions of Theorem 12 has a Mal’tsev polymorphism we get
the following:

Corollary 4 For an undirected graph H, the # H-COLORING problem is tractable
if and only if H has a Mal’tsev polymorphism. Otherwise it is #P-complete.

In what follows we shall apply Theorem 5 in order to get new results. We start
with identifying a simple condition that guarantees #P-completeness.

A digraph is said to be N-free if it does not contain a subgraph shown on
Fig. 3 (not necessarily induced) such that edge (¢, b) does not belong to the
digraph.
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Fig. 3.

Lemma 5 If a digraph H is not N-free, then the # H-COLORING problem is
#P-complete.

In fact, the effect of the property of rectangularity is that it excludes the
configuration shown on Fig. 3.

Our second application is a complete characterization of the oriented cycles
H that give rise to tractable # H-COLORING problems.

Proposition 4 Let H be an oriented cycle. Then the # H-COLORING problem
is tractable if and only if H is one of C,,, C}L, C? (see Fig. 4). Otherwise it is

#P-complete.
n edges
n edges n edges

) . . .

. A )

Fig. 4.

Proof: Let H = (W; E) be an oriented cycle. We prove that if there is a
Mal’tsev polymorphism of gy then H is of the form specified in the proposi-
tion.

If H contains no vertex of zero indegree then H = Cjy|. Otherwise, H may
contain several directed paths. The maximal ones are the paths from a vertex
of zero indegree to the nearest vertex of zero outdegree.

Take a vertex b of zero indegree and maximal directed paths b = aq,
ai,...,ar = a and b = by, by, ..., b = c originated at b. Suppose that [ < k,
and by, ..., b is the shortest maximal path. Then a, ¢ are the vertices of zero
outdegree.

There exists a vertex d different from b;_; such that (d,c) € oy (see Fig. 5).
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Fig. 5.

Let m be the Mal’tsev polymorphism of gy and let g be m(a;_1,b,_1,d). We
shall prove some basic facts about g.

First, we can infer that

m ) ) = € OH,
a; C C a;

Therefore, g = a;—1 or k =1 and g = e (see Fig. 5).

Let a be the binary relation on W defined in the following way: (u,v) € « iff
there exists a w € W and directed paths of lenght [ — 1 connecting w with «
and w with v.

Observe that « is definable by means of the formula

OK(U,U) = 31’17917$2ay27 e XL YL (xl = yl) A (.flfl = U) A (yl == U)/\
Nom (1, 22) Ao (yr, y2) A+ A om(xi—1, 2) A om(yi—1, y1)

and hence, m is a polymorphism of «. Notice that, since [ is the minimal
length of a maximal path, the pair (d,d) is in a. Then

a1 bi—1 d g
m , , = SN
a1 a1 d d
Therefore, there is a vertex w of zero indegree and paths of legth [ — 1 from
wtogandd. If g=qa;_; thenw=05b, c=aand H = C}. If g = e # a;_; then
H = C?.
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We sketch counting algorithms for all three types of graphs.

Assume that we want to compute the number of homomorphisms from a
given graph G = (W', E') to H where H is C,, C}, or C2. Let G;, i =
1,...,7r, be the connected components of G and let m;, i = 1,...,r, be the
number of homomorphisms from G; to H. It is easy to see that the number of
homomorphisms from G to H is mq - mso - ... m,. Hence we can assume that
G is connected.

If H = C,, then the algorithm is trivial: a homomorphism is completely
determined by the image of any vertex of G.

Suppose that H = C!, and let af,a?,...,a and af,al,..., a’ denote the
maximal paths.

Let L, be the graph with vertex set 0, . .., n and with set of edges {(0,1), (1,2),...

1,n)}. It is easy to observe that there exists a unique homomorphism % from
C} to Ly, given by ¢(a}) = j,1=0,1,%, j = 0,...,n. Consequently, for every
homorphism ¢ from G to C!, we have that 1 - ¢ is an homomorphism from G
to L,,.

In order to count the number of homomorphisms from G to C! we shall do the
following. First we shall enumerate all homomorphisms from G to L,,. Observe
that every such homomorphism ¢ is completely determined by the image of
any vertex of (G, so this can be easily done in polynomial time and, moreover,
the number of such homomorphisms does not exceed the number of vertices
in G multiplied by n + 1.

Then, for every such ¢ we shall compute how many different homomorphisms
¢ from G to C} satisfy ¢ - p = ¢. We shall denote this number by Nj.

In order to compute Ny we shall do the following: Let G4 be the subgraph of
G induced by those vertices v such that ¢(v) € {0,n}. Then N, = 2™ where
m is the number of connected components of G . Let us prove it. Let f be any
mapping from W’ to {0, 1, %} such that (1) f(v) = * iff ¢(v) € {0,n} and such
that (2) f(v) = f(w) if v,w belong to the same connected component in G,.
Then we have that the mapping ¢ defined by ¢(v) = afggzg is a homomorphism
from G to C!. Conversely, for each homomorphism ¢ from G to C! we have
that there exists a mapping f satisfying (1) and (2) such that ¢(v) = af;gzg
Thus Ny is equal to the number of mappings f satisfying (1) and (2). An easy

computation shows that this number is 2.

Finally, consider the case H = C?. The algorithm here is similar to the one for

1 x0 00 00 0% %0 1,0 1,0 1« sl 01 01 0,%

Cn'Letlaolfallfa2 yeeen Gy Qg5 Ay .., A7, Qg G 50y e, Gy
* .

and ag”,a;",as", ..., a* be the maximal paths of C2.
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Again it is easy to observe that the mapping ¢ given by 1/1(@? ) = k is the
unique homomorphism from C? to L,. In order to count the number of ho-
momorphism from G to C? we again enumerate all homomorphisms from G
to L,. Then for every such homomorphism ¢ we compute the number N, of
homomorphisms ¢ from G to C? such that ¢ - ¢ = ¢.

In order to compute N, we do the following. Let G?b be the subgraph of G
induced by those vertices v such that ¢(v) # 0 and let G} be the subgraph of
G induced by those vertices v such that ¢(v) # n. Using a line of reasoning
similar to the previous case it is easy to see that N, is equal to 207" where
m,; is the number of connected components of Gfb' O

As in the previous cases, the proof of Proposition 4 implies

Corollary 5 For an oriented cycle H, the # H-COLORING problem is tractable
if and only if H has a Mal’tsev polymorphism. Otherwise it is #P-complete.

5.4 List #H-Coloring problem

Let H be a directed graph. In the LisT #H-COLORING problem we are given
as input a (directed) graph GG, and for every vertex g of G, a list L(g), that is a
subset of vertices of H. The objective is to find the number of homomorphisms
©: G — H such that ¢(g) € L(g) for every vertex g of G. It is not hard to see
that this problem is equivalent to #CSP(I'y) where I'y = {og} U {0 | o is a
unary predicate over the vertex set of H}.

In the case of undirected graphs a dichotomy theorem was obtained inde-
pendently in [19] and [29]. The criteria happened to be the same as that for
# H-COLORING.

Theorem 13 ([19,29]) If every connected component of an undirected graph
H s either an isolated vertex, or a complete graph with all loops present, or
a complete unlooped bipartite graph, then L1ST #H-COLORING is tractable.
Otherwise, it is #P-complete.

Similarily to Theorem 12, Theorem 13 implies

Corollary 6 For an undirected graph H, the LiST #H-COLORING problem
is tractable if and only if H fas a Mal’tsev polymorphism. Otherwise it is
#P-complete.

However, in the case of the LisST #H-COLORING problem, we can impose
stronger restrictions onto a Mal'tsev polymorphism required. If LisT #H-
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Fig. 6.

COLORING is tractable then a Mal'tsev polymorphism m of the constraint
language 'y preserves every unary predicate. As is easily seen this is equivalent
to the condition m(x,y, z) € {x,y, z} for any x,y, 2. An operation satisfying
this condition is called conservative. This observation allows us to give an
example of a digraph H, for which # H-COLORING problem is tractable while
the LisT #H-COLORING problem is #P-complete.

Let us consider the digraph H = C3 (Fig. 6). By Proposition 4, # H-COLORING
problem can be solved in polynomial time, while oy has no conservative
Mal’tsev polymorphism, which means that LI1sT # H-COLORING is #P-complete.
Indeed, let m be a conservative polymorphism of og. The relations ; = pg o

oy and 6, = o 0oy are equivalence relations on the sets {a, b, ¢, d, g, h}, {a,b,c,d, e, f},

respectively, with classes {a, b}, {c,d},{g}, {h} and {a,d},{b,c},{e},{f}, re-
spectively. Since m preserves 41, 02, we have

a b c c a b c a
m ) ) = €0 m ) s = € 0o.
b b c c a b b a

This means m(a, b, ¢) = ¢ and m(a, b, c) = a, a contradiction.

6 Towards a Dichotomy Theorem

As we saw in Section 5, in all the studied cases the tractability of a #CSP
can be explained by the presence of a Mal'tsev polymorphism. It is therefore
very natural to conjecture that the existence of such a polymorphism is a
sufficient condition for tractability, and so we did in the conference version of
this paper [5].

In this paper we provide an example that shows that the presence of a Mal'tsev
polymorphism does not guarantee the #-tractability of a constraint language.

Example 5 Let us consider the #H-COLORING problem, where H is the
graph shown on Fig. 7. Notice that the vertices of H are divided into three
levels; we refer to these levels as to the bottom, intermediate and top levels.
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Fig. 7.

We define a polymorphism of H in two stages. First, we “collapse” vertices
(0,0)" and (0, 0)” into one vertex (0,0) and define a ternary operation g on the
resulting 8-element set. For any x1 = (i1, j1), T2 = (is, j2), x5 = (i3, j3) where
i1,12, 13, j1, j2, j3 € {*,0,1}, set ky = iy —ip+i3 (mod 2) (if i1, 42,43 € {0,1}),
k2 :jl _j2 +j3 (mOd 2) (ifj17j27.j3 € {071}>7 and
(k1, ko) if xq, x9, x3 are from the intermediate level,
Xy, if two of x1, xo, x3 are from the same level

and z, is from another level,
g($1> T2, 1'3) =
(*, ko), if xq, x9, x5 are from the top level,

(k1, ), if o1, z9, x3 are from the bottom level,

1 otherwise.

Now, to define a polymorphism of H, we set m(xy,z2,x3) = g(x1, 22, x3)
whenever g(z1, 2, x3) # (0,0); otherwise m(xy, o, x3) = (0,0)" if 1 = 29 =
x3 = (0,0)” or exactly one of 1, xs,z3 is (0,0)” and the two others are equal;
in all other cases m(z1, z2,x3) = (0,0)".

As is easily seen, this operation is Mal’tsev. We also show that m is a polymor-
phism of H. Indeed, it is enough to show that if 1, xo, x5 and y;, ys, y3 are such
that (x1,9y1), (T2, y2), (%3, y3) are edges of H, then
(m(xy1, o, x3), m(y1,y2,y3)) is an edge of H. We consider 5 cases. As before,
xr = (i1>j1)7$2 = (ig,jg),l’g = (ig,jg), = (lehﬁ)ay? = (Z/2>]é)ay3 = (Zga]i/’,)a
if say i; = j1 = 0 then z; may be equal (0,0) or (0,0)".

Case 1. x1, 29, x3 are on the intermediate level.

In this case, Y1 = (*aj1)>y2 = (*>j2)>y3 = (*>j3)a and m(l'l,l’g,l'g) = (Zl -
Qo + i3, 1 — j2 + J3) or m(x1,xe,x3) = (0,0),(0,0)” (j1 — j2 + j3 = 0 in this
case) and m(y1, Y2, y3) = (*,j1 — jo + j3). Thus (m(z1, 2, 23), m(y1, Y2, y3)) is
an edge.

Case 2. One of x1,x9,x3 is on the bottom level and the others are on the
intermediate level.

Let first x; be on the bottom level. Then y; is on the intermediate level and
Y2, ys are on the top level. We have m(xy, o, x3) = x1 and m(y1,y2,y3) = 1.
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Obviosly, (m(z1, z2, x3), m(y1, Y2, ys)) is an edge. If x5 or x5 are on the bottom
level, the proof is essentially the same.

Case 3. One of 1, 9, x3 is on the intermediate level and the others are on the
bottom level.

As in Case 2, we have m(zy,xe,x3) = x;, m(y1, Y2, y3) = yi, where x; is the
vertex on the intermediate level.

Case /4. x1, 1o, x3 are on the bottom level.

Then y1,ys2,ys are on the intermediate level and ] = i1, = iz, = i3. We
have m(x1, x2, 3) = (i1 — iz 413, *) and m(yy, Y2, y3) = (i1 — 12413, j1 — Jo +J3)
(or (iy — ig + 13,41 — jo+ Js), or (i1 — iz + i3, 71 — J4 + 74)"), which constitute
an edge of H.

Case 5. One of x1, x5, x3 are on the top level.
This case is impossible, because there is no choice for the correspoonding y.

However, the #MAXCUT problem can be reduced to #H-COLORING. It
follows from the results of [21] that #MAXCUT is #P-complete, therefore
# H-COLORING is also #P-complete. For a proof the reader is referred to [6,7].

7 Conclusion

We have shown that the algebraic approach developed originally to deal with
the decision constraint satisfaction problem is applicable, in some aspects even
more efficiently, to the counting constraint satisfaction problem. This allows
us, by making use of advanced and deep algebraic results (Theorem 10), to ob-
tain a strong necessary condition on tractable cases of the counting constraint
satisfaction problem (Theorem 5).

The algebraic approach also appears to be very helpful in systematization
of existing complexity results on #CSP by identifying a common property of
classes solvable in polynomial time, and providing a strong guidance for future
research. This approach and the results of the conference version of this paper
have already been used in, e.g., [6,7,22,38,44].

The applicability of the algorithm solving Mal’tsev decision constraint satis-
faction problems to #CSP is limited. However, often those limitations can be
overcome by using structural properties of relations invariant under a Mal’tsev
operation. We strongly believe that future developments in algebraic theory
will lead to a complete solution of Problem 1.
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