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Abstract

Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach
to formal reasoning about well-behaved structural operational semantics (SOS). An
extension of algebraic and coalgebraic methods, it abstracts from concrete notions of
syntax and system behaviour, thus treating various kinds of operational descriptions
in a uniform fashion.

In this paper, bialgebraic semantics is combined with a coalgebraic approach to
modal logic in a novel, general approach to proving the compositionality of process
equivalences for languages defined by structural operational semantics. To prove
compositionality, one provides a notion of behaviour for logical formulas, and de-
fines an SOS-like specification of modal operators which reflects the original SOS
specification of the language. This approach can be used to define SOS congruence
formats as well as to prove compositionality for specific languages and equivalences.

Key words: structural operational semantics, coalgebra, bialgebra, modal logic,
congruence format

1 Introduction

Structural Operational Semantics (SOS) [51,1] is one of the most successful
frameworks for the formal description of programming languages and process
calculi. There, the behaviour of programs or processes is described by means
of transition relations, also called labeled transition systems (LTSs), induced
by inference rules following the syntactic structure of processes. For example,
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the rules:
x

a−→ x′

x||y a−→ x′||y
y

a−→ y′

x||y a−→ x||y′
(1)

define the behaviour of a binary parallel composition operator || without com-
munication. In particular, the rule on the left says that if a process can do
a transition labelled with a, then the same process put in parallel with any
other process can do a similar transition. One could also enrich states and/or
transitions in SOS specifications with environments, stores, probabilities, time
durations etc., to induce other, more sophisticated kinds of transition systems.
The intuitive appeal of SOS and, importantly, its inherent support for model-
ing nondeterministic behaviour, makes it a natural framework for the formal
description of process algebras (see [8] for many examples).

For reasoning about processes a suitable notion of process equivalence is needed.
Various equivalences on LTSs have been proposed (see [22] for a survey).
Bisimilarity is the most widely studied, but other equivalences such as trace
equivalence or testing equivalence have also been considered. Several equiv-
alences have also been proposed for probabilistic, timed and other kinds of
transition systems, including their respective notions of bisimilarity.

To support inductive reasoning, it is important for the chosen process equiv-
alence to be compositional; indeed, it is useful to know that if a part of a
process is replaced by an equivalent part then the resulting process will be
equivalent to the original one. Compositionality proofs for specific languages
can be quite lengthy, therefore in the literature many congruence formats have
been proposed. Such a format is a syntactic restriction on SOS specifications
that guarantees a specific equivalence to be compositional on the induced
transition system. The most popular format is GSOS [10], which guarantees
the compositionality of bisimilarity, but formats for other equivalences and/or
kinds of transition systems have also been studied (see [1,23]).

The task of finding a reasonably permissive congruence format for a given
equivalence is usually quite demanding, therefore it would be desirable to
have a general framework for the derivation of formats as well as for prov-
ing compositionality for specific languages. To be sufficiently general, such
a framework should be parametrized by the process equivalence and by the
kind of transition system. It is the purpose of this paper to provide such a
framework.

Our approach is based on the categorical framework of bialgebraic seman-
tics [57], where process syntax is modeled via algebras, and transition systems
are viewed as coalgebras. For example, LTSs are coalgebras for the functor
(P−)A on the category Set of sets and functions, where P is the powerset
functor and A a set of labels, and other kinds of transition systems are coalge-
bras for other functors, called behaviour functors in this context. Coalgebras
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also provide a general and abstract notion of bisimilarity (for more information
on the coalgebraic theory of systems, see [53]). As it turns out, SOS specifica-
tions in the GSOS format are essentially distributive laws of syntax functors
over (P−)A. Moreover, the process of inducing an LTS with a syntactic struc-
ture on processes from SOS rules is a special case of an abstract construction,
where distributive laws of syntax over behaviour induce bialgebras, i.e., coal-
gebras with algebraic structures on their carriers. Also the fact that GSOS
is a congruence format for bisimilarity can be proved at the level of distribu-
tive laws. This makes bialgebraic semantics a general framework for deriving
congruence formats for bisimilarities, parametrized by the kind of transition
systems; it was used to this purpose in [7,16,30] for probabilistic, timed and
name-passing systems. In this paper, the framework is further parametrized
by the notion of process equivalence.

Typically, process equivalences are characterized by modal logics. For example,
two processes in an LTS are bisimilar if and only if they satisfy the same formu-
las in Hennessy-Milner logic [24], and fragments of that logic characterize other
interesting equivalences on LTSs. Several attempts have been made to gener-
alize such logics to coalgebras of arbitrary type [48,40,49,54]. Recently [38],
based on earlier insights of [11,12,41,50], we have proposed a categorical gen-
eralization of modal logics for coalgebras in arbitrary categories. There, the
syntax of a logic is modeled via algebras for an endofunctor, and its seman-
tics via a suitable natural transformation connecting the logic syntax with the
process behaviour.

The main contribution of this paper is a combination of the coalgebraic per-
spective on modal logic taken in [38] with the bialgebraic approach to SOS
from [57]. Roughly speaking, to merge a logic and its semantics with a dis-
tributive law representing an SOS specification, one should provide a suitable
notion of behaviour for the logic, and define a “dual”, logical distributive
law, where formulas play the role of processes, in a way that reflects the SOS
specification. One might think of the logical behaviour as a way to decompose
logical formulas over the syntax of processes. Our main result says that if such
a logical distributive law exists, then the equivalence characterized by the logic
is compositional on the transition system induced by the SOS specification.

For some kinds of logical behaviours, logical distributive laws can be presented
as SOS-like inference rules where formulas act for processes, logical operators
(modalities) for syntactic constructs, and logical inference operators for tran-
sitions. For example, rules:

φ a ψ||σ
〈a〉φ a 〈a〉ψ||σ

φ a ψ||σ
〈a〉φ a ψ||〈a〉σ

(2)

are used to define a logical distributive law reflecting (1). In particular, the
rule on the left says that if a formula φ holds for every process of the form
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x||y such that ψ holds for x and σ holds for y, then the formula 〈a〉φ holds for
every process of the form z||w such that 〈a〉ψ holds for z and σ holds for w.
Since 〈a〉φ means that a process can do an a-transition to a process for which
φ holds, this corresponds to the left rule in (1).

The framework proposed here can be seen as a very general “meta-congruence
format”, parametrized both by the notion of process equivalence and by the
kind of transition system. It can be used directly to prove compositionality
for specific languages and equivalences. Obviously it is hard to expect that
such a general approach would be as easy to use as syntactic congruence for-
mats designed for specific equivalences, and indeed finding the right logical
distributive law and presenting it in a readable form is not always easy. How-
ever, our framework can also be used to derive specialized formats by proving
that suitable distributive laws exist for a whole class of SOS specifications.
The direct application to specific languages can be then left to problematic
cases that do not fit in any known format.

The structure of the paper is as follows. The basics of classical SOS and con-
gruence formats are presented in §2. In §3 the bialgebraic approach of [57] is
explained on a series of very simple examples. A brief description of our ap-
proach to coalgebraic modal logic [38] follows in §4. In §5, the main technical
result of the paper is obtained by merging the two approaches, and it is illus-
trated in §6 on some simple examples. Finally, §7 sketches some related and
future work. Some familiarity with basic category theory is expected; [3,44]
are good references.

The present paper is a full version of extended abstracts [36] and [37], with
more detailed explanations provided and with more examples, including the
substantial example of de Simone format in §6.3.

Acknowledgments. The author is grateful to Alexander Kurz and Gordon
Plotkin for fruitful discussions, and to anonymous referees for several useful
suggestions for improvement.

2 Structural Operational Semantics

We begin by recalling the classical framework of SOS as presented in [1]. A
labelled transition system (LTS) (X,A,−→) is a setX 3 x, y, . . . of processes, a
set A 3 a, b, . . . of labels, and a transition relation −→ ⊆ X × A×X, typically
written x

a−→ y for (x, a, y) ∈ −→; y is then an a-successor, or shortly a
successor of x. An LTS is image finite if each process has only finitely many
successors for each label, and it is finitely branching if each process has only
finitely many successors altogether. One writes x 6 a−→ to say that x has no
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a-successors, and x 6−→ means that x has no successors at all.

Various equivalences are defined on processes in an LTS, and bisimilarity [45]
is the most widely studied. In an LTS (X,A,−→), a relation R ⊆ X ×X is a
bisimulation if xRy implies:

• ∀x a−→ x′. ∃y a−→ y′. x′Ry′, and
• ∀y a−→ y′. ∃x a−→ x′. x′Ry′,

and processes x, y ∈ X are bisimilar if there exists a bisimulation that re-
lates them. On image finite LTSs, bisimilarity is characterized with finitary
Hennessy-Milner logic (HML) [24], with syntax:

φ ::= > | ¬φ | φ ∧ φ | 〈a〉φ (3)

where a ∈ A, and with semantics defined on a given LTS by:

x |= > always

x |= ¬φ ⇐⇒ x 6|= φ

x |= φ ∧ ψ ⇐⇒ x |= φ and x |= ψ

x |= 〈a〉φ ⇐⇒ ∃y ∈ X. x a−→ y, y |= φ.

Indeed, processes are bisimilar if and only if they are logically equivalent, i.e., if
they satisfy exactly the same formulas of the finitary HML. Various fragments
of the logic have also been considered; see [22] for a survey. For example, the
logic restricted to the syntax:

φ ::= > | 〈a〉φ

characterizes trace equivalence on arbitrary LTSs, and the same fragment ex-
tended with a constant ∅:

φ ::= > | ∅ | 〈a〉φ (4)

with semantics:
x |= ∅ ⇐⇒ x 6−→

characterizes completed trace equivalence [22].

In the context of SOS, processes in LTSs usually are closed terms over some
algebraic signature. A signature is a set Σ 3 f, g, . . . of operation symbols
together with an arity function ar : Σ → N. A signature (Σ, ar) is usually
denoted by Σ. Transition relations on Σ-terms are induced from sets of in-
ference rules. Assuming a fixed set Ξ 3 x, y, . . . of variables, a positive literal
over Σ is an expression of the form t

a−→ s, where t and s are terms over Σ
with variables from Ξ. Similarly, a negative literal is an expression of the form
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t 6 a−→. An inference rule over Σ is an expression H
c
, where H is a set of (posi-

tive or negative) literals, called premises, and c is a positive literal called the
conclusion. A set of inference rules is called a transition system specification
(TSS). An LTS satisfies a TSS R if it respects all inference rules in R in the
obvious sense, and if the least LTS satisfying R exists then it is called the LTS
induced by R.

Considered in this generality, inference rules do not guarantee the composi-
tionality of any nontrivial process equivalence on the LTSs they induce. In-
deed, it is not even clear that they induce any LTS. For these reasons, various
restricted formats of SOS specifications have been proposed that guarantee
these and other desirable properties. The most widely studied format is that
of GSOS [10], where only rules of the following form are allowed:

{xi
aij−→ yij}1≤i≤n

1≤j≤mi
{xi 6

bik−→}1≤i≤n
1≤k≤li

f(x1, . . . , xn)
c−→ t

(5)

where f ∈ Σ, n = ar(f), mi, li ∈ N, aij, bik, c ∈ A, xi and yij are all distinct
(i.e., xi 6= xi′ for i 6= i′, yij 6= yi′j′ for i 6= i′ or j = j′, and xi 6= yij for all
i, j), and no other variables occur in t. A GSOS specification is image finite
if it contains only finitely many rules for each f ∈ Σ and c ∈ A. GSOS spec-
ifications induce LTSs in an obvious way, as transitions for composite terms
are fully determined by transitions for their subterms. Moreover, bisimilarity
is guaranteed to be a congruence on the induced LTS. Also, LTSs induced by
image finite GSOS specifications are image finite.

A well-known restriction of GSOS is de Simone format [55], where only rules
of the following form are allowed:

{xi
ai−→ yi}i∈I

f(x1, . . . , xn)
c−→ t

(6)

where I ⊆ {1, . . . , n}, and yi for i ∈ I and xj for j 6∈ I are the only variables
that occur in t, with no variable occurring more than once in t. This format
guarantees also trace equivalence to be a congruence.

On the other hand, an extension of GSOS is the ntree format [19], where rules
of the following form are allowed:

{zi
ai−→ yi}i∈I {wj 6

bj−→}j∈J

f(x1, . . . , xn)
c−→ t

(7)

where xi and yi are all distinct and are the only variables occurring in the rule
(i.e., each zi and wj must be equal to some xi′ or yi′), I and J are countable
sets, and the graph of positive premises is well-founded. Again, an ntree speci-
fication is image finite if it contains only finitely many rules for each f ∈ Σ and
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c ∈ A. Ntree specifications do not necessarily induce an LTS in general, but
they do if all rules are safe, meaning that t is either a variable or a term built
of a single operation symbol and variables. Then bisimilarity is guaranteed to
be a congruence on the induced LTS, which is image finite if the specification
is image finite.

The safe ntree format is not an extension of GSOS, as it does not allow complex
terms on the right sides of rule conclusions. Unlike GSOS however, it allows
lookahead in premises, i.e., rules such as

x
a−→ y y

b−→ z

f(x)
c−→ g(z)

are allowed.

Many other congruence formats have been studied in the literature. For ex-
ample, interesting formats for various “decorated trace” equivalences were
proposed in [9]. A considerably more complex format for completed trace
equivalence was defined in [39,35]. For a detailed study of various congruence
formats and their properties, see [1,23].

In some applications, it is useful to impose additional structure on labels
in transition systems. For example, in probabilistic transition systems they
are interpreted as probabilities [28]; in timed transition systems, as action
durations [5]; in systems with name passing, they carry information about
free and bound names [46]. These different kinds of systems are induced by
various kinds of transition system specifications, similar to these described
above. However, SOS congruence formats for equivalences on LTSs cannot be
immediately reused for other kinds of systems. In the remainder of this paper,
a general framework is described that avoids the need to rework the entire
approach to SOS specifications and to congruence formats from scratch for
each new kind of transition systems.

3 Bialgebraic semantics

In this section, the basic framework of bialgebraic semantics [57] is recalled
and explained on a few simple examples, followed by a brief description of
some results from the literature that have been obtained through the use of
bialgebras.
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3.1 Processes as coalgebras

The study of transition systems as coalgebras is motivated by the simple
observation that LTSs are equivalent to functions

h : X → (PX)A

where P is the powerset construction. Indeed, an LTS maps a process x ∈ X
and a label a ∈ A to the set of all processes y ∈ X such that x

a−→ y. In the
language of category theory, a function as above is called a coalgebra for the
functor (P−)A on the category Set of sets and functions.

In general, for any functor B on a category C, a B-coalgebra is an objectX (the
carrier) together with a map h : X → BX (the structure). A coalgebra (X, h)
is usually denoted simply by h. A coalgebra morphism from h : X → BX to
g : Y → BY is a map f : X → Y such that the diagram

BX
Bf //BY

X f
//

h

OO

Y

g

OO

commutes. If B = (P−)A on Set, B-coalgebra morphisms are functional
bisimulations on LTSs. In this context, B is called a behaviour functor.

As it happens, coalgebras for some other functors Set correspond to other
well-known types of transition systems. For example:

• Coalgebras for Pω(A × −), where Pω is the finite powerset functor, are
finitely branching LTSs. Coalgebras for (Pω−)A are image finite LTSs.

• Coalgebras for D(A×−)+1, where D is the probability distribution functor,
are generative probabilistic transition systems.

• Coalgebras for (S × (1 +−))S, where S is a fixed set of memory states, are
deterministic transition systems with state and termination.

Many other examples of systems modeled as coalgebras for functors on Set
can be found in [53]. Coalgebras for functors on other categories have also
been considered; for example, in [16], coalgebras for a certain functor on the
category Nom of nominal sets and equivariant functions [21] are shown to
correspond to a kind of labelled transition systems with name binding. The
coalgebraic abstraction allows one to treat many different kinds of systems in a
uniform manner. At the same time, many important notions used in reasoning
about transition systems can be explained at the abstract, coalgebraic level.
For example, a coalgebraic bisimulation [2,53] on a coalgebra h : X → BX is
a relation R on X such that there exists a coalgebra structure r : R → BR
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for which the projections π1, π2 : R → X extend to a span of coalgebra
morphisms:

BX BR
Bπ2 //Bπ1oo BX

X

h

OO

R π2
//

π1
oo

r

OO

X

h

OO

For B = (P−)A, this notion specializes to ordinary bisimulation on an LTS;
also for other choices of B it corresponds to canonical notions of bisimulations
on the respective kinds of transition systems.

Another coalgebraic approach to bisimilarity for functors B on Set is via be-
havioural equivalence: two processes x, y ∈ X in a coalgebra h : X → BX are
equivalent if they are equated by some coalgebra morphism from h to some
other B-coalgebra. For B = (P−)A behavioural equivalence coincides with
bisimilarity; similarly for other typical behaviour functors. In general, under
the mild condition that B preserves weak pullbacks, behavioural equivalence
coincides with the notion of bisimilarity based on coalgebraic bisimulations.
However, some examples where that condition does not hold [40] suggest be-
havioural equivalence as the more basic notion of canonical process equivalence
on coalgebras.

For more information on the coalgebraic approach to the theory of processes,
see [53,27,25].

3.2 Terms as algebras

In SOS, processes are closed terms over some algebraic signature. It is standard
to consider sets of such terms as algebras for certain functors on Set. For
example, a signature described by the grammar

t ::= nil | a.t | t+ t | t||t ,

where a ranges over a fixed set A, corresponds to the functor

ΣX = 1 + A×X +X ×X +X ×X

where 1 is a singleton set, × is cartesian product and + is disjoint union. Note
that an element of the set ΣX can be seen as a simple term over the above
grammar, built of exactly one syntactic construct with variables from X (such
terms will be called flat terms in the following). It turns out that algebras for
the signature (in the usual sense of universal algebra) are maps

g : ΣX → X
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i.e., algebras for the functor Σ. This way, a simple syntax corresponds to a
functor on Set. To model more advanced syntactic features such as variable
binding, one needs to move to more complex categories, such as Nom.

Algebras provide a general, abstract perspective on the notion of congru-
ence, in analogy to the coalgebraic treatment of behavioural equivalence. More
specifically, an algebra morphism from g : ΣX → X to h : ΣY → Y is a map
f : X → Y such that the diagram

ΣX
g

��

Σf // ΣY

h
��

X f
//Y

commutes. (The kernel of) an algebra morphism from g : ΣX → X is called a
congruence on the algebra g. It is easy to see that for Σ on Set corresponding
to an algebraic signature, this notion coincides with the notion of congruence
known from universal algebra.

If a functor Σ corresponds to an algebraic signature then the set of terms over
the signature and over a set X of variables is denoted TΣX, or TX if Σ is
clear from context. In particular, T0 is the set of closed terms over Σ. This set
admits an obvious and canonical algebra structure, denoted aΣ : ΣT0 → T0.
This Σ-algebra is initial: for any other algebra g : ΣX → X there is a unique
algebra morphism g] : T0 → X from aΣ to g. Intuitively, g] is defined by
structural induction, where g defines the inductive step. The construction T
extends to a functor, and it is called the monad freely generated by Σ. The
notions of initial algebra and freely generated monad do not depend on Σ
corresponding to an algebraic signature, and can be defined for many other
functors: in general, TΣX is the carrier of an initial (X + Σ−)-algebra, if the
latter exists.

For more intuition about this categorical approach to induction, see e.g. [27].

3.3 SOS and distributive laws

SOS specifications induce LTSs with closed terms as processes. In other words,
the set of processes is equipped with both a coalgebraic structure, which maps
a process to a structure of its successors, and an algebraic structure, which
describes how to obtain a process by combining other processes. Formally,
induced LTSs are coalgebras h : T0 → BT0 for a suitable behaviour B, and
for T the monad freely generated by syntax Σ.

To model the process of inducing LTSs with syntax abstractly, a sufficiently
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abstract notion of structural operational description is needed. For a simple
example, consider a standard set of operational inference rules for a toy lan-
guage with synchronous product:

t ::= nil | a | t⊗ t

x
a−→ x′ y

a−→ y′

x⊗ y
a−→ x′ ⊗ y′ a

a−→ nil

(8)

where a ranges over a fixed set A of labels. The syntax of this language cor-
responds, as mentioned in §3.2, to the functor

ΣX = 1 + A+X ×X .

Rules (8) induce an image finite LTS labelled with A, i.e., a coalgebra for the
functor

BX = (PωX)A .

But how to model the rules on the abstract level? Informally, they define
the behaviour (i.e., the set of successors) of a term built of a single syntactic
construct and variables, based on some information about the behaviour of
subterms represented by the variables. For example, given processes x, y from
any set X, and sets of successors for x and for y, the first rule defines the
set of successors for the process x⊗ y. Note that while successors of x and y
are variables and therefore can be thought of as arbitrary elements of X, the
derived successors of x⊗ y are simple terms from ΣX. Formally, the first rule
in (8) represents a function

λ⊗ : BX ×BX → BΣX

defined by

λ⊗(β, γ)(b) = {x⊗ y ∈ ΣX | x ∈ β(b) ∧ y ∈ γ(b) } .

Similarly, the right rule represents a function λA : A→ BΣX defined by

λA(a)(b) =

 {nil} if a = b

∅ otherwise

and even the lack of any rules for the construct nil defines its behaviour: the
process nil has no successors. This can be viewed as a function λnil : 1 →
BΣX:

λnil(?)(b) = ∅ .
The three functions can be combined into a function

λ : ΣBX → BΣX
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defined by cases and corresponding to (8). Note that the structure ofX and the
nature of its elements are completely ignored in the definition of λ. Formally,
λ is natural over X:

λ : ΣB =⇒ BΣ . (9)

A natural transformation like this is called a distributive law of Σ over B,
and a first attempt to model structural operational rules would be to consider
distributive laws of the syntax functor over the behaviour functor. We have
just seen a reasonable example covered by this notion. It turns out that the
process of inferring LTSs from SOS rules can be explained abstractly at the
level of distributive laws. Indeed, the unique algebra morphism hλ from the
initial Σ-algebra as below:

T0

hλ

��

ΣT0
aΣoo

Σhλ

��
BT0 BΣT0BaΣ

oo ΣBT0λT0

oo

(10)

is an LTS of the required type. The pair (aΣ, hλ) is an (initial) λ-bialgebra [57],
the central notion of bialgebraic semantics. This inductive definition of the
coalgebraic part of the initial algebra corresponds to the inductive definition
of an LTS from SOS rules such as in (8). For the transformation λ defined as
above, the inductively defined hλ is exactly the expected LTS induced by (8).

3.4 More distributive laws: towards abstract GSOS

The example of the previous section encourages one to model SOS specifica-
tions as distributive laws. However, there are many examples which do not fit
into the simple framework described so far. Consider, for example, a simple
language featuring parallel composition without communication:

t ::= nil | a | t||t

x
a−→ x′

x||y a−→ x′||y
y

a−→ y′

x||y a−→ x||y′ a
a−→ nil

(11)

where a ranges over a fixed set A of labels. As before, the syntax and behaviour
of the language is modeled by functors

ΣX = 1 + A+X ×X, BX = (Pω−)A.

However, it turns out that the two rules defining the parallel composition
operator ||, do not represent a function of the type λ|| : BX ×BX =⇒ BΣX.
The reason for this is that in both rules, variables from the left sides of the
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conclusions appear on the right sides. This means that successors of composite
terms cannot be built solely from the successors of their subterms; indeed,
information about the subterms themselves is needed as well. Accordingly,
the two problematic rules do represent, for any set X, a function of the form:

λ|| : (X ×BX)× (X ×BX) → BΣX

defined by

λ|| ((x, β) , (y, γ)) (b) = {x′||y | x′ ∈ β(b) } ∪ {x||y′ | y′ ∈ γ(b) } .

Combined with λA and λnil defined as above, this gives a natural transforma-
tion

λ : Σ(Id×B) =⇒ BΣ. (12)

This is a distributive law slightly more general than considered before, and it
induces an initial bialgebra with a diagram little more complicated than (10).

On the other hand, consider a language with nondeterministic choice, defined
by:

t ::= nil | a | t+t

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′ a

a−→ nil

(13)

where a ranges over a fixed set A of labels. Again, the syntax and behaviour
of the language corresponds to functors

ΣX = 1 + A+X ×X, BX = (Pω−)A.

Here, successors of composite terms do not use their subterms. However, in the
rules for + the successors are variables rather than flat terms. This means that
these rules do not represent a function of the type λ+ : BX × BX → BΣX
either. However, for any X they represent a function

λ+ : BX ×BX → BX

defined by
λ+(β, γ)(b) = β(b) ∪ γ(b)

and this, combined with λA and λnil as before, yields a natural transformation

λ : ΣB =⇒ B(Id + Σ). (14)

Again, this type of distributive law induces initial bialgebras similarly as
in (10).

A common generalization of (12) and (14) is

λ : Σ(Id×B) =⇒ B(Id + Σ). (15)
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Many interesting SOS specifications represent distributive laws of this type for
B = (Pω−)A and for Σ corresponding to algebraic signatures. For example,
consider the following subset of CCS:

t ::= nil | a.t | t+ t | t||t

a.x
a−→ x

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

x
a−→ x′

x||y a−→ x′||y
y

a−→ y′

x||y a−→ x||y′
x

a−→ x′ y
ā−→ y

x||y τ−→ x′||y′

(16)

where it is assumed that A = A0 ∪ { ā | a ∈ A } ∪ {τ}, and ¯̄a denotes a. It is
straightforward to see how the above rules represents such a law for

ΣX = 1 + A×X +X ×X +X ×X.

In particular, the component function λ. : A × X × BX → B(X + ΣX) for
the prefixing operator is defined by:

λ.(a, x, γ)(b) =

 {ι1(x)} if a = b

∅ otherwise

where ι1 : X → X + ΣX is the coproduct injection.

However, some useful specifications do not conform to the type of (15). Con-
sider a simple language with sequential composition and binary Kleene star,
defined by:

t ::= nil | a | t;t | t ∗ t

a
a−→ nil

x
a−→ x′

x; y
a−→ x′; y

{x 6 b−→}b∈A y
a−→ y′

x; y
a−→ y′

x
a−→ x′

x ∗ y a−→ x′;(x ∗ y)
y

a−→ y′

x ∗ y a−→ y′

(17)

Here, the term on the right side of the conclusion of the first rule for ∗ is not
flat, therefore the codomain of the corresponding distributive law cannot be
BΣ or even B(Id + Σ). However, the above rules do define a distributive law
of the type

λ : Σ(Id×B) =⇒ BTΣ (18)
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where

ΣX = 1 + A+X ×X +X ×X

and TΣ is the free monad over Σ, i.e., the functor than maps a set X to the
set of Σ-terms with variables from X.

Altogether, the component functions of λ represented by the rules (17) are,
on a set X:

λnil(?)(b) = ∅

λA(a)(b) =

 {nil} if a = b

∅ otherwise

λ;((x, β) , (y, γ))(b) =

 γ(b) if ∀c ∈ A.β(c) = ∅

{x′;y | x′ ∈ β(b) } otherwise

λ∗((x, β) , (y, γ))(b) = {x′;(x ∗ y) | x′ ∈ β(b) } ∪ γ(b)

and these define a function natural in X.

Plenty of interesting SOS specifications represent distributive laws of the
type (18) for B = (Pω−)A. In fact, as was observed in [57] and proved in
detail in [7], such distributive laws correspond to image finite GSOS specifica-
tions (5). For this reason, the type (18) of distributive laws is called abstract
GSOS.

Abstract GSOS is a generalization of (9) and (15). In [57], a dual generalization
was also suggested, to distributive laws of the type

λ : ΣDB =⇒ B(Id + Σ) (19)

where DB is the cofree comonad over B. Cofree comonad is the categorical
notion dual to that of free monad: just as TΣX is the carrier of an initial
(X + Σ−)-algebra, DBX is the carrier of a final (X × B−)-coalgebra. For
example, if B = (Pω−)A on Set, then DBX is the set of all finitely branching,
but possibly infinite, synchronization trees edge-labeled with A and node-
labeled with X, quotiented by strong bisimilarity. It turns out that just laws of
this type for B = (Pω−)A correspond to specifications in the image finite safe
ntree format (7); therefore the type (19) of distributive law is called abstract
safe ntree. Following this convention, we will call the type (9) abstract toy
SOS.

All laws of the type (12), (14), (15), (18) or (19) induce initial bialgebras by
constructions similar to (10). This follows from a more general construction
from [57], for distributive laws of the free monad TΣ over the cofree comonad
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DB (these are natural transformations λ : TΣDB =⇒ DBTΣ subjects to ad-
ditional axioms). It is also shown there that, provided that B preserves weak
pullbacks, coalgebraic bisimilarity on the induced B-coalgebra is a congru-
ence on the initial Σ-algebra; this specializes to the previously known facts
that GSOS and safe ntree are congruence formats for bisimilarity. The ad-
vantage of the bialgebraic approach is that these abstract constructions and
results apply also to other choices of B and Σ, and even to other underlying
categories. Some applications of this are mentioned below.

3.5 Related work on bialgebraic semantics

Since [57], several studies and applications of the bialgebraic framework have
been developed. For reference, we briefly list some of them before we proceed
to the main contribution of this paper: a combination of the basic framework
with a coalgebraic approach to modal logic.

In [57], natural transformations of the type (18) and (19) are considered as
special cases of the more general notion of a distributive law of a monad over
a comonad. In [42,43,52], various types of distributive laws are studied on the
abstract, categorical level. In [7], different kinds of distributive laws are studied
and related on the concrete example of LTSs; also a complete proof of one-to-
one correspondence between abstract GSOS and concrete GSOS specifications
is included there.

In [6,7], the abstract GSOS framework is applied to reactive probabilistic sys-
tems and probabilistic automata, represented as coalgebras for suitable func-
tors. A congruence format for probabilistic bisimilarity is derived. In [29,30],
the same framework is applied to processes with timed transitions. Congru-
ence results regarding timed bisimilarity are proved, and a congruence format
for the case of discrete time is derived. In [31,32], the combination of tim-
ing with action is studied more carefully, with insights on combining different
behaviours to obtain a modular account of semantics.

In [34], abstract GSOS is studied in a CPO-enriched setting, where recur-
sion is possible to express via straightforward fixpoint constructions. There,
it is shown how to combine standard GSOS distributive laws with recursive
equations to obtain other well-behaved distributive laws. Another bialgebraic
approach to recursive equations is [26].

In [17,18], syntax with variable binding was modeled algebraically in a presheaf
category, and the standard SOS description of the π-calculus was shown to
fit in the abstract GSOS format there, although no actual format was pro-
posed. Recently [16], such a format, a special case of abstract GSOS, has been
proposed in the closely related setting of nominal sets [21], with congruence

16



properties related to a version of open bisimilarity. Interestingly, in nominal
settings the syntax and behaviour functors reside in different categories. The
basic bialgebraic setting is suitably generalized to accommodate this.

In [39,35], abstract GSOS is interpreted in certain fibered categories. This
allows one to derive congruence formats for process equivalences other than
the canonical coalgebraic notion of bisimilarity. In particular, novel formats
for completed trace and failures equivalences on LTSs were obtained. That
work is closely related to the present paper, and indeed the following sections
can be seen as a refinement of the approach described in [39,35,33].

One should also mention the approach of structured coalgebras (e.g. [15,13]),
used for purposes similar to this work and related to the framework of bialge-
braic semantics.

4 Coalgebraic modal logic

To study HML and other modal logics at the level of generality of distribu-
tive laws, we will use the recent approach of [38], inspired by earlier results
of [41,50,54]. To gain momentum, we begin by considering the familiar setting
of sets and functions. Normally, the semantics of a logic is some satisfaction
relation |= ⊆ X × Φ between the set Φ of tests (formulas) and the set X of
tested entities (processes), or equivalently a function:

|= : X × Φ → 2

(here and in the following, 2 denotes the two-element set {tt, ff}). Its two
transposes:

[[ ]] : Φ → 2X [[ ]][ : X → 2Φ (20)

define the semantics of processes by sets of formulas that hold for them, and
the semantics of formulas by sets of processes that satisfy them. In particular,
two processes in X are logically equivalent if they are equated by [[ ]][. This
treatment is easily generalized to logics where another set is used for “truth
values”; for example, in some probabilistic logics the continuous interval [0, 1]
is used instead of 2.

More generally, assume a category C of structures of processes, and a category
D of structures of logical formulas, connected by a contravariant adjunction
F a Gop : C → Dop. This means that a bijection C(X,GΦ) ∼= D(Φ, FX) holds
for any X ∈ C, Φ ∈ D; slightly abusing the notation, we will denote both
directions of this bijection by −[. To avoid notational clutter, all op-notation
for functors and natural transformations is omitted in the following; formally,
we see F and G as contravariant functors between C and D, and compose
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them with (covariant) functors on C or D in the obvious way. In all concrete
examples considered in this paper, C = D = Set and F = G = 2−; however,
our abstract results hold for the general case as well.

Functors F and G provide the infrastructure for linking processes and formu-
las. Note that GF is a monad on C; denote its unit by η : Id =⇒ GF . For any
f : Φ → FX in D, one has f [ = Gf ◦ ηX . Also FG is a monad on D, with the
unit denoted by ε : Id =⇒ FG.

Assuming a functorB on C, a (coalgebraic polyadic modal) logic forB-coalgebras
is a functor L on D (the syntax) together with a connection between L and
B, i.e., a natural transformation ρ : LF =⇒ FB (the semantics). Such a ρ
determines the adjoint connection

ρ? = GLε ◦GρG ◦ ηBG : BG =⇒ GL; (21)

it is not difficult to see that the correspondence between ρ and ρ? is bijective.

If L has an initial algebra a : LΦ → Φ, then for any coalgebra h : X → BX
the interpretation [[ ]]h : Φ → FX is defined as the unique algebra morphism:

LΦ
aoo

L[[ ]]h
��

LFX,ρX
ooFBXFh

oo

Φ

[[ ]]h
��

FX

(22)

and the transpose [[ ]][h : X → GΦ represents the logical equivalence associated
with (L, ρ).

Example 1 The logic for completed trace equivalence (4) on finitely branch-
ing LTSs, i.e., on B-coalgebras for B = (Pω−)A on Set, is defined by syntax:

LΦ = {>}+ {∅}+ A× Φ

on Set, with semantics ρX : L2X → 2BX defined by cases:

ρX(>)(β) = tt always

ρX(∅)(β) = tt ⇐⇒ ∀a ∈ A. β(a) = ∅
ρX(〈a〉φ)(β) = tt ⇐⇒ ∃y ∈ β(a). φ(y) = tt.

It is easy to see how L corresponds to the syntax of the logic (4) for completed
trace equivalence and ρ to its semantics. Indeed, for any B-coalgebra h, the
map [[ ]]h defined by (22) is the usual semantics of the logic for completed
traces, and the kernel of [[ ]][h is completed trace equivalence on h. 2

Example 2 The finitary HML (3) on B-coalgebras for B = (Pω−)A on Set
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is defined by syntax:
LΦ = A×

∐
n∈N

(2× Φ)n

on Set, represented with the grammar:

φ ::= 〈a〉
∧

j=1..n

ψj ψ ::= φ | ¬φ. (23)

Its semantics ρ : L2− =⇒ 2B− is defined by:

ρX(〈a〉(ψ1 ∧ · · · ∧ ψn))(β) = tt ⇐⇒

∃y ∈ β(a).∀i = 1..n.

ψi = φi ⇒ φi(y) = tt

ψi = ¬φi ⇒ φi(y) = ff

Note how propositional operators ∧ and ¬ are combined with the diamond
modalities 〈a〉 of HML in a single layer of syntax L. This makes our presen-
tation of HML a little more complicated than the classical (3); however, it
allows for a formalization of its semantics as a transformation ρ of a simple
type. Also note that the logic presented here is, formally speaking, a proper
subset of HML: for example, the always true formula > is not present (al-
though all formulas of the form 〈a〉> are, with > being, by convention, the
empty conjunction). However, the fragment is expressive, i.e., it still charac-
terizes bisimilarity. 2

5 Logical distributive laws

A logic (L, ρ) for B-coalgebras lifts B to an endofunctor Bρ on the category
(D ↓ F ), i.e, the slice category of the contravariant adjunction of F and G.
Objects of (D↓F ) are triples (X, r,Φ) whereX ∈ C, Φ ∈ D and r : Φ → FX in
D, and a morphism (f, g) : (X, r,Φ) → (Y, s,Ψ) is a pair of maps f : X → Y ,
g : Ψ → Φ such that Ff ◦ s = r ◦ g. The functor Bρ on (D↓F ) is defined by:

Bρ (X, r,Φ) = (BX, ρX ◦ Lr, LΦ)

Bρ (f, g) = (Bf, Lg)

and a Bρ-coalgebra is a B-coalgebra together with an L-algebra interpreted
in it according to ρ.

The above suggests that coalgebraic modal logic concerns coalgebras in the
category (D ↓ F ), and to combine it with the bialgebraic approach to SOS
one should interpret the latter in that category. To simplify the presentation,
we do it first for abstract toy SOS (9), and then show without proof how the
approach generalizes to abstract GSOS (18).
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5.1 Abstract toy SOS

Assume that a syntax functor Σ on C is lifted to a functor Σζ with a functor
Γ on D and a transformation ζ : ΓF =⇒ FΣ, just as B can be lifted to Bρ

with L and ρ. The following is a characterization of distributive laws of Σζ

over Bρ in terms of more elementary laws satisfying a coherence condition:

Proposition 1 Every pair (λ, χ) of laws in C and D:

λ : ΣB =⇒ BΣ χ : LΓ =⇒ ΓL

such that the hexagon

LΓF
Lζ +3

χF

��

LFΣ
ρΣ +3FBΣ

Fλ
��

ΓLF Γρ
+3 ΓFB ζB

+3FΣB

(24)

commutes, gives rise to a distributive law of Σζ over Bρ.

Proof. Given λ and χ as above, define a distributive law κ : ΣζBρ =⇒ BρΣζ

by κ(X,r,Φ) = (λX , χΦ) for any (X, r,Φ) ∈ (D ↓ F ). This has the right type,
since ΣζBρ(X, r,Φ) = (ΣBX, ζBX ◦ ΓρX ◦ ΓLr,ΓLΦ) and BρΣζ(X, r,Φ) =
(BΣX, ρΣX ◦ LζX ◦ LΓr, LΓΦ). It is also a well-defined morphism in (D↓F ),
as the following diagram shows:

LΓΦ
χΦ

��

LΓr //LΓFX
LζX //

χFX

��

LFXΣ
ρΣX //FBΣX

FλX

��
ΓLΦ ΓLr

// ΓLFX ΓρX

// ΓFBX ζBX

//FΣBX

where the left part commutes by naturality of χ, and the right part is (24).
Naturality of κ follows from that of λ and χ. 2

Remark. The correspondence of κ and (λ, χ) above is actually bijective. In par-
ticular, given a κ : ΣζBρ =⇒ BρΣζ , one can extract λX as the first component
of κ(X,idFX ,FX). This, however, will not be used in the following development.

The following informal picture shows categories, functors and natural trans-
formations involved in Proposition 1:

C
Z�

F
$$

⊥

Σ

11

B
��

DY�
G

cc

L




Γ

ll

ρ:LF=⇒FB

λ:ΣB=⇒BΣ

ζ:ΓF=⇒FΣ

χ:LΓ=⇒ΓL ;
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the contravariance of F and G is marked with crossed arrow tails. Σ, B and
λ model a language syntax, behaviour and an SOS specification, as described
in §3. L and ρ model a modal logic for B-coalgebras, as described in §4.
The following theorem says that if the remaining ingredients Γ, ζ and χ can
be found, then the logical equivalence induced by the logic on the transition
system hλ induced from the SOS specification is a congruence.

Theorem 3 Under the above notation, for given Σ, B, λ, L and ρ, if Σ and L
have initial algebras aΣ : ΣP → P and aL : LΦ → Φ, and if some Γ, ζ and χ
exist such that (24) holds, then the kernel of [[ ]][hλ

: P → GΦ is a congruence,

i.e., [[ ]][hλ
is a Σ-algebra morphism from the initial Σ-algebra.

Proof. Initial algebras aΣ : ΣP → P and aL : LΦ → Φ induce initial λ- and
χ-bialgebras as in (10):

ΣP

aΣ

��

Σhλ // ΣBP

λP

��
BΣP

BaΣ

��
P hλ

//BP

LΓΦ
χΦ

��

LΦ

aL

��

Lhχoo

ΓLΦ

ΓaL

��
ΓΦ Φ.hχ

oo

(25)

Then [[ ]]hλ
is a “twisted coalgebra morphism” as below:

FP
FaΣoo

Φ.

[[ ]]hλ

OO

hχ

oo

FΣPΓFP
ζP //

ΓΦ

Γ[[ ]]hλ

OO

(26)

This is proved by L-induction, as both sides of this diagram are algebra mor-
phisms from the initial L-algebra to F (λP ◦ Σhλ) ◦ ρΣP : LFΣP → FΣP .
Indeed, in the diagram

LΦ

aL

��

L[[ ]]hλ//LFP
LFaΣ//

ρP

��

LFΣP
ρΣP

��
FBP

FBaΣ//

Fhλ

��

FBΣP

FλP

��
FΣBP

FΣhλ

��
Φ [[ ]]hλ

//FP FaΣ

//FΣP

the left part is (22), the upper right part commutes by the naturality of ρ,
and the lower right part is the left diagram in (25) mapped along F . On the
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other hand, in the diagram

LΦ

aL

��

Lhχ //LΓΦ
χΦ

��

LΓ[[ ]]hλ//LΓFP
χFP

��

LζP //LFΣP
ρΣP

��
ΓLΦ

ΓaL

��

ΓL[[ ]]hλ

// ΓLFP

ΓρP

��

FBΣP

FλP

��
ΓFBP

ΓFhλ

��

ζBP //FΣBP

FΣhλ

��
Φ hχ

// ΓΦ Γ[[ ]]hλ

// ΓFP ζP

//FΣP

the left part is the diagram on the right in (25), the upper middle part com-
mutes by the naturality of χ, the lower middle part is (22) mapped along
Γ, the upper right part is (24), and the lower right part commutes by the
naturality of ζ.

Mapped along G, (26) is the upper right part of the following diagram, where
the upper left part commutes by the naturality of η, the lower left part by (21)
and by general properties of adjunctions, and the lower right part is the nat-
urality of ζ? (see (21)):

P
ηP //GFP

G[[ ]]hλ //GΦ

GFΣP

GFaΣ

OO

GζP

��
ΣP

aΣ

OO

ηΣP

::ttttttttt

ΣηP $$JJJJJJJJJ GΓFP
GΓ[[ ]]hλ //GΓΦ

Ghχ

OO

ΣGFP

ζ?
FP

OO

ΣG[[ ]]hλ

// ΣGΦ

ζ?
Φ

OO

Thus [[ ]][hλ
= G[[ ]]hλ

◦ ηP is a Σ-algebra morphism from aΣ. 2

Intuitively, Γ, ζ and χ provide a way of decomposing modal formulas over
process syntax. The functor Γ provides a notion of process-syntactic behaviour
to logical formulas, with ζ : ΓF =⇒ FΣ providing a connection to process
syntax, and χ : LΓ =⇒ ΓL defining a way to define the behaviour by induction
on logical formulas, just as λ : ΣB =⇒ BΣ allows one to define behaviour for
processes by induction. Some examples supporting this intuition are described
in §6.
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5.2 Towards abstract GSOS

To generalize the framework of §5.1 to distributive laws λ of type (15) and
to abstract GSOS (18), some technicalities are necessary. Assume both C and
D have products and coproducts. A connection ζ : ΓF =⇒ FΣ induces a
connection ζ× between the free pointed functor over Σ and the cofree copointed
functor over Γ:

ζ× : (Id× Γ)F =⇒ F (Id + Σ) = F × FΣ

defined by ζ× = id × ζ. Moreover, a connection ρ : LF =⇒ FB induces a
connection

ρ+ : (Id + L)F =⇒ F (Id×B);

to define it, define its adjoint (see (21))

ρ+? : (Id×B)G =⇒ G(Id + L) = G×GL

by ρ+? = id× ρ?.

Theorem 3 can be generalized to distributive laws λ : Σ(Id×B) =⇒ B(Id+Σ)
as follows:

Theorem 4 Under the above notation, for given Σ, B, λ : Σ(Id × B) =⇒
B(Id + Σ), L and ρ : LF =⇒ FB, if Σ and L have initial algebras, and if Γ
on D, ζ : ΓF =⇒ FΣ and χ : L(Id× Γ) =⇒ Γ(Id + L) exist such that

L(Id× Γ)F
Lζ× +3

χF

��

LF (Id + Σ)
ρ(Id+Σ)+3FB(Id + Σ)

Fλ
��

Γ(Id + L)F
Γρ+

+3 ΓF (Id×B)
ζ(Id×B)

+3FΣ(Id×B)

(27)

(compare with (24)) commutes, then [[ ]][hλ
is a Σ-algebra morphism from the

initial Σ-algebra.

The proof of this proceeds as for Theorem 3. Note that χ needs to be gener-
alized to (15) along with λ.

Further, assume that Σ freely generates a monad TΣ on C, i.e., that TΣX is
the carrier of an initial (X + Σ−)-algebra, and that Γ cofreely generates a
comonad DΓ on D, i.e., that DΓΦ is the carrier of a final (Φ×Γ−)-coalgebra.
Then ζ : ΓF =⇒ FΣ induces a connection ζ] : DΓF =⇒ FTΣ. To define it,
define its adjoint ζ]? : TΣG =⇒ GDΓ from ζ? : ΣG =⇒ GΓ pointwise by
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induction in C, as the unique algebra map:

GΦ + ΣTΣGΦ

a

��

idGΦ+Σζ]?
Φ //GΦ + ΣGDΓΦ

idGΦ+ζ?
DΓΦ

��
GΦ +GΓDΓΦ

[GεΦ,GδΦ]
��

TΣGΦ
ζ]?
Φ

//GDΓΦ

(28)

where 〈εΦ, δΦ〉 : DΓΦ → Φ× ΓDΓΦ is the final (Φ× Γ−)-coalgebra.

Theorem 3 can be generalized to distributive laws λ : Σ(Id× B) =⇒ BTΣ as
follows:

Theorem 5 Under the above notation, for given Σ (and its freely generated
monad TΣ), B, λ : Σ(Id × B) =⇒ BTΣ, L and ρ : LF =⇒ FB, if Σ and L
have initial algebras, and if Γ (and its cofreely generated comonad DΓ) on D,
ζ : ΓF =⇒ FΣ and χ : LDΓ =⇒ Γ(Id + L) exist such that

LDΓF
Lζ]

+3

χF
��

LFTΣ
ρTΣ +3FBTΣ

Fλ
��

Γ(Id + L)F
Γρ+

+3 ΓF (Id×B)
ζ(Id×B)

+3FΣ(Id×B)

(29)

(compare with (24), (27)) commutes, then [[ ]][hλ
again is a Σ-algebra morphism

from the initial Σ-algebra.

The proof of this proceeds as for Theorem 3. Note that while λ is generalized
to abstract GSOS (18), the logical distributive law χ needs to be generalized
to abstract safe ntree (19).

6 Examples

In this section the framework developed in §5 is illustrated on four simple
examples, aimed at explaining the workings of logical distributive laws rather
than at exploring the full scope of our approach. First, a very simple example
of an SOS specification in the abstract toy SOS format is explained in detail.
Then, trace equivalence is proved compositional for a subset of CCS, followed
by a proof that de Simone format is a congruence format for trace equivalence.
Finally, completed trace equivalence is proved compositional for a language
with binary Kleene star, which does not conform to any previously known
congruence format for completed traces.
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These examples are aimed at explaining the inner workings of logical dis-
tributive laws at a basic level rather than at exploring the full scope of our
approach. Therefore, although the abstract developments of previous sections
are naturally presented for arbitrary categories, in all examples in this section
we shall take C = D = Set, F = G = 2− and B = (Pω−)A, for a fixed set A
of labels. Unless stated otherwise, A is assumed to be finite.

6.1 A toy SOS specification

Consider the language (8) from §3.3, with synchronous product and no se-
quential composition. Categorically, its syntax is modeled by the functor

ΣX = {nil}+ A+X ×X

on Set, and the rules (8) specify a distributive law λ : ΣB =⇒ BΣ.

We will apply the framework of §5 to prove that trace equivalence is com-
positional for this language. The compositionality result is hardly interesting
in itself (and indeed easy to prove without any advanced techniques), but it
should be useful to explain our approach on such a very simple instance of
abstract toy SOS.

The logic for trace equivalence on B-coalgebras (image finite LTSs) is defined
as in Example 1, but with syntax restricted to

LΦ = {>}+ A× Φ.

For the required compositionality result, Theorem 3 requires a functor Γ on
Set and transformations ζ : Γ2− → 2Σ− and χ : LΓ =⇒ ΓL such that (24)
commutes.

Initially it might not be clear how to look for the right Γ. To illustrate the
role of this functor and explain the process of finding ζ and χ, we begin with
a very simple and natural (although, as we shall see, wrong) choice, where
Γ = Σ and ζ is defined as follows:

ζX(nil)(t) = tt ⇐⇒ t = nil

ζX(a)(t) = tt ⇐⇒ t = a

ζX(φ1⊗φ2)(t) = tt ⇐⇒ t = x1 ⊗ x2, φi(xi) = tt

along the lines of §4. Constructors nil, a and ⊗ used here will be called
spatial modalities, as opposed to behavioural modalities > and 〈a〉 used in the
definition of L. This is motivated by “spatial logics” of [14], where similar
logical operators based on process syntax are present. Intuitively, formulas
built from these spatial modalities can check the structure of Σ-terms.

25



One might now attempt to define a distributive law χ : LΓ =⇒ ΓL such
that (24) commutes. Since both L and Γ are polynomial functors, such a law
can be defined by cases, separately for each combination of modalities from
spatial and behavioural modalities. Then (24) can also be proved by cases.
For example, consider the following partial definition of χ:

χΦ(〈a〉(φ1⊗φ2)) = (〈a〉φ1)⊗(〈a〉φ2).

Note that both the argument on the left side and the right side of this equation
have a simple intuitive meaning: the former says “the process can do an a-step
to a process of the form y1 ⊗ y2 such that φ1 holds for y1 and φ2 holds for
y2”, and the latter says “the process is of the form x1 ⊗ x2, x1 can do an
a-step to a process for which φ1 holds, and x2 can do an a-step to a process
for which φ2 holds”. A quick look on (8) should convince anyone that these
conditions are equivalent; formally, the corresponding case of (24) commutes,
as the following calculation shows:

2λX (ρΣX(LζX(〈a〉(φ1⊗φ2))))(t) = tt

⇐⇒ ρΣX(〈a〉(ζX(φ1⊗φ2)))(λX(t)) = tt

⇐⇒ ∃r ∈ (λX(t))(a). ζX(φ1⊗φ2)(r) = tt

⇐⇒ ∃r ∈ (λX(t))(a). r = x1 ⊗ x2, φi(xi) = tt
?⇐⇒ t = β1 ⊗ β2,∃yi ∈ βi(a). φi(yi) = tt

⇐⇒ t = β1 ⊗ β2, ρX(〈a〉φi)(βi) = tt

⇐⇒ ζBX((ρX(〈a〉φ1))⊗(ρX(〈a〉φ2)))(t) = tt

⇐⇒ ζBX(ΓρX((〈a〉φ1)⊗(〈a〉φ2)))(t) = tt

⇐⇒ ζBX(ΓρX(χ2X (〈a〉(φ1⊗φ2))))(t) = tt,

where the marked equivalence follows from the definition of λ, and other equiv-
alences are straightforward applications of the definitions of ρ, ζ and χ.

Unfortunately, other cases of χ are harder to define. Already the simple be-
havioural modality > is problematic: for χΦ(>) one would like an element of
ΓLΦ that would represent the always true condition. This is, however, impos-
sible with our initial choice of Γ: every test in ΓLΦ imposes some syntactic
condition on the tested process. A simple attempt to overcome this problem
would be to add a single constant, always true modality T ∈ Σ1 → 2 to Γ,
with ζ extended by:

ζX(T)(t) = tt always.

Then, however, it becomes unclear what χΦ(〈a〉T) should be. To formalize the
condition “the process can do an a-step” as an element of ΓLΦ, one would
like to write something like:

χΦ(〈a〉T) = a ∨ (〈a〉>)⊗(〈a〉>);

this is, however, forbidden as Γ does not allow one to write anything like
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logical disjunction in spatial modalities.

A solution to this problem is to extend Γ more substantially by closing spatial
modalities under finite disjunctions (this yields modalities of any finite arity,
just as closing behavioural modalities in HML did in §4, Example 2). This
amounts to taking Γ = PωΣ with ζ : Γ(2−) =⇒ 2Σ− defined by:

ζX(γ)(nil) = tt ⇐⇒ nil ∈ γ
ζX(γ)(a) = tt ⇐⇒ a ∈ γ

ζX(γ)(x1 ⊗ x2) = tt ⇐⇒ ∃φ1⊗φ2 ∈ γ. φi(xi) = tt.

One could then define χ with a set of equations as before, writing for example

χΦ(>) = nil ∨ (>⊗>) ∨ ∨
a∈A a,

χΦ(〈a〉(nil ∨ (φ1⊗φ2))) = a ∨ (〈a〉φ1⊗〈a〉φ2)

and so forth. However, the theory of GSOS in §3 provides another, more
elegant method of presenting such distributive laws: inference rules. Note that
the functor PωΣ is rather similar to B = (Pω−)A, and it is reasonable to
expect that χ could be presented in a manner similar to GSOS rules. Two
differences between PωΣ-coalgebras and B-coalgebras are that in the former
there are no labelled components in transitions, and successors are flat Σ-terms
rather than simple elements. This suggests that instead of literals like x

a−→ y,
in rules for χ one should use literals such as x −→ y⊗z. To distinguish the
logical rules from the SOS ones, we will use variables such as φ, ψ, instead of
x, y, and we will replace the sign −→ with a. Now the following rules:

> a nil > a a > a >⊗>

φ a nil

〈a〉φ a a
φ a ψ⊗σ

〈a〉φ a (〈a〉ψ)⊗(〈a〉σ)

(30)

where a ranges over A, define a distributive law χ : LΓ =⇒ ΓL just as (8)
defined λ in §3.3:

χΦ(>) = {nil} ∪ A ∪ {>⊗>}
χΦ(〈a〉γ) = { a | nil ∈ γ } ∪ { 〈a〉ψ⊗〈a〉σ | ψ⊗σ ∈ γ }

where a ranges over A and γ ∈ ΓΦ. Here and in the following, { a | nil ∈ γ }
means “{a} if nil ∈ γ, otherwise ∅”.

Note that behavioural modalities >, 〈a〉 play the role of syntax here, and
spatial modalities nil, a and ⊗ are a part of the behaviour. The sign a might
be read “is guaranteed by”; this is justified by the definition of ζ.
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It turns out that for this χ the condition (24) holds. This is proved by cases,
according to the structure of L. The first case is:

2λX (ρΣX(LζX(>)))(t) = tt

⇐⇒ ρΣX(>)(λXt) = tt
?⇐⇒ (t = nil) or (t ∈ A) or (∃β1, β2 ∈ BX. t = x1 ⊗ x2)

⇐⇒ ζBX({nil} ∪ A ∪ {ρΣX(>)⊗ ρΣX(>)})(t) = tt

⇐⇒ ζBX(ΓρΣX({nil} ∪ A ∪ {> ⊗>})(t) = tt

⇐⇒ ζBX(ΓρX(χ2X (>))(t) = tt;

note that both sides of the marked equivalence are always true. The second
case is:

2λX (ρΣX(LζX(〈a〉γ)))(t) = tt

⇐⇒ ρΣX(〈a〉(ζX(γ)))(λXt) = tt

⇐⇒ ∃r ∈ (λXt)(a). ζX(γ)(r) = tt

⇐⇒ (nil ∈ γ and nil ∈ (λXt)(a))

or (∃φ1 ⊗ φ2 ∈ γ, x1 ⊗ x2 ∈ (λXt)(a). φi(xi) = tt)
?⇐⇒ (nil ∈ γ and t = a)

or (t = β1 ⊗ β2,∃φ1 ⊗ φ2 ∈ γ.∃yi ∈ βi(a). φi(yi) = tt)

⇐⇒ ζBX({ a | nil ∈ γ } ∪ { ρΣ(〈a〉ψ)⊗ρΣ(〈a〉σ) | ψ⊗σ ∈ γ })(t) = tt

⇐⇒ ζBX(ΓρΣ({ a | nil ∈ γ } ∪ { 〈a〉ψ⊗〈a〉σ | ψ⊗σ ∈ γ }))(t) = tt

⇐⇒ ζBX(ΓρΣ(χFX(〈a〉γ)))(t) = tt.

Here, the marked equivalence is true by the definition of λ.

This calculation, admittedly rather tedious, is a straightforward sequence of
simple unfolding of the definitions of ρ, λ, χ and ζ. Rather than performing
the calculation immediately, it is not difficult to convince oneself informally
that it is worth performing, by looking at (8) and (30) and noting that, for
example, if a property φ holds for all processes x⊗ y such that ψ holds for x
and σ holds for y, then 〈a〉φ holds for all processes z⊗w such that 〈a〉ψ holds
for z and 〈a〉σ holds for w, which means that the last rule in (30) is correct.
In the remaining examples in this paper, precise calculations as above will be
omitted.

Since the condition (24) holds for the chosen Γ, ζ and χ, by Theorem 3 the
map [[ ]][hλ

: TΣ0 → GTL0 is an algebra morphism from the initial Σ-algebra.
This means that its kernel is a congruence. On the other hand by the definition
of L and ρ, the kernel of [[ ]][hλ

coincides with trace equivalence on hλ, the LTS
induced by the rules (8). This gives the expected compositionality result.

So far the set A has been assumed finite. However, for infinite A very similar
constructions of Γ, ζ and χ work, with the only difference that in the defini-
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tion of Γ, instead of Pω, a powerset bounded by a cardinal higher than the
cardinality of A must be used; otherwise the definition of χ by (30) would be
incorrect (a bound on the powerset construction is necessary for B to have an
initial algebra). Obviously, the definitions of Σ, B, λ and ρ remain unchanged
for an infinite A.

6.2 A step towards GSOS: recursion-free CCS

For a slightly more complex, but still very simple example, consider the
recursion-free fragment of CCS, with syntax and semantics defined by (16)
in §3.4, extended with unary operators:

t ::= · · · | t[f ] | t\L

for each L ⊆ A and each function f : A → A such that f(τ) = τ and
f(ā) = f(a) (denote the set of such functions by F(A)). The functor on Set
corresponding to this syntax is

ΣX = {nil}+ A×X +X ×X +X ×X +X ×F(A) +X × P(A)

and the rules (16), extended with

x
b−→ x′

x[f ]
a−→ x′[f ]

a = f(b)
x

a−→ x′

x\L a−→ x′\L
a, ā 6∈ L,

where L ranges over P(A) and f over F(A), define a distributive law of the
form (15).

To prove the compositionality of trace equivalence for this language, consider L
and ρ as in §6.1, and use Theorem 4. It requires a functor Γ, ζ : Γ(2−) =⇒ 2Σ−

and χ : L(Id × Γ) =⇒ Γ(Id + L) such that (27) holds. Take Γ = PωΣ and
define ζ in analogy with §6.1, and let χ be defined by the following rules:

> a nil > a a.> > a >+> > a >||> > a >[f ] > a >\L

〈a〉φ a a.φ 〈a〉φ a 〈a〉φ+> 〈a〉φ a >+〈a〉φ

φ a ψ||σ
〈a〉φ a 〈a〉ψ||σ

φ a ψ||σ
〈a〉φ a ψ||〈a〉σ

φ ` ψ||σ
〈τ〉φ a 〈a〉ψ||〈ā〉σ

φ a ψ[f ]

〈a〉φ a (〈b〉ψ)[f ]
a = f(b)

φ a ψ\L
〈a〉φ a (〈a〉φ)\L

a, ā 6∈ L
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as in §6.1. A tedious but straightforward calculation shows that (27) com-
mutes. Again, rather that perform the formal calculation it is easier to con-
vince oneself that the logical rules reflect the SOS rules of (16).

Note that χ is not of the abstract toy SOS type LΓ =⇒ ΓL. For example, in
the first rule for 〈a〉 above, the variable φ from the left side of the conclusion is
used on the right side of the conclusion (hence at least L(Id× Γ) is needed in
the domain of χ), and it is not put under any behavioural modality (hence at
least Γ(Id+L) is needed in the codomain of χ). This corresponds to the reason
why λ is not of the type ΣB =⇒ BΣ: look at the SOS rule for a. in (16).

6.3 Abstract GSOS: de Simone format

In §6.1 and §6.2 the framework of logical distributive laws was applied to
show compositionality for specific languages. In this section it is used to show
that an entire format is a congruence format for a process equivalence. More
specifically, we will re-prove the well-known fact that de Simone format (6)
guarantees the compositionality of trace equivalence.

To this end consider B, L and ρ as in the previous two examples. For any Σ
on Set corresponding to an algebraic signature, and for any λ : Σ(Id×B) =⇒
BTΣ represented by a set R of inference rules in de Simone format, one needs
to find a Γ on Set, ζ : Γ(2−) =⇒ 2Σ− and χ : LDΓ =⇒ Γ(Id + L) such
that (29) commutes. This, by Theorem 5, will imply the required result. To
simplify the presentation, assume Σ to be finite.

In this simple example, Γ or ζ can be chosen independently from λ, and indeed
we choose Γ = PωΣ and ζ as used in §6.1 and §6.2, with the powerset in Γ
interpreted as finite disjunction:

ζX(γ)(f(x1, . . . , xn)) = tt ⇐⇒ ∃f(φ1, . . . , φn) ∈ γ. ∀i ∈ 1..n. φi(xi) = tt

where γ ∈ Γ(2X).

To proceed with defining χ, it is useful to get some intuition about the cofree
comonad DΓ. First, consider the simpler functor DΣ. Elements of DΣΦ are
terms over Σ, possibly infinitely deep, with an element of Φ in every node.
A simple intuitive difference between TΣX and DΣΦ is that while an element
(term) in TΣX is either a variable fromX or an operator from Σ with a tuple of
subterms, an element in DΣΦ is a variable from Φ and an operator with a tuple
of subterms. Therefore in particular, if there are no constant (0-ary) operators
in Σ, all terms in DΣΦ are infinitely deep. In turn, in DΓΦ = DPωΣΦ terms
are nondeterministic in the sense that every node contains, in addition to an
element of Φ, not a single operator but a finite set of operators (successors)
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with corresponding tuples of subterms.

In (29), the inductively defined (28) transformation ζ] appears. In this case,
ζ]
X : DΓ(2X) =⇒ 2TΣX can be described with an auxiliary compatibility relation

� ⊆ TΣX × DΓ(2X), defined by induction: a variable x ∈ X is compatible
with a tree d ∈ DΓ(2X) iff the root of d is labelled with a test φ ∈ 2X such that
φ(x) = tt, and a term f(t1, . . . , tn) is compatible with a tree d iff there exists
a successor of the root of d that is of the form f(d1, . . . , dn) such that all ti’s
are compatible with their respective di’s. A similar compatibility relation (also
denoted �) between TΣ(2Φ) and DΓΦ can also be defined; the only difference
is in the treatment of variables. Looking at (28) and at the definition of ζ
above, it is not difficult to check that

ζ?]
Φ (t)(d) = tt ⇐⇒ t� d

for t ∈ TΣ(2Φ) and d ∈ DΓΦ; as a result,

ζ]
X(d)(t) = tt ⇐⇒ t� d

for t ∈ TΣX and d ∈ DΓ(2X). In words, for a tree d ∈ DΓ(2X), ζ]
X(d) is the

set of all terms in TΣX compatible with d.

A concrete presentation of distributive laws of the type χ : LDΓ =⇒ Γ(Id+L)
is similar to the safe ntree format (7), corresponding to the same type (19) of
distributive laws for B = (Pω−)A instead of Γ = PωΣ: in particular, rules of
the form

φ a f1(φ1, . . . , φn) · · · φi a fi(φk, . . . , φm) · · ·
〈a〉φ a g(. . . , ψi, . . . , 〈bj〉ψj, . . .)

are allowed, where all arities agree with Σ, the relation on formulas defined
by the premises is well-founded, and a condition on variables being distinct
analogous to that on (7) is satisfied. In fact more general rules could be allowed,
with negative premises involved, but for the purpose of our example only χ’s
defined by this kind of positive rules will be needed.

We can now give a definition of χ : LDΓ =⇒ Γ(Id + L) such that the
hexagon (29) commutes. Obviously, the definition depends on λ and on the
assumption that it corresponds to a set of rules in de Simone format. Based
on the set of rules, denoted by R, construct a set of rules in the format of (19)
as follows: for any rule

{xi
ai−→ yi}i∈I

g(x1, . . . , xn)
b−→ t

in R, where I ⊆ {1, . . . , n} and only variables from {xj | j 6∈ I }∪{ yi | i ∈ I }
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occur in t, include the rule

{φν a fν(φν1 , . . . , φνk
)}ν∈N(t)

〈b〉φ a g(ψ1, . . . , ψn)

where:

• N(t) is the set of nodes (operator instances) in t,
• for each ν ∈ N(t) ∪ V (t), φν is a fresh variable, where V (t) is the set of

variable instances in t,
• φ is the variable corresponding to the top operator in t (or, if t is a variable,

to the variable), i.e., φ = φν for a ν ∈ N(t) ∪ V (t),
• fν is the operator in the node ν, ar(fν) = k, and ν1, . . . , νk are the immediate

subterms of ν in t,
• and for i = 1..n,

ψi =



> if i 6∈ I and xi does not occur in t,

φν if i 6∈ I and xi occurs in t on the position ν,

〈ai〉> if i ∈ I and yi does not occur in t,

〈ai〉φν if i ∈ I and yi occurs in t on the position ν.

Note that the above is well defined only because the original SOS rule is in
de Simone format, and in particular because no variable can occur in t more
than once.

A few examples of de Simone rules and their logical counterparts should clarify
the above construction:

g(x)
b−→ x 〈b〉φ a g(φ)

g(x)
b−→ f

φ a f

〈b〉φ a g(>)

g(x)
b−→ h(x)

φ a h(φ′)

〈b〉φ a g(φ′)
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g(x1, x2)
b−→ h(x1)

φ a h(φ′)

〈b〉φ a g(φ′,>)

g(x1, x2)
b−→ h(x1, k(x2))

φ a h(φ′, φ′′) φ′′ a k(φ′′′)

〈b〉φ a g(φ′, φ′′′)

x
a−→ y

g(x)
b−→ y 〈b〉φ a g(〈a〉φ)

x
a−→ y

g(x)
b−→ f

φ a f

〈b〉φ a g(〈a〉>)

x2
a−→ y x4

c−→ z

g(x1, x2, x3, x4)
b−→ h(x1, k(y))

φ a h(φ′, φ′′) φ′′ a k(φ′′′)

〈b〉φ a g(φ′, 〈a〉φ′′′,>, 〈c〉>)

For another example, see the logical rules for the recursion-free fragment of
CCS in §6.2.

The above defines the logical behaviour for unary modalities 〈b〉 for b ∈ A. To
complete the definition of χ, define the logical behaviour of the constant > by
adding, for each f ∈ Σ, the rule

> a f(>, . . . ,>)

with ar(f) arguments on the right side of the conclusion.

Note that logical rules in §6.1 and §6.2 are obtained from their respective SOS
specifications using this procedure. It is not difficult to check that the set of
rules obtained this way defines a distributive law χ : LDΓ =⇒ Γ(Id + L). A
somewhat lengthy, but straightforward calculation, based on the definitions
of λ, χ, ζ, ζ] and ρ proves that (29) commutes, hence trace equivalence is a
congruence on LTSs induced by specifications in de Simone format.

The above is based on the assumption of Σ being finite. If it is infinite, a very
similar construction works, with the only difference being that Γ = PωΣ needs
to be replaced with Γ = PκΣ for a cardinal κ larger than the cardinality of Σ.
Otherwise, in particular, the rules for > given above would fail to represent a
distributive law of the appropriate type. Note, however, that Γ = PΣ cannot
be used, since it does not generate a cofree comonad for cardinality reasons.
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6.4 Kleene star and completed trace equivalence

We will now prove the compositionality of completed trace equivalence for
a language which does not conform to any previously known format for that
equivalence: the language with sequential composition and binary Kleene star,
with syntax and semantics defined by (17). Its syntax is modeled by

ΣX = {nil}+ A+X ×X +X ×X

on Set. The distributive law defined by (17) is not in the form of (15), since
a complex term is used in the conclusion of the first rule for ∗. However, since
the rules are in the GSOS format, the law is of the form (18).

Consider the logic for completed trace equivalence with L and ρ as in Exam-
ple 1. According to Theorem 5, to prove that completed trace equivalence is
compositional one needs to find Γ, ζ and χ : LDΓ =⇒ Γ(Id+L) such that (29)
holds.

A tempting choice is Γ = PωΣ which worked so well in previous examples,
with an analogous definition of ζ interpreting the finite powerset construction
as finite disjunctions of spatial modalities. In this example however, this choice
does not work. Indeed, for a logical rule for the modality 〈a〉 that would reflect
the first SOS rule for ∗ in (17), one is tempted to write something like:

φ a ψ;σ σ a κ∗θ
〈a〉φ a (〈a〉ψ ∧ κ)∗θ

since the variable x is indirectly duplicated in the conclusion of the SOS rule.
This is, however, forbidden: the structure of L and Γ does not allow any use of
conjunctions. An obvious solution is to extend Γ and allow finite conjunctions
on the left side of the spatial modality ∗. Formally, consider

ΓΦ = Pω(1 + A+ Φ× Φ + PωΦ× Φ) (31)

with ζ defined by analogy to that in §6.1, with one difference:

ζ(γ)(x ∗ y) = tt

m

∃(δ∗φ) ∈ γ.(φ(y) = tt ∧ ∀ψ ∈ δ. ψ(x) = tt)

where the universal quantifier justifies the understanding of the inner powerset
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in Γ as conjunction. Now χ can be defined by the following rules:

> a nil > a a > a >;> > a >∗>

∅ a nil ∅ a ∅;∅ ∅ a ∅∗∅

φ a nil

〈a〉φ a a
φ a ψ;σ

〈a〉φ a (〈a〉ψ);σ 〈a〉φ a ∅;〈a〉φ

φ a ψ;σ σ a K∗θ
〈a〉φ a (〈a〉ψ ∧K)∗θ 〈a〉φ a >∗〈a〉φ

where a ranges over A and K is a special variable denoting an arbitrary
finite conjunction of formulas. The use of such variables in rules is justified
by the structure of Γ, a little more complex than in the examples before.
Again, a rather tedious calculation shows that (29) holds for this choice of
χ, hence completed trace equivalence is compositional for our language. Here
the calculation is a bit more complex than in §6.1 and §6.2, as it involves the
inductively defined ζ].

Note that the logical rules above are not in the abstract GSOS format, as the
first rule in the last row involves lookahead. However, it is in the abstract safe
ntree format. This corresponds to the fact that SOS rules for our language
are not in safe ntree format, as the first rule for ∗ has a complex term in the
conclusion; however, they are in the GSOS format. Note how the lookahead
in the logical rule stems from the complex conclusion in the SOS rule.

Note also that the behavioural modality ∅ is necessarily used in a logical
rule for the modality 〈a〉. This suggests that there is no logical distributive
law for the logic for traces for our language. Indeed, trace equivalence is not
compositional for the sequential composition operator ;.

7 Conclusions and future work

We have presented a novel, general technique for proving the compositionality
of process equivalences on languages defined by SOS. Our framework is a
combination of the bialgebraic approach to SOS with a coalgebraic abstraction
of modal logics that characterize interesting equivalences. Our main result,
Theorem 3 and its generalizations in §5.2, can be seen as a very general “meta-
congruence format”, parametrized both by process equivalence and by the kind
of transition system in question. The framework can be used either to prove
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compositionality for specific languages or to define congruence formats for
various equivalences defined by modal logics.

The approach presented here is a refined and extended version of the frame-
work of test suites [35], also aimed at deriving congruence formats. There, dis-
tributive laws are defined between fibered functors derived from notions of pro-
cess equivalences, in total categories of certain fibrations. When C = D = Set
and F = G = V− for some set V of truth values, the present framework tech-
nically coincides with that of Set; note that (C ↓G) is always fibered over C.
However, in other cases the present approach provides a better treatment of
equivalences. Moreover, it provides a clear connection to modal logic, and the
presentation of distributive laws as SOS-like rules hopefully makes the entire
framework easier to understand and to apply.

Some existing work on specific SOS formats and their properties can be
rephrased in terms of the present framework. For example, the technique of
frozen/liquid positions [9] used to derive formats for decorated trace equiva-
lences corresponds exactly to extending the functors Γ with finite conjunctions
as in in §6.4. More interestingly, the SOS-like presentation of logical distribu-
tive laws suggests a connection to compositional proof systems as in [56] and
to techniques for modal logic decomposition as in [20]. Also, the notion of
spatial modality used here seems to be related to spatial logics for process
calculi as in [4,14], with a coalgebraic treatment suggested in [47]. The precise
nature of these connections needs to be investigated.

Several other problems are left open. Importantly, some guidelines for finding
the right logical behaviour Γ, and for checking whether it exists, are much
needed instead of informal guessing used in §6. Also, the present framework
does not deal with structural axioms (equations), which are an important
ingredient in modern process specification formalisms. This is because in The-
orems 3-5, logical equivalences are proved congruences on initial algebras, and
other algebras, unlike e.g. in [13], are not treated. To model equations ac-
curately, one might treat process syntax as arbitrary monads, as opposed to
simple signature functors, with insights taken from e.g. [13,15]. Another com-
mon feature of process algebras not covered by our approach is recursion, typ-
ically described by rules that are not in GSOS format. To model (unguarded)
recursion, techniques such as those used in [34] can be applied. Moreover, a
treatment of quantitative logics, where e.g. metric spaces are used instead of
equivalences, is presently missing. Last but not least, more examples involv-
ing various equivalences and kinds of transition systems, also in categories
other than Set (e.g., presheaf categories for name-passing calculi), need to be
developed in detail.
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