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We study the complexity of two-person constraint satisfaction games. An instance of such

a game is given by a collection of constraints on overlapping sets of variables, and the two

players alternately make moves assigning values from a finite domain to the variables, in

a specified order. The first player tries to satisfy all constraints, while the other tries to

break at least one constraint; the goal is to decide whether the first player has a winning

strategy. We show that such games can be conveniently represented by a logical form of

quantified constraint satisfaction, where an instance is given by a first-order sentence in

which quantifiers alternate and the quantifier-free part is a conjunction of (positive) atomic

formulas; the goal is to decide whether the sentence is true.

While the problem of deciding such a game is PSPACE-complete in general, by restricting

the setof allowedconstraintpredicates, onecanobtain infinite classesof constraint satisfac-

tion games of lower complexity. We use the quantified constraint satisfaction framework

to study how the complexity of deciding such a game depends on the parameter set of

allowed predicates. With every predicate, one can associate certain predicate-preserving

operations, called polymorphisms. We show that the complexity of our games is deter-

mined by the surjective polymorphisms of the constraint predicates.We illustrate how this

result can be used by identifying the complexity of a wide variety of constraint satisfaction

games.

© 2009 Published by Elsevier Inc.

1. Introduction

The constraint satisfaction problem (CSP) provides a general framework in which a wide variety of combinatorial search

problems can be expressed in a natural way [19,24]. An instance of the CSP can be viewed as a collection of predicates on

overlapping sets of variables; the aim is to determine whether there exist values for all of the variables such that all of

the specified predicates hold simultaneously. Although the CSP, in its general formulation, is NP-complete and hence likely

to be intractable, it can be parameterized by restricting the set of allowed predicates which can be used as constraints.

The problem of classifying the complexity of the CSP (and its many variants) for all possible parameter sets has attracted

much attention, because constraint satisfaction problems play an important role in many areas of computer science and

�
Preliminary version of parts of this paper appeared in [4,15].
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artificial intelligence [24]. An important outcome of research in this direction has been the design of sophisticated new

polynomial-time algorithms for solving a wide variety of problems (see, for example, [7,22]). In addition, classification

results for the CSP are significant from a complexity-theoretic standpoint, as they provide large subclasses of complexity

classes that avoid intermediate complexity. For example, in the case of the class NP, a number of dichotomy results have

been obtained [6,7,19,27].

The complexity of combinatorial games is also a major line of research (see [28,29,43,51]). In this paper, we study the

complexity of two-person constraint satisfaction games, in which, given a CSP instance, two players (call them ∃ and ∀)
alternately assign values to the variables in a specified order. Player ∃ tries to satisfy all constraints, while player ∀ (the

adversary) tries to break at least one constraint; the goal is to decide whether player ∃ has a winning strategy. Note that the

order of variables is specified in every instance, since otherwise (if the players were allowed to choose the variable ordering)

the adversary would be able to break constraints too easily. The complexity of some related games was studied in [2,49].

A different kind of game has already been studied in the context of constraint satisfaction [39] where it was used to prove

tractability of certain CSPs.

The CSP can be expressed as the problem of deciding the truth of a given first-order sentence consisting of a conjunction

of predicates, where all of the variables are existentially quantified. Hence the CSP generalises the standard propositional

satisfiability problem, by allowing the possible values for the variables to be chosen from an arbitrary finite set, and allowing

the constraints to be arbitrary predicates rather than just clauses. Satisfiability games of the form described above can be

conveniently cast as (and are equivalent to) quantified satisfiability problems, known asQSAT. Similarly, games of this formon

CSP instances are equivalent to quantified constraint satisfaction problems (QCSP), in which universal quantifiers are allowed

in the sentence, in addition to existential quantifiers [19,20]. The existentially quantified variables correspond to themoves of

∃, and the universally quantified ones to themoves of∀; the (specified) order ofmoves corresponds to the order of quantifiers

in the formula. Note that if the quantifiers do not alternate in a formula then the standard trick is to insert into the prefix

appropriately quantified “dummy” variables that do not appear in the quantifier-free part; obviously, this does not affect

validity of the formula, and the size of the formula increases by an at most constant factor.

The QCSP framework is actively studied in artificial intelligence, where it is used to model problems, for example, in non-

monotonic reasoning [25] and in planning [48]. Onemotivating example for the study of the QCSP arises in the development

of automated systems with certain integrity constraints; such a system should be able to respond to any action of the user

(who may be thought of as an adversary) in such a way that the integrity constraints are satisfied. Checking whether or

not such a system is safe amounts to solving a QCSP. Several general (superpolynomial or incomplete) algorithms for the

Boolean QCSP (that is, QSAT) have been suggested [13,32,37,53], and recently researchers have begun to look for ways to

solve non-Boolean QCSP problems [3,31,41,53].

It is not hard to see that QCSP is PSPACE-complete in general. However, with certain restrictions on the type of predicates

allowed in instances, the constraint satisfaction game may be easier to decide. Our ultimate goal is to determine how the

complexity of deciding a constraint satisfaction game depends on the parameter set (of predicates allowed in instances).

The Boolean QCSP and some of its restrictions, such as Quantified 3-SAT, have always been standard examples of

PSPACE-complete problems [30,43,50]. However, for some parameter sets, Boolean QCSP has been shown to be tractable:

for all binary predicates in [1], and for Horn predicates in [37]. Indeed, a complete classification for the Boolean QCSP was

obtained in [19,20] (see Theorem 3.8, below).

However, the general non-Boolean QCSP has not yet been systematically studied from the viewpoint of complexity

classification. This paper initiates a systematic approach to the complexity classification of the QCSP over arbitrary finite

domains. Between the announcement of (some of) the results of this paper [4,5,15] and publication of this extended version,

several further papers following this line of research have appeared, e.g., [14,16–18,26,42].

Obtaining complexity classifications for non-Boolean CSPs is significantly more difficult than for Boolean CSPs: the direct

combinatorial approach used in the Boolean case is infeasible, so more involved techniques are required. A far-reaching

approach for tackling this general case via graph theory, logic and games has been developed in [21,27,38]. However, the

most successful approach to date has been the algebraic approach developed in [12,34,36] (see also [40]). This approach has

led to many new tractability and classification results for non-Boolean CSPs (see for example, [8–11,21,22,40]) and, thus far,

has culminated in a complete classification of the complexity of CSPs for the three-valued case [6], and the case when all

unary predicates are available [7].

In this paper, we extend the algebraic framework that has been used to study the CSP, and we show that certain algebraic

objects (surjective polymorphisms) determine the complexity of the QCSP for any given choice of parameter set. We then

use this approach to identify several classes of parameter sets yielding a tractable QCSP. The CSP for each of these classes is

already known to be tractable [36,40], but establishing the tractability of the QCSP for these classes requires considerable

further effort. Moreover, we show that some surjective polymorphisms that are known to guarantee the tractability of the

CSP fail to do so for the QCSP. We also apply the results to classify the complexity of a range of constraint satisfaction games.

The paper is organised as follows. In Section 2, we give the basic definitions, explain the connection between the QCSP

and constraint satisfaction games, and provide some examples. Then, in Section 3.1, we outline the algebraic approach to the

CSP and, in Section 3.2, we cite known complexity results on the QCSP. An algebraic approach to the QCSP is developed in

Section 3.3. Then, in Sections 4.1 and 4.2, we prove the tractability of QCSPs corresponding to Mal’tsev and near-unanimity

polymorphisms. Section 5 is devoted to the main intractability result. In Section 6, we show that certain semilattice poly-

morphisms guarantee tractability of the corresponding QCSPs, while all other semilattice polymorphisms do not. Finally, in



F. Börner et al. / Information and Computation 207 (2009) 923–944 925

Section 7we obtain a complete classification for QCSPs inwhich the graphs of all the permutations of the values are available;

the result is a ‘trichotomy’, that is, every problem either belongs to PTIME, or is NP-complete, or is PSPACE-complete.

2. Definitions and Examples

Throughout this paper, we use the standard correspondence between predicates and relations: a relation consists of

all tuples of values for which the corresponding predicate holds. We will use the same symbol for a predicate and its

corresponding relation, since the meaning will always be clear from the context. We will use R
(m)
D to denote the set of all

m-ary relations (or predicates) over a set D, and RD to denote the set of all relations over a set D, that is, RD = ⋃∞
m=1 R

(m)
D .

The constraint satisfaction problem can be defined as follows.

Definition 2.1. An instance of the CSP on D is a formula ψ = ψ1 ∧ . . . ∧ ψq where each ψi is a (positive) atomic formula

involving a predicate from RD. The question is whetherψ is satisfiable.

An instance of the QCSP is a first-order sentence ∃v1∀v2 . . .Qlvl ψ , whereψ is an instance of the CSP whose variables are

chosen from v1, . . . , vl and the quantifiers alternate; the question is whether the sentence is true.

The predicates appearing in an instance will be referred to as constraints, since each of them restricts the possible models

forψ in some way.

As explained in the introduction, the version of the QCSP where the quantifiers are not required to alternate is the same

from a complexity point of view, since the alternation can always be achieved by using dummy variables. This more general

version will often be used in our technical results. Note that by using dummy variables we can also change whether the first

(and/or last) quantifier is existential or universal.

Note that the CSP decision problem is the particular case of the QCSP problem where all of the universally quantified

variables are dummy variables.

Since the QCSP is our model for constraint satisfaction games, we will also use the following game-theoretic characteri-

zation of QCSP instances.

Definition 2.2. Let φ = ∀y1∃x1 . . .∀yn∃xn ψ be a QCSP instance over a domain D. A strategy for ∃ in φ is a sequence

of mappings {τi : Di → D}i=1,... ,n; it is said to be a winning strategy if, for any mapping σ : {y1, . . . , yn} → D defined on

the universally quantified variables of φ, the formula ψ is true under the mapping taking each yi to σ(yi) and each xi to

τi(σ (y1), . . . , σ(yi)).

The following proposition is straightforward.

Proposition 2.3. A QCSP instance φ is true if and only if ∃ has a winning strategy in φ.

It is well-known that the QCSP and CSP decision problems, in the general formulations given above, are PSPACE-complete

and NP-complete, respectively. The broad research problem we focus on in this paper is to classify the complexity of the

following parameterized version of the QCSP, for all possible parameterizations.

Definition 2.4. Let � ⊆ RD. The decision problems CSP(�) and QCSP(�) are restrictions of CSP and QCSP, respectively, to

instances in which all predicates belong to �.

We will now describe several combinatorial games that can be cast as QCSP(�) for a suitable set �.

Example 2.5 (not-all-equal 2-colouring game). An instance of this game is given by a linearly ordered set A and a collection

C of (at most) three-element subsets of A. The players colour, in turn, elements of A with two colours, black and white,

according to the ordering of A. Player ∃ wins if and only if, after all elements in A are coloured, each set in C has elements of

both colours.

This game exactly corresponds to the problem QCSP({�nae}) where �nae is the ternary relation on {0, 1} defined by

�nae = {0, 1}3\{(0, 0, 0), (1, 1, 1)}.
Example 2.6 (one-in-three 2-colouring game). An instance of this game is the same as in the preceding example. Player ∃
wins if and only if, after all elements in A are coloured, each set in C has exactly one black element.

This game exactly corresponds to the problem QCSP({�1in3}) where �1in3 is the ternary relation on {0, 1} defined by

�1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
Example 2.7 (graph k-colouring game). In this game, an instance is a graphwhose vertices are linearly ordered. In eachmove,

a player colours one of the vertices in one of k colours. The order of moves is specified by the ordering on the vertices. Player

∃ wins if and only if, after all vertices are coloured, no adjacent vertices are of the same colour.
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This game precisely corresponds to QCSP({ /=k}) where /=k is the disequality predicate on a set D such that |D| = k. To

see this, consider the vertices of an input graph as variables, then the constraints are of the form /=k (x, y)where (x, y) runs
through the set of edges of the graph.

Note that the game described in Example 2.7 is different from the graph colouring games of Bodlaender [2], where both

players must satisfy all constraints by their moves, and the loser is the one who cannot make a move.

Example 2.8 (one-or-both colour matching game). In this game, an instance is a directed graph G whose nodes are linearly

ordered, together with a set D (of colours). In addition, every arc (x, y) of G has a label which is a (suggested) pair a, b of

colours from D for x and y, respectively. In each move, a player colours one of the nodes of G with some colour from D. The

order of moves is specified by the ordering on the vertices. Player ∃ wins if and only if, after all vertices are coloured, the

suggested pair of colours on every arc (x, y)matches at least one of the actual colours given to x, y.

This game precisely corresponds to QCSP(�cm)where�cm ⊆ RD consists of all binary relations of the form�a,b = {(u, v) |
u = a ∨ v = b}, for a, b ∈ D.

Example 2.9 (colour implication game). In this game, an instance is a directed graph G whose nodes are linearly ordered,

together with a set D (of colours) containing two distinguished colours, black and white. In addition, every arc (x, y) of G has

a label which is a (suggested) pair a, b of non-distinguished colours from D for x and y, respectively. In each move, a player

assigns a colour cx to a vertex x of G. The order of moves is specified by the ordering on the vertices. Player ∃wins if and only

if, after all nodes are coloured, every arc e = (x, y) satisfies the following condition: if cx is black or matches its suggested

colour, then cy is also black or matches its suggested colour.

This game precisely corresponds to QCSP(�ci)where �ci ⊆ RD consists of all binary relations of the form �a,b = {(u, v) |
u ∈ {a, black} ⇒ v ∈ {b, black}}, for a, b ∈ D\{black, white}.

Example 2.10 (linear equations game). In this game, an instance consists of a system of linear equations over a finite field K

where the variables in the system are linearly ordered. The players alternately assign elements of K to the variables in the

specified order. Player ∃ wins if and only if the obtained assignment is a solution to the system.

This game precisely corresponds to QCSP(�lin) where �lin ⊆ RK consists of all relations expressible by a linear equation

over K .

The results obtained in thispaperwill be sufficient todetermine the complexityof decidingeachof the six gamesdescribed

in Examples 2.5 to 2.10 (see Corollaries 3.9 and 8.1).

Finally, we observe that problems of the formCSP(�)with finite� can be expressed as homomorphismproblems (see, for

example, [27,34]): in this formulation the question is to decidewhether a given relational structure admits a homomorphism

to a fixed relational structure. Hence all constraint satisfaction games can be viewed as particular examples of the following

very general game.

Example 2.11 (homomorphism construction game). Fix an arbitrary relational structureB = (D; �B
1 , . . . , �

B
k )where�B

i ∈ RD
for all i. An instance of the game is another relational structure A = (V; �A

1 , . . . , �A
k ) such that the set V is linearly ordered

and, for all 1 ≤ i ≤ k, �A
i ∈ RV and the relations �B

i and �A
i are of the same arity.

The players construct a mapping h : V → D by choosing, in turn and according to the order on V , images for elements of

V . Player ∃ wins if and only if h is a homomorphism from A to B, that is, for all 1 ≤ i ≤ k, h(�x) ∈ �B
i whenever �x ∈ �A

i .

This game precisely corresponds to QCSP(�) where � = {�B
1 , . . . , �

B
k }. To see this, think of elements of V as variables,

and, for every i and for every tuple �x ∈ �A
i , introduce a constraint �B

i (�x). As always, the order of moves corresponds to the

order of quantifiers.

3. Classifying complexity

3.1. An algebraic approach

In earlier papers [12,34,36], an algebraic approach to studying the complexity of constraint satisfaction problems CSP(�)

was developed (see also survey [40]). This approach is briefly reviewed in this section. We will use O
(n)
D to denote the set of

all n-ary operations on a set D (that is, the set of mappings f : Dn → D), and OD to denote the set
⋃∞

n=1 O
(n)
D . Any operation

on D can be extended in a standard way to an operation on tuples over D, as follows. For any operation f ∈ O
(n)
D , and any

collection of m-tuples �a1, �a2, . . . , �an ∈ Dm, where �ai = (�ai(1), . . . , �ai(m)) (for i = 1, . . . , n), define f (�a1, . . . , �an) to be the

m-tuple ( f (�a1(1), . . . , �an(1)), . . . , f (�a1(m), . . . , �an(m)) ).
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Definition 3.1. For any relation � ∈ R
(m)
D , and any operation f ∈ O

(n)
D , if f (�a1, . . . , �an) ∈ � for all choices of �a1, . . . , �an ∈ �,

then � is said to be invariant under f , and f is called a polymorphism of �.

The set of all relations that are invariant under each operation from some set C ⊆ OD will be denoted Inv(C). The set of

all operations that are polymorphisms of every relation from some set � ⊆ RD will be denoted Pol(�).
The following result provides a link between polymorphisms and the complexity of a CSP.

Theorem 3.2 ([34]). Let �1 and �2 be sets of predicates over a finite set, such that �1 is finite. If Pol(�2) ⊆ Pol(�1) then CSP(�1)
is logarithmic-space reducible to CSP(�2).

This result shows that, when the set of values is finite, finite sets of predicates with the same polymorphisms give

rise to constraint satisfaction problems which are mutually reducible to one another. In other words, the complexity of

CSP(�) is determined by the polymorphisms of�. Note that Theorem 3.2 was originally stated in [34] with polynomial-time

reducibility, but, by using the result of [47], can easily be strengthened to logarithmic-space reduction.

The proof of Theorem 3.2 is made up of three crucial ingredients. The first is the fact that Inv(·) and Pol(·) form a Galois

correspondence between RD and OD (see Proposition 1.1.14 of [45]). A basic introduction to this correspondence can be found

in [44], and a comprehensive study in [45].

Proposition 3.3. Let D be a finite set, �,�′ ⊆ RD, C, C
′ ⊆ OD. Then

� ⊆ �′ �⇒ Pol(�) ⊇ Pol(�′) C ⊆ C′ �⇒ Inv(C) ⊇ Inv(C′)
� ⊆ Inv(Pol(�)) C ⊆ Pol(Inv(C))
Pol(�) = Pol(Inv(Pol(�))) Inv(C) = Inv(Pol(Inv(C)))

The second ingredient involves the set of predicates 〈�〉 defined below (see [34] for more information).

Definition 3.4. For any set � ⊆ RD the set 〈�〉 consists of all predicates that can be expressed using

1. predicates from �, together with the binary equality predicate =D on D,

2. conjunction,

3. existential quantification.

As the next proposition shows, the complexity of CSP(�) is, in effect, determined by 〈�〉; in particular, the problems

CSP(�1) and CSP(�2) are of the same complexity if 〈�1〉 = 〈�2〉.
Proposition 3.5 ([34,12]). Let�1 and�2 be sets of predicates over a finite set, such that�1 is finite. If 〈�1〉 ⊆ 〈�2〉, then CSP(�1)
is logarithmic-space reducible to CSP(�2).

As with Theorem 3.2, this proposition was originally stated with polynomial-time reducibility, but it can be changed to

logarithmic-space reducibility by using results of [47].

Finally, the third ingredient in the proof of Theorem 3.2 is the observation that the set 〈�〉 has an alternative characteri-

zation, which allows us to jump back to the polymorphisms of �.

Proposition 3.6 ([45]). For any set of predicates � over a finite set, 〈�〉 = Inv(Pol(�)).

In Section 3.3 below, we will show that each of these three ingredients has an analog in the analysis of the QCSP.

3.2. Known classification results

A number of results on the complexity of constraint satisfaction problems have been obtained via the viewpoint of

polymorphisms (see survey [40]). Indeed, we can re-state the classic dichotomy theorem of Schaefer [50] using the notion

of polymorphism.

Theorem 3.7 ([50]). For any � ⊆ R{0,1}, CSP(�) is in PTIME when Pol(�) contains one of the following:
• the constant 0 or constant 1 operations,

• the conjunction (∧) or disjunction (∨) operations,
• the affine operation x − y + z (mod 2),
• the majority operation (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

In all other cases, CSP(�) is NP-complete.
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This reformulation of Schaefer’s theorem can be demonstrated to follow from Theorem 3.2 and well-known algebraic

results of Post [46]; see [34].

The complexity of QCSP(�) has also been completely classified in the Boolean case, giving an analog of Theorem 3.7 for

quantified constraints.

Theorem 3.8 ([19,20]). For any � ⊆ R{0,1}, QCSP(�) is in PTIME when Pol(�) contains one of the following:
• the conjunction (∧) or disjunction (∨) operations,
• the affine operation x − y + z (mod 2),
• the majority operation (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

In all other cases, QCSP(�) is PSPACE-complete.

Using this theorem, it is not difficult to determine the complexity of the games described in Examples 2.5-2.10 in the special

case of a two-valued domain.

Corollary 3.9. In the special case when D = {0, 1} :
(1) The games not-all-equal 2-colouring and one-in-three 2-colouring are PSPACE-complete.
(2) The games graph 2-colouring, one-or-both colour matching, colour implication and linear equations can be

decided in polynomial time.

Proof. It is easy to verify that if � is {�nae} or {�1in3} then none of the four operations from Theorem 3.8 is a polymorphism

of �. By Theorem 3.8, this proves part (1).

It is also straightforward to check that the majority operation is a polymorphism of every binary predicate on {0, 1}.
Hence, by Theorem 3.8, the first three games listed in part (2) are polynomial-time decidable, since these games correspond

to QCSPs with binary predicates. (Note that in the colour implication gamewe interpret black as 1 and white as 0.) Finally,

the affine operation is a polymorphism of any Boolean predicate given by a linear equation over GF(2), which shows that the

fourth game listed in part (2) can also be decided in polynomial time. �
Theorem 3.8 was originally proved using combinatorial methods which do not easily generalize to larger sets of values.

However, this theorem is most concisely stated using polymorphisms. In the next section we will show that, as with the

complexity of CSP(�), for all finite sets of values the complexity of QCSP(�) depends only on the polymorphisms of �.

In particular, we will show that a suitably modified version of Theorem 3.2 holds with QCSP(�) in place of CSP(�) (see
Theorem 3.16). Thus, the algebraic approach of using polymorphisms to study complexity can also be applied to quantified

constraints.

3.3. Surjective polymorphisms and the QCSP

As we noted in Section 3.1, the successful use of the algebraic approach to the CSP is possible due to three statements:

Propositions 3.3, 3.5 and 3.6.

We now establish that in the case of the QCSP three similar properties hold for surjective polymorphisms. We thereby

introduce a new Galois connection that involves surjective polymorphisms in place of arbitrary polymorphisms. We show

that surjective polymorphisms play a similar role in the analysis of the QCSP to that played by arbitrary polymorphisms for

the ordinary CSP (cf. Theorem 3.2). Let s-Pol(�) denote the set of all surjective operations contained in Pol(�). First, it is not
hard to verify that the operators Inv(·) and s-Pol(·) form a Galois correspondence.

Proposition 3.10. Let �,�′ be sets of predicates on a finite set A and let C , C′ be sets of surjective operations on A. Then

� ⊆ �′ �⇒ s-Pol(�) ⊇ s-Pol(�′) C ⊆ C′ �⇒ Inv(C) ⊇ Inv(C′)
� ⊆ Inv(s-Pol(�)) C ⊆ s-Pol(Inv(C))
s-Pol(�) = s-Pol(Inv(s-Pol(�))) Inv(C) = Inv(s-Pol(Inv(C)))

Next, we show that the complexity of QCSP(�) depends only on the set of predicates [�], defined as follows.

Definition 3.11. For any set � ⊆ RD, the set [�] consists of all predicates that can be expressed using

1. predicates from �, together with the binary equality predicate =D on D,

2. conjunction,

3. existential quantification,

4. universal quantification.

We have the following parallel to Proposition 3.5.
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Proposition 3.12. Let �1 and �2 be sets of predicates over a finite set, such that �1 is finite. If [�1] ⊆ [�2], then QCSP(�1) is
logarithmic-space reducible to QCSP(�2).

Proof. LetD be a finite set, and let�1,�2 ⊆ RD. ByDefinition 3.11, for any n-ary relation� in [�1], the predicate�(x1, . . . , xn)
is equivalent to a formula �� of the form Q1y1 . . .QmymC, where the Qi, 1 ≤ i ≤ m are quantifiers, and C is a conjunction

of (positive) atomic formulas involving only predicates from �2 ∪ {=D} and variables x1, . . . , xn, y1, . . . , ym.
Let sentence P0 be an instance of QCSP(�1). Replace each predicate � in P0 by the corresponding formula�� , to obtain

an equivalent formula P1. Since �1 is finite, this can be done in logarithmic space. Transform P1 into prenex normal form

by moving all quantifiers (in order) to the front of the formula (renaming variables as needed to avoid name clashes). This

transformation can also be carried out in logarithmic space. The resulting sentence, P2, is an instance of QCSP(�2 ∪ {=D}),
and P2 is clearly equivalent to P0.

It now only remains to remove any occurrences of the equality relation from P2. We shall assume that |D| ≥ 2 (the case

|D| = 1 is trivial). Consider the graph G = (V , E)whose vertices are the variables appearing in P2 and

E = {(x, y) ∈ V2 | (x = y) is a subformula in P2}.
For each connected component K , order the variables by the order in which they are quantified in P2. If K contains two

variables, x and y, such that x is before y in this ordering and y is universally quantified, then P2 (and hence P0) is obviously

false. Note that, by the result of [47], the existence of a path between two given vertices in an undirected graph can be

decided in logarithmic space. In the remaining cases, all of the variables in K after the first must be existentially quantified,

and because of the equality constraints theymust all take the same value as the first variable. Hence, they can all be replaced

with the first variable, removing the corresponding quantifiers, and removing the equality constraints. This can also be

achieved in logarithmic space because we only need to check the existence of paths in Gwhen transforming P2 as described

above. After this procedure, we obtain a sentence P3 that is equivalent to P0 and is an instance of QCSP(�2). Moreover, the

whole transformation can be carried out in logarithmic space. �
The next example shows that Proposition 3.12 is stronger than Proposition 3.5 (reformulated for the QCSP in place of the

CSP), as [�] may be strictly larger than 〈�〉.
Example 3.13. Let � be the relation {0, 1}4\{(0, 0, 0, 1), (1, 1, 1, 0)}, and let �nae be the relation {0, 1}3\{(0, 0, 0), (1, 1, 1)}
(as in Example 2.5). By “universally quantifying away” the last coordinate of �, we obtain �nae ∈ [{�}]. On the other hand,

because the constant 0 and constant 1 operations are both polymorphisms of �, every relation in 〈{�}〉 contains both the

“all-zeroes” tuple (0, . . . , 0) and the “all-ones” tuple (1, . . . , 1) by Theorem 3.6. It follows immediately that �nae /∈ 〈{�}〉.
Setting�1 = {�nae} and�2 = {�}, we observe that�1 �⊆ 〈�2〉, and�1 ⊆ [�2], giving examples of predicate sets�1,�2 such

that the hypothesis of Proposition 3.12 holds, but the hypothesis of Proposition 3.5 does not. (Note that �1 ⊆ 〈�2〉 if and

only if 〈�1〉 ⊆ 〈�2〉; likewise, �1 ⊆ [�2] if and only if [�1] ⊆ [�2].)

In fact, we can use Proposition 3.12 to exhibit an example of a predicate giving rise to trivial CSPs, but also giving rise to

intractable QCSPs.

Example 3.14. Let the relations � and �nae be defined as in Example 3.13. Since �nae ∈ [{�}], Proposition 3.12 implies that

QCSP({�nae}) reduces to QCSP({�}), so by Corollary 3.9, QCSP({�}) is PSPACE-complete. On the other hand, CSP({�}) is
trivial, as any instance is satisfiable by the “all-zeroes” or “all-ones” assignment.

Proposition 3.12 demonstrates the importance of the set [�] with respect to the complexity of QCSP(�). By analogy to

Theorem 3.6, [�] can also be characterized in terms of polymorphisms.

Proposition 3.15. For any set of predicates � over a finite set, we have [�] = Inv(s-Pol(�)).

Proof. LetD be a finite set, and let� ⊆ RD. The equality relation,=D, is invariant under every operation onD, so� ∪ {=D} ⊆
Inv(s-Pol(�)). Let f be a surjective operation onD. It is straightforward to verify that applying conjunction or any quantification

to predicates invariant under f gives another predicate which is also invariant under f . Hence, [�] ⊆ Inv(s-Pol(�)). Moreover,

it follows that s-Pol(�) = s-Pol([�]).
To establish that [�] ⊇ Inv(s-Pol(�)), wewill show that for anym-ary relation� ∈ Inv(s-Pol(�)), the relationσ is amember

of [�], where σ is defined by

σ = {(a1, a2, . . . , am, d1, d2, . . . , d|D|) | (a1, . . . , am) ∈ �, (d1, . . . , d|D|) ∈ D|D|}.
From this it follows that � ∈ [�], by existentially quantifying over the last |D| variables in σ .

To show that σ ∈ [�], we first define σ ′ = ⋂{γ ∈ [�] | σ ⊆ γ }. (Note that the intersection is finite.) Since [�] contains

the total relation Dm+|D|, and is closed under conjunction, σ ′ is a member of [�] and σ ⊆ σ ′. In fact, σ ′ is the minimal

relation of aritym + |D| in [�] with this property (when ordered by inclusion).
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Now choose any tuple �c = (b1, . . . , bm, d1, d2, d3, . . . , d|D|) ∈ σ ′. Note that σ ′ must also contain all tuples of the form

(b1, . . . , bm, d
′
1, d

′
2, d

′
3, . . . , d

′|D|), for each possible choice of d′
1, d

′
2, d

′
3, . . . , d

′|D|, since otherwise we could obtain a smaller

relation σ ′′ containing σ , by applying a sequence of universal quantifications, followed by a conjunction with the total

relation Dm+|D|. Hence we may choose �c so that the values of the di are all distinct, that is, {d1, d2, . . . , d|D|} = D.

By Definition 3.11, [�] is closed under conjunction and existential quantification, and contains the equality relation, =D.

It is well-known (see Theorems 1.2.3 and 2.1.3 in [45]), that such sets satisfy the condition [�] = Inv(Pol([�])). Furthermore,

it is well-known (see Proposition 1.1.19 of [45]) and straightforward to verify that

σ ′ = {f (�a1, . . . , �an) | n ≥ 1, �a1, . . . , �an ∈ σ , f ∈ Pol([�])}.

Therefore, there exist n ≥ 1, �a1, . . . , �an ∈ σ and an n-ary function f ∈ Pol([�]) such that �c = f (�a1, . . . , �an).
By the choice of �c, the function f must be surjective. Therefore f is in s-Pol([�]), and so f ∈ s-Pol(�), by the observation

above. By the choice of �, this implies that � is invariant under f , and so (b1, . . . , bm) ∈ �. It follows that σ ′ = σ , so σ ∈ [�],

as required. �
We can now conclude that the complexity of QCSP(�) depends only on s-Pol(�), the surjective polymorphisms of �. The

following theorem follows immediately from Propositions 3.10, 3.12 and 3.15.

Theorem 3.16. Let�1 and�2 be sets of predicates over a finite set, such that�1 is finite. If s-Pol(�2) ⊆ s-Pol(�1), thenQCSP(�1)
is logarithmic-space reducible to QCSP(�2).

This theorem offers a dual perspective on the phenomenon displayed by Example 3.14, whereby a predicate set � can

simultaneously give rise to a trivial CSP and give rise to an intractable QCSP.What is occurring is that the operations in Pol(�)
that guarantee tractability of CSP(�) are non-surjective, and hence are not present in s-Pol(�).

4. Tractability

Comparing the statements of Theorems 3.7 and 3.8, we observe that, in two-valued domains, surjective polymorphisms

which ensure the tractability of the CSP also ensure the tractability of the QCSP. However, it certainly cannot be taken for

granted that a similar statement holds for non-Boolean domains. In this section, we show that it does hold for two broad

classes of surjective polymorphisms.

4.1. Mal’tsev operations

An operation m(x, y, z) on D is said to be Mal’tsev if it satisfies the identities m(x, y, y) = m(y, y, x) = x for all x, y. For

example, for an Abelian group G, the operation f (x, y, z) = x − y + z, called the affine operation of G, is a Mal’tsev operation.

Relations invariant under the affine operation of a finite Abelian group play a significant role in the study of the complexity

of the standard constraint satisfaction problem [27,34,36].

Let � = Inv({m}), where m is some fixed Mal’tsev operation. A polynomial-time algorithm for solving CSP(�)was given

in [10]. Moreover, this algorithm also finds a satisfying assignment for any satisfiable instance of CSP(�). We will show now

that QCSP(�) can also be solved in polynomial time by making repeated use of this algorithm.

Lemma 4.1. Letmbe aMal’tsev operation on afinite setD, letP be an instance ofQCSP(Inv({m})),P = Q1x1 . . .Qnxnψ(x1, . . . ,
xn), and let j be the maximal index such that Qj is the universal quantifier.

(1) Ifψ ′(x1, . . . , xj−1) = ∀xj∃xj+1 . . . ∃xnψ(x1, . . . , xn) is satisfiable then, for anymodel (c1, . . . , cn) ofψ , the tuple (c1, . . . ,

cj−1) is a model ofψ ′.
(2) P is true if and only if P ′ = P1 ∧ P2 is true, where

P1 = Q1x1 . . .Qj−1xj−1∃xj∃xj+1 . . . ∃xn ψ(x1, . . . , xn),
P2 = ∃x1 . . . ∃xj−1∀xj∃xj+1 . . . ∃xn ψ(x1, . . . , xn).

Proof

(1) Let (a1, . . . , aj−1) be amodel forψ ′, and for each b ∈ D, let (abj , . . . , a
b
n) be an extension such that �ab = (a1, . . . , aj−1, a

b
j ,

. . . , abn) is a model forψ and abj = b.

Take an arbitrary model �c = (c1, . . . , cj−1, cj , . . . , cn) of ψ . We need to show that (c1, . . . , cj−1) is a model of ψ ′. Fix
an arbitrary b ∈ D and let �d = (d1, . . . , dn) be equal to m(�ab, �acj , �c). Proposition 3.15 implies that the predicate defined

by ψ is invariant under m, so �d is a model of ψ , too. Moreover, we have di = m(ai, ai, ci) = ci for i ∈ {1, . . . , j − 1} and

dj = m(abj , a
cj
j , cj) = m(b, cj , cj) = b. Thus, (c1, . . . , cj−1) is a model ofψ ′.
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Fig. 1. Algorithm for deciding QCSP(�)when � has a Mal’tsev polymorphism.

(2) Obviously, if P is true then P ′ is also true. The inverse implication easily follows from part (1). Indeed, since P2 is true,

we can apply (1); then, (1) implies that every tuple (c1, . . . , cj−1) that can be extended to a model ofψ can be extended so

with cj being any given element. Thus, since P1 is true, so is P . �

Theorem 4.2. Let m be an arbitrary Mal’tsev operation on a finite set D. The problem class QCSP(Inv({m})) is in PTIME.

Proof. Let P = Q1x1 . . .Qnxn ψ(x1, . . . , xn) be an instance of the problem class QCSP(Inv({m})). By repeatedly applying

Lemma 4.1(2), one can show that P can be decomposed into a conjunction of instances which have the same quantifier-free

part and each contain at most one universal quantifier. Moreover, if we can find a model of ψ then Lemma 4.1(1) implies

that initial segments of this model can be used in deciding whether each of the instances is true. It remains to notice that,

as is easy to check, fixing a value for any variable in a predicate from Inv({m}) gives another predicate invariant under m,

which implies that ∃xl+1 . . . ∃xnψ(c1, . . . , cl−1, b, xl+1, . . . , xn) is also an instance of CSP(Inv({m})). Now it follows that the

algorithm shown in Fig. 1 is correct.

This algorithmuses k|D| + 1 applications of an algorithm for solving the problemCSP(Inv({m})), where k is the number of

universal quantifiers in an instance, andoneapplicationof analgorithmfindingamodel.Nowwecanuse thepolynomial-time

algorithm for CSP(Inv({m})) developed in [10]. This completes the proof of Theorem 4.2. �
Note that if the operationm has a special form then the method described above can be used to derive more specialised,

and more efficient, algorithms. For example, let G be a finite Abelian group, with affine operation f , and unit element 0, and

let � be a finite set of relations over G which are invariant under f . Note that, by straightforward algebraic manipulation, it

can be shown that any (n-ary) relation invariant under f is a coset of a subgroup of the group Gn.

In the simplest case, when the order of G is prime, G can be considered as a prime field, and hence Gn can be considered as

a vector space overG. In this case, each coset of a subgroup ofGn is a linear variety, and it iswell-known that such varieties can

be defined by systems of linear equations, whose coefficients are elements of the field G. Therefore, in this case, QCSP(�) can
be considered as the problemof solving quantified linear systems overG, which can be done by applying standard techniques

from linear algebra, or by using them in the above algorithm.

In the case when G is an arbitrary Abelian group, QCSP(�) requires a similar but slightlymore involved algorithm, see [5].

4.2. Near-unanimity operations

Our second example of surjective polymorphisms which give rise to tractable quantified constraint satisfaction problems

concerns operations known as near-unanimity operations. An operation f : Dk → D is said to be near-unanimity if k ≥ 3

and f returns the value a whenever at least k − 1 of its arguments are equal to a; that is, for all a, b ∈ D, it holds that

a = f (b, a, a, . . . , a, a, a) = f (a, b, a, . . . , a, a, a) = . . . = f (a, a, a, . . . , a, b, a) = f (a, a, a, . . . , a, a, b).
Before giving the tractability result for the QCSP associated with such polymorphisms, we introduce some notions of

consistency.

Definition 4.3 ([35]). Let ψ be an instance of the CSP with variable set V = {x1, . . . , xn}. For a subset V ′ of V , a mapping

g′ : V ′ → D is a partial solution toψ if, for every atomic formula�(�v) fromψ , there is an extension g : V → D of g′ satisfying
�(�v). For any j ≥ 2, the formulaψ is said to be j-consistent if, for every subset V ′ of V with |V ′| = j − 1 and for every variable

v ∈ V\V ′, any partial solution g′ : V ′ → D of ψ can be extended to a partial solution g′ : V ′ ∪ {v} → D of ψ . The instance

ψ is strongly k-consistent if it is j-consistent for j = 2, . . . , k. The formula ψ is said to be globally consistent if it is strongly

|V |-consistent.
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The following theorem shows that when a constraint language is invariant under a near-unanimity operation, ensuring

a sufficiently high (but constant) degree of “local” consistency implies global consistency.

Theorem 4.4 ([35]). Let f be an arbitrary near-unanimity operation of arity r on a finite set D. Any instance of CSP(Inv({f }))
which is strongly r-consistent is globally consistent.

Theorem 4.4 implies that invariance under a near-unanimity operation implies CSP tractability, as any CSP instance

ψ can be transformed into one that is strongly r-consistent in polynomial time, as follows. For each subset of variables

U = {u1, . . . , us}, with 2 ≤ s ≤ r, compute the relation �U = {(g(u1), . . . , g(us)) | g : U → D is a partial solution toψ}.
Then for each subset of U containing s − 1 variables, add a constraint whose relation allows precisely those assignments

that can be extended to some element of �U . Note that these new constraints can be obtained from the original constraints

(and the complete relation) by conjunction and existential quantification. Since r is a constant, the new constraints can be

obtained in polynomial time, and it can be straightforwardly checked that the obtained CSP instance is strongly r-consistent

and has the same set of satisfying assignments asψ .

We now prove that invariance under a near-unanimity operation implies tractability for QCSP as well.

Theorem 4.5. Let f be an arbitrary near-unanimity operation on a finite set D. The problem class QCSP(Inv({f })) is in PTIME.

Proof. Let f be a near-unanimity operation of arity r, and let P be an instance of the QCSP(Inv({f })) problem, P = Q1x1
. . .Qnxnψ . We show that a new instance P ′ of the QCSP(Inv({f })) problem can be computed in polynomial time, where P ′
has one fewer quantifier than P . Moreover, the instance P ′ will have the property that it is valid if and only if P is valid.

This suffices to establish that QCSP(�) is in PTIME, since the procedure can be iteratively applied to decide the validity of

an instance of QCSP(�).
The new formula P ′ is obtained from P by elimination of the innermost quantifier and associated quantified variable,

Qnxn. We split into two cases depending on the type of Qn.

Case Qn = ∃: Obtainψ0 fromψ by establishing strong r-consistency; this can be done in polynomial time, as described

above. As the procedure for establishing strong r-consistency involves adding predicates that can be obtained from the

original predicates by using conjunction and existential quantification, all predicates in ψ0 are invariant under f . We next

create a formula ψ ′ by including in it every constraint from ψ0, but “projecting out” the variable xn from any constraints

where it is present. More precisely, we createψ ′ as follows: for every constraint �0(�v0) inψ0, if �v0 does not contain xn, then

include the constraint �0(�v0) inψ ′; otherwise, include inψ ′ the atomic formula equivalent to ∃xn�0(�v0).
By Theorem 4.4, any satisfying assignment for ψ ′ can be extended to a satisfying assignment for ψ0. Moreover, any

satisfying assignment forψ0 is straightforwardly verified to be a satisfying assignment forψ ′, from the definition ofψ ′. We

therefore have thatψ ′ = ∃xnψ0, and may define P ′ to be Q1x1 . . .Qn−1xn−1ψ
′.

CaseQn = ∀: Create a formulaψ ′ from the formulaψ as follows: replace each constraint�(�v) inψ by the atomic formula

equivalent to ∀xn�(�v). Since f is surjective, every predicate in the new formula is invariant under f . Wemay therefore define

P ′ = Q1x1 . . .Qn−1xn−1ψ
′. �

Note that Theorem4.5 canbe strengthened for a special ternarynear-unanimityoperationknownas thedual discriminator,

which is the operation d such that d(x, y, z) = y if y = z and d(x, y, z) = x otherwise. It was shown in [5] that QCSP(Inv({d}))
belongs to the complexity class NL.

5. Intractability

In this section we will use Theorem 3.16 to give a sufficient condition, in terms of surjective polymorphisms, for PSPACE-

completeness of QCSP(�). We first establish that a particular QCSP problem is PSPACE-complete. This problem corresponds

to a generalized form of the standard graph-|D|-colourability problem [30,43] (see Example 2.7).

Proposition 5.1. QCSP({ /=D}) is PSPACE-complete when |D| ≥ 3.

Proof. We prove this by reduction from QCSP({�nae}), where �nae is the ternary not-all-equal predicate on a 2-element set,

as defined in Example 2.5. Let P be an instance of QCSP({�nae}), with variables v1, v2, . . . , vn. We construct a corresponding

instance P ′ of QCSP({ /=D}) as follows.

First construct a graph, GP , as shown in Fig. 2, with 3 nodes for each variable vi of P (labelled xi, yi and zi), 3 nodes for

each triple of variables constrained by �nae in P , and one additional node (labelled w). Connect these nodes as indicated in

Fig. 2, so that each zi is connected to yi, each yi is connected to xi and w, and each xi is connected to w. For each triple of

nodes representing a constraint on vi1 , vi2 , vi3 , connect these nodes to form a triangle and also add edges from these nodes

to the corresponding nodes xi1 , xi2 , xi3 .

The standard |D|-colouring problem for the graph GP can be represented as the satisfiability problem for the formula

built as follows: introduce a variable for each node of the graph, and form a conjunction which contains a binary disequality
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Fig. 2. The construction used in the proof of Proposition 5.1 (adapted from Fig. 9.8 in [43]).

constraint /=D(u, v) for each edge (u, v) of the graph. (If D contains more than 3 values, then we add a clique C containing

|D| − 3 nodes to the graph GP and connect each node, except the nodes zi, in the original graph to each node of this clique.

This ensures that each node, except the nodes zi, in the original graph GP must be coloured with one of the 3 colours not

used to colour C.)

Now add quantifiers to this conjunction of constraints as follows. First existentially quantify the variable w (and all the

variables corresponding to nodes of the clique C, if present). Note that once values have been assigned to these nodes there

are just two remaining possible values for each node xi and yi.

Next, for each consecutive quantifier of P (in order) introduce 3 consecutive quantifiers as follows:

• For each existential quantifier in P , ∃vi, introduce ∃zi∃yi∃xi.• For each universal quantifier in P , ∀vi, introduce ∀zi∃yi∃xi.
Finally, add existential quantifiers for all remaining variables (corresponding to the constraints of P). This completes the

definition of P ′.
It is straightforward to check that there is an assignment of Boolean values to the variables v1, v2, . . . , vn satisfying all of

the constraints of P if and only if there is an assignment of values from D to the variables of P ′ satisfying all the constraints

of P ′. This is because to satisfy the constraints of P ′, the 3 nodes in each triangle in GP corresponding to a constraint of

P must all be assigned distinct values, which is possible if and only if the corresponding nodes xi1 , xi2 and xi3 connected to

them do not all take the same value (whichmimics satisfying assignments for the constraint �nae(vi1 , vi2 , vi3)). Furthermore,

the construction of the quantifiers in P ′ ensures that the sentence P ′ is true if and only if P is true. To see this, note that for

any variable vi of P which is universally quantified, the universal quantification on the corresponding zi in P ′ forces yi (and,
hence, xi) to take both remaining available values, which mimics the universal quantification on vi.

Hence,we have established a reduction fromQCSP({�nae}) to QCSP({ /=D}), and it is clear that this reduction can be carried

out in logarithmic space. Since QCSP({�nae}) is PSPACE-complete, by Corollary 3.9, the result follows. �

Theorem 5.2. For any finite set D with |D| ≥ 3, and any � ⊆ RD, if every f ∈ s-Pol(�) is of the form f (x1, . . . , xn) = π(xi) for
some 1 ≤ i ≤ n and some permutation π on D, then QCSP(�) is PSPACE-complete.

Proof. By Lemma 1.3.1 (b) of [45], Pol({ /=D}), for |D| ≥ 3, consists of all operations of the form described in the Theorem.

Hence Pol({ /=D}) = s-Pol({ /=D}), and we can apply Theorem 3.16 and Proposition 5.1. �
We now give an example of a relation which has all possible non-surjective polymorphisms, but whose surjective

polymorphisms are precisely the operations described in Theorem 5.2.

Example 5.3. Let τs be the s-ary “not-all-distinct” predicate holding on a tuple (a1, . . . , as) if and only if |{a1, . . . , as}| < s.

Note that τs ⊇ {(a, . . . , a) | a ∈ D}, so every instance of CSP({τs}) is trivially satisfiable by assigning the same value to all

variables.

However, by Lemma 2.2.4 of [45], the set Pol({τ|D|}) consists of all possible non-surjective operations on D, together with

all operations of the form given in Theorem 5.2. Hence, {τ|D|} satisfies the conditions of Theorem 5.2, and QCSP({τ|D|}) is
PSPACE-complete (when |D| ≥ 3).

Interestingly, the predicate τ|D| has the property that, for every predicate � ∈ 〈τ|D|〉\〈=D〉, we have 〈�〉 = 〈τ|D|〉 (Lemma

2.2.4 of [45]).
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6. Semilattice operations

A semilattice operation ∗ on a set D is a binary operation that satisfies the following conditions for all a, b, c ∈ D:

(1) ∗(a, a) = a (idempotency);

(2) ∗(a, b) = ∗(b, a) (commutativity);

(3) ∗(∗(a, b), c) = ∗(a, ∗(b, c)) (associativity).

Normally we shall use infix notation for semilattice operations and write a ∗ b rather than ∗(a, b). As is easily seen, the

propositional conjunction and disjunction operations are semilattice operations on the set {0, 1}.
It is well-known that every semilattice operation ∗ induces a partial order ≤*, where a ≤*b if and only if a ∗ b = b. For

a, b ∈ D, the element a ∗ b is the least upper bound of a, b with respect to this order, i.e., a, b ≤*a ∗ b and, for any d ∈ D such

that a, b ≤*d, we have a ∗ b ≤*d.

Every semilattice operation ∗ has a zero element 0 with the property that a ≤*0, or equivalently a ∗ 0 = 0 ∗ a = 0, for all

a ∈ A. If a semilatticeoperationalsohas aunit element—that is anelement1 such that1 ≤*a, or equivalently1 ∗ a = a ∗ 1 = a,

for all a ∈ A — then we say that it is a semilattice operation with unit or a monoid operation; otherwise, we say that it is a

semilattice operation without unit. Interestingly, if ∗ is a monoid operation then, for any a, b ∈ D, there is a unique greatest

lower bound c of a, b with respect to this order, i.e., c ≤*a, b and, for any d ∈ D such that d ≤*a, b, we have d ≤*c (in other

words, the order ≤*is a lattice order). The greatest lower bound of a, bwill be denoted by a ◦ b. Operation ∗ can be extended

to an operation on tuples of elements from D in the usual way (by applying the operation componentwise).

All forms of semilattice operations were shown to guarantee CSP tractability in [36]. For the QCSP the situation is rather

different. The following theorem completely classifies the complexity of the QCSP over a set of predicates invariant under a

semilattice operation.

Theorem 6.1. Let ∗ be a semilattice operation on a finite set D. If ∗ is an operation with unit then, for any finite � ⊆ Inv({∗}), the
problem QCSP(�) is in PTIME. Otherwise, there exists a finite � ⊆ Inv({∗}) such that QCSP(�) is PSPACE-complete.

Note that the first part of this theorem establishes only “local tractability”, that is, tractability for any finite subset of

Inv({∗}).
The proof of Theorem 6.1 is given in Sections 6.1 and 6.2 below.

6.1. Semilattice operations with unit

In this section, we demonstrate that finite sets of predicate which are invariant under a semilattice operation with unit

give rise to tractable subproblems of the QCSP.

Our first step is to demonstrate that constraints which are invariant under a semilattice operation are decomposable into

what we call Horn-like clauses. We introduce the following definitions and notation. A downward literal is an expression

of the form v ≤*d, where v is a variable and d ∈ D; and, an upward literal is an expression of the form v �≤*d, where v is a

variable and d ∈ D. We will call literals of the form v ≤*0 or v �≤*0 trivial. A literal occurring in a QCSP instance is an ∃-literal
(∀-literal) if its variable is an existentially (universally) quantified variable. A Horn-like clause is a set with downward and

upward literals as elementswhich contains atmost one downward literal. A Horn-like clause is interpreted as the disjunction

of the literals that it contains; that is, it is considered to be true if at least one of its literals is true.

Lemma 6.2. A predicate � is invariant under a semilattice operation if and only if � can be represented as a conjunction of

Horn-like clauses.

Proof. For any semilattice operation ∗, the element v1 ∗ v2 is the least upper bound of v1, v2 with respect to the order ≤*.

Hence, v1 ∗ v2 ≤* a if and only if v1 ≤* a and v2 ≤* a. Using this result it is straightforward to verify that any Horn-like clause

is invariant under the corresponding semilattice operation.

For the converse, let � be invariant under a semilattice operation ∗. It suffices to show that for each �a /∈ �, there exists

a Horn-like clause H�a such that any tuple from � satisfies H�a, but �a does not satisfy H�a. Fix �a /∈ �, and define σ�a = {�b : �b ∈
�, �b ≤*�a} where ≤*is extended to a partial ordering on tuples by defining �s ≤*�t if and only if at all coordinates i, �s(i) ≤*�t(i).

If σ�a is empty, then it can be verified that the Horn-like clause H�a = ⋃r
i=1{�v(i) �≤*�a(i)} has the desired properties,

where r denotes the length of the tuples �v and �a. Otherwise, define �m = �b1 ∗ �b2 ∗ . . . ∗ �bn, where σ�a = {�b1, �b2, . . . , �bn}. It is
straightforward to verify that σ�a is invariant under ∗, so �m ∈ σ�a. Since σ�a ⊆ �, �m /= �a, and �m and �a differ at some coordinate,

say coordinate j (that is, �m(j) /= �a(j), which implies that �m(j) <* �a(j)). Hence, it can be verified that the Horn-like clause

H�a = (
⋃r

i=1{�v(i) �≤*�a(i)}) ∪ {�v(j) ≤*�m(j)} has the desired properties. �
Lemma 6.2 generalizes Horn’s classic theorem that a constraint with relation invariant under logical AND (∧) over the

set {0, 1} is logically equivalent to a conjunction of Horn clauses [33]. To see this, we let ∗ = ∧; then we have 1 ≤* 0 and the
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only non-trivial downward literal is one of the form v ≤*1, which is equivalent to the positive literal v. The only non-trivial

upward literal is one of the form v �≤*1, which is equivalent to the negative literal v.

Our next step is to define a proof system, called QCSP-literal-resolution, and show that it is sound and complete for

quantified formulas consisting of Horn-like clauses, with respect to a semilattice operation ∗ with unit. We define a Horn-

like clause H appearing in a QCSP P to be an existential unit clause if it contains only one ∃-literal, the single ∃-literal is
downward, and for every ∀-variable y in H, y comes before the variable of the ∃-literal in the quantification order of the

formula P .

Definition 6.3. Let P be a QCSP instance with quantifier-free partψ where every predicate inψ is a Horn-like clause (with

respect to a semilattice operation ∗ with unit). We say that a Horn-like clause H is derivable by QCSP-literal-resolution from

the formulaψ , denotedψ �l H, if it can be obtained by applying the following rules.

0. For every predicate H inψ ,ψ �l H.

1. If ψ �l H1, ψ �l H2, and there exist elements a, b ∈ D with (x ≤*a) ∈ H1 and (x ≤*b) ∈ H2, for some existentially

quantified variable x, then

ψ �l (H1\{x ≤*a}) ∪ (H2\{x ≤*b}) ∪ {x ≤*a ◦ b}.
2. Ifψ �l H and (x ≤*a) ∈ H for some a ∈ D and some existentially quantified variable x, then for all b ∈ D such that a ≤*b

ψ �l (H\{x ≤*a}) ∪ {x ≤*b}.
3. Ifψ �l U andψ �l H, where U is an existential unit clause with downward literal (x ≤*a), and (x �≤*a) ∈ H, then

ψ �l (U\{x ≤*a}) ∪ (H\{x �≤*a}).
4. Ifψ �l H, y is a universally quantified variable which is the last variable in the quantification order ofψ occurring in H,

and there exists a value a ∈ D such that the assignment y = a does not satisfy Hy (the clause containing all y-literals in

H), then

ψ �l H\Hy.

Lemma 6.4. Let P be a QCSP instance with quantifier-free part ψ such that every predicate in ψ is a Horn-like clause (with

respect to a semilattice operation ∗ with unit) without trivial literals. The sentence P is false if and only ifψ �l ∅.
Proof. Each of the rules listed in Definition 6.3 preserves satisfiability, so the “if” direction is straightforward, and we will

focus on the “only if” direction. Assume without loss of generality that P has the form

∀y1∃x1 . . .∀yn∃xnψ(y1, x1, . . . , yn, xn),
and suppose that it is not the case thatψ �l ∅. Define (for k = 1, . . . , n)

τk(a1, . . . , ak) = ∗{ a | the assignment y1 = a1, . . . , yk = ak , xk = a

satisfies all existential unit clauses C containing xk such thatψ �l C}
Note that τk(a1, . . . , ak) = 0 if there is no derivable existential unit clause containing xk . We claim that the mappings τk
form awinning strategy for ∃ inψ . Let f : {y1, . . . , yn} → D be an assignment to the ∀-variables ofψ ; wewish to show that

the assignment

τf (z) =
{
f (yk) if z = yk ,

τk(f (y1), . . . , f (yk)) if z = xk

satisfies all clauses ofψ . By rule 0, it suffices to show that τf satisfies all clauses H such thatψ �l H. Recall that a Horn-like

clause potentially contains four types of literals: upward ∃-literals, upward ∀-literals, downward ∃-literals and downward

∀-literals, but has at most one downward literal of either kind. We shall prove that τf satisfies all clauses H such thatψ �l H

by induction on the number, u, of upward ∃-literals contained in H.

We split the proof into three cases.

Case 1: u = 0 and H does not contain any downward ∃-literals either. In this case all literals of H are ∀-literals, so if τf
does not satisfy H, then the empty set can be derived from H using rule 4, a contradiction.
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Case 2: u = 0 and H contains a downward ∃-literal. By repeatedly applying rule 4 to eliminate ∀-literals in H as many

times as possible we obtain a new clauseH′. If the last variable inH′ (relative to the quantification order ofψ) is a universally

quantified variable y, then for all a ∈ D, every extension of the assignment y = a satisfiesH′, and so in particularH′ is satisfied
by f . On the other hand, if the last variable in H′ is an ∃-variable x, then H′ is an existential unit clause and is satisfied by τf
by the definition of the τk .

Case 3 (Induction Step): Assume that H contains at least one upward ∃-literal, xk �≤*d, and that all derivable clauses with

a smaller number of upward ∃-literals are satisfied by τf . Since clauses inψ contain only non-trivial literals, it can be easily

verified that H cannot contain the literal xk �≤*0, that is, we have d <* 0. Suppose (for contradiction) that τf does not satisfy
H; then τf (xk) ≤*d.

For i = 1, . . . , k, denote f (yi) by ai. Since τf (xk) <* 0, there exists an existential unit clause C containing xk such that

ψ �l C andC isnot satisfiedby theassignmenty1 = a1, . . . , yk = ak , xk = 0(note thatC is clearly satisfiedby theassignment

y1 = a1, . . . , yk = ak , xk = 1). Consider the existential unit clause U obtained by applying rule 1 to all such clauses. Note

that a further application of rule 1 to C and U would produce U again. Clearly, we have that ψ �l U and U is not satisfied

by the assignment y1 = a1, . . . , yk = ak , xk = 0. Let xk ≤*t be the only downward ∃-literal in U. We argue that t = τf (xk).
If, for some a, the assignment y1 = a1, . . . , yk = ak , xk = a satisfies all derivable existential unit clauses containing xk ,

then, in particular, it satisfies U. Since U is not satisfied by the assignment y1 = a1, . . . , yk = ak , xk = 0, it follows that

a ≤*t. Then, by the definition of τf , we have τf (xk) ≤*t. On the other hand, the assignment y1 = a1, . . . , yk = ak , xk = t

satisfies all derivable existential unit clauses containing xk . Clearly, it satisfies all such clauses that are satisfied already by

the assignment y1 = a1, . . . , yk = ak , xk = 0. Furthermore, it satisfies the downward literal xk ≤*t
′ in any other derivable

existential unit clause C′ containing xk because, as we mentioned above, the application of rule 1 to C′ and U gives U,

implying that t ◦ t′ = t, which is equivalent to t ≤*t
′. Hence, by the definition of τf , we have t ≤*τf (xk), and so t = τf (xk).

To summarize, the derivable existential unit clause U contains the literal xk ≤*τf (xk) and has the property that τf does not
satisfy U\{xk ≤*τf (xk)}.

Now by applying rule 2 we obtain ψ �l U
′, where U′ = (U\{xk ≤*τf (xk)}) ∪ {xk ≤*d}. Finally, by applying rule 3 we

obtain ψ �l H
′, where H′ = (U′\{xk ≤*d}) ∪ (H\{xk �≤*d}). Notice that H′ is not satisfied by τf . Indeed, τf does not satisfy

U\{xk ≤*τf (xk)}, and U′\{xk ≤*d} is just the same clause. Furthermore, τf does not satisfy H\{xk �≤*d} because, by our

assumption, it does not satisfy H. The clause H′ contains one less upward ∃-literal than H, but is not satisfied by τf ; this
contradicts our inductive hypothesis. �

Proposition 6.5. Let ∗ be an arbitrary semilattice operation with unit on a finite set D. For any finite � ⊆ Inv({∗}), the problem
class QCSP(�) is in PTIME.

Proof. Let P = ∀y1∃x1 . . .∀yn∃xnψ be an instance of QCSP(�), and let ∗ be a semilattice operationwith unit element 1 and

zero element 0 under which � is invariant. By appeal to Lemma 6.2, every predicate invariant under ∗ can be represented

as a conjunction of Horn-like clauses. In general, the size of this representation can grow exponentially (in the size of the

predicate). However, for any fixed finite � ⊆ Inv({∗}), this representation for all predicates in � can be found in constant

time. Hence, we can assume thatψ contains only Horn-like clauses. We assume without loss of generality that no literals in

ψ are trivial.

Let B∃ denote the subset ofψ containing all clauses with a downward ∃-literal. Let B∀ denote the subset ofψ containing

all clauses with a downward ∀-literal; and let U denote the subset of ψ containing all clauses having only upward literals.

It can be straightforwardly verified that for every clause C derivable from ψ by QCSP-literal-resolution, there is a single

H ∈ B∀ ∪ U such that C is derivable from PH
def= ∀y1∃x1 . . .∀yn∃xn(B∃ ∪ {H}). (This is because, by examination of the five

rules, any derivable clause with a downward ∃-literal can be derived from B∃; the claim can then be proved by induction on

the structure of a proof.) Hence, by Lemma 6.4, deciding whether or not P is true amounts to deciding whether or not PH

is true, for all H ∈ B∀ ∪ U. We will therefore show how to decide any such PH in polynomial time. There are two cases to

consider:

Case 1: H ∈ U. In this case we claim that the sentence PH is true if and only if the CSP instance

∃x1 . . . ∃xn
(∧{C\C∀ | C ∈ B∃ ∪ {H}}

)

is satisfiable (where C∀ denotes the set of all ∀-literals in the clause C). To establish this claim note that if this CSP instance

is satisfiable, a satisfying assignment for it gives a winning strategy for PH (which ignores the ∀-player); on the other hand,

if this CSP instance is unsatisfiable, then PH is unsatisfiable as the ∀-player can set all ∀-variables to 1 to falsify all ∀-literals,
causing the ∃-player to lose. Satisfiability of this CSP instance can be decided in polynomial time by the results of [36],

because all predicates in it are invariant under a semilattice operation.

Case 2: H ∈ B∀. In this case, let y denote the variable in the downward literal of H and remove all ∀-literals not over y from

the clauses of B∃ ∪ {H} to obtain the set of clauses ψ ′. We claim that PH is true if and only if P ′
H = ∀y1∃x1 . . .∀yn∃xn(ψ ′)

is true. We justify this as follows. First, from a QCSP-literal-resolution derivation of ∅ from PH , we may obtain a derivation

of ∅ from P ′
H by removing, in the derivation, all ∀-literals not including y. Indeed, it is easy to check, by examining the
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five rules, that every step in the obtained derivation remains valid. Second, a derivation of ∅ from P ′
H gives a derivation

of ∅ from PH by adding in ∀-literals as appropriate to derive (from PH) a clause consisting only of ∀-variables, from
which ∅ can be derived by repeated applications of QCSP-literal-resolution rule 4 (with a = 1). Notice that when the last

variable in a clause in the quantification order is a ∀-variable y, all literals involving y can be removed by using rule 4 with

a = 1.

We now show how to decide if P ′
H is true by reducing this question to an equivalent CSP instance. Let yi denote the single∀-variable occurring inψ ′. Clearly, P ′
H is equivalent to P ′′

H = ∃x1 . . . ∃xi−1∀yi∃xi∃xi+1 . . . ∃xn(ψ ′). For all a ∈ D, define P ′′
a

to be the formula P ′′
a = ∃xa1 . . . ∃xan(ψ ′[yi/a])), that is, the formula obtained from P ′′

H by eliminating yi from the quantifier

prefix, instantiating yi with the value a in ψ ′, and renaming each variable xj as x
a
j . We want to find assignments satisfying

the predicates of the P ′′
a such that, for each j = 1, . . . , i − 1, the values received by the variables xaj are the same for all a. We

can formulate the existence of such assignments as a CSP instance which has all the predicates of all theP ′′
a as constraints, as

well as additional constraints xaj = xa
j′ for all a ∈ D and all 1 ≤ j < j′ ≤ i − 1. This CSP instance is polynomial in the size of

PH , and all predicates in it are invariant under the semilattice operation ∗. Hence, this instance can be decided in polynomial

time by the results of [36]. �

6.2. Semilattice operations without unit

In this section, we show that if a semilattice operation ∗ on a set D has no unit then QCSP(Inv({∗})) is PSPACE-complete.

First we note that if the semilattice operation ∗ has no unit then there are at least two different minimal elements with

respect to ≤*. We shall fix two such elements a, b and denote the set D\{a, b} by E. Note that the minimality of a, b implies

that, for any d ∈ D, if d /= a then a ∗ d ∈ E, and if d /= b then b ∗ d ∈ E.

To prove the PSPACE-completeness of QCSP(Inv({∗})), we will make use of the following known combinatorial problem.

Definition 6.6 (succinct graph unreachability). A succinct representation of a digraphwith n vertices, where n = 2c is a power

of two, is a Boolean circuit C with 2c inputs. The digraph represented by C, denoted GC , is defined as follows: the vertices of

GC are {1, 2, . . . , n}; the pair (i, j) is an edge of GC if and only if C accepts the binary representations of the c-bit integers i, j

as inputs.

In the succinct graph unreachability problem we are given a succinct representation of a digraph G and two vertices

s, t of the graph. The question is whether there is no path in G that connects s and t.

It is known (see, e.g., Exercise 20.2.9(b) of [43]) that the succinct graph reachability problem is PSPACE-complete, and

it follows that succinct graph unreachability is also PSPACE-complete.

Proposition 6.7 Let ∗ be a semilattice operation without unit. The succinct graph unreachability problem is polynomial-time

reducible to QCSP(�) where � is the set of all at most ternary relations from Inv({∗}).
We remark that, in contrast to earlier results, the type of reduction employed here is polynomial-time reduction.

Proof. Let C be a succinct representation of a directed graph GC . Encodings of vertices of GC , that is c-tuples, will be denoted

by �x, �y etc., where �x = (x1, . . . , xc).
Let ��s(�x) denote the formula �s1(x1) ∧ . . . ∧ �sc (xc), where each �d is a constant relation, that is, a unary relation

containing the single tuple (d). It is easily checked that each �d is invariant under the operation ∗ (here, the idempotency of

∗ is used).
Now define a predicate ϕC such that ϕC(�x, �y, z1, z2) is true if and only if �x, �y ∈ {a, b}c and �x = �y, or there is a path in GC

from the vertex encoded �x to the vertex encoded �y and z1 = z2, or such a path does not exist, or one of �x, �y does not belong to

{a, b}c . Note that ϕC(�x, �y, z1, z2) is false precisely when �x and �y are encodings of distinct vertices in GC which are connected

by a path, and z1 /= z2.

Using these predicates, an instance C,�s,�t of the succinct graph unreachability problem can be reduced to the formula

P = ∃�x, �y ∀z1, z2 ��s(�x) ∧ ��t(�y) ∧ ϕC(�x, �y, z1, z2).

Hence there exists a polynomial-time reduction from succinct graph unreachability to QCSP(�) where � is the set of

all at most ternary relations from Inv({∗}), provided that the predicate ϕC can be transformed to an instance of QCSP(�) in
polynomial time.

Step 1: Expressing the predicate ϕC in simpler terms. We shall first show that the predicate ϕC can be expressed using the

predicate ϕ(�x, �y, z1, z2) which is defined as follows. Predicate ϕ(�x, �y, z1, z2) is true if and only if �x, �y ∈ {a, b}c and �x = �y, or
there is an edge in GC from the vertex encoding �x to the vertex encoding �y and z1 = z2, or such an edge does not exist, or

one of �x, �y does not belong to {a, b}c .
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The most straightforward way to construct the predicate ϕC is to define it inductively, as follows:

ϕ′
0(�x, �y, z1, z2)=ϕ(�x, �y, z1, z2),
ϕ′
i (�x, �y, z1, z2)=∀�wi∃ri ϕ′

i−1(�x, �wi, z1, ri) ∧ ϕ′
i−1(�wi, �y, ri, z2).

and ϕC = ϕ′
c . Unfortunately, ϕ

′
c is exponentially larger than ϕC , so we cannot use this technique directly. However, we can

use a standard trick to obtain a shorter expression for ϕC using universal quantifiers. To do this, we define the predicates ϕi
inductively, as follows:

ϕ0(�x, �y, z1, z2)=ϕ(�x, �y, z1, z2),
ϕi(�x, �y, z1, z2)=∀�wi∃ri∀�ui, �vi∃z′i , z′′i

ϕi−1(�ui, �vi, z′i , z′′i ) ∧ ψ(�x, �y, �ui, �vi, �wi, ri, z1, z2, z
′
i , z

′′
i ).

In the above expression, the predicateψ(�x, �y, �u, �v, �w, z, z1, z2, z
′, z′′) is defined by the following conditions:

• �x, �w, �u, �v ∈ {a, b}c and �u = �x, �v = �w implies z′ = z1, z
′′ = z, and

• �y, �w, �u, �v ∈ {a, b}c and �u = �w, �v = �y implies z′ = z, z′′ = z2.

In other words,ψ is false only if the equalities on the left hold while the equalities on the right do not.

Finally, to obtain a QCSP instance we transform ϕc to prenex normal form moving all the quantifiers to the beginning of

the formula preserving their order. It is not hard to see that the obtained formula is equivalent to ϕc . We set ϕC to be equal

to this formula.

To show that this definition correctly captures ϕC , we prove by induction that ϕi(�x, �y, z1, z2) is false precisely when �x, �y
are encodings of distinct vertices s, t of GC which are connected by a path of length at most 2i, but z1 /= z2. The base case of

induction follows from the definition of ϕ. Suppose that the result holds for ϕi−1.

Suppose first that �x, �y are encodings of distinct vertices of GC that are connected by a path of length at most 2i. Choose

some z1, z2. If z1 = z2 then take ri = z′i = z′′i = z1 = z2. In this case ϕi−1(�ui, �vi, z′i , z′′i ) and ψ(�x, �y, �ui, �vi, �wi, ri, z1, z2, z
′
i , z

′′
i )

hold for any �ui, �vi, �wi, so ϕi(�x, �y, z1, z2) is true. If z1 /= z2 then, since �x, �y are connected with a path of length at most 2i,

there is a vertex �wi such that �x, �wi and �wi, �y are connected with paths of length at most 2i−1. Choose �ui = �x, �vi = �wi. Then if

ϕi−1(�ui, �vi, z′i , z′′i ) is true then we have z′i = z′′i , and if ψ(�x, �y, �ui, �vi, �wi, ri, z1, z2, z
′
i , z

′′
i ) is true then we have ri = z1. Similarly

we can derive ri = z2, which means that ϕi(�x, �y, z1, z2) is false.
Suppose now that �x, �y are encodings of vertices of GC that are not connected by a path of length at most 2i. Choose

some z1, z2. If �wi �∈ {a, b}c then set ri = z′i = z′′i = a. Under this assignmentwe have thatψ(�x, �y, �ui, �vi, �wi, ri, z1, z2, z
′
i , z

′′
i ) and

ϕi−1(�ui, �vi, z′i , z′′i )hold for any �ui, �vi, soϕi(�x, �y, z1, z2) is true. Hencewemay assume that �wi ∈ {a, b}c . In this case at least one of

the pairs �x, �wi and �wi, �y are not connected by a path of length atmost 2i−1.Without loss of generality suppose that there is no

such path for �x, �wi. Then set ri = z2. If neither �ui = �x, �vi = �wi nor �ui = �wi, �vi = �y then by setting z′i = z′′i = awemake both

predicates true, so ϕi(�x, �y, z1, z2) is true. If �ui = �x, �vi = �wi then we set z′i = z1, z
′′
i = ri. Then ψ(�x, �y, �ui, �vi, �wi, ri, z1, z2, z

′
i , z

′′
i )

is true. Since �ui, �vi are not connected with a path of length 2i−1, ϕi−1(�ui, �vi, z′i , z′′i ) is also true. Finally, if �ui = �wi, �vi = �y we

set z′i = ri, z
′′
i = z2, and, as ri = z2, both predicates are true, so again ϕi(�x, �y, z1, z2) is true.

Finally, suppose that one of �x, �y does not belong to {a, b}c , say, �x �∈ {a, b}c . If �wi �∈ {a, b}c then we proceed as above.

Otherwise set ri = z2. If �ui /= �wi or �vi /= �y then setting z′i = z′′i = awemake both predicates true. If �ui = �wi and �vi = �y then
set z′i = ri, z

′′
i = z2.

This completes the proof by induction and establishes that the predicate ϕC can be transformed in polynomial time into

a QCSP instance containing only the predicates ϕ and ψ . As is easily seen both predicates, ϕ and ψ , are invariant under

the semilattice operation, however, they do not fit our purpose, because the explicit representations of these predicates

are exponential in the size of the original succinct graph unreachability instance. Thus, we need to show that these two

predicates can be expressed by using at most ternary predicates from Inv({∗}) in polynomial time.

Step 2: Expressing the predicates ϕ and ψ . First, we introduce three relations corresponding to three types of logic gates. We

will call these relations gate relations. The relations are partly given by their matrices (where columns correspond to tuples);

the initial block of tuples contains the tuples that encode the gate, while the remaining tuples are needed for technical

purposes and to obtain a relation invariant under the semilattice operation. Element awill be interpreted as FALSE and b as

TRUE.

�not=
(
a b

b a

)
∪ (E × D)

�or=
⎛
⎝a a b b

a b a b

a b b b

⎞
⎠ ∪ (E × D × D) ∪ (D × E × D)
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�and=
⎛
⎝a a b b

a b a b

a a a b

⎞
⎠ ∪ (E × D × D) ∪ (D × E × D)

It is straightforward to verify that each of these gate relations is invariant under the semilattice operation∗.
The circuit C representing the graph GC is a Boolean circuit with gates {g1, . . . , gk}, inputs u1, . . . , u� and output z. For

each gate gi, we denote the inputs of gi by xi, yi (to simplify the notation we shall assume that if gi is a NOT-gate then it still

has the second input yi, but it is void), and its output by zi. Then u1, . . . , u� ∈ {x1, . . . , xk , y1, . . . , yk}, z ∈ {z1, . . . , zk} and
z1, . . . , zk ∈ {x1, . . . , xk , y1, . . . , yk} ∪ {z}. Without loss of generality we may assume that z = zk . We will also assume that

C has no unused inputs, that is, in the graph representation of C there is a path from every ui to z. The encoding of circuit C

will be the following existential conjunctive formula:

θC(u1, . . . , u�, z) = ∃z1, . . . , zk−1

k∧
i=1

�wi
(xi, yi, zi),

where wi denotes the type of gate gi: NOT, AND, or OR.

We need three observations about the formula θC .

(1) If u1, . . . , u� ∈ {a, b} and the quantifier free part of θC(u1, . . . , u�, z) is satisfied, then z1, . . . , zk ∈ {a, b}.
This is easily verifiedusing inductionon thedepthof circuitC, and the fact that, for anyw ∈ {NOT,AND,OR}, if x, y ∈ {a, b}
and �w(x, y, z) holds then z ∈ {a, b}.

(2) If u1, . . . , u� ∈ {a, b} and θC(u1, . . . , u�, z) holds, then z = b if and only if C(u1, . . . , u�) is TRUE; otherwise z = a.

Again this is easily verified using induction on the depth of the circuit and the structure of the relations.

(3) If {u1, . . . , u�} ∩ E /= ∅ then θC(u1, . . . , u�, z) holds for any z ∈ D.

To establish this, assumewithout loss of generality that uj ∈ E. We proceed by induction on the depth of circuit C. Recall

that C is assumed to have no unused inputs. In the base case of induction, when C contains only one gate, the result

follows from the definitions of the gate relations. For the induction step, remove the output gate gk from C; the rest of C

then breaks into two circuits C1 and C2 (which may overlap). If gk is a NOT-gate C2 can be assumed to be empty. At least

one of them uses input uj; without loss of generality we assume it is C1. Let the output of C1 be zk−1. By the induction

hypothesis, θC1(u1, . . . , u�, d) holds for any d ∈ E. Since zk−1 is an input for gk , the result follows from the definition of

the gate relations.

Now let η be the following ternary relation

η =
⎧⎨
⎩

⎛
⎝b

d

d

⎞
⎠ | d ∈ D

⎫⎬
⎭ ∪ (({a} ∪ E)× D × D).

It is straightforward to verify that η is invariant under the semilattice operation ∗.
We claim that the predicate ϕ can be expressed in terms of the predicates θC and η in the following way:

ϕ(�x, �y, z1, z2) = ∃z θC(�x, �y, z) ∧ η(z, z1, z2).
To establish this claim, note first that if either �x or �y contains a component from E, then choosing z = a we satisfy both

predicates on the right-hand side. The same is true if C(�x, �y) is FALSE. Finally, if �x, �y correspond to vertices that are connected,

that is, C(�x, �y) is TRUE, then the only value of z satisfying θC is b, so to satisfy η we have to have z1 = z2.

We have shown that the predicate ϕ can be expressed in polynomial time by using at most ternary predicates from

Inv({∗}). It only remains to show that the predicate ψ defined earlier can also be expressed in polynomial time by using at

most ternary predicates from Inv({∗}).
Define the relation σ , as follows

σ =
⎛
⎝a b

a b

b b

⎞
⎠ ∪ (E × E × {b}) ∪ (((D × D)\{(a, a), (b, b)})× ({a} ∪ E)).

It is straightforward to verify that σ is invariant under the semilattice operation ∗. Let

ξ=(�x, �y, z)=∃s1, . . . , sc∃z1, . . . , zc−2

c∧
i=1

σ(xi, yi, si) ∧ �and(s1, s2, z1)

∧
c−2∧
i=2

�and(zi−1, si+1, zi) ∧ �and(zc−2, sc , z).
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Furthermore, let

ξ→(�x, �y, �u, �v, z1, z2, z′1, z′2) = ∃s1, s2∃t
ξ=(�x, �u, s1) ∧ ξ=(�y, �v, s2) ∧ �and(s1, s2, t) ∧ η(t, z1, z′1) ∧ η(t, z2, z′2).

We claim that

ψ(�x, �y, �u, �v, �w, z, z1, z2, z
′
1, z

′
2)=ξ→(�x, �w, �u, �v, z1, z, z′1, z′2) ∧

ξ→(�w, �y, �u, �v, z, z2, z′1, z′2).
To establish this claim, first consider the predicate ξ=(�x, �y, z). If this predicate holds and �x = �y then all the si equal b, and

furthermore all the zi and z equal b. If �x /= �y or one of them does not belong to {a, b}c then, for some i, we have xi /= yi or{xi, yi} ∩ E /= ∅, and since σ(xi, yi, si) is true, si can be chosen from E. Therefore, zi−1, . . . , zc−2, z can be chosen arbitrarily.

Thus, ξ=(�x, �y, z) is true if and only if either �x = �y and �x, �y ∈ {a, b}c and z = b, or else �x /= �y and z is arbitrary, or �x, �y �∈ {a, b}c
and z is arbitrary. Similarly, the predicate ξ→(�x, �y, �u, �v, z1, z2, z′1, z′2) is true if and only if either one of �x, �y, �u, �v is not amember

of {a, b}c , or �x /= �u, or �y /= �v, or �x = �u, �y = �v and z1 = z′1, z2 = z′2.
Now considerψ(�x, �y, �u, �v, �w, z, z1, z2, z

′
1, z

′
2). Suppose that �x, �w, �u, �v ∈ {a, b}c , �u = �x, �v= �w. Then, to ensure that ξ→(�x, �w, �u,

�v, z1, z, z′1, z′2)=1, we must have z′1=z1, z
′
2=z. Similarly, if �u = �w, �v = �y then z′1=z, z′2 = z2. If these equalities do not hold,

or one of �x, �w and one of �w, �y are not members of {a, b}c , then both predicates ξ→ are true for any z, z1, z2, z
′
1, z

′
2 and so isψ .

As easily seen, the number of predicates used to represent ϕ, ψ and ϕC is bounded by a linear polynomial in the

number of gates in circuit C. Therefore, the construction described is a polynomial-time reduction from the succinct

graph unreachability problem to QCSP(�)where � is the set of at most ternary predicates invariant under the semilattice

operation. �

7. A trichotomy theorem

In this section, we apply results from the previous sections to obtain a complete classification of complexity of QCSP(�)
in those cases where � contains the set � of all graphs of permutations. Recall that the graph of a permutation π is the

binary relation {(x, y) | y = π(x)} (or the binary predicateπ(x) = y). The complexity of CSP(�) for such sets� is completely

classified in [23].

We will need two new surjective operations:

• The k-ary near projection operation,

lk(x1, . . . , xk) =
{
x1 if x1, . . . , xk are all different,

xk otherwise.

• The ternary switching operation,

s(x, y, z) =
⎧⎨
⎩
x if y = z,

y if x = z,

z otherwise.

Recall that the dual discriminator operation is defined as follows:

d(x, y, z) =
{
y if y = z

x otherwise.

Proposition 7.1 If � ⊆ RD, |D| ≥ 3, and l|D| ∈ s-Pol(�) then QCSP(�) is polynomial-time reducible to CSP(Inv(Pol(�))). In
particular, QCSP(�) is in NP.

Proof. For any �a = (a1, . . . , an) ∈ Dn, and any subsequence i1, . . . , ik of the sequence 1, . . . , n, we define pri1,... ,ik�a to be

the k-tuple (ai1 , . . . , aik). Moreover, for any n-ary relation �, we define pri1,... ,ik� to be the k-ary relation

pri1,... ,ik� = {pri1,... ,ik�a | �a = (a1, . . . , an) ∈ �}.
For I = {i1, . . . , ik}, we will sometimes write prI� instead of pri1,... ,ik�. Note that Pol({prI�}) ⊇ Pol({�}).

We first clarify the structure of relations over a set D which are invariant under the near-projection operation l|D|.
Let n denote the set {1, . . . , n}. Suppose I1, . . . , Ik is a partition of n and let �j = prIj� for j = 1, . . . , k. Then we write

� = �1 × . . .× �k if � can be represented as � = {�a | prIj�a ∈ �j for every j = 1, . . . , k}.
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Lemma 7.2 Let � ∈ R
(n)
D , where |D| ≥ 3.

If � ∈ Inv({l|D|}) and pri� = D for every i ∈ n, then � is of the form

� = �1 × . . .× �k

where each �j = {(a,π2j(a), . . . ,πmjj(a)) | a ∈ D}, for some permutations π2j , . . . ,πmjj of D.

Proof. We prove the lemma by induction on n. When n = 1 the result holds trivially, so consider the case when n = 2.

Assume that � is not a graph of a permutation. Then there exist b1, b2, b ∈ D such that b1 /= b2 and (b1, b), (b2, b) ∈ � (or

(b, b1), (b, b2) ∈ �). Since pr1� = D, it is possible to choose �a1, �a2, . . . , �a|D| ∈ � so that pr1�a1, . . . , pr1�a|D| are all different,

pr1�a1 = (x), where x is an arbitrary element from D\{b1, b2}, �a2 = (b1, b), and �a|D| = (b2, b). Since � is invariant under l|D|,
we have l|D|(�a1, . . . , �ak) = (pr1�a1, b) ∈ �, and hence (x, b) ∈ � for all x ∈ D.

It follows that, for any (x, y) ∈ D2 we can choose �c1, �c2, . . . , �c|D| ∈ � such that pr1�c1, . . . , pr1�c|D| are all different, pr1�c1 =
(x), pr2�c|D| = (y), and pr2�c1 = . . . = pr2�c|D|−1 = (b). Since� is invariant under l|D|, we have l|D|(�c1, . . . , �c|D|) = (x, y) ∈ �,
and hence � = D2.

Wenowprove the induction step. By the argument above, for any pair i, j ∈ n the projection pri,j� is eitherD2, or the graph

of a permutation. Assume that there exist i, j such that pri,j� is the graph of a permutation π . By the inductive hypothesis

prn\{j}� can be represented in the form

prn\{j}� = �1 × . . .× �k ,

and the ith coordinate position occurs in one of �1, . . . , �k . Suppose, for simplicity, that i is the last coordinate position in

�1, that is,

�1={(ai1 , . . . , aim1−1
, ai) | ai1 ∈ D, ais = πs1(ai1)

for s ∈ {2, . . . ,m1 − 1}, ai = πi(ai1)}.
Then, letting

�′
1={(ai1 , . . . , aim1−1

, ai, aj) | ai1 ∈ D, ais = πs1(ai1)

for s ∈ {2, . . . ,m1 − 1}, ai = πi(ai1), aj = ππi(ai1)}
we have � = �′

1 × �2 × . . .× �k , as required.

It remains to prove that if pri,j� = D2 for every i, j ∈ n, then � = Dn.

For any a ∈ D, define

�a = {(a1, . . . , an−1) | (a1, . . . , an−1, a) ∈ �}.
Since the operation l|D| is idempotent, that is, it satisfies l|D|(x, . . . , x) = x for all x, �a also belongs to Inv({l|D|}).

Consider first the case n = 3.

Suppose that, for some a ∈ D, the relation �a is not the graph of a permutation. Then �a = D2 by the argument above.

Take any c ∈ D such that c /= a. Then there exists a tuple �c = (c1, c2, c) ∈ �. For 1 ≤ i ≤ |D| − 1, choose �ai = (xi, yi, a) ∈ �,
such that {x1, . . . , x|D|−1, c1} = {y1, . . . , y|D|−1, c2} = D. Then l|D|(�a1, . . . , �a|D|−1, �c) = (x1, y1, c) ∈ �. Since we can change

y1 whilst keeping the same x1, we conclude that �c is not the graph of a permutation. Thus �c = D2 for all c ∈ D, which

implies that � = D3.

Now consider the remaining case, where �a is the graph of a permutation for each a ∈ D. In this case |�a| = |D| for
each a, and since |pr1,2�| = | ⋃

a∈D �a| = |D2|, we have �a ∩ �b = ∅ for all a, b ∈ D such that a /= b. Assume that D =
{d1, d2, . . . , d|D|}. For 1 ≤ i ≤ |D| − 1, choose �ai = (ai, d1, di) ∈ �, and choose �a|D| = (a1, b, d|D|) ∈ �. Note that a1, . . . ,
a|D|−1 are all different, and b /= d1, because �di ∩ �dj = ∅ if i /= j. Now l|D|(�a1, . . . , �a|D|) = (a1, b, d1) ∈ �, so (a1, b) ∈
�d1 ∩ �d|D| , a contradiction.

If n > 3 then, by the inductive hypothesis, we have pri,j,n� = D3 and, consequently, pri,j�a = D2 holds for all 1 ≤ i, j ≤
n − 1. Applying the inductive hypothesis to �a, we obtain �a = Dn−1 for each a ∈ D, which implies that � = Dn. �

Lemma 7.3 Let � ∈ R
(n)
D , where |D| ≥ 3.

If � ∈ Inv({l|D|}) and I = {i ∈ n | |pri�| < |D|}, then � = prI� × prn\I�.

Proof. By Lemma 7.2, prn\I� = �1 × . . .× �k where �j = {(a,π2j(a), . . . ,πmjj(a)) | a ∈ D} and π2j , . . . ,πmjj are permu-

tations of D. Denote the set of coordinate indices of �j by Jj , and let J be a system of representatives of J1, . . . , Jk . Then

prJ� = D|J|.
Take an arbitrary �b ∈ prI� and �c ∈ prJ�. There exists �a|D| ∈ prI∪J� such that prI�a|D| = �b. For 1 ≤ i ≤ |D| − 1, choose

�ai ∈ prI∪J� such that prJ�a1 = �c and for each j ∈ J, {prj�ai | 1 ≤ i ≤ |D|} = D. (This is possible because prJ� = D|J|.)



942 F. Börner et al. / Information and Computation 207 (2009) 923–944

Now let �d = l|D|(�a1, . . . , �a|D|) ∈ prI∪J�. It is easy to check that prI�d = �b and prJ�d = �c. Hence, prI∪J� = prI� × prJ�.
Finally, by the choice of J, any element from prI∪J� has a unique extension to an element of �, and the result follows. �

Now we can complete the proof of Proposition 7.1 by constructing a polynomial-time reduction from QCSP(�) to

CSP(Inv(Pol(�))) for any � ⊆ RD, with |D| ≥ 3, such that l|D| ∈ s-Pol(�) .
Let P = Q1x1 . . .Qlxl φ be an instance of QCSP(�) where φ = �1(�v1) ∧ . . . ∧ �q(�vq). For any pair �s(�vs) and �t(�vt) of

atomic formulas in φ, we can replace �s(�vs) by the atomic formula �′
s(�vs)which is equivalent to �s(�vs) ∧ ∃y1, . . . , yp�t(�vt))

where y1, . . . , yp are the variables that appear in �vt but not in �vs. If we repeat this process until no further changes result,

we obtain (in polynomial time) an instance P ′ = Q1x1 . . .Qlxl φ
′ which is equivalent to the original instance P . Moreover,

all predicates in φ′ belong to 〈�〉, and hence, by Proposition 3.3, to Inv(Pol(�)).
Note that, if two constraints inφ′ share a variable then the projections of the corresponding predicates on the coordinates

where this variable occurs are the same. If one of the predicates in φ′ is always false, or if some variable that cannot take

all values is universally quantified in P ′, then clearly P ′ is false, and so is P . Otherwise, by Lemmas 7.2 and 7.3, φ′ can be

represented as φ1 ∧ φ2 so that φ1 and φ2 have no variable in common, φ1 is a conjunction of graphs of permutations, and no

variable inφ2 can take all possible values. HenceP ′ can be represented as a conjunction of two sentences: one (corresponding

to φ1) is an instance of QCSP(�), and the other (corresponding to φ2) is an instance of CSP(Inv(Pol(�))). It is easy to check

that� ⊆ Inv({d}). Hence, since the dual discriminator operation is a near-unanimity operation, by Theorem4.5, we can solve

any instance of QCSP(�) in polynomial time, and so reduce QCSP(�) to CSP(Inv(Pol(�))) in polynomial time. �

Theorem 7.4 Let� ⊆ � ⊆ RD, and |D| ≥ 3.

– If s-Pol(�) contains the dual discriminator d, or the switching operation s, or an affine operation, then QCSP(�) is in PTIME;
– else, if s-Pol(�) contains l|D|, then QCSP(�) is NP-complete;
– else QCSP(�) is PSPACE-complete.

Proof. Chapter 5 of [52] shows that, either s-Pol(�) consists of all projections (that is, all functions of the form f (x1, . . . , xn)= xi for some 1 ≤ i ≤ n), or else s-Pol(�) contains the dual discriminator operation, d, or the near-projection operation, l|D|,
or (when |D| ∈ {3, 4}) an affine operation. If s-Pol(�) consists of all projections then, by Theorem 5.2, QCSP(�) is PSPACE-
complete. If s-Pol(�) contains d or an affine operation then, by Theorem 4.2 or Theorem 4.5, QCSP(�) is in PTIME.

Suppose that s-Pol(�) contains l|D|, but neither d nor the affine operation. Then, by Proposition 7.1, QCSP(�) is inNP. Note

that s is aMal’tsev operation, and, hence, if s-Pol(�) contains s then QCSP(�) is solvable in polynomial time by Theorem4.2. If

s-Pol(�) contains none of s, d, and the affine operation then, by Theorem 12 of [23], CSP(�) is NP-complete. Since, obviously,

CSP(�) is polynomial-time reducible to QCSP(�), and QCSP(�) is in NP, the result follows. �
Note that, for finite � over a fixed finite set D, the conditions in Theorem 7.4 can be efficiently checked.

8. Conclusions

We have shown that the algebraic theory relating complexity and polymorphisms, which was originally developed for

the standard constraint satisfaction problem allowing only existential quantifiers, can be extended to deal with the more

general framework of the quantified constraint satisfaction problem.

In thisextensionof the theory it turnsout that it is the surjectivepolymorphismsof thepredicatesused inprobleminstances

which determine the complexity of the corresponding problems. Using this information we have been able to identify

subproblems of the quantified constraint satisfaction problem lying in (or complete for) some standard complexity classes.

As an example of using these results, we now classify the complexity of the constraint satisfaction games described in

Examples 2.7–2.10.

Corollary 8.1

(1) The graph k-colouring game described in Example 2.7 can be decided in polynomial time when k ≤ 2 and is PSPACE-

complete when k ≥ 3.
(2) The one-or-both colour matching game described in Example 2.8 can be decided in polynomial time.
(3) The colour implication game described in Example 2.9 can be decided in polynomial time.
(4) The linear equations game described in Example 2.10 can be decided in polynomial time.

Proof

(1) Follows immediately from Corollary 3.9 and Proposition 5.1.

(2) It is straightforward to verify that each relation in �cm defined in Example 2.8 is invariant under the dual discriminator

operation, which is a near unanimity operation. Hence, by Theorem 4.5, the one-or-both colour matching game can

be decided in polynomial time.
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(3) The colour implication game defined in Example 2.9 involves a set D of colours containing two distinguished colours,

black and white. Consider the binary operation ∗ on D such that, for all v ∈ D, we have v ∗ v = v ∗ black = black ∗ v = v,

and, for any distinct u, v ∈ D\{black}, we have u ∗ v = white. It is easy to check that ∗ is a semilattice operation where

the black colour is a unit element. The corresponding lattice order ≤*is a so-called “diamond” order: it has black as the

least element, white as the greatest element, and all other colours incomparable with each other. It is straightforward

to verify that each of the relations �a,b defined in Example 2.9 is equal to the set {(u, v) | (u �≤*a) ∨ (v ≤*b)}. Hence, by
Lemma 6.2, the set of relations �ci is invariant under the operation ∗. The result then follows from Theorem 6.1.

(4) It is easy to verify that each relation in �lin defined in Example 2.10 is invariant under the affine operation of the field

K . Hence, by Theorem 4.2, the linear equations game can be decided in polynomial time. �
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