
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

A coinductive calculus of binary trees

A.M. Silva, J.J.M.M. Rutten

REPORT SEN-R0707 DECEMBER 2007

Software Engineering

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2007, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A coinductive calculus of binary trees

ABSTRACT
We study the set TA of infinite binary trees with nodes labelled in a semiring A from a
coalgebraic perspective. We present coinductive definition and proof principles based on the
fact that TA carries a final coalgebra structure. By viewing trees as formal power series, we
develop a calculus where definitions are presented as behavioural differential equations. We
present a general format for these equations that guarantees the existence and uniqueness of
solutions. Although technically not very difficult, the resulting framework has surprisingly nice
applications, which is illustrated by various concrete examples.

2000 Mathematics Subject Classification: 68P05, 68Q10, 68Q85
1998 ACM Computing Classification System: E.1, F.1
Keywords and Phrases: Binary trees, Coalgebra, Coinduction, Differential equations, Formal power series

A Coinductive Calculus of Binary Trees

Alexandra Silva a,1 , Jan Rutten a,b

aCentrum voor Wiskunde en Informatica (CWI)
bVrije Universiteit Amsterdam (VUA)

Abstract

We study the set TA of infinite binary trees with nodes labelled in a semiring A from
a coalgebraic perspective. We present coinductive definition and proof principles
based on the fact that TA carries a final coalgebra structure. By viewing trees
as formal power series, we develop a calculus where definitions are presented as
behavioural differential equations. We present a general format for these equations
that guarantees the existence and uniqueness of solutions. Although technically not
very difficult, the resulting framework has surprisingly nice applications, which is
illustrated by various concrete examples.

1 Introduction

Infinite data structures are often used to model problems and computing so-
lutions for them. Therefore, reasoning tools for such structures have become
more and more relevant. Coalgebraic techniques turned out to be suited for
proving and deriving properties of infinite systems.

In [7], a coinductive calculus of formal power series was developed. In close
analogy to classical analysis, the definitions were presented as behavioural
differential equations and properties were proved in a calculational (and very
natural) way. This approach has shown to be quite effective for reasoning
about streams [7,8] and it seems worthwhile to explore its effectiveness for
other data structures as well.

In this paper, we shall take a coalgebraic perspective on a classical data struc-
ture – infinite binary trees, and develop a similar calculus, using the fact that

Email addresses: ams@cwi.nl (Alexandra Silva), janr@cwi.nl (Jan Rutten).
1 Partially supported by the Fundação para a Ciência e a Tecnologia, Portugal,
under grant number SFRH/BD/27482/2006.

Preprint submitted to Information and Computation 24th October 2007

binary trees are a particular case of formal power series.

The contributions of the present paper are: a coinductive calculus, based on
the notion of derivative, to define and to reason about trees and functions on
trees; a set of illustrative examples and properties that show the usefulness
and expressiveness of such calculus; the formulation of a general format that
guarantees the existence and uniqueness of solutions of behavioural differential
equations; the view of infinite binary trees as generalizations of other well-
known data-structures, namely infinite streams and bi-infinite streams and a
discussion of the notion of rational tree including a comparison with existing
notions of rationality in the literature.

Infinite trees arise in several forms in other areas. Formal tree series (functions
from trees to an arbitrary semiring) have been studied in [4], closely related
to distributive Σ-algebras. The work presented in this paper is completely dif-
ferent since we are concerned with infinite binary trees and not with formal
series over trees. In [6], infinite trees appear as generalisations of infinite words
and an extensive study of tree automata and topological aspects of trees is
made. We have not yet addressed the relation of our work with automata the-
ory. Here we emphasize coinductive definition and proof principles for defining
and reasoning about (functions on) trees.

At the end of the paper, in Section 8, the novelty of our approach is discussed
further. Also several directions for further applications are mentioned there.

Acknowledgements We would like to thank Clemens Kupke and Paulo
Oliva for valuable suggestions and discussions.

2 Trees and coinduction

We introduce the set TA of infinite node-labelled binary trees, show that TA

satisfies a coinduction proof principle and illustrate its usefulness.

The set TA of infinite node-labelled binary trees, where to each node is assigned
a value in A, is the final coalgebra for the functor FX = X ×A×X and can
be formally defined by:

TA = {t | t : {L, R}∗ → A}

The set TA carries a final coalgebra structure consisting of the following func-
tion:

〈l, i, r〉 : TA → TA × A× TA

2

t 7→ 〈λw.t(Lw), t(ε), λw.t(Rw)〉

where l and r return the left and right subtrees, respectively, and i gives the
label of the root node of the tree. Here, ε denotes the empty word and, for
b ∈ {L, R}, bw denotes the word resulting from prefixing the word w with the
letter b.

These definitions of the set TA and the respective coalgebra map may not seem
obvious. The follow reasoning justifies its correctness:

• It is well known from the literature [5] that the final system for the functor
G(X) = A×XB is (AB∗

, π), where

π : AB∗ → A× (AB∗
)B

π(φ) = 〈φ(ε), λb v. φ(bv)〉

• The functor F is isomorphic to H(X) = A×X2.
• Therefore, the set A2∗ is the final coalgebra for the functor F . Considering

2 = {L, R} we can derive the definition of 〈l, i, r〉 from the one presented
above for π.

The fact that TA is a final coalgebra means that for any arbitrary coalgebra
〈lt, o, rt〉 : U → U × A × U , there exists a unique f : U → TA, such that the
following diagram commutes:

U
∃!f //___________

〈lt,o,rt〉
��

TA

〈l,i,r〉
��

U × A× U f×idA×f
// TA × A× TA

The existence part of this statement gives us a coinductive definition principle.
Every triplet of functions lt : U → U , o : U → A and rt : U → U defines a
function h : U → TA, such that:

i(h(x)) = o(x) l(h(x)) = h(lt(x)) r(h(x)) = h(rt(x))

We will see a more general formulation of this principle in section 3, where
the right hand side of the above equations will be more general.

Taking A = R we present the definition of the elementwise sum as an example.

f g

c
a

d e

b +
w x

t
r

u v

s =
f+w g+x

c+t

a+r

d+u e+v

b+s

3

By the definition principle presented above, taking o(〈σ, τ〉) = i(σ) + i(τ),
lt(〈σ, τ〉) = 〈l(σ), l(τ)〉 and rt(〈σ, τ〉) = 〈r(σ), r(τ)〉 there is a unique function
+ : TR × TR → TR satisfying:

i(σ + τ) = i(σ) + i(τ) l(σ + τ) = l(σ) + l(τ) r(σ + τ) = r(σ) + r(τ)

Note that in the first equation above we are using + to represent both the
sum of trees and the sum of real numbers.

Now that we have explained the formal definition for the set TA and how one
can uniquely define functions into TA, another important question is still to
be answered: how do we prove equality on TA? In order to prove that two trees
σ and τ are equal it is necessary and sufficient to prove

∀w∈{L,R}∗ σ(w) = τ(w) (1)

The use of induction on w (prove that σ(ε) = τ(ε) and that whenever σ(w) =
τ(w) holds then σ(aw) = τ(aw) also holds, for a ∈ {L, R}) clearly is a cor-
rect method to establish the validity of (1). However, we will often encounter
examples where there is not a general formula for σ(w) and τ(w). Instead, we
take a coalgebraic perspective on TA and use the coinduction proof principle
in order to establish equalities. This proof principle is based on the notion of
bisimulation. A bisimulation on TA is a relation S ⊆ TA × TA such that, for
all σ and τ in TA,

(σ, τ) ∈ S ⇒ σ(ε) = τ(ε) ∧ (l(σ), l(τ)) ∈ S ∧ (r(σ), r(τ)) ∈ S

We will write σ ∼ τ whenever there exists a bisimulation that contains (σ, τ).
The relation ∼, called the bisimilarity relation, is the union of all bisimulations
(one can easily check that the union of bisimulation is itself a bisimulation).

The following theorem expresses the proof principle mentioned above.

Theorem 1 (Coinduction) For all trees σ and τ in TA, if σ ∼ τ then σ = τ .

Proof Consider two trees σ and τ in TA and let S ⊆ TA×TA be a bisimulation
relation which contains the pair (σ, τ). The equality σ(w) = τ(w) now follows
by induction on the length of w. We have that σ(ε) = τ(ε), because S is a
bisimulation. If w = Lw′, then

σ(Lw′) = l(σ)(w′) (Definition of l)

4

= l(τ)(w′) (S is a bisimulation and induction hypothesis)

= τ(Lw′) (Definition of l)

Similarly, if w = Rw′, then σ(Rw′) = r(σ)(w′) = r(τ)(w′) = τ(Rw′). There-
fore, for all w ∈ {L, R}∗, σ(w) = τ(w). This proves σ = τ . 2

Thus, in order to prove that two trees are equal, it is sufficient to show that
they are bisimilar. We shall see several examples of proofs by coinduction
below.

As a first simple example, let us prove that the pointwise sum for trees of real
numbers defined before is commutative. Let S = {〈σ + τ, τ + σ〉 | σ, τ ∈ TR}.
Since i(σ + τ) = i(σ) + i(τ) = i(τ + σ) and

l(σ + τ) = l(σ) + l(τ) S l(τ) + l(σ) = l(τ + σ)

r(σ + τ) = r(σ) + r(τ) S r(τ) + r(σ) = r(τ + σ)

for any σ and τ , S is a bisimulation relation on TR. The commutativity prop-
erty follows by coinduction.

Let us proceed with an apparently more complex example. For a function
f : R → R with f(a + b) = f(a) + f(b), ∀a,b ∈ R, we show that

mapf (σ + τ) = mapf (σ) + mapf (τ)

where mapf applies a function f to every node of a given tree and is defined
as

i(mapf (σ)) = f(i(σ))

l(mapf (σ)) = mapf (l(σ))

r(mapf (σ)) = mapf (r(σ))

Similarly to what we did before, let S be a relation defined as follows:

S = {〈mapf (σ + τ), mapf (σ) + mapf (τ)〉 | σ, τ ∈ TR}

with f preserving sums, as described above. Because

i(mapf (σ + τ)) = f(i(σ + τ)) = f(i(σ)) + f(i(τ))

= i(mapf (σ)) + i(mapf (τ))

= i(mapf (σ) + mapf (τ))

5

and, for t ∈ {l, r}

t(mapf (σ + τ)) = mapf (t(σ + τ)) = mapf (t(σ) + t(τ))

S mapf (t(σ)) + mapf (t(τ))

= t(mapf (σ)) + t(mapf (τ))

= t(mapf (σ) + mapf (τ))

we can conclude that S is a bisimulation. Therefore, the desired equality fol-
lows by coinduction.

Although this example seemed more complex than the first, the final proof
has a similar complexity. The bisimulation that witnesses the equality was
constructed in a similar way and without great effort. This illustrates the
power of proofs by coinduction – one can reduce the proof of laws about infinite
structures to the construction of a relation that can be finitely described.

3 Behavioural differential equations

In this section, we shall view trees as formal power series. Following [7], coin-
ductive definitions of operators into TA and constant trees then take the shape
of so-called behavioural differential equations. We shall prove a theorem guar-
anteeing the existence of a unique solution for a large family of systems of
behavioural differential equations.

Formal power series are functions σ : X ∗ → k from the set of words over an
alphabet X to a semiring k. If A is a semiring, TA, as defined in section 2, is the
set of all formal power series over the alphabet {L, R} with coefficients in A.
In accordance with the general notion of derivative of formal power series [7]
we shall write σL for l(σ) and σR for r(σ). We will often refer to σL, σR and
σ(ε) as the left derivative, right derivative and initial value of σ.

Following [7], we will develop a coinductive calculus of infinite binary trees.
From now on coinductive definitions will have the shape of behavioural dif-
ferential equations. Let us illustrate this approach by a simple example – the
coinductive definition of a tree, called one, decorated with 1’s in every node.

1 1

1

1

1 1

1

6

A formal definition of this tree consists the following behavioural differential
equations:

differential equations initial value

oneL = one

oneR = one
one(ε) = 1

The fact that there exists a unique tree that satisfies the above equations will
follow from the theorem below, which presents a general format for behavioural
differential equations guaranteeing the existence and uniqueness of solutions.

Behavioural differential equations will be used not just to define single constant
trees but also functions on trees. We shall see examples below. Before we
present the main result of this section, we need one more definition. We want
to be able to view any element n ∈ A as a tree (which we will denote by [n]):

0 0

0

n

0 0

0

The tree [n] is formally defined as

[n](ε) = n

[n](w) = 0 w 6= ε

Next we present a syntax describing the format of behavioural differential
equations that we will consider. Let Σ be a set of function symbols, each with
an arity r(f) ≥ 0 for f ∈ Σ. (As usual we call f a constant if r(f) = 0.) Let
X = {x1, x2, . . .} be a set of (syntactic) variables, and let XL = {xL | x ∈ X},
XR = {xR | x ∈ X}, [X(ε)] = {[x(ε)] | x ∈ X} and X(ε) = {x(ε) | x ∈ X}
be sets of notational variants of them. The variables x ∈ X will play the role
of place holders for trees τ ∈ TA. Variables xL, xR, and [x(ε)] will then act as
place holders for the corresponding trees τL, τR and [τ(ε)] in TA, while x(ε)
(without the square brackets) will correspond to τ ’s initial value τ(ε) ∈ A.
We call a behavioural differential equation for a function symbol f ∈ Σ with
arity r = r(f) well-formed if it is of the form

differential equations initial value

f (x1, . . . , xr)L = p

f (x1, . . . , xr)R = q
(f (x1, . . . , xr)) (ε) = c(x1(ε), . . . , xr(ε))

7

where c : Ar → A is a given function, and where p and q are terms built out
of function symbols in Σ and variables in {x1, . . . , xr} and their corresponding
notational variants in XL, XR and [X(ε)]. A well-formed system of equations
for Σ will then consist of one well-formed equation for each f ∈ Σ. A solution
of such a system of equations is a set of tree functions

Σ̃ = {f̃ : (TA)r → TA | f ∈ Σ}

satisfying, for all f ∈ Σ with arity r and for all τ1, . . . , τr ∈ TA,(
f̃(τ1, . . . , τr)

)
(ε) = c(τ1(ε), . . . , τr(ε))

and (
f̃(τ1, . . . , τr)

)
L

= p̃ and
(
f̃(τ1, . . . , τr)

)
R

= q̃

where the tree p̃ ∈ TA (and similarly for q̃) is obtained from the term p by
replacing (all occurrences of) xi by τi, (xi)L by (τi)L, (xi)R by (τi)R, and
[xi(ε)] by [τi(ε)], for all i = 1, . . . , r, and all function symbols g ∈ Σ by their
corresponding function g̃.

Theorem 2 Let Σ be a set of function symbols. Every well-formed system
of behavioural differential equations for Σ has precisely one solution of tree
functions Σ̃.

Proof Consider a well-formed system of differential equations for Σ, as defined
above. We define a set T of terms t by the following syntax:

t ::= τ (τ ∈ TA) | f(t1, . . . , tr(f)) (f ∈ Σ)

where for every tree τ ∈ TA the set T contains a corresponding term, denoted
by τ , and where new terms are constructed by (syntactic) composition of
function symbols from Σ with the appropriate number of argument terms.
Next we turn T into an F -coalgebra by defining a function 〈l, o, r〉 : T →
(T ×A×T) by induction on the structure of terms, as follows. First we define
o : T → A by

o(τ) = τ(ε)

o
(
f(t1, . . . tr(f))

)
= c

(
o(t1), . . . , o(tr(f))

)
(where c is the function used in the equations for f). Next we define l : T → T
and r : T → T by l(τ) = τL and r(τ) = τR, and by

l (f(t1, . . . tr)) = p and l (f(t1, . . . tr)) = q

8

Here the terms p and q are obtained from the terms p and q used in the
equations for f , by replacing (every occurrence of) xi by ti, (xi)L by l(ti),
(xi)R by r(ti), and [xi(ε)] by [o(t)], for i = 1, . . . , r. Because TA is a final
F -coalgebra, there exists a unique homomorphism h : T → TA. We can use it
to define tree functions f̃ : (TA)r → TA, for every f ∈ Σ, by putting, for all
τ1, . . . , τr ∈ TA,

f̃(τ1, . . . , τr) = h
(
f(τ1, . . . , τr)

)

This gives us a set Σ̃ of tree functions. One can prove that it is a solution
of our system of differential equations by coinduction, using the facts that
h(τ) = τ , for all τ ∈ TA, and

h (f(t1, . . . , tr)) = f̃ (h(t1), . . . , h(tr))

for all f ∈ Σ and ti ∈ T . This solution is unique because, by finality of TA,
the homomorphism h is. 2

Let us illustrate the generality of this theorem by mentioning a few examples
of systems of differential equations that satisfy the format above. As a first
example, take Σ = {one} consisting of a single constant symbol (with arity 0)
and X = ∅. We observe that the differential equations for one mentioned at
the beginning of this section satisfy the format of the theorem. For a second
example, let Σ = {+,×} with arities r(+) = r(×) = 2 and let X = {σ, τ}.
Consider the following equations:

differential equations initial value

(σ + τ)L = σL + τL

(σ + τ)R = σR + τR

(σ + τ)(ε) = σ(ε) + τ(ε)

differential equations initial value

(σ × τ)L = (σL × τ) + ([σ(ε)]× τL)

(σ × τ)R = (σR × τ) + ([σ(ε)]× τR)
(σ × τ)(ε) = σ(ε)× τ(ε)

These equations define the operations of sum and convolution product of trees,
to be further discussed in Section 4. Note that the right-hand side of the
equation for (σ× τ)L (and similarly for (σ× τ)R) is a good illustration of the
general format: it is built from the functions + and ×, applied to (a subset
of) the variables on the left (τ), their derivatives (σL and τL), and their initial
values viewed as trees ([σ(ε)]).

9

Clearly there are many interesting interesting instances of well-formed differen-
tial equations. Note, however, that the format does impose certain restrictions.
The main point is that in the right-hand sides of the equations, only single
L and R derivatives are allowed. The following is an example of a system of
equations that is not well-formed and that does not have a unique solution.

Let Σ = {f}, with arity r(f) = 1, and let X = {σ}. The equations for f are

differential equations initial value

f(σ)L = f(f(σLL))

f(σ)R = [0]
f(σ)(ε) = σ(ε)

Both g(σ) = [σ(ε)] + (L× [σLL(ε)]) and h(σ) = [σ(ε)] + (L× [σLL(ε)] + L2 ×
(1− L)−1) are solutions.

All the examples of systems of behavioural differential equations that will
appear in the rest of this document fit into the format of Theorem 2. Therefore,
we will omit proofs of the existence and uniqueness of solutions for those
systems.

In the next section we will define operators on trees, based on some general
operators on formal power series [7].

4 Tree calculus

In this section, we present operators on trees, namely sum, convolution product
and inverse, and state some elementary properties, which we will prove using
coinduction.

The sum of two trees is defined as the unique operator satisfying:

differential equations initial value

(σ + τ)L = σL + τL

(σ + τ)R = σR + τR

(σ + τ)(ε) = σ(ε) + τ(ε)

Note that this is a generalisation of the sum on trees of real numbers defined
in section 2 and that again we are overloading the use of + to represent both
sum on trees and sum on the elements of the semiring.

Sum satisfies some desired properties, easily proved by coinduction, such as
commutativity or associativity:

10

Theorem 3 For all σ, τ and ρ in TA, σ+0 = σ, σ+τ = τ+σ and σ+(τ+ρ) =
(σ + τ) + ρ.

Here, we are using 0 as a shorthand for [0]. We shall use this convention (for
all n ∈ A) throughout this document.

Proof of Theorem 3 Easy exercise in coinduction. The equalities follow, re-
spectively, from the fact that the relations {〈σ + 0, σ〉 | σ ∈ TA}, {〈σ + τ, τ + σ〉 |
σ, τ ∈ TA} and {〈σ + (τ + ρ), (σ + τ) + ρ〉 | σ, τ, ρ ∈ TA} are bisimulations. 2

We define the convolution product of two trees as the unique operation satis-
fying:

differential equations initial value

(σ × τ)L = (σL × τ) + (σ(ε)× τL)

(σ × τ)R = (σR × τ) + (σ(ε)× τR)
(σ × τ)(ε) = σ(ε)× τ(ε)

Note that in the above definition we use × for representing both multiplica-
tion on trees and on the elements of the semiring. Following the convention
mentioned above σ(ε) × τL and σ(ε) × τR are shorthands for [σ(ε)] × τL and
[σ(ε)]× τR. We shall also use the standard convention of writing στ for σ× τ .

The general formula to compute the value of σ according to a path given by
the word w ∈ {L, R}∗ is:

(σ × τ)(w) =
∑

w=u·v
σ(u)× τ(v)

where · denotes word concatenation.

To give the reader some intuition about this operation we will give a concrete
example. Take A to be the Boolean semiring B = {0, 1}, with operations
+ = ∨ and × = ∧. Then, a tree τ ∈ TA corresponds to a language l(τ) over
the alphabet {L, R} given by

l(τ) = {w ∈ {L, R}∗ | τ(w) = 1} (2)

The product of trees corresponds then to concatenation of languages:

l(τ × σ) = l(τ)× l(σ)

The following theorem states some familiar properties of the convolution prod-
uct.

11

Theorem 4 For all σ, τ, ρ in TA and a, b in A

σ × 1 = 1× σ = σ

σ × 0 = 0× σ = 0

σ × (τ + ρ) = (σ × τ) + (σ × ρ)

σ × (τ × ρ) = (σ × τ)× ρ

[a]× σ = σ × [a]

[a]× [b] = [a× b]

Proof An exercise in coinduction. In [8], these properties are proved for
streams. 2

Note that the convolution product is not commutative. Before we present the
inverse operation, let us introduce two (very useful) constants, which we shall
call left constant L and right constant R. They will have an important role
in the tree calculus that we are about to develop and will turn out to have
interesting properties when interacting with the product operation. The left
constant L is a tree with 0’s in every node except in the root of the left branch
where it has a 1:

0 0

0

0

0 0

1L =

It is formally defined as

L(w) = 1 if w = L

L(w) = 0 otherwise

Similarly, the right constant R is only different from 0 in the root of its right
branch:

0 0

1

0

0 0

0R =

12

and is defined as

R(w) = 1 if w = R

R(w) = 0 otherwise

These constants have interesting properties when multiplied by an arbitrary
tree. L×σ produces a tree whose root and right subtrees are null and the left
branch is σ:

0 0

0
0

0 0

1 X
f g

c
a

d e

b =
0

f g

c
a

d e

b 0
0

0

Dually, R × σ produces a tree whose root and left subtrees are null and the
right branch is σ:

0 0

1
0

0 0

0 X
u v

r
p

s t

q =
0

u v

r
p

s t

q0
0

0

As before, if we see L and σ as languages and the product as concatenation,
we can gain some intuition on the meaning of this operation. L×σ will prefix
every word of σ with the letter L, meaning that no word starting by R will
be an element of L × σ, and thus, L × σ has a null right branch. Similar for
R× σ.

As we pointed out before, the product operation is not commutative. For
example, σ × L 6= L× σ and σ ×R 6= R× σ. In fact, multiplying a tree σ on
the right with L or R is interesting in itself. For instance, σ × L satisfies

(σ × L)(w) =

 σ(u) w = uL

0 otherwise

which corresponds to the following transformation:

0 0

0
0

0 0

1X
f g

c
a

d e

b =
0

a

d 0

b

e 0

0
0

f 0

c

g 0

0

13

Similarly, σ ×R produces the following tree:

0 0

1
0

0 0

0X
f g

c
a

d e

b =
0

0

0 d

0

0 e

b
a

0 f

0

0 g

c

Again, if you interpret these operations in the language setting, what is be-
ing constructed is the language that has all words of the form uL and uR,
respectively, such that σ(u) 6= 0.

We define the inverse of a tree as the unique operator satisfying:

differential equations initial value

(σ−1)L = σ(ε)−1 × (−σL × (σ−1))

(σ−1)R = σ(ε)−1 × (−σR × (σ−1))
σ−1(ε) = σ(ε)−1

We are using −σL and −σR as shorthands for [−1]×σL and [−1]×σR, respec-
tively. In this definition, we require A to be a ring, in order to have additive
inverses. Moreover, the tree σ is supposed to have also a multiplicative inverse
for its initial value.

The inverse of a tree has the usual properties:

Theorem 5 For all σ and τ in TA:

σ−1 is the unique tree s.t. σ × σ−1 = 1 (3)

(σ × τ)−1 = τ−1 × σ−1 (4)

Proof For the existence part of (3), note that

(1) (σ × σ−1)(ε) = σ(ε)× σ(ε)−1 = 1
(2) (σ × σ−1)L = (σL × σ−1) + (σ(ε)× (σ(ε)−1 × (−σL × σ−1))) = 0
(3) (σ × σ−1)R = (σR × σ−1) + (σ(ε)× (σ(ε)−1 × (−σR × σ−1))) = 0

So, by uniqueness (using the behavioural differential equations that define 1)
we have proved that σ×σ−1 = 1. Now, for the uniqueness part of (3), suppose
that there is a tree τ such that σ × τ = 1. We shall prove that τ = σ−1. Note
that from the equality σ × τ = 1 we derive that

(1) τ(ε) = σ(ε)−1

(2) τL = σ(ε)× (−σL × τ)
(3) τR = σ(ε)× (−σR × τ)

14

Thus, by uniqueness of solutions for systems of behavioural differential equa-
tions, τ = σ−1.

For (4), note that (σ × τ)× τ−1 × σ−1 = σ × (τ × τ−1)× σ−1 = 1. Therefore,
using the uniqueness property of (3), (σ × τ)−1 = τ−1 × σ−1. 2

5 Applications of tree calculus

We will illustrate the usefulness of our calculus by looking at a series of inter-
esting examples.

Throughout this section we will use different semirings. When we do not spec-
ify the semiring, the example is valid for an arbitrary semiring.

In order to compute closed formulae for trees we will be using the following
theorem, that will enable us to solve behavioural differential equations in an
algebraic manner.

Theorem 6 For all σ ∈ TA, σ = σ(ε) + (L× σL) + (R× σR).

Proof The theorem follows by coinduction from the fact that

S = {〈σ, σ(ε) + (L× σL) + (R× σR)〉 | σ ∈ TA} ∪ {(σ, σ) | σ ∈ TA}

is a bisimulation. 2

We will now show how to use this theorem to construct a closed formula for
a tree.

Recall our first system of behavioural differential equations:

differential equations initial value

oneL = one

oneR = one
one(ε) = 1

There we saw that the unique solution for this system was the tree with 1’s
in every node. Alternatively, we can compute the solution using Theorem 6 as
follows.

one = one(ε) + (L× oneL) + (R× oneR)

⇔ one = 1 + (L× one) + (R× one)

15

⇔ (1− L−R)one = 1

⇔ one = (1− L−R)−1

Therefore, the tree one can be represented by the (very compact) closed for-
mula (1 − L − R)−1. Note the similarity of this closed formula with the one
obtained for the stream (1, 1, . . .) in [8]: (1−X)−1.

Let us see a few more examples. In the following two examples we will work
with A = R.

The tree where every node at level k is labelled with the value 2k, called pow,

4 4

2

1

4 4

2

is defined by the following system:

differential equations initial value

powL = 2× pow

powR = 2× pow
pow(ε) = 1

We proceed as before, applying Theorem 6:

pow = pow(ε) + (L× powL) + (R× powR)

⇔ pow = 1 + (2L× pow) + (2R× pow)

⇔ (1− 2L− 2R)pow = 1

⇔ pow = (1− 2L− 2R)−1

which gives us a nice closed formula for pow. Again, there is a strong similarity
with streams: the closed formula for the stream (1, 2, 4, 8, . . .) is (1− 2X)−1.

The tree with the natural numbers

6 7

3

1

4 5

2

16

is represented by the following system of differential equations:

differential equations initial value

natL = nat + pow

natR = nat + (2× pow)
nat(ε) = 1

Applying Theorem 6, we have:

nat = nat(ε) + (L× natL) + (R× natR)

⇔ nat = 1 + (L× (nat + pow)) + (R× (nat + 2pow))

⇔ (1− L−R)nat = 1 + L(1− 2L− 2R)−1 + 2R(1− 2L− 2R)−1

⇔ (1− L−R)nat = (1− L)× (1− 2L− 2R)−1

⇔ nat = (1− L−R)−1 × (1− L)× (1− 2L− 2R)−1

The Thue-Morse sequence [1] can be obtained by taking the parities of the
counts of 1’s in the binary representation of non-negative integers. Alterna-
tively, it can be defined by the repeated application of the substitution map
{0 → 01; 1 → 10}:

0 → 01 → 0110 → 01101001 → . . .

We can encode this substitution map in a binary tree, called thue, which at
each level k will have the first 2k digits of the Thue-Morse sequence:

1 0

1

0

0 1

0

In this example, we take for A the Boolean ring 2 = {0, 1} (where 1 + 1 = 0).
The following system of differential equations defines thue:

differential equations initial value

thueL = thue

thueR = thue + one
thue(ε) = 0

Note that thue + one equals the (elementwise) complement of thue. Applying

17

Theorem 6 to thue, we calculate:

thue = (L× thue) + (R× (thue + one))

⇔ (1− L−R)× thue = R× one

⇔ thue = (1− L−R)−1 ×R× one

which then leads to the following pretty formula for thue:

thue = one×R× one

It is interesting to compare this formula with the regular expression that de-
scribes the corresponding language l(thue) ∈ {L, R}∗ (cf. equation (2)), which
is given by

l(thue) = {w ∈ {L, R}∗ | thue(w) = 1 }

Putting

M = l(thue), N = l(thue + one)

the above equations for the tree thue (together with Theorem 6) lead to the
following language equation for M :

M = (L×M) + (R×N)

where × denotes language concatenation, + denotes language union, and 1 =
{ε}.

Similarly, computing left and right derivatives for thue + one leads to a lan-
guage equation for N :

N = (L×N) + (R×M) + 1

Solving these equations as usual — notably using

A = (B × A) + C ⇒ A = B∗ × C

for languages A, B, C such that ε 6∈ B — we find the following regular expres-
sion for M :

M = (L + (R× L∗ ×R))∗ ×R× L∗

18

Somehow the tree expression for thue above is simpler and nicer.

The Cantor space is the collection of all infinite sequences over a two element
set. Typically, this set is {0, 1}, but to avoid confusion with the semiring unit’s
we will take {a, b}. The Cantor space can be represented as a tree:

ba bb

b

ε

aa ab

a

In this example, we take for A the semiring of languages over a two-letter
alphabet 2{a,b}∗ , where 1 = {ε}, 0 = ∅, + and × are, respectively, language
union and concatenation. Note that each node of the above tree denotes in
fact not a word but the language containing a singleton element.

The following system of differential equations defines cantor:

differential equations initial value

cantorL = a× cantor

cantorR = b× cantor
cantor(ε) = 1

Applying Theorem 6 to cantor, we have:

cantor = (L× a× cantor) + (R× b× cantor)

⇔ (1− aL− bR)× cantor = 1

⇔ cantor = (1− aL− bR)−1

which gives us a very compact and pleasant closed formula for cantor.

Note that in this example there are two alphabets at stake, the one denoting
the tree branches {L, R} and the one for the words in the language {a, b}. The
interplay between this two alphabets is clearly reflected in the closed formula
obtained.

Let us present another example – a substitution operation, which given two
trees σ and τ , replaces the left subtree of σ by τ .

σ(ε)

σL σR
=subst () , τ

σ(ε)

τ σR

19

It is easy to see that the equations that define this operation are:

differential equations initial value

subst(σ, τ)L = τ

subst(σ, τ)R = σR

subst(σ, τ)(ε) = σ(ε)

Then, we apply Theorem 6 and we reason:

subst(σ, τ) = σ(ε) + (L× τ) + (R× σR)

⇔ subst(σ, τ) = σ − (L× σL) + (L× τ)

⇔ subst(σ, τ) = σ − L(σL − τ)

Note that in the second step, we applied Theorem 6 to σ. Moreover, remark
that the final closed formula for subst(σ, τ) gives us the algorithm to compute
the substitution:

σ(ε)

0 σR

+
0

τ 0

- 0

σL 0

σ(ε)

σL σR
=subst () , τ

σ(ε)

τ σR

We can now wonder how to define a more general substitution operation that
has an arbitrary path P ∈ {L, R}+ as an extra argument and replaces the
subtree of σ given by this path by τ . It seems obvious to define it as

subst(σ, τ, P) = σ − P (σP − τ)

where, in the right hand side, P = a1a2 . . . an is interpreted as a1×a2× . . .×an

and the derivative σP is defined as

σP =

 σδ P = δ

(σδ)P ′ P = δ.P ′

with δ being either L or R.

Let us check that our intuition is correct. First, we present the definition for

20

this operation:

differential equations initial value

subst(σ, τ, P)δ =

τ P = δ

subst(σδ, τ, P
′) P = δ.P ′

σδ P = δ′.P ′

subst(σ, τ, P)(ε) = σ(ε)

where δ′ 6= δ. Now, observe that

R = {〈subst(σ, τ, P), σ − P (σP − τ)〉 | σ, τ ∈ TR, P ∈ {L, R}+} ∪ {〈σ, σ〉 | σ ∈ TR}

is a bisimulation relation because:

(1) (σ − P (σP − τ))(ε) = σ(ε) = subst(σ, τ, P)(ε)
(2) For δ ∈ {L, R},

(σ − P (σP − τ))δ = σδ − Pδ(σP − τ)

=

τ P = δ

σδ − P ′((σδ)P ′ − τ) P = δ.P ′

σδ P = δ′.P ′

R

τ P = δ

subst(σδ, τ, P
′) P = δ.P ′

σδ P = δ′.P ′

= subst(σ, τ, P)δ

Therefore, by Theorem 1, subst(σ, τ, P) = σ − P (σP − τ).

Using this formula we can now prove properties about this operation. For
instance, one would expect that

subst(σ, σP , P) = σ

and

subst(subst(σ, τ, P), σP , P) = σ

The first equality follows easily: subst(σ, σP , P) = σ − P (σP − σP) = σ.

21

For the second one we have:

subst(subst(σ, τ, P), σP , P)

= subst(σ − P (σP − τ), σP , P) (Definition of subst)

= σ − P (σP − τ)− P ((σ − P (σP − τ))P − σP) (Definition of subst)

= σ − P (σP − τ)− P (τ − σP) ((σ − P (σP − τ))P = τ)

= σ

Remark that this operation is a standard example in introductory courses on
algorithms and data structures. It is often presented either as a recursive ex-
pression (very much in the style of our differential equations) or as a contrived
iterative procedure. This example shows that our compact formulae constitute
a clear way of presenting algorithms and that they can be used to eliminate
recursion. Moreover, the differential equations are directly implementable al-
gorithms (in functional programming) and our calculus provides a systematic
way of reasoning about such programs.

6 Infinite trees as generalizations of (bi-)infinite streams

Infinite binary trees can be seen as generalizations of other well-known data
structures. In this section, we will show how the sets of infinite and bi-infinite
streams can be seen as special instances of TA.

Let A be a semiring. The set of infinite streams over A is formally defined as

Aω = {s | s : N → A}

The set Aω carries a final coalgebra structure consisting of the following pair
of functions:

〈h, t〉 : Aω → A× Aω, s 7→ 〈s(0), s′〉

These assign to a stream s = (s0, s1, s2, . . .) its initial value s(0) = s0 ∈ A and
its derivative s′ = (s1, s2, . . .) ∈ Aω.

22

We can now define the embedding of Aω into TA:

f : Aω → TA

f(s)(ε) = s(0)

f(s)L = f(s)R = f(s′)

Defining the appropriate transition structure on Aω, we can prove that f is a
coalgebra homomorphism, i.e, the following diagram commutes:

Aω f //

〈t,h,t〉
��

TA

〈l,i,r〉
��

Aω × A× Aω
f×id×f

// TA × A× TA

Thus, S = f(Aω) ∼= Aω is a subcoalgebra of TA.

Moreover, S can also be characterised as the greatest subcoalgebra 2P con-
tained in the following predicate P :

P = {σ ∈ TA | σL = σR}

Proposition 1 S = 2P .

Proof The inclusion S ⊆ 2P follows from the fact that S is a subcoalgebra
and that S ⊆ P :

σ ∈ S ⇔ ∃s∈Aω σ = f(s)

⇒ σL = (l ◦ f)(s) = (f ◦ t)(s) = (r ◦ f)(s) = σR

⇔ σ ∈ P

Here, ◦ denotes function composition.

To prove the inclusion 2P ⊆ S let us first spell out what it means σ ∈ 2P :

σ ∈ 2P ⇔ σw = σ′
w for all w, w′ ∈ {L, R}∗ s.t. |w| = |w′|

where | · | returns the length of a given word.

Now, define s ∈ Aω, for a given σ ∈ 2P , by s(n) = σ(w), for any w such that
|w| = n and observe that f(s) = σ. Therefore, σ ∈ S. 2

23

Next we give a similar such characterisation for bi-infinite streams.

The set of bi-infinite streams over A, for a given semiring A, is formally defined
as

AZ = {s | s : Z → A}

The set AZ has a dynamics given by the following three maps:

AZ 〈sl,o,sr〉 // AZ × A× AZ

These assign to a bi-infinite stream b = (. . . , b−1, b0, b1, . . .) its initial value
b(0) = b0 ∈ A, its left shift sl(b) = (. . . b−1, b0, b1, b2, . . .) ∈ AZ and its right
shift sl(b) = (. . . b−2, b−1, b0, b1, . . .) ∈ AZ. Note that the maps sl and sr have
the property sl ◦ sr = sr ◦ sl = id.

We can now define the embedding of AZ into TA:

g : AZ → TA

g(b)(ε) = b(0)

g(b)L = g(sl(b))

g(b)R = g(sr(b))

The map g is a coalgebra homomorphism, i.e, the following diagram commutes:

AZ

<sl,o,sr>

��

g // TA

<l,i,r>

��
AZ × A× AZ

id×g×id
// TA × A× TA

Thus, B = f(AZ) ∼= AZ is a subcoalgebra of TA.

Moreover, B can be characterised as the greatest subcoalgebra 2Q contained
in the following predicate Q:

Q = {σ ∈ TA | σLR = σ = σRL}

Proposition 2 B = 2Q.

Proof The proof that B = 2Q is similar to the correspondent for infinite
streams.

24

The inclusion B ⊆ 2Q follows from the fact that B is a subcoalgebra and
that B ⊆ Q:

σ ∈ B ⇔ ∃b∈AZ σ = g(b)

⇒ σRL = (g ◦ sr ◦ sl)(b) = g(b) = (g ◦ sl ◦ sr)(b) = σLR

⇔ σ ∈ Q

To prove the inclusion 2Q ⊆ B we spell out what it means σ ∈ 2Q:

σ ∈ 2Q ⇔ σw = σ′
w for all w, w′ ∈ {L, R}∗ s.t |w|a = |w′|a , a ∈ {L, R}

where | · |a returns the number of occurrences of a in a given word.

Now, define b ∈ AZ, for a given σ ∈ 2Q, by b(z) = σ(w), for any w such that
|w|R − |w|L = z and observe that g(b) = σ. Therefore, σ ∈ B. 2

7 Rational binary trees

We introduce the family of rational trees. Rational trees are important because
they are exactly the trees that can be represented by closed formulae. We
compare our definition of rationality with existing notions. We prove that our
definition of rationality is more expressive than the one presented in [6] and
that coincides with the one given for formal power series in [3].

All the examples presented so far are rational trees.

We define the set R of rational trees as the smallest subset of TA (for a ring
A) such that:

(1) [n] ∈ R, for all n ∈ A
(2) L, R ∈ R
(3) For all σ and τ in R, σ + τ , σ × τ are also in R
(4) For all σ in R, such that σ(ε) is invertible in A, σ−1 is also in R

The expressions in R are given by the following grammar:

σ, τ ::= [n], n ∈ A | L | R | σ + τ | στ | σ−1 (σ(ε) invertible in A)

Next, we recall two existing notions of rationality from the literature.

Definition 1 ([6, page 424]) A tree t is rational if it has only a finite num-

25

ber of different subtrees.

Our definition of rational is more general than this one. As an example take the
tree nat of natural numbers. Obviously, it has an infinite number of different
subtrees and it is still rational in our setting.

Definition 2 ([3, page 6]) A formal series is rational if it is an element of
the rational closure of K 〈X〉.

K 〈X〉 is the set of polynomials (formal series with finite support) over X
with coefficients in K. By finite support we mean that for σ ∈ K 〈X〉 there
is a finite number of words w ∈ X∗ such that σ(w) 6= 0. If we restrict this
definition to formal power series over two variables, one can prove that the
rational closure of A 〈{L, R}〉, which we will denote by RBR, is given by the
following syntax:

σ, τ ::= [n], n ∈ A | L | R | σ + τ | στ | σ∗ (σ(ε) = 0)

The following theorem states the relation between this notion of rationality
and ours.

Theorem 7 The set of rational trees R coincides with the set of rational
formal power series over two variables, as defined in [3].

Proof We will prove this theorem by induction on the syntax of the expres-
sions. In fact, the syntax definitions for R and RBR are very similar. They
only differ in the use of star and inverse.

It easy to see that [n], L, R, σ + τ, στ ∈ R ⇔ [n], L, R, σ + τ, στ ∈ RBR.
Therefore, in order to conclude that R and RBR are equal, we only have to
show that:

σ∗ ∈ RBR⇒ σ∗ ∈ R (5)

σ−1 ∈ R ⇒ σ−1 ∈ RBR (6)

For (5), observe that, if A is a ring then σ∗ is the inverse of 1 − σ and, for
σ ∈ R, (1− σ)−1 ∈ R.

For (6), note that applying Theorem 6 to σ−1, we have

σ−1 = σ−1(ε) + (L× (σ−1)L) + (R× (σ−1)R)

= σ(ε)−1 + (L×−σ(ε)−1 × σL × σ−1) + (R×−σ(ε)−1 × σR × σ−1)

= σ(ε)−1 + ((L×−σ(ε)−1 × σL) + (R×−σ(ε)−1 × σR))σ−1

Now, because ((L × −σ(ε)−1 × σL) + (R × −σ(ε)−1 × σR))(ε) = 0, we know
(using [3, Lemma 4.1]) that the solution for the equation σ−1 = σ(ε)−1 +((L×

26

−σ(ε)−1×σL)+(R×−σ(ε)−1×σR))σ−1 is σ−1 = ((L×−σ(ε)−1×σL)+(R×
−σ(ε)−1 × σR))∗σ(ε)−1, which is an element of RBR. 2

8 Discussion

We have modelled binary trees as formal power series and, using the fact
that the latter constitute a final coalgebra, this has enabled us to apply some
coalgebraic reasoning. Technically, none of this is very difficult. Rather, it is
an application of well known coalgebraic insights. As is the case with many
of such applications, it has the flavour of an exercise. At the same time, the
result contains several new elements that have surprised us. Although techni-
cally Theorem 2 is an easy extension of a similar such theorem for streams, the
resulting format for differential equations for trees is surprisingly general and
useful. It has allowed us to define various non-trivial trees by means of sim-
ple differential equations, and to compute rather pleasant closed formulae for
them. We have also illustrated that based on this, coinduction is a convenient
proof method for trees. As an application, all of this is new, to the best of
our knowledge. (Formal tree series, which have been studied extensively, may
seem to be closely related but are not: here we are dealing with differential
equations that characterise single trees.)

In addition to the illustrations of the present differential calculus for trees, we
see various directions for further applications: (i) The connection with (various
types of) automata and the final coalgebra TA of binary trees needs further
study. For instance, every Moore automaton with input in 2 = {L, R} and
output in A has a minimal representation in TA. It would also be interesting
to study systematically the relation between tree expressions and, in the case
A = {0, 1}, the regular expressions for the correspondent languages (we saw
an example of this for the thue tree). (ii) The closed formula that we have ob-
tained for the (binary tree representing the) Thue-Morse sequence suggests a
possible use of coinduction and differential equations in the area of automatic
sequences [2]. Typically, automatic sequences are represented by automata.
The present calculus seems an interesting alternative, in which properties such
as algebraicity of sequences can be derived from the tree differential equations
that define them. (iii) Finally, the closed formulae that we obtain for tree sub-
stitution suggest many further applications of our tree calculus to (functional)
programs on trees, including the analysis of their complexity.

27

References

[1] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence.
In C. Ding, T. Helleseth, and N. H., editors, Sequences and their applications,
Proceedings of SETA’98, pages 1–16. Springer Verlag, 1999.

[2] J.-P. Allouche and J. Shallit. Automatic sequences: theory, applications,
generalizations. Cambridge University Press, 2003.

[3] J. Berstel and C. Reutenauer. Rational series and their languages. Springer-
Verlag New York, Inc., New York, NY, USA, 1988.

[4] Z. Ésik and W. Kuich. Formal tree series. Journal of Automata, Languages and
Combinatorics, 8(2):219–285, 2003.

[5] E. G. Manes and M. A. Arbib. Algebraic approaches to program semantics.
Springer-Verlag New York, Inc., New York, NY, USA, 1986.

[6] D. Perrin and J.-E. Pin. Infinite Words, volume 141 of Pure and Applied
Mathematics. Elsevier, 2004. ISBN 0-12-532111-2.

[7] J. J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1–53, 2003.

[8] J. J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures
in Computer Science, 15(1):93–147, 2005.

28

