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Abstract

We present a calculus, called the scheme-calculus, that permits to ex-
press natural deduction proofs in various theories. Unlike λ-calculus, the
syntax of this calculus sticks closely to the syntax of proofs, in particular,
no names are introduced for the hypotheses. We show that despite its
non-determinism, some typed scheme-calculi have the same expressivity
as the corresponding typed λ-calculi.

1 Introduction

We present a calculus, called the scheme-calculus, that permits to express nat-
ural deduction proofs without introducing names for the hypotheses.

1.1 A scheme calculus

In the algorithmic interpretation of proofs, introduced by Brouwer, Heyting,
and Kolmogorov, proofs are expressed by terms of a typed λ-calculus. In such
a calculus, two kinds of variables are often used: those of the logic and those
introduced to name the hypotheses. In System F , for instance, type variables
and proof variables are often distinguished.

When variables are introduced to name the hypotheses, the two occurrences
of the proposition A in the context of the sequent A,A ` A must be distin-
guished, and thus the contexts must be multisets of propositions. In contrast,
in automated theorem proving, in order to reduce the search space (e.g. to a
finite space), the contexts of the sequents are often considered as sets of propo-
sitions [1]. Thus, slightly different notions of sequents are used in proof-theory
and in automated theorem proving. Moreover, these hypothesis names make the
proofs of a given proposition a non-context-free language, even in the minimal
propositional logic [2, 3, 4].

In this paper, we introduce a calculus, called the scheme-calculus, that per-
mits to express proofs without introducing names for the hypotheses and where
the contexts are just sets of hypotheses. In other words, we keep the variables
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of predicate logic, but do not introduce another category of variables for the
hypotheses.

In the scheme-calculus, the proofs of a given proposition in minimal proposi-
tional logic and even in the positive fragment of minimal predicate logic form a
context-free language. In fact, this scheme-calculus stems from previous works
on the grammatical properties of sets of λ-terms [5, 6, 7, 8, 9, 10, 11, 4, 12].

From the grammar generating the schemes of a given type, we can build an
algorithm generating all the λ-terms of this type, as each scheme corresponds to
a finite number of terms that can be computed from it [4]. A scheme containing
n abstractions and p variables aggregate up to pn λ-terms. In this sense, more
proofs are identified in the scheme-calculus than in the λ-calculus, but, unlike
in the formalisms based on proof irrelevance, not all the proofs are identified,
for instance the terms λxPλyP x and λxPλyP y are identified, but the terms
λxPλfP⇒P x and λxPλfP⇒P (f x) are not.

Despite its simplicity, we show that this scheme-calculus is as expressive
as the dependently-typed λ-calculus: for some type systems, all the functions
that are provably total in impredicative (i.e. second-order) arithmetic can be
expressed in the scheme-calculus. In this expressivity result, the determinism
does not come from a local property, such as confluence, as for the λ-calculus,
but from the subject-reduction property and the fact that dependent types are
powerful enough to specify the value of terms.

1.2 The notion of variable

To understand the basic idea of the scheme-calculus, it is useful to go back to
the origin of the notion of variable. A term expressing a function is usually
built using a function-former, often written as λ, and a place-holder for the yet
unknown argument of the function, sometimes written as 2. For instance, the
function mapping a number to its double can be expressed by the term

λ(2×2)

Applying this term to 4 yields a term that reduces to 2× 4.
But, when applying the term

λλ (2×2×2×2)

that contains several occurrences of the symbol λ, to the arguments 4 and
5, for instance, we may get eight different syntactic results by replacing each
occurrence of the symbol 2 either by 4 or by 5. Hence arises the need of a pointer
associating a function-former occurrence λ to each place-holder occurrence 2.

In the λ-calculus, this pointer is expressed by giving a name to each occur-
rence of a λ and to each occurrence of a 2. The λ associated to a place-holder
2x is then the first λx above it in the term seen as a tree. This way, the function
mapping two numbers to the double of the product of the square of the first
and of the second is written as

λxλy (2×2x ×2x ×2y)
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or, in a simpler way, as
λxλy (2× x× x× y)

Other solutions have been investigated. A solution related to Bourbaki’s is
to express the pointer with a directed edge from each 2 to the corresponding λ

λλ 2 ×    ×     ×   

While, in the solution proposed by de Bruijn, each 2 is assigned the height of
its associated λ above it. So we get

λλ (2×22 ×22 ×21)

Applying these three terms to the terms 4 and 5 yields terms that reduce, in
each formalism, to 2× 4× 4× 5 only.

In many cases, both λs and 2s are typed and the pointers must relate ob-
jects of the same type. This identity of types guarantees the subject-reduction
property: the reduction of a well-typed term yields a term of the same type.
Knowing the type of each λ and 2 often reduces the possibilities of linking
occurrences of the symbols 2 and λ in a raw term. For instance, in the raw
term

λscalλvect(2.2scal.2scal.2vect)

there is only one way to associate a λ to each 2, but in the raw term

λnatλnat (2×2nat ×2nat ×2nat)

there are still eight ways to associate a λ to each 2.
In the scheme-calculus, instead of distinguishing eight terms λxλy (2×x×x×

x), λxλy (2× x× x× y), ..., we consider a single scheme λnatλnat (2× 〈nat〉 ×
〈nat〉 × 〈nat〉), where 〈nat〉 is the canonical (i.e. only) variable of type nat.
In this scheme, each place-holder is possibly associated to any function-former
above it, provided they have the same type. The scheme (λnatλnat (2×〈nat〉×
〈nat〉 × 〈nat〉) 4 5) aggregates eight terms and reduces, in a non-deterministic
way, to (2× 4× 4× 4), (2× 4× 4× 5), ... The reduction of schemes is therefore
non-deterministic, but it does enjoy the subject-reduction property.

In general, the scheme ((λA...λA〈A〉) t1 t2 ... tn) reduces, in a non-deterministic
way, to each of the tis. This is typical of non-deterministic extensions of λ-
calculus, such as G. Boudol’s λ-calculus with multiplicities [13], where the term
(λx x) (t1 | ... | tn) reduces also in a non-deterministic way to each of ti’s.

In the λ-calculus, when we apply the substitution (f y)/x to the term λy :
B (g x y), we must rename the bound variable y in order to avoid the variable
capture. As there is only one variable of type B in the scheme calculus, we
are no longer able to rename the variables this way and the variable captures
cannot be avoided.
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1.3 The algorithmic interpretation of proofs

In the algorithmic interpretation of proofs, the subject-reduction property is
more important than the uniqueness of results. For instance, consider the nat-
ural deduction proof

ax
A,A ` A

⇒i
A ` A⇒ A

⇒i` A⇒ A⇒ A
t
` A⇒e` A⇒ A

u
` A⇒e` A

where t and u are two cut free proofs of the sequent ` A. This proof can be
reduced, in a non-deterministic way, to t or to u, but in both cases, we get a
cut free proof of ` A.

When we associate a term of λ-calculus to this proof, we must associate a
variable name to each hypothesis of the sequent A,A ` A, and we must choose
the variable used in the axiom rule. Different choices lead to different proof-
terms: ((λαλβ α) t u) and ((λαλβ β) t u), and each of these terms reduces to
a unique normal form.

This example shows that, in some presentations of natural deduction with
unnamed hypotheses, proof reduction is non-deterministic, and λ-calculus in-
troduces determinism in a somewhat artificial way.

As shown by Statman and Leivant (see [14, 15]) the proof reduction process
defined directly on natural deduction proofs with unnamed hypotheses is not
strongly normalizing, while that of λ-calculus is. This non-termination can be
seen as a consequence of the fact that variable captures are allowed. As, in
general, termination is lost in the scheme-calculus, a strategy must be chosen.

1.4 Names and specifications

In the cross-fertilization of the theories of proof languages and of programming
languages, the expression of natural deduction proofs in λ-calculus can be seen
as the importation in proof theory of the concept of variable name, that is
familiar in the theory of programming languages. On the opposite, the scheme-
calculus can be seen as an importation in the theory of programming languages
of the concept of anonymous hypothesis, that is familiar in proof theory.

Yet, this idea of anonymous resource is not completely new in computer
science. For instance, when we connect a computer to a local network, we just
need to use any unnamed Ethernet cable. Its type “Ethernet cable” is sufficient
to guarantee the connection to the network. In the same way, when a type
system is strong enough to specify the value returned by a program, there is
no need to give names to different programs of the same type: when such a
program is needed, any program, that has the right type, goes. Identifying
programs by their specification and not by their name may be a way to avoid
the proliferation of variable names in programs and other formal objects.

4



The main calculus we shall introduce in this paper is a scheme-calculus with
dependent types (Section 3), that permits to express proofs of various theories
in minimal predicate logic. We shall prove three properties of this dependently-
typed scheme-calculus, that are subject-reduction (Section 4), normalization
(Section 5), and an expressivity result (Section 6). As an introductory example,
we start with a simply-typed scheme-calculus.

2 A simply-typed scheme-calculus

2.1 The calculus

Definition 2.1 (Simple types) Let P be a set of atomic types. The simple
types are inductively defined by

A = P | A⇒ A′

with P ∈ P.

Definition 2.2 (Context) A context is a finite set of simple types.

Definition 2.3 (Simply-typed schemes) Schemes are inductively defined by

t = 〈A〉 | λAt | (t t′)

The scheme 〈A〉 is the canonical variable of type A, λAt is the scheme obtained
by abstracting the canonical variable 〈A〉 of type A in t, and (t t′) is the appli-
cation of the scheme t to the scheme t′.

The typing rules are given in Figure 1. Notice that as contexts are sets, if A
is an element of Γ, then Γ ∪ {A} is just Γ. For instance, using these rules, the
scheme λAλAλA〈A〉 can be given the type A⇒ A⇒ A⇒ A with the following
derivation.

A ` 〈A〉 : A
A ` λA 〈A〉 : A⇒ A

A ` λAλA 〈A〉 : A⇒ A⇒ A
` λAλAλA 〈A〉 : A⇒ A⇒ A⇒ A

Definition 2.4 (Scheme in context) A scheme in context is a pair tΓ where
t is a scheme and Γ is a context such that t is well-typed in Γ.

We sometimes omit the context Γ when there is no ambiguity.

2.2 Reduction

When reducing the underlined redex in the scheme

λA . . . λA(λA(λA . . . λA〈A〉) u)
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A ∈ Γ
Γ ` 〈A〉 : A

Γ ∪ {A} ` t : B
Γ ` λAt : A⇒ B

Γ ` t : A⇒ B Γ ` u : A
Γ ` (t u) : B

Figure 1: Simply-typed schemes

the variable 〈A〉 may be bound by the λA of the redex, but it may also be bound
by another λA, either higher or lower in the scheme. So, in general, the scheme
u may be substituted for the variable 〈A〉 or not, hence the non-determinism of
the substitution.

However, if the variable 〈A〉 is bound neither higher nor lower in the term,
the only possible binder for 〈A〉 is that of the redex. In such a case, the variable
〈A〉 must be substituted. Thus, the fact that the scheme u may or must be
substituted for the variable 〈A〉 depends not only on the reduced redex but also
on the position of this redex in the scheme. Therefore, the reduction relation
cannot be defined on schemes. Instead, it has to be defined on schemes in
contexts.

To define the reduction relation, we must first set up a notion of substitu-
tion. A substitution is a function of finite domain, written as [t1/A1, ..., tn/An],
associating schemes t1, ..., tn of types A1, ..., An, respectively, to the variables
〈A1〉, ..., 〈An〉. Applying a substitution to a scheme may produce several re-
sults, thus this application produces a set of results. Moreover, this application
is always performed with respect to some context Γ that specifies the variables
for which the substitution may or must be performed. More precisely, when A
is in Γ, we may choose whether we substitute the canonical variable of type A
or not and when A is not in Γ, this substitution is forced. If σ is a substitution,
t is a scheme and Γ a context, we write σΓt for the result of the application of
σ to t, with respect to the context Γ.

To simplify the notations, if S and S′ are sets of schemes, we write λAS for
the set of schemes of the form λAt for t in S and (S S′) for the set of schemes
of the form (t t′) for t in S and t′ in S′.

Definition 2.5 (Substitution)

• σΓ〈A〉 = {〈A〉, σ(A)} if A ∈ dom(σ) and A ∈ Γ,

• σΓ〈A〉 = {σ(A)} if A ∈ dom(σ) and A 6∈ Γ,

• σΓ〈A〉 = {〈A〉} if A 6∈ dom(σ),

• σΓ(λAt) = λAσ(Γ∪{A})t,

• σΓ(t u) = (σΓt σΓu).
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Definition 2.6 (Reduction) The one step top level β-reduction, written as
−→, is defined by the rule

((λAt) u)Γ −→ vΓ

where A, t, u, and Γ are arbitrary and v is any element of [u/A]Γt.
The one step β-reduction relation � is the contextual closure of the relation

−→. It is inductively defined by

• if tΓ −→ t′Γ, then tΓ � t′Γ,

• if tΓ � t′Γ, then (t u)Γ � (t′ u)Γ,

• if uΓ � u′Γ, then (t u)Γ � (t u′)Γ,

• if tΓ∪{A} � t′Γ∪{A}, then (λA t)Γ � (λA t′)Γ.

This β-reduction relation �∗ is the reflexive-transitive closure of �.

The reduction relation is not confluent. Indeed, if A 6∈ Γ, the scheme
((λAλA 〈A〉) t u)Γ reduces to both tΓ and uΓ, in a non-deterministic way. This
formalizes the intuition that, in the scheme (λAλA〈A〉)Γ, the variable 〈A〉 may
be bound by either of the occurrences of the symbol λA.

More surprisingly this reduction relation is not strongly normalizing.

2.3 Counter-examples to strong normalization

Proposition 2.1 (Statman [14], Leivant [15]) The simply-typed scheme-calculus
is not strongly normalizing.

Proof. Let t = ((λA〈A〉) 〈A〉)A. The scheme ((λAt) t)A reduces to each of the
elements of [t/A]At, e.g. to ((λAt) t)A.

This counter-example shows that, when we express natural deduction with
sequents without naming the hypotheses, proof reduction is not strongly nor-
malizing. For instance, the proof

ax
A ` A

⇒i
A ` A⇒ A

ax
A ` A⇒e

A ` A
⇒i

A ` A⇒ A

ax
A ` A

⇒i
A ` A⇒ A

ax
A ` A⇒e

A ` A⇒e
A ` A

contains a cut. If we eliminate this cut, we have to replace in the proof t

ax
A ` A

⇒i
A ` A⇒ A

ax
A ` A⇒e

A ` A
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the axiom rules on the proposition A with the proof t itself. As A was already in
the context, before being introduced by the ⇒i rule of the cut, we may choose
to replace each axiom rule or not. If we replace both, we get back the proof we
started with.

This counter-example is based on the fact that the scheme-calculus permits
the substitution of bound variables. Yet, even if we forbid this substitution of
bound variables, the variable captures of the scheme-calculus are sufficient to
jeopardize strong normalization. We give here another counter-example.

Example. Consider the context Γ = {A⇒ B,B ⇒ A,A⇒ B ⇒ A,A,B}, and
the schemes in Γ, f = 〈A⇒ B〉, g = 〈B ⇒ A〉, h = 〈A⇒ B ⇒ A〉

a = ((λB〈A〉)(f 〈A〉))

b = ((λA〈B〉)(g 〈B〉))

u0 = (h a b)

un+1 = (g (f un))

vn = ((λB un) (f un))

Remark that, for each i, the schemes a and b are subschemes of the scheme
ui and that they do not occur in the scope of any binder.

The scheme vn reduces to [(f un)/B]Γun that contains a subscheme [(f un)/B]Γb,
i.e. ((λA (f un))(g (f un))) that, in turn, reduces to [(g (f un))/A]Γ(f un), that
contains a subscheme [(g (f un))/A]Γa, i.e. ((λB(g (f un)))(f (g (f un)))) that
is vn+1. Therefore vn reduces to a scheme that contains vn+1 as a subscheme.

2.4 Strategies

As with any non-deterministic system, we can restrict the reduction of the
scheme-calculus by defining strategies. In the scheme-calculus, non-determinism
arises from two different origins. First, as in the λ-calculus, when a scheme
contains several redex occurrences, we may choose to reduce one or another
first. Then, once the redex occurrence is chosen, we still have several ways to
reduce it, because substitution itself is non-deterministic.

The simplest strategies are obtained by restricting the non-determinism of
the substitution.

The definition of the substitution of the minimal strategy is the same as that
of the general notion of substitution (Definition 2.5), except for the first clause:
here we take the scheme 〈A〉 only, i.e.

• σΓ〈A〉 = {〈A〉}, if A ∈ dom(σ) and A ∈ Γ.

Notice that, in this case, σΓt is always a singleton. Its only element also is
denoted by σΓt.

For instance, if A 6∈ Γ, the scheme ((λAλA〈A〉) t)Γ reduces to (λA〈A〉)Γ, and
so does the scheme (λA((λA〈A〉) t))Γ. But the scheme ((λA〈A〉) t)Γ reduces to
tΓ.
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The dual strategy is the maximal strategy. The definition of the substitution
of this strategy is the same as that of the general notion of substitution except
for the first clause: here we take the scheme σ(A) only, i.e.

• σΓ〈A〉 = {σ(A)}, if A ∈ dom(σ) and A ∈ Γ.

The scheme ((λAλA〈A〉) t)Γ now reduces to (λAt)Γ and so does the scheme
(λA((λA〈A〉) t))Γ.

Intuitively, in the minimal strategy, we substitute a variable if we have to,
while in the maximal strategy, we substitute a variable if we are able to.

A more complex strategy is the strategy with reference to the closest binder,
also known as the total discharge strategy [7, 14]. In this strategy, the vari-
able 〈A〉 always refers to the closest binder above it. The substitution is the
same as that of the minimal strategy, but now the definition of the reduction is
modified in such a way that ((λAt) u)Γ reduces to [u/A]

∅
t instead of [u/A]

Γ
t.

This way, the scheme ((λAλA〈A〉) t)Γ reduces to (λA〈A〉)Γ, but the scheme
(λA((λA〈A〉) t))Γ reduces to (λAt)Γ.

The dual strategy is the strategy with reference to the furthest binder. The
substitution is the same as that of the maximal strategy, but the definition of
the reduction is modified in such a way that ((λAt) u)Γ reduces to ([u/A]Γt)Γ

when A 6∈ Γ and to tΓ when A ∈ Γ. This way, the scheme ((λAλA〈A〉) t)Γ

reduces to (λAt)Γ, but the scheme (λA((λA〈A〉) t))Γ reduces to (λA〈A〉)Γ.
The counter-examples of Section 2.3 show that the maximal strategy and

the strategy with reference to the closest binder do not normalize, even if we
restrict to weak reduction, i.e. if we forbid reduction under abstractions. We
leave open the problem of the normalization of the minimal strategy and the
strategy with reference to the furthest binder. However, we shall prove in Section
5 the normalization of weak reduction for the minimal strategy.

Finally, λ-calculus is also a strategy of the scheme-calculus. There, in order
to reduce the scheme ((λAλA〈A〉) t)Γ, we need to know the history of the re-
duction, so that we are able to decide which binder the variable 〈A〉 refers to.
In both schemes of type A⇒ A⇒ A in the context B:

((λA⇒AλA〈A⇒ A〉) (λA〈A〉))

and
λA((λB⇒AλA(〈B ⇒ A〉〈B〉)) (λB〈A〉))

there is no ambiguity in the reference of the variable 〈A〉 that appears in the
scope of a single binder of type A.

When we reduce these schemes, we get the normal scheme λAλA〈A〉 in both
cases. But to determine the reference of the variable 〈A〉 in this normal form,
we have to know where this scheme is coming from. This is the role of variable
names. Calling x the variable 〈A〉, y the variable 〈B〉, f the variable 〈A ⇒ A〉
and g the variable 〈B ⇒ A〉, the first term ((λfλx f) (λx x)) reduces to λxλx x
and the second λx ((λgλx (g y)) (λy x)) to λxλx′ x, where a new name x′

has been introduced by substitution to avoid the variable capture and keep the
pointer from the occurrence of the variable x to its binder.
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In this sense, the scheme-calculus generalizes both the lambda-calculus and
the total discharge calculus.

3 A dependently-typed scheme-calculus

The simply-typed scheme-calculus is much less expressive than the simply-typed
λ-calculus: with the general β-reduction the uniqueness of normal forms is lost
and if we restrict the calculus to any deterministic strategy, as there is only one
normal scheme of type A⇒ A⇒ A, it is impossible to express both projections.

In this section, we introduce a scheme-calculus with dependent types and
prove that it is as expressive as the corresponding typed λ-calculus. In par-
ticular, we construct a dependent type system that permits to express all the
functions that are provably total in impredicative arithmetic. This choice of
impredicative arithmetic is just an example and we could construct similar type
systems for various theories.

3.1 Terms and types

We first define terms and types (or propositions) as usual in many-sorted pred-
icate logic.

We consider a language i.e. a set of sorts, a set of function symbols each of
them being equipped with an arity of the form 〈s1, . . . , sn, s〉, where s1, . . . , sn, s
are sorts, and a set of predicate symbols each of them being equipped with an
arity 〈s1, . . . , sn〉, where s1, . . . , sn are sorts. We consider also, for each sort, an
infinite set of variables. The terms of sort s are inductively defined by

a = x | f(a1, . . . , an)

where x is a variable of sort s, f a function symbol of arity 〈s1, . . . , sn, s〉 and
a1, . . . , an are terms of sorts s1, . . . , sn, respectively. The types are inductively
defined by

A = P (a1, . . . , an) | A⇒ A′ | ∀x A

where P is a predicate symbol of arity 〈s1, . . . , sn〉 and a1, . . . , an are terms of
sorts s1, . . . , sn, respectively.

We could include other connectives and quantifiers and everything would
generalize smoothly. However, we prefer to define them in the theory HA2

presented in Section 3.2.
Free and bound variables, alphabetic equivalence, as well as substitution are

defined as usual on terms and types.
A context is a finite set of types.
To define a theory, such as arithmetic, we do not consider axioms. Instead,

we extend the natural deduction rules with a conversion rule

Γ ` A
A ≡ B conv

Γ ` B
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x1, . . . , xp εp f〈x1,...,xp〉,〈y1,...,yn〉,A(y1, . . . , yn) −→ A

x = y −→ ∀c (x ε1 c⇒ y ε1 c)

N(x) −→ ∀c (0 ε1 c⇒ ∀y (N(y)⇒ y ε1 c⇒ S(y) ε1 c)⇒ x ε1 c)

Null(0) −→ ∀c (ε0(c)⇒ ε0(c))

Null(S(x)) −→ ∀c ε0(c)

Pred(0) −→ 0

Pred(S(x)) −→ x

Figure 2: The rewrite system HA2

allowing us to replace a proposition by an equivalent one for a given congruence,
at any time in a proof, like in Deduction modulo [16]. The congruence has to
be non-confusing, that is, if A ≡ B then either at least one of the propositions
A, B is atomic, or both are implications or both are universal quantifications, if
(A ⇒ A′) ≡ (B ⇒ B′) then A ≡ B and A′ ≡ B′, and if (∀x A) ≡ (∀x B) then
A ≡ B.

3.2 Impredicative arithmetic

Following [17], we can express predicative (i.e. first-order) and impredicative
(i.e. second-order) arithmetic in Deduction modulo, hence the proofs of these
theories can be expressed in the scheme-calculus.

We introduce a sort ι for natural numbers and a sort κn (n = 0, 1, 2, ...)
for n-ary classes of natural numbers. The function symbols are 0 (of sort ι), S
and Pred (of arity 〈ι, ι〉). The predicate symbols are = of arity 〈ι, ι〉, N and
Null of arity 〈ι〉 and εn of arity 〈ι, ..., ι, κn〉. We write p ε1 c to express that
the number p is an element of the (unary) class c, and p1, ..., pn εn c to express
that the sequence p1, ..., pn is an element of the n-ary class c. Thus, ε0(c) is the
proposition corresponding to the nullary class c. Moreover, for each proposi-
tion A, and sequences of variables 〈x1, . . . , xp〉, 〈y1, . . . , yn〉, such that the free
variables of A are among x1, . . . , xp, y1, . . . , yn, we introduce a function symbol
f〈x1,...,xp〉,〈y1,...,yn〉,A which is, informally speaking, obtained by Skolemizing the
instance of the comprehension scheme corresponding to A with x1, ..., xp as ar-
guments of the class of arity p and y1, ..., yn as parameters. Such symbols exist
for all propositions not containing Skolem symbols themselves, in particular for
propositions containing quantifiers on classes (hence the impredicativity).

The meaning of these symbols is not expressed by axioms but by the rewrite
rules in Figure 2. These rules define a congruence on terms and propositions.

As is well known, the connectives and quantifiers >, ⊥, ¬, ∧, ∨, ⇔, and ∃
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can be defined in HA2.

> = ∀c (ε0(c)⇒ ε0(c))
⊥ = ∀c ε0(c)
¬A = A⇒ ⊥

A ∧B = ∀c ((A⇒ B ⇒ ε0(c))⇒ ε0(c))
A ∨B = ∀c ((A⇒ ε0(c))⇒ (B ⇒ ε0(c))⇒ ε0(c))
A⇔ B = (A⇒ B) ∧ (B ⇒ A)
∃x A = ∀c ((∀x (A⇒ ε0(c)))⇒ ε0(c))

Using the congruence defined by the rules in Figure 2 and the conversion
rule, the usual axioms of impredicative arithmetic, can easily be proven.

∀x (x = x)

∀x∀y∀c (x = y ⇒ x ε1 c⇒ y ε1 c)

N(0)

∀x (N(x)⇒ N(S(x)))

∀x∀y (S(x) = S(y)⇒ x = y)

∀x ¬(0 = S(x))

∀c (0 ε1 c⇒ ∀y (N(y)⇒ y ε1 c⇒ S(y) ε1 c)⇒ ∀x (N(x)⇒ x ε1 c)

∀y1...∀yn∃c∀x1...∀xp((x1...xp εp c)⇔ A)

where A is any proposition not containing Skolem symbols, and whose free
variables are among y1, ..., yn, x1, ..., xp.

3.3 Schemes

Definition 3.1 (Schemes) Schemes are inductively defined as follows.

t = 〈A〉 | λAt | (t t′) | Λx t | (t a)

Each construct corresponds to a natural deduction rule. Typing rules are given
in Figure 3. They are the rules of natural deduction.

Definition 3.2 (Scheme in context) A scheme in context is a pair tΓ where
t is a scheme and Γ is a context such that t is well-typed in Γ.

We sometimes omit the context Γ when there is no ambiguity.

We now define the reduction relation on schemes. Before that, we define the
application of a substitution of term variables and that of scheme variables to
a scheme.

Definition 3.3 Let θ be a substitution of term variables and t be a scheme.
The scheme θt is inductively defined by

12



A ∈ Γ ax
Γ ` 〈A〉 : A

Γ ∪ {A} ` t : B
⇒i

Γ ` λAt : A⇒ B

Γ ` t : A⇒ B Γ ` u : A⇒e
Γ ` (t u) : B

Γ ` t : A
x 6∈ FV (Γ) ∀i

Γ ` Λx t : ∀x A
Γ ` t : ∀x A

∀e
Γ ` (t a) : [a/x]A

Γ ` t : A
A ≡ B conv

Γ ` t : B

Figure 3: Dependently-typed schemes

• θ〈A〉 = 〈θA〉,

• θ(λAt) = λθAθt,

• θ(u v) = (θu θv),

• θ(Λx t) = Λx′ (θ[x′/x]t), where x′ is a variable which occurs neither in
Λx t nor in θ,

• θ(t a) = (θt θa).

Remark that this substitution, as usual, avoids variable capture by renaming
bound term variables.

A substitution of scheme variables is a function of finite domain associating
schemes to types. The application of a substitution to a scheme with respect to
a context is defined as follows.

Definition 3.4 (Substitution)

• σΓ〈A〉 = {〈A〉, σ(A)}, if A ∈ dom(σ) and A ∈ Γ,

• σΓ〈A〉 = {σ(A)}, if A ∈ dom(σ) and A 6∈ Γ,

• σΓ〈A〉 = {〈A〉}, if A 6∈ dom(σ),

• σΓλAt = λAσ(Γ∪{A})t,

• σΓ(u v) = (σΓu σΓv),

• σΓΛx t = Λx′ σΓ[x′/x]t, where x′ is a variable that occurs neither in Λx t
nor in σ,
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• σΓ(t a) = (σΓt a).

Definition 3.5 (Reduction) The one step top level β-reduction is defined by
the rules

• ((λAt) u)Γ −→ vΓ, for all v ∈ [u/A]Γt,

• ((Λx t) a)Γ −→ ([a/x]t)Γ.

The one step β-reduction relation � is the contextual closure of this relation
and the β-reduction relation �∗ is the reflexive-transitive closure of the relation
�.

4 Subject-reduction

Proposition 4.1 (Substitution)

• If Γ ` t : B, then [a/x]Γ ` [a/x]t : [a/x]B.

• If Γ ∪ {A} ` t : B and Γ ` u : A, then Γ ` v : B, for all v in [u/A]Γt.

Proof. By induction over the structure of t.

Remark that this substitution lemma holds although bound variables may
be substituted and variable capture is allowed. That is because the captured
variables have the same type as the binder that captures them.

Proposition 4.2 (Inversion) Let Γ ` t : A.

1. If t is some variable 〈B〉, then Γ contains the proposition B and A ≡ B,

2. If t = λBu, then there exists a type C such that Γ ∪ {B} ` u : C and
A ≡ (B ⇒ C).

3. If t = (u v), where u and v are schemes, then there exist types B and C
such that Γ ` u : B ⇒ C and Γ ` v : B, and A ≡ C .

4. If t = Λx u, then there exists a variable x and a type B such that Γ ` u : B
and A ≡ (∀x B) and x 6∈ FV (Γ).

5. If t = (u a), where u is a scheme and a a term, then there exists a type
B such that Γ ` u : ∀x B and A ≡ [a/x]B.

Proof. By induction on the typing derivation. If the last rule is conversion,
we apply the induction hypothesis and the transitivity of ≡. Otherwise the
premises of the rule yield the result.

We are now ready to prove the subject-reduction property. Before that, we
need to prove the proposition below.

Proposition 4.3 If Γ ` t : A and tΓ −→ uΓ, then Γ ` u : A.
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Proof. If t = ((λBt1) t2) and u ∈ [t2/B]Γt1, then by Proposition 4.2(3), there
exist types B′ and C ′ such that Γ ` λBt1 : B′ ⇒ C ′, Γ ` t2 : B′ and A ≡ C ′

and by Proposition 4.2(2), there exists a type C such that Γ∪{B} ` t1 : C and
B′ ⇒ C ′ ≡ B ⇒ C. As the congruence is non-confusing, we have B ≡ B′ and
C ≡ C ′. Using the conversion rule, we have Γ ` t2 : B. By Proposition 4.1, we
get Γ ` u : C and using the conversion rule, Γ ` u : A.

If t = ((Λx t1) a) and u = [a/x]t1, we choose x not occurring in Γ. Using
Proposition 4.2, non-confusion and conversion, we get a type B′ such that Γ `
t1 : B′ and A ≡ [a/x]B′. We conclude with Proposition 4.1 and conversion.

Theorem 4.1 (Subject-reduction) If Γ ` t : A and tΓ�
∗uΓ, then Γ ` u : A.

Proof. We show, by induction on the derivation of tΓ � uΓ, that if Γ ` t : A and
tΓ �uΓ then Γ ` u : A and we conclude by induction on the length of reduction
sequences.

5 Weak normalization of weak reduction

We now prove that each scheme can be reduced to a normal form. Because
of the counter-examples given in Section 2, we cannot expect to prove strong
normalization for the reduction of the scheme-calculus. Of course, it is possible
to prove weak normalization by mimicking the reductions of λ-calculus. But the
scheme reduction strategy provided by the proof of the normalization theorem
is as important as the theorem itself and the strategy provided by this trivial
proof would require to introduce variable names, which is precisely what we
want to avoid. Thus, we shall give another normalization proof which provides
a strategy that can be defined without introducing variable names.

The first step towards a normalization result is to restrict substitution to
minimal substitution, i.e. to modify the first clause of Definition 3.4: instead
of taking the clause

• σΓ〈A〉 = {〈A〉, σ(A)}, if A ∈ dom(σ) and A ∈ Γ

we take the following one

• σΓ〈A〉 = {〈A〉}, if A ∈ dom(σ) and A ∈ Γ.

Restricting substitution to minimal substitution rules out the counter-examples
of Section 2. Moreover, minimal substitution enjoys several properties of sub-
stitution of λ-calculus. In particular, bound variables are never substituted.
Thus, we conjecture this minimal reduction to be strongly normalizing. How-
ever, we shall leave this problem open and prove a slightly weaker result: the
normalization of weak reduction, i.e. of the reduction where reduction is not
performed under abstractions. Indeed, the minimal reduction lacks one prop-
erty of the reduction of λ-calculus: the commutation of reduction and sub-
stitution, i.e. that whenever tΓ∪{A} reduces to uΓ∪{A} and v is a scheme
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of type A in the context Γ, then ([v/A]
Γ
t)Γ reduces to ([v/A]

Γ
u)Γ. For in-

stance, if Γ = {A ⇒ A,B ⇒ A,B}, t = ((λA〈A〉) (〈A ⇒ A〉 〈A〉)), u = 〈A〉
and v = (〈B ⇒ A〉 〈B〉), then tΓ∪{A} reduces to uΓ∪{A}. But ([v/A]

Γ
t)Γ =

((λA〈A〉) (〈A ⇒ A〉 (〈B ⇒ A〉 〈B〉)))Γ reduces to (〈A ⇒ A〉 (〈B ⇒ A〉 〈B〉))
and not to ([v/A]

Γ
u)Γ = (〈B ⇒ A〉 〈B〉).

This property is unfortunately needed in normalization proofs for strong
reduction based on reducibility candidates. But, it is not needed, if we restrict
to weak reduction.

On the other hand, the normalization of weak reduction is sufficient to prove
the existence of weak head normal forms, which is itself sufficient to extract
witnesses from existential proofs.

The proof presented in this section is based on ideas similar to those of
[18]. The main difference is that we take into account that reduction does not
commute with substitution.

5.1 Reduction

The one step minimal top level reduction −→min is defined as in Definition
3.5 except that substitution is minimal substitution. Instead of considering the
contextual closure of this relation, we define the one step weak minimal reduction
as follows.

Definition 5.1 (Weak minimal reduction) The one step weak minimal re-
duction � is defined by considering any abstraction and any application whose
left-hand side is normal, as a normal form, otherwise by reducing the leftmost
reduct. It is inductively defined as follows.

Let t and u be schemes and a be a term,

• if tΓ −→min uΓ then tΓ � uΓ,

• if tΓ � t′Γ, then (t u)Γ � (t′ u)Γ,

• if tΓ � t′Γ, then (t a)Γ � (t′ a)Γ.

The weak minimal reduction relation �∗ is the reflexive-transitive closure
of the relation �.

Notice that the relation � is functional (i.e. deterministic) in the sense
that, for each scheme t, there is at most one scheme t′ such that t� t′.

The reduction sequence issued from tΓ is the (finite or infinite) sequence
t0,Γ, t1,Γ, t2,Γ, . . . such that t0,Γ = tΓ, and for all i, if there exists a t′ such that
ti,Γ � t′Γ, then the sequence is defined at i + 1 and ti+1,Γ = t′Γ, otherwise
ti,Γ is the last element of the sequence. A scheme in context tΓ is said to be
normalizing if its reduction sequence is finite. Hereafter, we write N for the set
of normalizing schemes in contexts.

Proposition 5.1 (Properties of minimal substitution)
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1. If t is well-typed in Γ, then [w/A]
Γ
t = t.

2. If A ∈ Γ, then [w/A]
Γ
t = t.

3. If B 6= A, then [w/A]
Γ∪{B}

t = [w/A]
Γ
t.

Proof.

1. By induction on the structure of t. The only non-trivial case is when
t = 〈B〉. In this case, B ∈ Γ and both schemes are equal to 〈B〉.

2. By induction on the structure of t. The only non-trivial case is when
t = 〈A〉. In this case A ∈ Γ and thus both schemes are equal to 〈A〉.

3. By induction on the structure of t. The only non-trivial case is when
t = 〈A〉. In this case, either A ∈ Γ in which case both schemes are equal
to 〈A〉 or A 6∈ Γ, in which case A 6∈ (Γ∪{B}) and both schemes are equal
to w.

5.2 Girard’s reducibility candidates

Definition 5.2 (Operations on sets of schemes) If E and F are sets of
schemes in contexts, we define the set

E ⇒̃ F = {tΓ ∈ N | ∀t′∀u ((tΓ �∗ (λAt
′)Γ and uΓ ∈ E)⇒ ([u/A]

Γ
t′)Γ ∈ F )}

If S is a set of sets of schemes in contexts, we define the set

∀̃ S = {tΓ ∈ N | ∀t′∀a∀E ((tΓ �∗ (Λx t′)Γ and E ∈ S)⇒ ([a/x]t′)Γ ∈ E)}

Definition 5.3 (Reducibility candidate [19]) A scheme is said to be neu-
tral if it corresponds to an axiom rule or an elimination rule, but not to an
introduction rule. A set R of schemes in contexts is said to be a reducibility
candidate, if the following conditions are satisfied:

• if tΓ ∈ R, then tΓ is normalizing,

• if tΓ ∈ R and tΓ �∗ t′Γ, then t′Γ ∈ R,

• if tΓ is neutral, and for every t′Γ such that tΓ � t′Γ, we have t′Γ ∈ R, then
tΓ ∈ R.

We write C for the set of reducibility candidates.

Remark that, as the reduction relation is deterministic, the third condition
can be rephrased as: (1) if tΓ is neutral and normal, then tΓ ∈ R, and (2) if tΓ
is neutral, has a one-step reduct t′Γ and this reduct is in R, then tΓ is in R.

Proposition 5.2 If E and F are sets of schemes in contexts, then E ⇒̃ F is
a reducibility candidate. If S is a set of sets of schemes in contexts, then ∀̃ S is
a reducibility candidate.
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Proof. By definition, all the schemes in the sets E ⇒̃ F and ∀̃ S are normalizing.
For closure by reduction, just remark that if tΓ �∗ t′Γ and tΓ is normalizing,

then so is t′Γ and that if tΓ �∗ t′Γ and t′Γ �∗ uΓ, then t�∗ uΓ.
For the third property, remark that if tΓ is a scheme in context and for all

t′Γ such that tΓ � t′Γ, t′Γ is normalizing then tΓ is normalizing and that if tΓ
is a neutral scheme in context and tΓ �∗ uΓ where u is an introduction, then
the reduction sequence is not empty, thus there exists a scheme t′Γ such that
tΓ � t′Γ �∗ uΓ.

5.3 C-models

A model valued in the algebra of reducibility candidates, or C-model, is defined
as a classical model except that propositions are interpreted in the algebra C of
reducibility candidates. Thus it consists of a set Ms, for each sort s, a function
f̂ from Ms1×· · ·×Msn to Ms, for each function symbol f of arity 〈s1, . . . , sn, s〉,
and a function P̂ from Ms1 × · · · ×Msn to C, for each predicate symbol P of
arity 〈s1, . . . , sn〉. The denotation of terms in a valuation is defined as usual.
The denotation of propositions is defined by

• JP (a1, . . . , an)Kφ = P̂ (Ja1Kφ, . . . , JanKφ),

• JA⇒ BKφ = JAKφ ⇒̃ JBKφ,

• J∀x AKφ = ∀̃ {JAKφ+x=e | e ∈ Ms}, where s is the sort of the variable x
and φ + x = e is the valuation coinciding with φ everywhere except in x
where it takes the value e.

Definition 5.4 A congruence ≡ is said to be valid in a C-model M if for all
types A and B, and every valuation φ, A ≡ B implies JAKφ = JBKφ.

5.4 Weak normalization of weak reduction

As variable captures are allowed in the scheme calculus, the substitutions cannot
be composed as usual. For instance if Γ = {B ⇒ A,C ⇒ B,C}, f is the variable
〈B ⇒ A〉 and u is the term (〈C ⇒ B〉 〈C〉), we have

[u/B]Γ[(f 〈B〉)/A]Γ∪{B}(λB 〈A〉) = (λB (f 〈B〉))

and
[u/B]Γ[(f 〈B〉)/A]Γ∪{B}〈A〉 = (f u)

but there is no substitution σ and context ∆ such that

σ∆(λB 〈A〉) = (λB (f 〈B〉))

and
σ∆〈A〉 = (f u)

because we cannot have at the same time σ∆∪{B}〈A〉 = (f 〈B〉) and σ∆〈A〉 =
(f u). Thus arises the need for the notion of free sequence of substitutions.
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Definition 5.5 (Free sequence of substitutions) Let Γ be a context, and φ
be a valuation, the free sequences of substitutions in Γ, φ are inductively defined
as follows.

• The empty sequence is a free sequence of substitutions.

• If ρ is a free sequence of substitutions, C is a type, w is a scheme in the
context Γ, such that wΓ ∈ JCKφ, then ([w/C]

Γ
, ρ) is a free sequence of

substitutions.

• If ρ is a free sequence of substitutions, x is a term variable that does not
occur in ρ, and a is a term, then ([a/x], ρ) is a free sequence of substitu-
tions.

Definition 5.6 Let ρ be a free sequence of substitutions in Γ, φ and a be a term.
The term ρa is defined as follows.

• If ρ is the empty sequence, then ρa = a,

• If ρ = ([w/C]
Γ
, ρ′), then ρa = ρ′a,

• If ρ = ([b/x], ρ′), then ρa = [b/x](ρ′a).

Let A be a type, the type ρA is defined as follows.

• If ρ is the empty sequence, then ρA = A,

• If ρ = ([w/C]
Γ
, ρ′), then ρA = ρ′A,

• If ρ = ([b/x], ρ′), then ρA = [b/x](ρ′A).

Let t be a scheme, the scheme ρt is defined as follows.

• If ρ is the empty sequence, then ρt = t,

• If ρ = ([w/C]
Γ
, ρ′), then ρt = [w/ρ′C]

Γ
(ρ′t),

• If ρ = ([b/x], ρ′), then ρt = [b/x](ρ′t).

In the proposition below, we prove, as usual, that if a scheme has type A
then it is an element of the interpretation of A (hence we shall be able to deduce
that it is normalizing).

Proposition 5.3 Let ≡ be a congruence, M be a C-model of ≡, Γ and ∆ be
contexts, φ be a valuation, t be a scheme of type A modulo ≡ in ∆, and ρ be a
free sequence of substitutions in Γ, φ such that ρt is a scheme well-typed in Γ.
Then (ρt)Γ ∈ JAKφ.

Proof. By induction on the typing derivation of t.
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• ax. The scheme t is equal to 〈A〉. If A is not in the domain of any sub-
stitution of ρ or A ∈ Γ, then (ρt)Γ = 〈ρA〉Γ. Thus, as the candidate JAKφ
contains all normal neutral schemes, (ρt)Γ ∈ JAKφ. Otherwise, let [w/A]Γ
be the rightmost substitution of ρ binding A. We have ρ = ρ2, [w/A]Γ, ρ1

and (([w/A]Γ, ρ1)〈A〉)Γ = ([w/ρ1A]Γ, 〈ρ1A〉)Γ = wΓ. The sequence ρ is
a free sequence of substitutions, the scheme w is well-typed in Γ, and it
does not contain any term variable bound in ρ2, thus, using Proposition
5.1(1), (ρt)Γ = wΓ ∈ JAKφ.

• ⇒i. The scheme t has the form λBu, A = (B ⇒ B′) and (ρt)Γ =
(ρ(λBu))Γ. Traversing the abstraction, the substitutions of ρ have their
context extended to Γ ∪ {C} for some type C. Using Proposition 5.1(2),
we drop those substitutions in ρ that bind the type C and using Propo-
sition 5.1(3), we erase C from the context of the remaining ones. We
get this way another free sequence of substitutions ρ′ in Γ, φ and (ρt)Γ =
(λρB(ρ′u))Γ = (λρ′B(ρ′u))Γ. This scheme is normal, hence it is normaliz-
ing and it only reduces to itself. To prove that it is in JAKφ = JB ⇒ B′Kφ,
we need to prove that for all schemes v in Γ such that vΓ ∈ JBKφ, the
scheme ([v/ρ′B]Γ(ρ′u))Γ = (([v/B]Γ, ρ

′)u)Γ is in JB′Kφ. This follows from
induction hypothesis and the fact that ([v/B]Γ, ρ

′) is a free sequence of
substitutions.

• ∀i. The scheme t has the form Λx u, we can assume, without loss of
generality, that x does not occur in ρ. We have A = (∀x B) and ρt =
Λx ρu. This scheme is normal, hence it is normalizing and it only reduces
to itself. To prove that it is in JAKφ = J∀x BKφ, we need to prove that for
all terms a, and e in Ms, where s is the sort of the variable x, the scheme
([a/x](ρu))Γ = (([a/x], ρ)u)Γ is in JBKφ+x=e. As x does not occur in ρ,
the sequence ([a/x], ρ) is a free sequence of substitutions for Γ, (φ+x = e).
Thus, this scheme is in JBKφ+x=e by induction hypothesis.

• ⇒e. The scheme t has the form (u v). Thus, ρt = (u′ ρv), where u′ = ρu.
By induction hypothesis, u′Γ ∈ JB ⇒ AKφ and (ρv)Γ ∈ JBKφ. Thus, the
scheme u′Γ is normalizing. Let n be the length of the reduction sequence
starting from u′Γ. We prove, by induction on n that if u′Γ ∈ JB ⇒ AKφ and
the length of the reduction sequence starting from u is n, and v′Γ ∈ JBKφ
then (u′ v′)Γ ∈ JAKφ. As (u′ v′)Γ is neutral, all we need to prove is that its
potential one-step reduct is in JAKφ. If the reduction takes place in u′, we
just apply the induction hypothesis. Otherwise, the reduction takes place
at top level. We have u′Γ = (λρBu

′′)Γ and the reduct is ([v′/ρB]Γu
′′)Γ

which is in JAKφ by definition of JB ⇒ AKφ.

• ∀e. The scheme t has the form (u a), where u has type ∀x B, A = [a/x]B,
ρt = (u′ ρa), where u′ = ρu. By induction hypothesis, u′Γ ∈ J∀x BKφ.
Thus, the scheme u′Γ is normalizing. Let n be the length of the reduction
sequence starting from this scheme. We prove, by induction on n that
if u′Γ ∈ J∀x BKφ, the length of the reduction sequence starting from u is
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n, and a′ is a term, then (u′ a′)Γ ∈ J[a/x]BKφ = JBKφ+x=JaKφ . As this
scheme is neutral, all we need to prove is that its potential one-step reduct
is in JBKφ+x=JaKφ . If the reduction takes place in u′, we just apply the
induction hypothesis. Otherwise, the reduction takes place at top level.
We have u′Γ = (Λx u′′)Γ and the reduct is ([a′/x]u′′)Γ which, by definition
of J∀x BKφ, is in JBKφ+x=JaKφ .

• conv. If the last rule is a conversion rule, by induction hypothesis, we
have (ρt)Γ ∈ JBKφ for some B ≡ A, and we have JBKφ = JAKφ. Thus
(ρt)Γ ∈ JAKφ.

Theorem 5.1 (Normalization) Let ≡ be a congruence that has a C-model
M. Let Γ be a context and t a scheme of type A modulo ≡ in Γ. Then tΓ is
normalizing.

Proof. By Proposition 5.3, for all φ, tΓ ∈ JAKφ, thus it is normalizing.

5.5 Normalization in HA2

Proposition 5.4 All schemes well-typed in HA2 are normalizing.

Proof. We construct a C-model as follows. Let Mι = N and Mκn = Nn → C.
The symbols 0, S, and Pred are interpreted in the standard way. The function
ε̂n maps k1, . . . , kn and f to f(k1, . . . , kn), =̂ maps n and m to J∀c (x ε1 c ⇒
y ε1 c)Kn/x,m/y and ˆNull maps 0 to J∀c (ε0(c)⇒ ε0(c))K and the other numbers
to J∀c ε0(c)K.

To define N̂ , we first define the function Φ that maps any function α of
N → C to the function that maps n to the interpretation of the proposition
∀c (0 ε1 c⇒ ∀y (N(y)⇒ y ε1 c⇒ S(y) ε1 c)⇒ x ε1 c), for the valuation n/x,
in the model of domains Mι and Mκn , and where 0 and S are interpreted in the
standard way, εn is interpreted by ε̂n, but N is interpreted by α. The set N→ C
ordered by pointwise inclusion is complete and the function Φ is monotonous,
thus it has a fixed point β. We let N̂ = β.

This way we can interpret every proposition A that does not contain Skolem
symbols. Finally, we interpret the symbols fx1,...,xp,y1,...,yn,A as the functions
mapping a1, . . . , ap to the function mapping b1, . . . , bn to JAKa1/x1,...,ap/xp,b1/y1,...,bn/yn .

6 Expressivity

We shall now see that, despite the non-determinism of the reduction, given in
Definition 3.5, the uniqueness of results may be guaranteed for some schemes,
and that every function that is provably total in HA2 can be expressed by such
a scheme.

If n is a natural number, we write n for the term Sn(0).

Proposition 6.1 (Parigot’s numerals [20]) Let n be a natural number, then
there exists a scheme ρn of type N(n).
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Proof. Let A = (0 ε1 c) and B = (∀y (N(y)⇒ y ε1 c⇒ S(y) ε1 c)). Take

ρ0 = ΛcλAλB 〈A〉

and
ρn+1 = ΛcλAλB (〈B〉 n ρn (ρn c 〈A〉 〈B〉))

Proposition 6.2 (Witness property) Let ∃x A be a closed proposition. From
a scheme t of type ∃x A i.e. ∀c ((∀x (A⇒ ε0(c)))⇒ ε0(c)) in the empty context,
we can extract a term b and a scheme of type [b/x]A in the empty context.

Proof. Consider a term variable c of sort κ0 and g = 〈∀x (A ⇒ ε0(c))〉. The
scheme (t c g) has type ε0(c) in the context {∀x (A ⇒ ε0(c))}, thus its weak
normal form has the form (g a u) where a is a term of sort ι and u a scheme of
type [a/x]A in the context {∀x (A⇒ ε0(c))}. Let e = f∃x A and w be a closed
proof of ∀x (A ⇒ ∃x A). Let b = [e/c]a and v = [w/∀x (A⇒ ∃x A)]

∅
[e/c]u.

The scheme v has type [b/x]A in the empty context.

From the witness property we get the expressibility of all functions that are
provable in HA2. We need first to use the following result of elementary logic.

Proposition 6.3 For every computable function f from Nn to N, there exists
a proposition A such that [p

1
/x1, . . . , pn/xn, q/y]A is provable in HA2 if and

only if q = f(p1, . . . , pn).

Definition 6.1 (Provably total function) The function f is said to be prov-
ably total in HA2 if

∀x1 (N(x1)⇒ . . .⇒ ∀xn (N(xn)⇒ ∃y (N(y) ∧A)) . . .)

is provable in HA2.

Theorem 6.1 For every computable function f provably total in HA2, there
exists a scheme t such that for all p1, ..., pn, the normal form of the witness
extracted from the scheme (t p

1
ρp1 p2

ρp2 . . . p
n
ρpn) is f(p1, ..., pn).

Proof. Take any scheme of type ∀x1 (N(x1)⇒ . . .⇒ ∀xn (N(xn)⇒ ∃y (N(y)∧
A)) . . .).

Whether the set of functions provably total in HA2 is equal or a strict subset
of the set of functions that can be expressed in the scheme calculus, is left as
an open problem.

7 Future Work

Besides HA2, Theorem 5.1 applies to many theories e.g. simple type theory
and some variants of set theory. When they cannot be defined in the theory, all
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connectives and quantifiers must be taken as primitive, like in [18]. Although
tedious, the normalization proof generalizes smoothly.

A more challenging problem is to prove normalization for other reduction
strategies than weak minimal reduction. This probably requires to generalize
proofs by reducibility to cases where reduction and substitution do not commute.
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