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Abstract

We study the notion of stratification, as used in subsystems of linear logic with
low complexity bounds on the cut-elimination procedure (the so-called “light”
subsystems), from an abstract point of view, introducing a logical system in
which stratification is handled by a separate modality. This modality, which is
a generalization of the paragraph modality of Girard’s light linear logic, arises
from a general categorical construction applicable to all models of linear logic.
We thus learn that stratification may be formulated independently of exponen-
tial modalities; when it is forced to be connected to exponential modalities, it
yields interesting complexity properties. In particular, from our analysis stem
three alternative reformulations of Baillot and Mazza’s linear logic by levels:
one geometric, one interactive, and one semantic.

Key words: Implicit computational complexity, light linear logics,
denotational semantics, categorical semantics.

Introduction

The notion of stratification in linear logic may be informally presented as
a limitation of the dynamics of cut-elimination: in a stratified subsystem of
linear logic, proofs may be seen as partitioned into strata which never “com-
municate” with each other, in the sense that no cut between two dual formulas
belonging to different strata will ever appear during cut-elimination. All extant
time-bounded subsystems of linear logic (with the exception of Lafont’s (2004)
soft linear logic) use some form of stratification to control the complexity of
the cut-elimination procedure, which would otherwise be non-elementary (as a
consequence of the well known result of Statman (1979), modulo the translation
of intuitionistic logic in linear logic given by Girard (1987)).

In the original systems introduced by Girard (1998), namely elementary
and light linear logic, stratification coincided with the exponential depth, i.e.,
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the nesting level of the logical rules introducing the exponential modality “of
course”. More recently, Baillot and Mazza (2010) introduced a more general
form of stratification, still connected with the exponential modalities but no
longer coinciding with depth, which keeps ensuring the desired complexity prop-
erties.

The present paper originated from a semantic investigation of this more
liberal stratification. Our (successful!) attempt to define a denotational seman-
tics for Baillot and Mazza’s system naturally revealed that stratification may
actually be formulated independently of exponential modalities; when it is some-
how forced to be connected with them, it yields interesting complexity properties.
This is essentially because exponential modalities in linear logic are in control
of duplication, the only true source of complexity in cut-elimination.

The above is the main message brought forth by this paper. We shall now
proceed to describe its contents more thoroughly.

Background

Linear logic, stratification and computational complexity. At the heart of our
work there is the so-called Curry-Howard correspondence, which sees logical
proofs as programs, and cut-elimination as their execution. From this perspec-
tive, it is not so much the expressiveness of a logical system as a language which
matters, but the complexity of its cut-elimination procedure: if a logical system
has a low-complexity cut-elimination, its proofs will necessarily correspond to
low-complexity programs. This approach, which has a marked proof-theoretic
nature and, as such, is orthogonal to the model-theoretic methods of descrip-
tive complexity, falls within the larger area of implicit computational complexity,
whose concrete aim is to define programming languages enjoying intrinsic com-
plexity bounds, i.e., automatically ensured at compile time. Apart from those
already mentioned above, other notable examples of work in this field, not nec-
essarily related to logic, are given by Bellantoni and Cook (1992); Jones (1999);
Hofmann (2003); Schwichtemberg (2006).

The use of linear logic as a tool for developing a Curry-Howard-based ap-
proach to implicit computational complexity was initiated by Girard et al. (1992)
and perfected by Girard (1998). The central idea of this latter work is that the
complexity of the cut-elimination procedure is mostly owed to the presence of
structural rules, in particular the contraction rule. Indeed, the cut-elimination
procedure, which is in general non-elementary in the size of proofs (Statman,
1979), becomes quite manageable (e.g. quadratic) in substructural logical sys-
tems lacking the contraction rule (Girard, 1998). In linear logic, structural rules
are managed by the so-called exponential modalities. Girard showed that al-
tering the behavior of these modalities offers a way to define logical systems
in which cut-elimination is still feasible (or at most elementary) in spite of the
presence of the contraction rule: light linear logic (LLL) exactly captures deter-
ministic polynomial time, and elementary linear logic (ELL) exactly captures
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elementary time.1

The restriction that Girard imposed on the exponential modalities of linear
logic is a form of stratification. Basically, the rules of linear logic are modified
so that the nesting level of exponential modalities, called depth, may not be
changed during cut-elimination. Therefore, a proof may be seen as partitioned
into “strata”, one for each depth, which never interact through cut-elimination.
We observe that this is not the the only use of stratification in implicit compu-
tational complexity. For example, Leivant and Marion (1993) introduced tiers,
which are integers assigned to subterms of λ-terms, to induce a stratification on
the λ-calculus, yielding characterizations of interesting complexity classes.

Separating stratification from exponential depth. Recently, Baillot and Mazza
(2010) proposed a new subsystem of linear logic corresponding to elementary
time, linear logic by levels (L3). This system is also based on a form of stratifi-
cation, but in this case it is achieved by retaining only those linear logic proofs
π for which there exists a function from the occurrences of formulas in π to
the integers, called indexing, which satisfies certain conditions. In a nutshell,
these conditions state that axioms introduce dual occurrences of identical level,
and that the level of an occurrence of formula is decreased only when it is the
principal occurrence of a rule introducing an exponential modality.

Interestingly, this form of stratification turns out to be a generalization of
Girard’s stratification: ELL is exactly the subsystem of L3 in which the func-
tion assigning to each occurrence its own depth is a valid indexing. This gen-
eralization is strict, both in the sense of proofs and provability: there exist
ELL-provable formulas which admit more proofs in L3, and there exist L3-
provable formulas which are not provable in ELL. Although no concrete use
has currently been found for these additional formulas and proofs, L3 gives us at
least one clear, and potentially interesting message: stratification does not need
to coincide with exponential depth. However, even if separated from the depth,
stratification in L3 is still explicitly connected to the exponential modalities.

Abstracting stratification through denotational semantics. Denotational seman-
tics originated in the work of Scott and Strachey (1971) and Scott (1976) as
an attempt to interpret in a non-trivial way the quotient induced on λ-terms
by β-equivalence. This amounts to finding an invariant of reduction, a question
which may be extended to logical systems enjoying cut-elimination. Since its
introduction, denotational semantics has proved to be an absolutely essential
tool in computer science and proof theory, providing a wealth of information
and insights into the nature of computation and formal proofs. A striking ex-
ample is given by linear logic itself, which arose precisely from a denotational
analysis of intuitionistic logic (Girard, 1987).

1We refer here to the Curry-Howard sense of “capturing”: in these systems, there is a
formula F representing functions from binary strings to binary strings such that a proof of F
corresponds to a function in the given complexity class and, conversely, every function in that
class may be represented by a proof of F .
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After the successful introduction of denotational semantics for LLL, ELL
and related systems (Baillot and Pedicini, 2001; Baillot, 2004; Laurent and Tor-
tora de Falco, 2006; Dal Lago and Laurent, 2008; Laurent, 2009), it seemed
natural to attempt to analyze the stratification underlying L3 from the deno-
tational point of view. The result of such an analysis forms the contents of the
present paper, whose message broadens that of L3.

Stratified linear logic

Soon after developing our semantic construction for L3 (which we present in
Sect. 2.3), we realized that it suggested a more general syntax than that of L3

itself, in which exponential modalities and strata are completely independent.
This more general syntax has at least two alternative presentations in terms of
sequent calculus, and one in terms of proof nets, all of them shown in Sect. 1.
The induced logical system, which we call stratified linear logic (LL§), has an
additional modality with respect to linear logic, the self-dual paragraph §, which
is in charge of controlling stratification. In LL§, dereliction and digging are
provable, §A ⊸ §B is provable from A ⊸ B, but §A ⊸ A and A ⊸ §A (or
§A⊸ §§A) are not provable in general, which is the essence of stratification.

In LL§, L
3 appears as a fragment, in which the exponential modalities are

forced to be “tied” to paragraph modalities: !A is replaced by !§A, and ?A is
replaced by ?§A. Additionally, the paragraph modality itself is a generalization
of the paragraph modality of LLL, which justifies our terminology and nota-
tion. This allows to define polytime subsystems within L3 generalizing LLL, as
already shown in Baillot and Mazza (2010).

A categorical construction for stratification

Our denotational analysis brings a new understanding of the exponential
modalities of light logics: together with the control of duplication, which is
their usual task in linear logic, they are also charged with the additional task
of controlling stratification, which is represented by the paragraph modality.

From the semantic point of view, we interpret the paragraph modality in
“augmented” models of linear logic. More precisely, we define a categorical con-
struction, represented by a 2-endofunctor Inv(−) of the 2-category of symmetric
monoidal categories, which takes a model of linear logic L and yields another
model of linear logic Inv(L); this latter model is practically equivalent to the
original one, but it has “more space”, and this extra space is what allows the
definition of a non-trivial paragraph functor.

Concretely, the Inv construction may be understood by looking at its action
on categories. Given a category A, we define an object with involutions of A
as a pair (A, s), where A is an object of A and s is a Z-indexed sequence of
involutions of A, i.e., automorphisms of A such that sk ◦ sk = idA for all k ∈ Z.
Objects with involutions have a natural notion of morphism: a morphism from
(A, s) to (B, t) is a morphism f : A→ B such that tk◦f ◦sk = f . If the category
A is symmetric monoidal, the objects with involutions ofA and their morphisms
may themselves be arranged in a symmetric monoidal category, which is Inv(A)
(so Inv stands for “involutions”).

4



It turns out that Inv(A) has all the structure needed to provide a model
of linear logic as soon as A does (Theorem 13). However, in Inv(A) we may
now define a functor §(−) which acts on objects by “shifting” the sequence of
involutions, i.e., §(A, s) = (A, (sk−1)k∈Z), and which acts as the identity on
morphisms. It is possible to show that such a functor is never trivial, i.e., it
is never isomorphic to the identity functor, unless the original model of linear
logic (in the category A) is itself trivial (Theorem 15).

Applications to bounded complexity

An important contribution of our work, resulting from an application of the
results described above, is the discovery of alternative formulations of L3.

The first reformulation (Sect. 3.1) is of “geometric” nature. It is a presenta-
tion of L3 in terms of proof nets by means of a correctness criterion, extending
the usual one by Danos and Regnier (1989). Its advantage is to avoid mention-
ing the notion of indexing, shifting from an existential condition (there exists
a function satisfying. . . ) to a universal one (every cycle satisfies. . . ), which is
arguably of interest.

The second reformulation (Sect. 3.3) is “interactive”, and arises when apply-
ing the Inv construction to the syntactic category of formulas and proof nets.
Approximatively speaking, we prove that a cut-free linear logic proof net π is
in L3 iff it “interacts well” with all “tests” (Theorem 23), where a test is a
certain kind of proof net which may interact with π by means of a cut rule (the
interaction being cut-elimination).

Finally, we provide a semantic characterization of L3 (Sect. 3.4), which may
be roughly formulated as follows: given a model of linear logic L which satisfies
a certain condition we call swap-sensitivity, we have that a cut-free linear logic
proof net π of conclusion A is in L3 iff its denotational interpretation JπK in L is
a morphism of Inv(L) from the tensor unit to a certain object with involutions
LAM, which depends solely on the formula A (Theorem 26). In other words,
provided swap-sensitivity holds, the semantics is able to “detect” whether a
proof net fails to admit a valid indexing, or fails to satisfy any of the two
equivalent conditions mentioned above. The swap-sensitivity condition is a bit
technical, but it is very mild: it is satisfied by all models of linear logic we are
aware of.
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1. Stratified Linear Logic

1.1. The logical system
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The formulas of stratifed linear logic (LL§) are generated by the following
grammar, where X,X⊥ range over a denumerable set of propositional variables:

A,B ::= X | X⊥ propositional atoms
| 1 | A⊗B | ⊥ | A`B multiplicative connectives and units
| ⊤ | A&B | 0 | A⊕B additive connectives and units
| ∀X.A | ∃X.A second order quantifiers
| !A | ?A | §A exponential modalities and paragraph.

Linear negation is defined through De Morgan laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
(1)⊥ = ⊥ (⊥)⊥ = 1

(A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥

(⊤)⊥ = 0 (0)⊥ = ⊤
(A&B)⊥ = A⊥ ⊕B⊥ (A⊕B)⊥ = A⊥ &B⊥

(∀X.A)⊥ = ∃X.A⊥ (∃X.A)⊥ = ∀X.A⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(§A)⊥ = §A⊥

Two connectives or modalities exchanged by negation are said to be dual ; the
paragraph modality § is self-dual.

Linear implication is defined as A ⊸ B = A⊥
` B. Multisets of formulas

will be ranged over by Γ,∆. The notations ?Γ and §Γ will stand for multisets
containing formulas all starting with a ? or § modality, respectively.

The most convenient way of formulating a sequent calculus for LL§ is using
2-sequents (Masini, 1992; Guerrini et al., 1998). A 2-sequent is a sort of bidi-
mensional sequent; for our purposes, we define it simply as a sequent in which
every occurrence of formula is associated with a relative integer, called its in-
dex. It is important to note that indexes are not part of the logical language;
occurrences of subformulas are not indexed.

The 2-sequent rules defining the admissible derivations of LL§ are given in
Table 1. Indexes are annotated as superscripts; we keep using Γ,∆ to range
over multisets of indexed formulas.

The 2-sequent calculus of LL§ admits cut-elimination; the cut-elimination
rules are those of linear logic, plus a rule transforming the cut

⊢ Γ, Ai+1

⊢ Γ, §Ai

⊢ ∆, A⊥i+1

⊢ ∆, §A⊥i

⊢ Γ,∆

into the cut
⊢ Γ, Ai+1 ⊢ ∆, A⊥i+1

⊢ Γ,∆

For the propositional fragment, the cut-elimination property may be proved by
standard arguments, using the usual notions of degree and rank of cuts. We
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⊢ A⊥i
, Ai

Axiom ⊢ Γ, Ai ⊢ ∆, A⊥i

⊢ Γ,∆
Cut

⊢ 1i
One ⊢ Γ

⊢ Γ,⊥i
Bottom

⊢ Γ, Ai ⊢ ∆, Bi

⊢ Γ,∆, A⊗Bi
Tensor

⊢ Γ, Ai, Bi

⊢ Γ, A`Bi
Par

⊢ Γ,⊤i
Top

⊢ Γ, Ai ⊢ Γ, Bi

⊢ Γ, A&Bi
With

⊢ Γ, Ai
k

⊢ Γ, A1 ⊕A2
i

Plus (k ∈ {1, 2})

⊢ Γ, Ai

⊢ Γ, ∀X.Ai
For all (∗)

⊢ Γ, Ai

⊢ Γ, ∃X.Ai
Exists

⊢ ?Γ, Ai

⊢ ?Γ, !Ai
Promotion

⊢ Γ, Ai

⊢ Γ, ?Ai
Dereliction

⊢ Γ

⊢ Γ, ?Ai
Weakening

⊢ Γ, ?Ai, ?Ai

⊢ Γ, ?Ai
Contraction

⊢ Γ, Ai+1

⊢ Γ, §Ai
Paragraph

Table 1: Stratified sequent calculus. In every rule, i ∈ Z. The condition (∗) is that X is not
free in Γ
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shall give detailed cut-elimination rules for proof nets (Sect. 1.3), which is why
we do not linger any further on this topic here.

The additive group Z acts on multisets of indexed formulas in the obvious
way: given k ∈ Z and Γ = Ai1

1 , . . . , A
in
n , we set k · Γ = Ai1+k

1 , . . . , Ain+k
n . The

action can easily be lifted to derivations: if δ is a derivation of ⊢ Γ, we get a
derivation k · δ of ⊢ k · Γ. Then, we obtain

Lemma 1. The 2-sequent ⊢ Γ is derivable iff the 2-sequent ⊢ k · Γ is derivable,
for all k ∈ Z. �

Therefore, the “absolute” value of indexes in a 2-sequent does not matter at
all; what matters is their relative value, with respect to each other.

A natural property of the sequent calculus of linear logic, which is the linear
incarnation of the so-called Deduction Theorem, is that “commas are ` con-
nectives”, i.e., ⊢ A,B is provable iff ⊢ A ` B is provable. This, which from a
semantic point of view is equivalent to asking the closure of the category un-
derlying LL§, is obviously false for derivations in the calculus of Table 1. These
considerations lead us to define the actual proofs of LL§ as follows:

Definition 1 (LL§ proofs). A proof of LL§ is a derivation in the 2-sequent
calculus of Table 1 such that all occurrences of formulas in the conclusion have
the same index (in other words, the 2-sequent derived is actually a sequent).

Observe that second order linear logic is obviously the fragment of LL§ in
which the modality § is removed. In that case, indexes are useless, and provabil-
ity coincides with provability in linear logic. Another, less trivial fragment of
LL§ will be introduced in the next section. For the moment, let us observe that
LL§ itself adds virtually nothing to linear logic, because the paragraph modality
is close to being trivial. In fact, the reader may check that it commutes to all
logical connectives, so that, for instance, §1, §(A ⊗ B), §0, §(A ⊕ B), §∃X.A,
and §!A are all provably isomorphic to 1, §A⊗§B, 0, §A⊕§B, ∃X.§A, and !§A,
respectively.

The only purpose of the paragraph modality is to enforce stratification,
as will be discussed at the end of Sect. 1.4, when we will have defined cut-
elimination more precisely. In terms of provability, the essential meaning of
stratification is in the impossibility (which is easy to check in presence of cut-
elimination) of deriving any of the implications X ⊸ §X and §X ⊸ X , with
X a propositional atom. When suitably linked with the exponential modalities,
stratification has remarkable complexity effects, as explained in the next section.

The fact that the paragraph modality commutes to all logical operations
suggests that LL§ may be reformulated by explicitly writing these commutations
into its rules. We thus obtain a “usual” sequent calculus, i.e., without indexes
on formulas, defined in Table 2. It is not hard to see that this is an equivalent
formulation of LL§:

Proposition 2. The 2-sequent ⊢ Γi (i.e., with all occurrences of formulas hav-
ing the same index) is derivable in the calculus of Table 1 iff ⊢ Γ is derivable in
the calculus of Table 2.
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⊢ Γ

⊢ Γ, §k⊥
Bottom

⊢ Γ, §kA, §kB

⊢ Γ, §k(A`B)
Par

⊢ Γ, §k⊤
Top ⊢ Γ, §kA ⊢ Γ, §kB

⊢ Γ, §k(A&B)
With

⊢ Γ, §kA

⊢ Γ, §k∀X.A
For all (∗)

⊢ ?Γ, §kA

⊢ ?Γ, §k!A
Promotion

⊢ Γ, §kA

⊢ Γ, §k?A
Dereliction

⊢ Γ
⊢ §Γ

Paragraph

Table 2: Alternative formulation of LL§ in sequent calculus. The rules handling the connec-
tives not mentioned, as well as the axiom, cut, weakening and contraction rules, are the same
as those of standard linear logic, i.e., those of Table 1 with no index annotation. In all rules,
§kA stands for the formula A with k ≥ 0 paragraph modalities prepended to it (note that A
may itself start with a paragraph modality). As usual, the condition (∗) is that X is not free
in Γ.

Proof. Note that the rules of Table 2 are all derivable in the calculus of Ta-
ble 1, as soon as we suppose that we translate a sequent ⊢ Γ with a 2-sequent
of the form ⊢ Γi. Vice versa, a straightforward induction shows that, if the
2-sequent ⊢ Ai1

1 , . . . , A
in
n is derivable in the calculus of Table 1, then the se-

quent ⊢ §i1−mA1, . . . , §
in−mAn is derivable in the calculus of Table 2, with

m = min1≤k≤n ik. �

The reader may have noticed that, in the alternative formulation of LL§, the
commutations of the paragraph modality are added only to one “half” of the
connectives of linear logic (namely what are known as the negative connectives).
This is because the implications 1 ⊸ §1, §A ⊗ §B ⊸ §(A ⊗ B), 0 ⊸ §0,
§A ⊕ §B ⊸ §(A ⊕ B), and ∃X.§A ⊸ §∃X.A are all derivable from the usual
rules plus the paragraph rule of Table 2. For the exponential modalities, none of
the two directions of the needed equivalences holds naturally, so both promotion
and dereliction must be modified.

This alternative formulation of LL§ has the drawback of having a more com-
plex cut-elimination procedure, involving even more commutations than usual
(we prefer not to give any detail here). However, it is semantically interest-
ing, because it allows the denotational interpretation of a proof to be defined,
as customary, by induction on the proof itself. This is impossible if we have
only Definition 1 as our definition of proof, because a subderivation of a proof
need not be itself a proof. We shall find this alternative formulation of LL§

particularly useful in Sect. 2.2.

1.2. Bounded time subsystems

Linear logic by levels (L3) was introduced by Baillot and Mazza (2010) as a
generalization of the ideas which led Girard to the definition of elementary linear
logic (ELL). Indeed, L3 captures elementary time: there is a representation
of integers (as proofs) in the system such that the representable functions from
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integers to integers are exactly the elementary functions, i.e., those that can
be computed by a Turing machine whose runtime is bounded by a tower of
exponentials of fixed height. However, L3 is a strict supersystem of ELL, both
in terms of proofs and provability. It contains a subsystem, called L4, which
captures deterministic polynomial time computation in the same sense, and
which extends Girard’s light linear logic (LLL).

The original definition presents L3 as a subsystem of linear logic, using
a notion of indexability (cf. Definition 14). Here, we may reformulate it as a
fragment of LL§. In fact, Baillot andMazza (2010) gives a 2-sequent formulation
of L3 which is nearly identical to that of Table 1; the only difference is in the
promotion and dereliction rules, which modify the indexes in the same way as
the paragraph modality:

⊢ ?Γ, Ai+1

⊢ ?Γ, !Ai
Promotion

⊢ Γ, Ai+1

⊢ Γ, ?Ai
Dereliction

Then, it is obvious that L3 coincides with the fragment of LL§ whose formu-
las are obtained by forcing every exponential modality to be preceded by a
paragraph, i.e., if !L3 and ?L3 denote the exponential modalities of L3, we have

!L3 = !§ and ?L3 = ?§.

Anticipating on proof nets, since the exponential cut-elimination step of
L3 is defined exactly as in Fig. 7, and because the paragraph step (Fig. 8) is
trivial, we obviously have that such equalities are sound also with respect to
cut-elimination.

This may all be restated as follows: stratification has an effect on the com-
plexity of cut-elimination as soon as the exponential modalities are linked to
it. As a matter of fact, all extant stratification-based, complexity-bounded sub-
systems of linear logic may be seen as subsystems of the fragment of LL§ just
introduced.

For instance, one can easily check that ELL corresponds to the subsystem
of the above fragment obtained by restricting to 2-sequents of the form

⊢ §∆i,Γi+1,

where Γ does not contain paragraph formulas. In other words, only two indexes
are allowed at the same time, and all paragraph formulas must have a lower
index. For what concerns polynomially-bounded subsystems, we refer the reader
to Mazza (2006) for a formulation of LLL as a subsystem of ELL, and to Baillot
and Mazza (2010) for a definition of L4 as a subsystem of L3.

The only known complexity-related subsystem of linear logic which is not
captured by our notion of stratification is Lafont’s (2004) soft linear logic (SLL),
a polynomially-bounded system which is based on ideas quite different from
those originally put forward by Girard. Of course, as a subsystem of linear
logic, SLL is also a subsystem of LL§, but in a completely uninteresting way,
i.e., our notion of stratification does not intervene in the definition (the para-
graph modality is not used). Furthermore, we immediately see that SLL rejects
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ax
A⊥ A

axiom

cut
A⊥ A

cut

1

1

one

⊥

⊥

bottom

⊗
A B

A⊗B

tensor

`

A B

A`B

par

♭

A

♭A

flat

pax

♭A

♭A

pax

?
♭A ♭A

?A

. . .

why not

!

A

!A

of course

§

A

§A

paragraph

Figure 1: Links.

the idea that one must link exponentials to stratification in order to achieve com-
plexity effects: in fact, this latter system allows the dereliction principle, i.e.,
the formula !A ⊸ A is provable in SLL, for all A; this is impossible in LL§ if
the ! modality is in linked in any way to the § modality. In the end, we may say
that linking exponentials to stratification is a sufficient condition for obtaining
bounded cut-elimination, but it is by no means necessary.

1.3. Proof nets

The proof theory of LL§ may also be developed in terms of proof nets, orig-
inally introduced by Girard (1987, 1996), and subsequently reformulated by
other authors by means of alternative, but equivalent syntactical definitions. In
this paper, we use a combination of the presentations given by Danos and Reg-
nier (1995) and Tortora de Falco (2003), with a slight change in the terminology:
the term “proof structure”, introduced by Girard (1987) and traditionally used
in the literature, is here dismissed in favor of the term net. On the contrary, the
term proof net, i.e., a net satisfying certain structural conditions (the correctness
criterion), retains its usual meaning.

We shall henceforth ignore additive connectives (&, ⊕, and their respective
units ⊤ and 0) and second order quantifiers, because their representation in
proof nets is unnecessarily complex for the purposes of this work.

In the context of proof nets, it is useful to consider ♭-formulas, which will
be denoted by ♭A, where A is a formula. Note that ♭-formulas are not formulas:
they cannot be composed, i.e., they cannot be subformulas of a formula. For
instance, (♭A) ⊗B and ♭♭A are meaningless expressions.
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. . .pax pax !

. . .

. . .

♭B1 ♭Bn A

♭B1 ♭Bn !A

π

Figure 2: A box.

In the following definition, and throughout the rest of the paper, unless
explicitly stated we shall make no distinction between the concepts of formula
(or ♭-formula) and occurrence of formula. The same will be done for what we
call links and their occurrences.

Definition 2 (Net). A net is a pair (G,B), where G is a finite graph-like ob-
ject2 whose nodes are occurrences of what we call links, and whose edges are
directed and labelled by formulas or ♭-formulas; and B is a set of subgraphs of
G called boxes.

• Links (Fig. 1) are labelled by connectives and constants of LL§ (excluding
&, ⊕, ⊤, and 0), or by one of the labels ax, cut, ♭, pax. Two links labelled
by dual connectives are said to be dual. Each link has an arity and co-
arity, which are resp. the number of its incoming and outgoing edges. The
arity and co-arity is fixed for all links except why not links, which have
co-arity 1 and arbitrary arity. A nullary why not link is also referred to as
a weakening link.

• The incoming edges of a link (and the formulas that label them) are re-
ferred to as its premises ; these are ordered (i.e., there is a “left” and a
“right” premise) in the case of multiplicative links (par and tensor), and
unordered in the case of cut and why not links. The outgoing edges of a
link (and the formulas that label them) are referred to as its conclusions.

• Premises and conclusions of links must respect a precise labeling (which
depends on the link itself), given in Fig. 1. In particular, the edges labelled
by ♭-formulas can only be premises of pax and why not links;

• Each edge must be the conclusion of exactly one link, and the premise of
at most one link. The edges that are not premises of any link, and the
formulas that label them, are deemed conclusions of the net. (Note that

2In Tortora de Falco (2003); de Carvalho and Tortora de Falco (2012), G is called linear

proof structure.
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the presence of these “pending” edges, together with the fact that some
premises are ordered, is why nets are not exactly graphs).

• A box is depicted as in Fig. 2, in which π is a net, said to be contained
in the box. The links that are explicitly represented in Fig. 2 (i.e., the
pax links and the of course link) form the border of the box (but are not
contained in the box). The unique of course link in the border is called
the principal port of the box, while the pax links are called auxiliary ports.
We have the following conditions concerning boxes:

a. each of course link is the principal port of exactly one box;
b. each pax link is in the border of exactly one box;
c. any two distinct boxes are either disjoint or included in one another.

If σ is a net, a link (or edge) of σ is said to have depth d if it is contained in
d (necessarily nested) boxes. The depth of a box of σ is the depth of the links
forming its border.

Let σ = (G,B) be a net. If we take G and ignore the conclusions, the orienta-
tion of edges, and the ordering of multiplicative links, we obtain an undirected
graph in the usual sense; we call this graph the underlying graph of σ, and de-
note it by σ̃. In what follows, when we speak of a path (or cycle, or connected
component) of σ, we mean a path (or cycle, or connected component) of σ̃, in
the usual sense of graph theory.

Definition 3 (Switching). Let σ be a net. A switching of σ is an undirected
graph built from σ̃ as follows:

• for each par and why not node l, exactly one premise is chosen (provided
the link has any premises at all), and all the other premises are erased;

• for each box B at depth zero of σ, all the nodes and edges of σ̃ coming
from nodes and edges of σ belonging to B are erased, together with all the
edges connecting such nodes to the rest of the graph; these are replaced
by a new node l and, for any link m of depth zero which was connected
to the border of B, a new edge between m and l is added. In other words,
the outermost boxes of σ are “collapsed” into single nodes.

Definition 4 (Balanced paths and cycles). Given a path φ of σ̃, we may
traverse it from one of its extremities to the other in any of the two possible
directions (if φ is a cycle, it still has two possible orientations). Following φ
in any of the two directions, we may record the number of times it traverses
a paragraph link “upwards”, i.e., from conclusion to premise, which we denote
by n−, and the number of times it traverses a paragraph link “downwards”,
i.e., from premise to conclusion, which we denote by n+. It is clear that the
numbers n+, n− are exchanged when we reverse the direction of traversal of φ.
Therefore, the number |n+−n−| depends only on the path φ itself, and we call
it its balance. In case φ is a cycle, the balance is computed by starting from any
of the nodes traversed by φ and returning to the same node, in any direction.

A balanced path (or cycle) of σ is a path (or cycle) whose balance is 0.

13



In the following, if π is a net of conclusions A1, . . . , An such that no Ai is a
♭-formula, by `-closure of π we mean any net π′ obtained by adding a tree of par
links to the conclusions of π so that π′ has exactly one conclusion A1` · · ·`An,
where the placement of parenthesis depends on the shape of the tree. Of course,
a net with more than 2 conclusions has more that one `-closure; however, in
all definitions and results below it does not matter which one we chose, whence
we abusively speak of “the” `-closure.

Definition 5 (Correctness, DR-net, proof net). A net (G,B) is said to be
DR-correct if:

• all of its switchings are acyclic;

• for all B ∈ B, the net contained in B is DR-correct.

A net is §-correct if all of its cycles are balanced.
A DR-net is a DR-correct net having no ♭-formulas in its conclusions.
A proof net is a DR-net whose `-closure is §-correct.

Note that DR-nets are nothing but “proof nets” in the sense of Girard (1996);
Danos and Regnier (1995); Tortora de Falco (2003) (“DR” stands indeed for
“Danos-Regnier”), which may however happen to contain paragraph links. We
shall prove in the sequel that, instead, our proof nets correspond to LL§ proofs,
as per Definition 1.

We start by introducing the notion of sequentializable net, whose definition
mimics the rules of sequent calculus (without indexes):

Definition 6 (Sequentializable net). We define the set of sequentializable
nets inductively: the empty net, the net consisting of a single axiom link, and
the net consisting of a single one link are sequentializable (daimon, axiom, and
one); the juxtaposition of two sequentializable nets is sequentializable (mix);
finally, if σ, σ1, σ2 are sequentializable nets of suitable conclusions, the nets of
Fig. 3 are sequentializable.

The reader may object that the rules for building sequentializable nets do
not correspond exactly to index-free versions of the rules of Table 1. Indeed,
they correspond to an index-free version of that calculus in which, apart from
the additive and quantifier rules, also the promotion, dereliction, weakening and
contraction rules have been removed and replaced by the rules

⊢ ♭Γ, A

⊢ ♭Γ, !A
Promotion

⊢ Γ, ♭A, . . . , ♭A

⊢ Γ, ?A
Why not

⊢ Γ, A

⊢ Γ, ♭A
Flat

so that ♭-formulas may appear in sequents. Moreover, the mix rules

⊢
Mix0

⊢ Γ ⊢ ∆
⊢ Γ,∆

Mix

are further added to the calculus. However, ignoring the mix rules, which are
introduced for the sole purpose of simplifying the definition of proof nets (other-
wise, more conditions concerning connectedness of switchings should be added

14
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of course

Γ
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?A

σ

why not

Γ

. . .

♭

A

♭A

σ

flat

Γ

. . .

§

A

§A

σ

paragraph

Figure 3: Rules for building sequentializable nets.

to the formulation of DR-net, requiring the introduction and subsequent han-
dling of jumps, a technical complication which we do not need in this paper),
this calculus is strictly equivalent to the index-free, additive- and quantifier-free
version of that of Table 1. In fact, it only takes a straightforward induction to
prove that ⊢ ♭Γ,∆ is derivable in the former calculus iff ⊢ ?Γ,∆ is derivable in
the latter. Hence, derivability coincides for sequents not containing ♭-formulas,
which are the ones that matter (remember that proof nets have no ♭-formula in
their conclusions, cf. Definition 5).

If sequentializable nets capture the structure of the rules of Table 1, we still
need to account for 2-sequents, i.e., the fact that the calculus of LL§ manipulates
formulas carrying indexes, which influence provability in an essential way. For
instance, if we took sequentializable nets as our proofs, both §X ⊸ X and X ⊸

§X would become provable, in striking contrast with what observed about LL§.
This may be done by resorting to the notion of indexing, originally introduced
by Baillot and Mazza (2010).
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i

. . .

!
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i

§

i+ 1

i

Figure 4: Constraints for indexing nets. Next to each edge we represent the integer assigned
by the indexing; formulas are omitted, because irrelevant to the indexing.

Definition 7 (Indexing, indexable net). Let σ be a net. An indexing for
σ is a function I from the edges of σ to Z satisfying the constraints given in
Fig. 4. If, furthermore, the indexing satisfies that, for all conclusions e, e′ of σ,
I(e) = I(e′), it is said to be a strong indexing.

A net is said to be (strongly) indexable if it admits a (strong) indexing.

Observe that a net with no ♭-formulas in its conclusions is strongly indexable
iff its `-closure is indexable (the fact that no conclusion is a ♭-formula is only
needed to ensure the existence of a `-closure). This is in accordance with the
fact that ⊢ A1, . . . , An is provable in LL§ iff ⊢ A1 ` · · ·`An is derivable.

The following is a reformulation of Lemma 1 for nets:

Lemma 3 (Shift). Let I be an indexing for a net σ, let σ1, . . . , σn be distinct
connected components of σ, and let k1, . . . , kn ∈ Z. Then, the function I ′ defined
by

I ′(e) =

{
I(e) + ki if e is an edge of σi, with 1 ≤ i ≤ n
I(e) otherwise,

is also an indexing for σ.

Proof. Simply observe that the constraints of Fig. 4 are preserved by transla-
tions, and that the indexes of edges in two distinct connected components are
completely independent. �

In light of what we said about sequentializable nets, and by looking at how
indexes are assigned in Fig. 4, it is obvious that an indexable sequentializable
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net corresponds to a derivation of the calculus of Table 1. Indeed, for example,
the sequentializable nets proving §X ⊸ X and X ⊸ §X are easily seen to
admit no indexing. On the other hand, strongly indexable sequentializable nets
correspond to proofs (Definition 1), because strong indexability precisely reflects
the requirement that all formulas in the conclusion have the same index.

We shall now prove that the proof nets of Definition 5 provide a geometric
characterization of strongly indexable sequentializable nets (modulo the absence
of ♭-formulas in the conclusions).

We start by recalling a classical result of the proof theory of linear logic:

Proposition 4 (Girard (1996)). A net is sequentializable iff it is DR-correct.
�

Lemma 5. A net is indexable iff it is §-correct.

Proof. Let σ be indexable. The fact that all of its cycles are balanced is an
immediate consequence of the following remark: if I is an indexing of σ, and if
φ is a path of σ, the balance of φ is obviously equal to |I(e1) − I(e2)|, where
e1, e2 are the edges which mark the extremities of φ; this is because indexings
are defined precisely so as to “count” the traversals of paragraph links.

Let now σ be a net in which all cycles are balanced. We reason by induction
on the number of links of σ. If σ̃ is empty, the statement is trivially true. If σ̃
has more than one connected component, the induction hypothesis immediately
allows us to conclude. Hence, we may suppose that σ̃ consists of exactly one,
non-empty connected component. In that case, it is easy to see that there is a
terminal link l of σ which is not a pax (by “terminal” we mean a link at depth
0 and whose conclusions are all conclusions of σ). We may immediately discard
the cases in which l is an axiom or a weakening link, because the statement is
trivially seen to hold. If we ignore for the moment the possibility that l is an
of course link, we are in the following situation:

. . .
l

. . .
e1 en

σ0

σ =

where n ≥ 1, and the dotted arrow means that l may or may not have
a conclusion. Observe that every cycle of σ0 is a cycle of σ, hence balanced;
therefore, the induction hypothesis gives us an indexing I0 of σ0. In case n = 1,
I0 may obviously be extended into an indexing for σ, so we may actually suppose
that n ≥ 2. Now, if ei1 , ei2 are two distinct premises of l belonging to the same
connected component of σ0, by definition there is a path φ connecting them. If
we had I0(ei1) 6= I0(ei2), by the remark made at the beginning of this proof,
the balance of φ would be non-null; this would induce a unbalanced cycle in
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ax

cut

→β
A⊥ A

A

A

Figure 5: Axiom step.

σ, a contradiction. Hence, all premises of l belonging to the same connected
component of σ0 are assigned the same index by I0. It suffices now to apply the
Shift Lemma 3 to find an indexing I ′0 for σ0 which assigns the same integer to
e1, . . . , en; such an I ′0 obviously extends into an indexing for σ.

We are left with the case in which l is an of course link. Since all other links
have been treated, we may assume that σ actually consists of a single box B
whose principal port is l itself. In this case, the induction hypothesis gives us
an indexing for the contents of B, from which an indexing for σ may be trivially
defined. �

Composing Lemma 5 with the fact that strong indexability coincides with
indexability of the `-closure immediately implies the following:

Lemma 6. Let σ be a net with no ♭-formulas in its conclusions. Then, σ is
strongly indexable iff its `-closure is §-correct. �

A combination of Proposition 4 and Lemma 6 gives us the announced result:

Theorem 7 (Sequentialization). A net with no ♭-formulas in its conclusions
is strongly indexable and sequentializable iff it is a proof net. �

Similarly, one obtains that indexable and sequentializable nets with no ♭-
formulas in their conclusions (which correspond to derivations, instead of proofs)
coincide with §-correct DR-nets. Hence, as it is usual in linear logic, the proof
theory of LL§ may be entirely formulated in terms of proof nets. The advantage
is that no notion of index is ever explicitly mentioned.

1.4. Cut-elimination

Formulating the cut-elimination procedure in proof nets is quite simple:
there are only five rules (or steps, as they are often called), taking the form
of the graph-rewriting rules given in Figures 5 through 8. Observe that, to be
properly formulated, the exponential step requires that no ♭-formula is a con-
clusion, for otherwise the net on the right-hand side of Fig. 7 may have more
conclusions than the net on the left-hand side. This is why such a condition is
imposed on DR-nets and proof nets.
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Figure 6: Multiplicative steps.

pax

π0

!

cut

?

♭ ♭

1 n

?

♭Γ A

♭Γ

?Γ

A⊥ A⊥

♭A⊥ ♭A⊥

?A⊥!A

→β

π0

cut

1

π0

cut

n

?

♭Γ ♭Γ

?Γ

A AA⊥ A⊥

Figure 7: Exponential step; ♭Γ is a multiset of ♭-formulas, so one pax link, why not link, or
wire in the picture may in some case stand for several (including zero) pax links, why not links,
or wires.

When a proof net (or DR-net) π is transformed into π′ by the application of
one cut-elimination step, we write π →β π

′, and we say that π β-reduces to π′.
The preservation of DR-nets under cut-elimination is a classical result of linear
logic:

Proposition 8. Let π be a DR-net, and let π →β π′. Then, the net π′ is a
DR-net.

Confluence and strong normalization of reduction of proof nets (and of DR-
nets) may be proved by standard arguments, which may be found for instance
in Girard (1987); Danos (1989). The key observation is that the paragraph
step is trivial, and adds virtually nothing with respect to the dynamics of cut-
elimination in propositional multiplicative exponential linear logic.

By looking at cut-elimination in proof nets, we may find a deeper meaning to
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cut

§ §

§A §A⊥

A A⊥

→β

cut
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Figure 8: Paragraph step.

the concept of stratification. Indeed, as observed in Baillot and Mazza (2010),
it is immediate to see that indexings (which exist for proof nets by Theorem 7)
are preserved under cut-elimination, in the sense that the residue of a link may
be given the same index as its ancestor (“residue” and “ancestor” are here
meant to take the standard meaning of rewriting theory, cf. Definition 21 for a
formal definition). This remark allows (using Theorem 7) to immediately extend
Proposition 8 to proof nets:

Proposition 9. Let π be a proof net, and let π →β π
′. Then, the net π′ is a

proof net.

One can thus meaningfully speak of the level of a link of a proof net, and
observe that interaction (by means of a cut) may only ever happen between dual
links of identical level. A proof net of LL§ may therefore be seen as partitioned
into strata, which do not communicate with each other.

Thanks to the stability of levels, it is possible to consider a cut-elimination
protocol which attempts to eliminate cuts at level i before touching any cut
at level i + 1, starting from the minimum level. In full LL§, this protocol has
no special property; however, in the fragment corresponding to L3, where the
exponential modalities (which control duplication) are forced to modify levels,
this protocol enjoys an elementary bound, as proved in Baillot and Mazza (2010)
(or a polynomial bound in the case of the subsystem L4). Furthermore, since
in ELL and LLL levels coincide with exponential depths (i.e., the nesting of
boxes, see Definition 2), this very same protocol is also the one for which the
elementary and polynomial bounds were originally proved by Girard.

2. A Categorical Construction for Stratification

2.1. Categorical models of linear logic

Intuitively, a denotational semantics of a logical system is an interpretation
J·K of proofs as some kind of mathematical objects which:

i. is stable under cut-elimination: if π →β π
′, then JπK = Jπ′K;

ii. gives rise to a congruence: if Jπ1K = Jπ2K and if π′
1, π

′
2 are obtained resp.

from π1, π2 by applying the same inference rule, then Jπ′
1K = Jπ′

2K.
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A denotational semantics is non-trivial if there exist two distinct proofs of the
same formula π1, π2 such that Jπ1K 6= Jπ2K; usually, this is implicitly assumed
to be the case.

We may formalize the above idea using higher-order graphs and categories
(see Appendix A for a brief introduction to 2-categories; a 2-graph is basically
a 2-category without any notion of composition or identity). In fact, the syntax
may be seen as a 2-graph S: the 0-cells are formulas, the 1-cells are proofs, and
the 2-cells are cut-elimination steps. Then, the interpretation map J·K described
above is nothing but a morphism of 2-graphs from S to a category A, seen as a
degenerate 2-category (i.e., in which the only 2-cells are identities), seen in turn
as a 2-graph. This guarantees that requirement (i) above is met. For what con-
cerns requirement (ii), one may suppose that inference rules are interpreted by
functors or natural transformations, whereas axioms ar interpreted by identity
arrows and the cut rule by composition.

A categorical model of a logical system is a category having enough struc-
ture so that a denotational semantics, as defined above, immediately arises
from it. One of the most well-known examples is probably that of proposi-
tional3 intuitionistic logic, whose models correspond to Cartesian closed cate-
gories. In the case of propositional linear logic, several authors have proposed
their notion of categorical model; let us mention for instance Lafont (1988);
Seely (1989); Bierman (1995); Benton et al. (1992); Benton (1994); de Carvalho
(2007), and Melliès (2007); Curien et al. (2010) for surveys. Most of these
axiomatizations are equivalent, and can be very elegantly synthesized by the
notion of linear-non-linear adjunction (Definition 8).

Giving the full categorical background needed to formulate linear-non-linear
adjunctions is out of the scope of this paper; for the sake of self-containedness,
Appendix A recalls the basic definitions and properties, assuming as understood
only the concept of symmetric monoidal category. For a more detailed expo-
sition, we refer the reader to Paul-André Melliès excellent survey to be found
in Curien et al. (2010). Here, we content ourselves with fixing some (standard)
notations. If A is a category and A,A′ objects of A, we denote as usual by
A[A,A′] the class of morphisms of A of source A and target A′, and we write
f : A → A′ to mean that f ∈ A[A,A′]. The identity arrow of A is denoted as
usual by idA or, when there is no ambiguity, by A itself. Applying this notation
to the category of categories, we write F : A → B to say that F is a functor
from the category A to the category B, whereas the identity functor on A is
denoted by IdA or A itself. The image of a functor F (−) may be abbreviated
by F−. Composition, usually denoted by f ◦ g with f : B → C and g : A→ B,

3While propositional logical systems admit in many cases satisfactory categorical axiom-
atizations, there is currently no general, widely accepted categorical formulation of a second
order denotational model. This is why, in this paper, we drop second-order quantifiers when-
ever we deal with denotational semantics. This is consistent with the fact that we only defined
propositional proof nets.
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may be abbreviated by fg. We use the notation

ϕ : F ⇒ G : A → B

to say that ϕ is a natural transformation between the functors F,G : A → B.
So, for instance, a (lax) symmetric monoidal functor between two symmetric
monoidal categories (A,⊗, 1) and (B,⊙, I) is a triple (F, µ, η) where F : A → B
and

µ : F (−)⊙ F (−)⇒ F (−⊗−) : A×A → B,

η : KI ⇒ KF1 : A → B,

such that µ and ν satisfy certain conditions (spelled out in Appendix A). Here,
KC denotes the constant functor mapping all objects on a fixed object C and
all morphisms on idC . Observe that, in this case, the natural transformation η
is degenerate, i.e., it is reduced to a single morphism of B[I, F1].

Definition 8 (Linear-non-linear adjuction). A linear-non-linear adjunc-
tion is a symmetric monoidal adjunction between symmetric monoidal functors

(M,×, T )

(L,l,t)

++
⊥ (L,⊗, 1)

(M,m,u)

kk

such that (M,×, T ) is Cartesian (with T being the terminal object).

Definition 9 (∗-autonomous category). A symmetric monoidal closed cat-
egory is a symmetric monoidal category (A,⊗, 1) such that, for every object X
of A, the functor −⊗X has a right adjoint RX . This latter induces a bifunctor
⊸: Aop ×A → A, such that RX = X ⊸ −, and the adjunction corresponds to
the existence of a natural isomorphism

Ψ : [−⊗−,−]⇒ [−,−⊸ −] : (Aop ×Aop)×A → Set.

Given two objects A,B of A, it is customary to denote by evalA,B the morphism
Ψ−1

A⊸B,A,B(idA⊸B) : (A⊸ B)⊗A→ B.
A ∗-autonomous category (Barr, 1979) is a symmetric monoidal closed cate-

gory (A,⊗, 1) together with a dualizing object, i.e., an object ⊥ of A such that,
for every object A,

ΨA,A⊸⊥,⊥(evalA,⊥ ◦ γA,A⊸⊥) : A→ (A⊸ ⊥) ⊸ ⊥

is an isomorphism, where γ is the symmetry of ⊗. In that case, we denote by
(−)⊥ the contravariant endofunctor −⊸ ⊥.

Definition 10 (Model of linear logic). A model of linear logic is given by
the following data:
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• a ∗-autonomous category (L,⊗, 1,⊥) which has also binary products and
a terminal object, denoted by A&B and ⊤, respectively;

• a Cartesian category (M,×, T );

• a linear-non-linear adjunction (L, l, t) ⊣ (M,m, u) between (M,×, T ) and
(L,⊗, 1).

The category L is said to be the linear category.

The linear category is where the model “lives”; formulas and proofs are
interpreted in it. The motivation behind the structures required by Definition 10
may be spelled out as follows:

• The ∗-autonomous structure is used to interpret the multiplicative layer
of linear logic: tensor, linear negation, and par are interpreted by the
functors ⊗, (−)⊥, and (−)⊥ ⊸ −, respectively.

• The additive connectives are interpreted by products and coproducts in L.
Indeed, since L has products, for all objects A,B, the object (A⊥&B⊥)⊥

may be seen to be a coproduct of A and B, and ⊤⊥ may be seen to be
an initial object. We note in passing that right adjoints are continuous,
i.e., they preserve limits; this implies that M transports products in L to
products inM, i.e., M(A&B) ∼=MA×MB and M⊤ ∼= T .

• The linear-non-linear adjunction offers the structure needed to interpret
the exponential layer:

– since L ⊣ M , we know that the endofunctor ! = L ◦ M of L is a
comonad: the promotion rule (i.e., boxes in proof nets) is interpreted
by !(−) and its comultiplication; derelection is interpreted by the
counit;

– the structural rules are interpreted thanks to the Cartesian structure
of M, using Proposition 27. In fact, from the diagonal maps and
the terminal arrows ofM, we can define two natural transformations
κ :M ⇒M ×M and ω :M ⇒ KT , where by KT we denote here the
constant functor yielding T and its identity arrow. Now, the fact that
(L, l, t) is strong means that l and t are isomorphisms; contraction
and weakening are then interpreted by applying L to κ and ω, and
by composing with l−1 and t−1, respectively:

contraction: !(−)
Lκ +3 L(M(−)×M(−))

l−1

+3 !(−)⊗ !(−)

weakening: !(−)
Lω +3 LKT

t−1

// 1

The terminology linear is justified by the fact that L is a sort of “linear
world”, where structural rules are forbidden; the functor M allows to transport
proofs into a “Cartesian world”, where duplication and erasing are available;
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then, the functor L “linearizes” the proofs back to the linear world. The so-
called exponential isomorphisms of linear logic, i.e., !(A & B) ∼= !A ⊗ !B and
!⊤ ∼= 1, already express this idea; the linear-non-linear adjunction refines it
by implementing it as a “return trip” from the linear world to itself, passing
through a non-linear stage.

2.2. Categorical models of stratified linear logic

It is fairly straightforward to define a notion of model for stratified linear
logic. Essentially, all that is needed is to define how the paragraph modality is
interpreted; the remaining connectives will be handled by the same structures
as Definition 10.

Definition 11 (Model of stratified linear logic). A model of LL§ is given
by the same data as a model of linear logic, plus an endofunctor § of the linear
category (L,⊗, 1,⊥) which commutes to all logical operations, i.e.:

• §⊥ ∼= ⊥;

• § ◦ ⊗ is naturally isomorphic to ⊗ ◦ (§ × §);

• §◦⊸ is naturally isomorphic to ⊸ ◦(§op × §);

• § preserves all finite products;

• § ◦ ! is naturally isomorphic to ! ◦ §.

A model of LL§ is said to be degenerate when § is isomorphic to the identity
functor of L (which obviously verifies all of the above conditions).

Given a category with the structure of Definition 11, it is immediate to inter-
pet the proofs of propositional LL§, provided we use the alternative formulation
of Table 2, modulo Proposition 2. The interpretation (which is always paramet-
ric in an assignment of objects to propositional atoms) is defined as usual by
induction: axioms and cuts are interpreted by identities and composition; the
structural rules, and the positive logical rules are identical to those of linear
logic, so the interpretation is already defined; for the negative rules and the
exponential rules, the standard interpretation of linear logic is composed with
the suitable isomorphisms given by Definition 11; finally, the paragraph rule is
interpreted by applying the § functor.

2.3. Objects with involutions

We now introduce the categorical construction at the center of our work.
This is based on the notion of object with involutions, which we define as an
object (of some category) equipped with denumerably many involutions, indexed
by Z. Given a category A and an object A of A, an involution of A is an
automorphism s of A which is its own inverse, i.e., such that s ◦ s = idA.
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Definition 12 (Object with involutions). Let A be a category. An object
with involutions of A is a pair (A, s) where A is an object of A and s = (sk)k∈Z

is a Z-indexed sequence of involutions of A.
If (A, s), (B, t) are objects with involutions of A, a morphism of objects with

involutions from the first to the second is an arrow f : A → B of A such that,
for all k ∈ Z, the following diagram commutes:

A B

A B

sk

f

f

tk

or, equivalently, tk ◦ f ◦ sk = f for all k ∈ Z.

We remark that we may restrict the above definition so that, in an object
with involutions (A, s), the sequence s is required to be equal to idA almost
everywhere. This restriction, which limits the cardinality of the set of all objects
with involutions, is preserved by all constructions we shall consider, but is by
no means necessary.

The composition of two morphisms of objects with involutions is easily seen
to be a morphism of objects with involutions, and identity arrows are also easily
seen to be morphisms of objects with involutions. Hence, the objects with
involutions of a category A and their morphisms form themselves a category,
denoted by AI .

The reason behind such a notation is the following. Consider the free Coxeter
group on Z, which we denote by I: the elements of I are finite sequences of
integers not containing two consecutive equal elements; its group law, denoted
by ◦, is defined by concatenation modulo the equation n ◦ n = id for all n ∈ Z,
where id is the empty sequence. Now, I can be seen as a groupoid with only one
object and whose morphisms are exactly the elements of I itself; then, we invite
the reader to check that the category of objects with involutions of a category
A is exactly AI , that is, the category of functors from I to A, with natural
transformations as morphisms.

Therefore, AI is nothing but the image of A through the object map of the
endofunctor (−)

I
of Cat, the right adjoint of the product functor −× I in the

category of categories. Actually, (−)
I
is a 2-endofunctor, i.e., it also acts on

natural transformations. We may explicitly describe it as follows.
Let F : A → B be a functor. We define a functor F I : AI → BI as

follows: if (A, s) is an object of AI , we set F I(A, s) = (FA,Fs), where by Fs
we mean the sequence (F (sk))k∈Z); if f : (A, s)→ (B, t) is an arrow of AI , we
set F If = Ff . Functors preserve involutions, so (FA,Fs) is an object with
involutions; moreover, given k ∈ Z, we have F (tk)◦Ff ◦F (sk) = F (tk ◦f ◦sk) =
Ff , which proves that Ff is a morphism between the objects with involutions
F I(A, s) and F I(B, t); the fact that F I preserves composition and identities
follows immediately from the fact that F does.
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Let now ϕ : F ⇒ G : A → B be a natural transformation. First of all,
we check that, for each object (A, s) of AI , the arrow ϕA : FA → GA of
B is actually a morphism between the objects with involutions F I(A, s) and
GI(A, s), i.e., an arrow of BI. As a matter of fact, given any k ∈ Z, we have
ϕA ◦ F (sk) = G(sk) ◦ ϕA, simply because ϕ is a natural transformation from F
to G. Therefore, if we set ϕI

(A,s) = ϕA, we have defined a family of arrows of BI ,
whose naturality is an immediate consequence of the naturality of ϕ. We have
thus obtained a natural transformation ϕI : F I ⇒ GI : AI → BI , as desired.

The following technical result will be essential in the sequel. It allows, given
a natural transformation ϕ : F ⇒ G : A → B, to “pull back” the natural
transformation ϕI : F I ⇒ GI : AI → BI along any functor H : C → AI .

Lemma 10. Let ϕ : F ⇒ G : A → B be a natural transformation, let C be
another category and H : C → AI a functor. Let C be an object of C, and
set ϕ′

C = ϕUH(C), where U : AI → A is the forgetful functor sending an
object with involutions (A, s) to A and being the identity on morphisms. Then,
ϕ′ : F I ◦H ⇒ GI ◦H : C → BI.

Proof. We first check that, given a generic object C of C, ϕUH(C) is a morphism
of BI from F IH(C) to GIH(C). Let H(C) = (A, s); then UH(C) = A,
F IH(C) = (FA,Fs), and GIH(C) = (GA,Gs). Then, it is enough to verify,
for all k ∈ Z, the commutation in B of

FA GA

FA GA

Fsk

ϕA

ϕA

Gsk

which holds by naturality of ϕ.
Let us now check the naturality of ϕ′. For this, let f : C → C′ be an arrow

of C; we need to verify the commutation in BI of the diagram

F IH(C) GIH(C)

F IH(C′) GIH(C′)

FIH(f)

ϕ′
C

ϕ′
C

GIH(f)

But if we set H(C) = (A, s) and H(C′) = (A′, s′), the diagram becomes

(FA,Fs) (GA,Gs)

(FA′, F s′) (GA′, Gs′)

ϕA

ϕA

FH(f)

GH(f)
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which commutes becauseH(f), as an arrow ofAI , is actually an arrow ofA from
A to A′, ϕ is natural from F to G, and commutation in B implies commutation
in BI , because the arrows and composition of this latter category are arrows
and composition of the former. �

With the help of Lemma 10, we now lift (−)
I
to a 2-endofunctor of SMCat,

the 2-category of symmetric monoidal categories, symmetric monoidal functors
and monoidal natural transformations. We shall denote such a 2-endofunctor
by Inv.

First of all, observe that, if we fix a category C, the covariant endofunctor
(−)C of (Cat,×,1) is strong symmetric monoidal, where × is the product of
categories and 1 the terminal category (having one object and its identity mor-
phism only). Indeed, for any categories A,B, we have natural isomorphisms
ΦC

A,B : AC × BC → (A × B)C and ΦC
0 : 1 → 1C , which make ((−)C ,ΦC ,ΦC

0 )
strong symmetric monoidal. In case C = I, we drop the superscript from nota-
tions, and write simply Φ and Φ0; additionally, we denote by ΦA the (invertible)
functor ΦA,A.

We start by defining Inv on objects. Let (A,⊗, 1) be a symmetric monoidal
category. By definition, ⊗ is a bifunctor of A, and 1 an object of A, which may
be seen as a functor (which we still denote by 1) from the terminal category 1 to

A. If we apply (−)
I
to these functors, we obtain a functor ⊗I : (A×A)

I
→ AI

and a functor 1I : 1I → AI . Then, we set InvA = (AI ,⊗′, 1′), where

⊗′ = ⊗I ◦ ΦA : AI ×AI → AI

1′ = 1I ◦ Φ0 : 1→ AI .

As a functor from the terminal category to AI , 1′ actually represents an object
of AI , which is readily seen to be (1, id1), with id1 representing the constant
Z-indexed sequence everywhere equal to the identity arrow of 1.

We claim that InvA is a symmetric monoidal category. To show this, it will
be enough to apply Lemma 10 to the natural isomorphisms coming with the
monoidal structure of A.

Associator: If we denote by AA the invertible functor realizing the isomor-
phism between (A×A)×A and A×(A×A) (i.e., the associator of the monoidal
category (Cat,×,1) instantiated on A,A,A), we see that the associator α of
A is a natural isomorphism of the following type:

(A×A)×A

A× (A×A) A×A

A

A×A⊗×A
⊗

AA ⊗

A×⊗

α
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where by A we also denote the identity functor of A. Then, if we set

F = ⊗ ◦ (⊗×A),

G = ⊗ ◦ (A×⊗) ◦AA,

H = ΦA ◦ (ΦA ×A
I),

we may apply Lemma 10 and obtain a natural transformation

α′ : F IH ⇒ GIH : (AI ×AI)×AI → AI ,

which may be seen to have the right type for being the associator of InvA by
looking at the following diagram:

AI ×AI

((A ×A)×A)
I

(A×A)
I
×AI (A×A)

I

(AI ×AI)×AI

(A×A)
I
×AI

((A ×A)×A)
I

(A× (A×A))
I

(A×A)
I

AI

AI × (AI ×AI)

AI × (A×A)
I

AI ×AI

⊗I×AI
ΦA

ΦA×AI

ΦA (⊗A)I

⊗I

ΦA×AI

ΦA AI
A

(A×⊗)I

⊗I

A
AI

AI×ΦA

AI×⊗I

ΦA

ΦA

α′

1

2

3

Indeed, diagrams (1) and (3) commute because of the naturality of Φ, and

diagram (2) commutes because (−)
I
is monoidal (remember that A is the asso-

ciator of (Cat,×,1)). The fact that α′ is an isomorphism follows immediately
from its definition (cf. Lemma 10), because α is an isomorphism and the arrows
of AI are arrows of A.

Unitors: We proceed as above, checking only the case of the left unitor, the
right unitor being completely analogous. If we denote by ΛA the invertible
functor realizing the isomorphism from 1 × A to A (i.e., the left unitor of
(Cat,×,1) instantiated on A), we see that the left unitor λ of A is of the
following type:
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1×A

A×A

A

1×A ⊗

ΛA

λ

Then, if we apply Lemma 10 to the data

F = ⊗ ◦ (1×A),

G = ΛA,

H = ΦA ◦ (Φ0 ×A
I),

we obtain the left unitor λ′ of InvA, modulo the commutations shown in the
following diagram

AI ×AI

(1×A)
I

1I ×AI
(A×A)

I

1×AI
AI

1I ×AI

(1×A)
I

Φ0×AI

ΦA (1×A)I

⊗I

Φ0×AI

ΦA

ΛI
A

Λ
AI

1I×AI ΦA

λ′

1

2

Indeed, (1) holds because of the naturality of Φ, and (2) because (−)
I

is
monoidal.

Symmetry: Again, if we denote by ΓA the endofunctor ofA×A which “swaps”
the two occurrences of A (i.e., the involutive braiding of (Cat,×, 1) seen as a
symmetric monoidal category, instantiated on A,A), we see that the involutive
braiding γ of A is of the following type:
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A×A

A×A

A

⊗

ΓA ⊗

γ′

Then, once more, we obtain the involutive braiding γ′ of InvA by applying
Lemma 10 to the following data:

F = ⊗,

G = ⊗ ◦ ΓA,

H = ΦA,

modulo the commutation shown in the following diagram, which holds because
(−)

I
is symmetric monoidal:

(A×A)I

AI ×AI

(A×A)I
(A×A)I

AI

AI ×AI

ΦA ⊗I

ΦA

ΓI
A

⊗I

Γ
AI

ΦA

λ′

=

We have just defined the object map of Inv; let us define it on morphisms.
Let (F,m, u) be a symmetric monoidal functor from (A,⊗, 1) to (B,⊙, U). We
set InvF = (F I ,m′, u′), where

m′ = mI ◦ ιΦA

u′ = uI ◦ ιΦ0

in which ΦA and Φ0 denote the same functors as above (coming from the

monoidality of (−)
I
), ιΦA

and ιΦ0
their respective identity natural transfor-

mations, and ◦ is horizontal composition of natural transformations. We can
see that m′ has the right type as follows: we have m : ⊙ ◦ (F × F ) ⇒ F ◦ ⊗ :

A × A → B, so mI : ⊙I ◦ (F × F )I ⇒ F I ◦ ⊗I : (A×A)I → BI ; composing

horizontally with ιΦA
: ΦA ⇒ ΦA : AI ×AI → (A×A)

I
yields

m′ : ⊙I ◦ (F × F )
I
◦ ΦA ⇒ F I ◦ ⊗I ◦ ΦA : AI ×AI → BI .

Horizontal source and target are as expected; the vertical target is equal to
F I ◦ ⊗′, as desired; for what concerns the vertical source, if we remember that
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ΦA is the component of the natural transformation of the monoidality of (−)
I
,

we have ⊙I ◦ (F × F )
I
◦ ΦA = ⊙I ◦ ΦA ◦ (F

I × F I) = ⊙′ ◦ (F I × F I), as
expected.

If we spell them out, the components ofm′ and u′ are actually extremely sim-
ple: if (A, s), (A′, s′) are objects with involutions of A, we have m′

(A,s),(A′,s′) =

mA,A′ , and u′ is actually u itself. This shows immediately the monoidality of
(F I ,m′, u′), because if a diagram commutes in B, it commutes a fortiori in BI

(composition of morphisms is the same).
The definition of Inv on cells is trivial: if A,B are symmetric monoidal

categories, F,G : A → B symmetric monoidal functors, and ϕ : F ⇒ G a
monoidal natural transformation, we simply put Invϕ = ϕI ; the monoidality of
Invϕ follows immediately from that of ϕ and from the definitions of InvF and
InvG.

2.4. Building stratified models

We may now state the fundamental properties of the Inv construction:

Lemma 11. The Inv functor preserves linear-non-linear adjunctions.

Proof. The fact that Inv is a 2-endofunctor of SMCat immediately implies
that it preserves monoidal adjunctions (cf. Appendix A). The only thing that
is left to check is that, whenever a monoidal categoryM is Cartesian, InvM is
still Cartesian. This is an easy verification, which we leave to the reader. �

Lemma 12. The Inv functor preserves ∗-autonomous categories.

Proof. We start by proving that Inv preserves monoidal closure. Let (A,⊗, 1)
be a symmetric monoidal closed category, with the right adjoint of ⊗ denoted
by ⊸, as usual. Let L,R : Aop × Aop × A → Set denote the hom-functors
A[− ⊗ −,−] and A[−,− ⊸ −], respectively. On morphisms, L and R act as
follows: if s : A′ → A, t : B′ → B, and u : C → C′ are morphisms of A, we have

L(s, t, u) = λf.uf(s⊗ t) : A[A⊗B,C]→ A[A′ ⊗B′, C′],

R(s, t, u) = λf.(t⊸ u)fs : A[A,B ⊸ C]→ A[A′, B′
⊸ C′],

where we denoted by λx.e(x) the (set-theoretic) function mapping x to e(x),
and we wrote composition in A by simple juxtaposition. By Definition 9, we
have a natural isomorphism Ψ : L⇒ R. Naturality means that Ψ ◦ L = R ◦Ψ;
more explicitly, for all s : A′ → A, t : B′ → B, u : C → C′, and f ∈ [A⊗B,C],

ΨA,B,C(uf(s⊗ t)) = (t ⊸ u)ΨA,B,C(f) s.

Now, if we define the bifunctor ⊸
′ of InvA by (A, s) ⊸

′ (B, t) = (A ⊸

B, (sk ⊸ tk)k∈Z) on objects and f ⊸
′ g = f ⊸ g on morphisms (checking that

this is indeed a functor from (InvA)op × InvA to InvA is straightforward), we
claim that the functors L′ = (InvA)[− ⊗′ −,−] and R′ = (InvA)[−,− ⊸

′ −]
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are still naturally isomorphic. In fact, we shall prove that a natural isomorphism
is given by Ψ itself, restricted to morphisms of objects with involutions.

For all objects (A, s), (B, t), (C, u) of InvA, by definition, (InvA)[(A, s) ⊗′

(B, t), (C, u)] and (InvA)[(A, s), (B, t) ⊸
′ (C, u)] are subsets of A[A ⊗ B,C]

and A[A,B ⊸ C], respectively. Then, given f ∈ (InvA)[(A, s)⊗′ (B, t), (C, u)],
we define Ψ′

(A,s),(B,t),(C,u)(f) = ΨA,B,C(f). It is now enough to prove that

ΨA,B,C(f) ∈ (InvA)[(A, s), (B, t) ⊸
′ (C, u)]. In other words, since (B, t) ⊸

′

(C, u) is by definition equal to (B ⊸ C, (tk ⊸ uk)k∈Z), we need to check that,
for all k ∈ Z, ΨA,B,C(f) = (tk ⊸ uk)◦ΨA,B,C(f)◦sk. But this is an immediate
consequence of the fact that f is a morphism of objects with involutions, which
means that f = ukf(sk ⊗ tk), and of the naturality of Ψ as described above.

Let now (A,⊗, 1,⊥) be a ∗-autonomous category. We have just proved
that Inv(A,⊗, 1) is symmetric monoidal closed; we claim that ⊥′ = (⊥, id⊥),
where id⊥ is the Z-indexed sequence identically equal to id⊥, is a dualizing
object. By the definitions given above, it is actually easy to check that, for
all objects (A, s), (B, t) of InvA, we have Ψ′

(A,s),(A,s)⊸′(B,t),(B,t)(eval(A,s),(B,t) ◦

γ′(A,s),(A,s)⊸′(B,t)) = ΨA,A⊸B,B(evalA,B ◦ γA,A⊸B). Therefore, if we set, for a

given objectA, hA = evalA,⊥◦γA,A⊸⊥, it is enough to check that ΨA,A⊸⊥,⊥(hA)
is a morphism of objects with involutions, because the fact that it is an isomor-
phism in InvA follows immediately from the fact that it is an isomorphism in
A. For this, we use the fact that hA is a morphism of objects with involutions,
which means that hA = hA(sk ⊗ (sk ⊸ id⊥)) for all k ∈ Z, and the naturality
of Ψ, as above. �

As a consequence, we have

Theorem 13 (Preservation of models). Models of linear logic are preserved
by Inv, i.e., if L is the linear category of a model of linear logic, then InvL is
also the linear category of a model of linear logic. �

Observe that, up to and including Lemma 11, we never used the fact that the
endomorphisms sk in the objects (A, s) are involutions. Indeed, we may define
more generally a notion of “object with endomorphisms” as a pair (A, s) where
s is a Z-indexed sequence of endomorphisms of A, not necessarily involutive, or
even invertible. The notion of morphism for these objects is the same as that
of Definition 12, i.e., an arrow f of the original category such that fsk = tkf
for all k ∈ Z, where s and t are the sequences of endomorphisms of the source
and target object, respectively. This gives again a category, of objects with
endomorphisms and their morphisms (the free Coxeter groupoid I is replaced by
the free monoid on Z). From this, a 2-endofunctor of SMCat, call it F , may be
defined, which shares with Inv every property mentioned in this section, except
Lemma 12. Indeed, this last result uses in a somewhat hidden but crucial way
the fact that, given objects with involutions (A, s), (B, t), a morphism between
them is an arrow f : A → B such that f = tkfsk, for all k ∈ Z, which is
equivalent to fsk = tkf because sk (or tk) is an involution.

It is easy to see that requiring the endomorphisms to be involutions is
in general necessary for F to preserve ∗-autonomous categories (i.e., to have
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Lemma 12), or even monoidal closure, which is an essential requirement for a
model of linear logic. In fact, consider the category (Set,×, 1) of sets and func-
tions, with the usual Cartesian product, and where 1 is a singleton. This is the
prototypical Cartesian closed category, which is therefore symmetric monoidal
closed. We claim that F(Set), defined mimicking the definition of Inv(Set), is
not closed. If it were, we would have that the set F(Set)[(A, s), (B, t)], where
A,B are sets and s, t Z-indexed sequences of functions on them, would be in
bijection with the set F(Set)[(1, id1), (B

A, ts)], where BA is the set of all func-
tions from A to B, and, given f ∈ BA and k ∈ Z, (ts)k(f) = tkfsk. Now,
F(Set)[(1, id1), (B

A, ts)] is in bijection with the set of all functions f : A → B
such that f = tkfsk for all k ∈ Z. But this set is too “small”; indeed, given
some g ∈ F(Set)[(A, s), (B, t)], we do know that gsk = tkg for all k ∈ Z, but
there is no reason for the equality g = tkgsk to hold as well, if sk and tk are
arbitrary functions from A and B to themselves.

The model resulting from the Inv construction is in some sense “isomorphic”
to the original one. Nevertheless, the construction is of interest because it yields
a model of stratified linear logic which is never degenerate, unless the original
model is trivial. In order to prove this, we first need to recall a basic categorical
result concerning models of linear logic.

Lemma 14. Let (L,⊗, 1) be the linear category of a non-trivial model of linear
logic, with the symmetry of ⊗ denoted by γ. Then, there exists an object Ξ of
L such that γΞ,Ξ 6= idΞ⊗Ξ.

Proof. By the non-triviality of the model, there is a formula A and two proof
nets π, π′ of conclusion A such that their respective interpretations JπK, Jπ′K are
different morphisms of L[1, JAK], where JAK is the interpretation of A. Consider
now the proof nets ρ, ρ′ defined in Fig. 9. Observe that the subnets of ρ and ρ′

which are circled in Fig. 9 are interpreted by idJ!AK⊗J!AK and γJ!AK,J!AK, respec-
tively. Therefore, by invariance of the model under cut-elimination, and by the
fact that it induces a congruence, assuming idJ!AK⊗J!AK = γJ!AK,J!AK would imply
JρK = Jρ′K and hence JπK = Jπ′K, against our hypothesis. So the object Ξ = J!AK
satisfies the requirement. �

Theorem 15. Every non-trivial model of linear logic yields, through the Inv
construction, a non-degenerate model of LL§.

Proof. Let L be the linear category of a non-trivial model of linear logic.
By Theorem 13, InvL also hosts a model of linear logic; by Definition 11, in
order to define a model of LL§ we only need to find an interpretation of the
paragraph modality. This may be done by fixing some n ∈ Z and considering
the endofunctor §n of InvL defined as follows. If (A, s) is an object of InvL,
we set §n(A, s) = (A, (sk−n)k∈Z), i.e., the image of (A, s) through §n has the
same underlying object, but the sequence of involutions is “shifted” by n; on
morphisms, §n is the identity. For convenience, we set § = §1, but what we shall
say holds for all n ∈ Z.
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Figure 9: The linear logic proof nets ρ (bottom, left hand side) and ρ′ (top, left hand side).
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It is immediate to see that the functor § satisfies all of the requirements
of Definition 11; we leave the verification to the reader. The fact that the
model is non-degenerate is a consequence of Lemma 14. Indeed, composed
with the non-triviality of the original model, that result ensures us that in L
there exists an object Ξ such that γΞ,Ξ 6= idΞ⊗Ξ. Consider then the object
with involutions (Ξ ⊗ Ξ, ξ), where ξ0 = γΞ,Ξ and ξk = idΞ⊗Ξ for all k 6= 0.
Let f : (Ξ ⊗ Ξ, ξ) → §(Ξ ⊗ Ξ, ξ) in the category InvL. By definition, f is an
endomorphism of Ξ⊗Ξ in L, which must further satisfy f ◦γΞ,Ξ = f = f ◦idΞ⊗Ξ

(and also γΞ,Ξ ◦ f = f). But then f is not monic (nor epic), and thus cannot
be an isomorphism. �

3. Applications to Bounded Complexity

3.1. A geometric definition of L3

Recall how in Sect. 1.2 we reformulated linear logic by levels (L3), which is in
some sense the largest extant stratification-based, bounded-complexity subsys-
tem of linear logic, as the fragment of LL§ in which the exponential modalities
are forced to be “tied” to the paragraph modality. In light of this, using the
results of Sect. 1.3, we may give a new, geometric definition of L3, equivalent
to the original one given in Baillot and Mazza (2010) and based on indexings.

We start by recalling the definition of L3, as given in Baillot and Mazza
(2010).

Definition 13 (Exponential indexing). An exponential indexing (called in-
dexing in Baillot and Mazza (2010)) for a net π is a function I from the edges
of π to Z which:

• satisfies the constraints of Fig. 4, except for of course and why not links,
for which, if e1, . . . , en and e′ are the premises and conclusion of such a
link, we have I(e1) = · · · = I(en) = I(e′) + 1;

• satisfies I(e) = I(e′) for all conclusions e, e′ of π.

In other words, an exponential indexing is just as a strong indexing of Defini-
tion 7 in which exponential links behave like paragraph links.

Definition 14 (Linear logic by levels (Baillot and Mazza, 2010)). L3

is the set of all DR-nets admitting an exponential indexing.

Let us now give the geometric definition.

Definition 15 (!?-balanced cycle). We define a !?-balanced cycle in a DR-
net just as a balanced cycle (Definition 4), except that instead of counting only
paragraph links, we also count exponential links (i.e., of course and why not

links).
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Figure 10: Example of a shifted proof net.

Definition 16 (Shifted formula and shifted proof). Let A be a formula.
We define A+ as the formula obtained by adding a paragraph modality after
every exponential modality appearing in A (i.e., every occurrence of ! and ? is
replaced by !§ and ?§, respectively).

Let π be a net of conclusions A1, . . . , An. We define the net π+ by adding
a paragraph link above every of course and flat link of π (in sequent calculus
derivations, we add a paragraph rule before every promotion and dereliction
rule). It is immediate to see that π+ has conclusions A+

1 , . . . , A
+
n .

Figure 10 shows a proof net π of L3 (at left hand side) and (at right hand
side) the shifted netπ+, which indeed is a proof net of LL§.

The following technical results are immediate:

Lemma 16. Let π be a net with no ♭-formula in its conclusions. Then:

1. π is DR-correct iff π+ is;

2. if π0 and (π+)0 denote the `-closures of π and π+, respectively, we have
(π+)0 = π+

0 ;

3. π admits an exponential indexing (Definition 13) iff π+ is strongly indexable
(Definition 7);

4. π contains a cycle which is not !?-balanced (Definition 15) iff π+ contains
a cycle which is not balanced (Definition 4). �

Theorem 17 (Geometric characterization of L3). A DR-net π is in L3

(as per Definition 14) iff all cycles in its `-closure π0 are !?-balanced.

Proof. Let (π+)0 be the `-closure of π+. By point 3 of Lemma 16, π satisfies
Definition 14 iff π+ is strongly indexable. But, thanks to Lemma 6 and point
1 of Lemma 16, this is equivalent to the fact that all cycles of (π+)0 are bal-
anced. Now, since (π+)0 = π+

0 (point 2 of Lemma 16), we may conclude by the
equivalence of point 4 of Lemma 16. �
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3.2. Denotational semantics of L3

As a subsystem of linear logic, L3 may be semantically interpreted in any
model of linear logic. However, such a denotational semantics is absolutely
uninformative by itself, because it is incapable of distinguishing a linear logic
proof which is part of L3 from one that is not.

We shall see how the Inv construction may be used to build more informative
denotational semantics of L3. For this, we shall use the models defined in the
proof of Theorem 15, living in the category InvL where L is the linear category
of a model of linear logic. We remind that such models interpret the paragraph
modality with the functor defined by §(A, s) = (A, (sk−1)k∈Z) on objects and
acting as the identity on morphisms. To be able to fully use Theorem 15, in the
sequel we shall assume that the starting model of linear logic is non-trivial.

Recall that denotational interpretations are always parametric in an assign-
ment of objects to propositional atoms. For all of our future purposes, it will be
enough to consider what we shall call the default assignment, which was already
defined in the proof of Theorem 15, and which we give again here.

Definition 17 (Default assignment). Let L be the linear category of a non-
trivial model of linear logic. By Lemma 14, there exists an object Ξ of L such
that γΞ,Ξ 6= idΞ⊗Ξ. A default assignment maps every propositional atom to the
object with involutions (Ξ⊗Ξ, ξ), where ξ0 = γΞ,Ξ and ξk = idΞ⊗Ξ for all k 6= 0.

Of course, there is one default assignment for each object Ξ of L such that
γΞ,Ξ 6= idΞ⊗Ξ; however, since the choice of a particular Ξ is irrelevant, we shall
abusively speak of “the” default assignment, and denote by J·K the interpretation
map (from formulas and proofs of LL§ to objects and morphisms of InvL,
respectively) under that default assignment.

Observe that, even in non-degenerate models, the § functor still acts as the
identity on morphisms. This means that, if π− is a DR-net obtained from the
proof net π by removing any number of paragraph links, we have JπK = Jπ−K.
In other words, paragraphs only matter in formulas, not in proofs.

Definition 18 (Shifted interpretation of formulas). Given a non-trivial
model of linear logic whose linear category is L, we define the shifted inter-
pretation map L·M from formulas to objects of InvL by LAM = JA+K, where the
formula A+ is introduced in Definition 16.

If we are given a proof net π of conclusion A, the interpretation JπK is always
well defined, as a morphism of (InvL)[(1, id1), JAK]. We shall be interested in
the following question:

do we have JπK ∈ (InvL)[(1, id1), LAM]?

This is meaningful, because A+ and A differ only for the addition of paragraph
modalities and thus, by definition of the § functor, if JAK = (S, σ), then LAM =
(S, σ′), i.e., the underlying object S is the same. Therefore, a morphism of type
(1, id1)→ (S, σ) in Inv(L), which is first of all a morphism of type 1→ S in L,
may a priori be also a morphism of type (1, id1)→ (S, σ′) in Inv(L).
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Figure 11: The left hand side DR-net is not in L
3 (there is a mismatch of indexes on the

left-most top-most axiom) while its cut-free form is in L
3.

To state the question more concisely, we shall use the notation JπK ∈ LAM
as a short hand for JπK ∈ (InvL)[(1, id1), LAM]. There is one interesting case in
which the answer is always positive:

Theorem 18 (Soundness). If a DR-net π of conclusion A belongs to L3, then
JπK ∈ LAM.

Proof. By points 1 and 3 of Lemma 16, we know that π+ (see Definition 16)
is a strongly indexable DR-net. Then, by Lemma 6, π+ is a LL§ proof net of
conclusion A+. Since the Inv construction yields models of LL§ (Theorem 13),
we have that Jπ+K ∈ (InvL)[(1, id1), JA

+K], which means Jπ+K ∈ LAM. But, as
remarked after Definition 17, we have Jπ+K = JπK. �

Therefore, testing whether JπK ∈ LAM is always a way to obtain negative
information about the membership of a DR-net π to L3; if the answer is negative,
then π cannot belong to L3.

There is no hope for the converse of Theorem 18 to hold in general, for the
simple reason that, while L3 is of course stable under cut-elimination, non-
membership to L3 is not itself preserved under cut-elimination. It is indeed
easy to exhibit a non-cut-free DR-net π violating the conditions for belonging
to L3, such that π →∗

β π′ with π′ in L3, see for instance Fig. 11. Since de-
notational semantics “sees through” cut-elimination, we would have JπK ∈ LAM
whilst having π 6∈ L3.

In Sect. 3.4 we shall give, under the hypothesis of absence of cuts, a sufficient
condition for the converse of Theorem 18 to hold. For the moment, we observe
that, for some cut-free DR-nets, the converse is always realized. It is the case,
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for example, of the DR-net proving the dereliction principle, !A ⊸ A, which
does not belong to L3. Indeed, if π is such a DR-net in the case in which A is
a propositional atom, we have JπK = εΞ⊗Ξ : !(Ξ ⊗ Ξ) → Ξ ⊗ Ξ, i.e., the counit
of the comonad !(−). Then, if we had JπK ∈ InvL[L!AM, LAM], we would have in
particular γΞ,Ξ ◦ εΞ⊗Ξ = εΞ⊗Ξ, which elementary computations similar to those
of Fig. 9 show to be inconsistent with the non-triviality of the original model.

3.3. Interactive characterization of L3

A particularly simple, and indeed rather uninformative model of linear logic
is the so-called syntactic model. Although of little value per se, it lends itself to
an interesting application of the Inv construction. The linear category of this
model, which we denote by PN, is defined as follows:

• its objects are the formulas of LL§;

• a morphism from a formula A to a formula B is a cut-free DR-net with
atomic axioms (i.e., η-expanded), of conclusions A⊥, B;

• composition is given by forming a cut and computing the cut-free form.
This operation is well defined because cut-elimination always terminates
and, in the propositional case, preserves atomic axioms; it is associative
thanks to confluence. The identities of the category are η-expansions of
axioms.

Note that, in this paper, we did not define proof nets for additive connectives,
so technically speaking PN is not a linear category because it lacks products
and coproducts (and we cannot properly define the Cartesian category of the
linear-non-linear adjunction). This is not a concern here, as we shall not need
all of the structure of the model in what follows.

All semantic constructions (monoidal structure, exponentials) are defined
in PN using the very syntactic constructions they are supposed to model, so
everything works without surprises. The presence of the § modality (and of
paragraph links in DR-nets) should not confuse the reader: the syntactic model
is a model of linear logic; paragraphs are ignored by the constructions of the
model. Of course, it is also a model of LL§, but it is a degenerate one: §A is
isomorphic to A for every formula A. It would be non-degerate if we had defined
morphisms to be proof nets, instead of DR-nets, but this would not be interesting
for our purposes: the interactive characterization of L3 (Theorem 23) would be
less clear, because the correctness of paragraphs would be already accounted for
by the model, and not by interaction.

Let us now describe the category Inv(PN) in detail:

• its objects are pairs (A, σ) where A is a formula and σ is a Z-indexed
sequence of cut-free, η-expanded DR-nets of conclusions A⊥, A, such that
when σk is cut with itself, it reduces to idA (we may assume that σ is
almost everywhere equal to idA, so the set of objects of Inv(PN) is still
denumerable);

39



ax

ax

` ⊗

X⊥ `X⊥ X ⊗X

X⊥

X⊥

X

X

ax

ax

` ⊗

X⊥ `X⊥ X ⊗X

X⊥

X⊥

X

X

Figure 12: The morphisms idX⊗X (left) and γX,X (right) in PN.

• a morphism from (A, σ) to (B, τ) is a cut-free, η-expanded DR-net π of
conclusions A⊥, B such that, for all k ∈ Z, the DR-net:

A⊥ cut cut A

σk π τk

A A⊥ B B⊥

reduces to π itself. Composition and identity morphisms are the same as
PN.

The default interpretations, which, in the case of the syntactic model, we
denote by J·Ks and L·Ms, may be described as follows.

Definition 19 (Default atomic substitution). if A is a formula, we denote
by A• the formula obtained from A by substituting every atom Z with X ⊗X
(and its dual Z⊥ with X⊥ `X⊥), where Z ranges over all atoms.

Similarly, If π is an η-expanded net of conclusion A, we denote by π• the
net of conclusion A• obtained by replacing every atomic axiom of π with the
net idX⊗X (Fig. 12, left).

Definition 20 (Test). It is easy to check (see Baillot and Mazza (2010)) that
every DR-net π of L3 admits a default exponential indexing, which is an ex-
ponential indexing (Definition 13) whose range are non-negative integers and
assigning 0 to the conclusions of the net. An occurrence of a subnet of π is
said to appear at level n if all of its conclusions are assigned the integer n by
the default exponential indexing of π. We let the reader verify that, for every
formula A, the DR-net idA• is in L3, so the above definition of level applies in
particular to these nets.

Let A be a formula and k ∈ Z. The test of index k of type A, denoted by
θAk , is the DR-net of conclusions (A•)⊥, A• obtained from idA• by replacing to
all occurrences of idX⊗X appearing at level k the net γX,X (Fig. 12, right). We
set θA = (θAk )k∈Z.

Lemma 19. Let A be a formula of linear logic. Then, LAMs = (A•, θA).
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cut
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`X⊥

X⊗XX⊗X

Figure 13: A foot. The node id represents the net idX⊗X .

Proof. A straightforward induction on A. �

The interpretation of proofs is particularly easy to describe. If π is a linear
logic DR-net of conclusion A, whose cut-free and η-expanded form is π0, JπKs
is simply π•

0 with a bottom link juxtaposed to it. The bottom link is technically
necessary to obtain a morphism of Inv(PN) whose source is (1, id1).

We shall now prove that, for cut-free proofs, the converse of Theorem 18
holds in the syntactic model. We start by proving a property of the reduction
of DR-nets involving identity nets. We first need a couple of preliminary defini-
tions; the first one is completely standard in rewriting theory, specialized here
to proof nets following Tortora de Falco (2003).

Definition 21 (Lift, residue). Whenever π →β π′, by simple inspection of
the cut-elimination rules it is clear that any edge or link (except cut) x′ of π′,
comes from a unique (“the same”) edge or link x of π; we say that x is the lift

of x′, denoted by
←−
x′ , and that x′ is a residue of x. When it makes sense, we

define in the same way the lift and residues of a subnet.

Definition 22 (Foot). A foot is a net composed of a chain of three idX⊗X nets
cut together as in Fig. 13. The idX⊗X net whose both conclusions are premises
of cuts is called the inner toe of the foot; the other two are called outer toes.

In the following, if π is a net of conclusions A1, . . . , An, none of which is a
♭-formula, and if π1, . . . , πn are nets such that, for all 1 ≤ i ≤ n, πi has a unique
occurrence of A⊥

i among its conclusions, we denote by cut(π, π1, . . . , πn) the net
obtained by juxtaposing all of the nets π, π1, . . . , πn and adding n cut links of
premises Ai, A

⊥
i , where Ai ranges over the conclusions of π.

Furthermore, we write π
¬ax
−→∗

β π
′ when π →∗

β π
′ without using axiom steps

(Fig. 5).

Lemma 20. Let π be a cut-free, η-expanded net of conclusions A•
1, . . . , A

•
n,

none of which is a ♭-formula. Then, cut(π•, idA•
1
, . . . , idA•

n
)

¬ax
−→∗

β π′, where
π′ is obtained from π• by replacing all occurrences of the subnet idX⊗X with
feet such that, for each foot, the external toes are residues of an idX⊗X net of
idA•

i
for some i, and the inner toe is the residue of the idX⊗X subnet of π•

which is replaced by that foot (see Fig. 14).

Proof. A straightforward induction on the size of π. �
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Figure 14: Graphical representation of Lemma 20. Formulas and the orientation of edges are
omitted. We suppose that π contains k axioms, which become k subnets of the form idX⊗X

in π•, represented here by the id nodes a1, . . . , ak; the boxes that may be present in π are not
drawn in the picture, and π0 represents “π without the axioms”. For each 1 ≤ i ≤ k, a′i is a
residue of ai, and li, ri are residues of idX⊗X subnets of idA•

i
.

We now recur once more to indexings, but we modify them so that every net
becomes indexable. These quasi-indexings of course have a mere technical value:
they are preserved under cut-elimination not involving axiom steps (Lemma 21).
Quasi-indexings were first considered by Gaboardi et al. (2009).

Definition 23 (Exponential quasi-indexing). An exponential quasi-inde-
xing is defined just as an exponential indexing (Definition 13), except that it
need not satisfy any constraint on axioms, i.e., if σ is net, Q an exponential
quasi-indexing for it, and e, e′ the conclusions of an axiom link of σ, we may
have Q(e) 6= Q(e′).

Let σ be a cut-free net. We may assign an index to all of its edges by pro-
ceeding as follows: we assign 0 to all conclusions, then we “go up”, incrementing
indexes whenever we cross a paragraph, of course or why not link. This obviously
yields an exponential quasi-indexing for σ, which is the default exponential in-
dexing iff σ is in L3; we call it the default exponential quasi-indexing.

Lemma 21. Let π be a DR-net, let Q be an exponential quasi-indexing for π,
and let π

¬ax
−→β π′. Then, there exists an exponential quasi-indexing Q′ for π′

such that, for every edge e of π, whenever e′ is a residue of e, Q′(e′) = Q(e).

Proof. We define Q′ by composing the lift function l, which maps edges of π′

to edges of π, with Q: Q′ = Q ◦ l. The claim may then be immediately verified
by inspecting Figures 6 to 8. �

Definition 24 (Swapping relation). We define the relation ≺ on nets as fol-
lows: π′ ≺ π iff π′ is obtained from π by replacing a non-null number of idX⊗X

subnets with γX,X .

We may at last prove the main result of this section:

Lemma 22 (Swapping). Let π be a cut-free DR-net of conclusion A. Suppose
π is not in L3; then, there exists k ∈ N such that θAk ◦ JπKs ≺ JπKs.
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Proof. First of all, we remark that, modulo the addition of a bottom link, we
have JπKs = π•

η, where πη is the η-expanded form of π. Observe that cut(π•
η, θ

A
k )

admits an exponential quasi-indexing Q such that, if e is a conclusion of an
idX⊗X or γX,X subnet of θAk , then Q(e) is equal to the level (Definition 20) of
such subnet: this is obtained by joining the default exponential quasi-indexing
of π•

η and the default exponential indexing of θAk , which are compatible because
they assign the same index (that is, 0) to both premises of the cut link introduced
in cut(π•

η , θ
A
k ).

Now, the fact that π is not in L3 implies that there exists an axiom of π
whose conclusions are assigned different indexes by Q. The η-expansion and
substitution with idX⊗X propagate the mismatch, so in π•

η there is a subnet
idX⊗X , call it a, which is “wrongly” indexed, i.e., its conclusions e1, e2 are such
that Q(e1) 6= Q(e2).

Let i = Q(e1) and j = Q(e2), and consider the test θAi (the reader is invited
to check that the same arguments would apply if we chose θAj ); by Lemma 20,

we have cut(π•
η, θ

A
i )

¬ax
−→∗

β π
′ as in Fig. 14, modulo the fact that the outer toes

of the feet present in π′ may now be γX,X nets.
Consider the idX⊗X subnet a′ of π′ which is the residue of a (the “wrongly”

indexed subnet idX⊗X of π•
η), and let e′1, e

′
2 be its conclusions. By Lemma 21,

we have an indexing Q′ for π′ such that Q′(e′1) = i and Q′(e′2) = j. Moreover,
using again Lemma 20, a′ is the inner toe of a foot whose outer toes, which we
denote by t1, t2, are residues of idX⊗X or γX,X subnets

←−
t1 ,
←−
t2 of θAi . We claim

that t1 is a γX,X net, while t2 is an idX⊗X net; this is enough to conclude,
because the foot composed of t1, a

′, t2 reduces to a γX,X net, and therefore the
cut-free form π1 of π′ is obtained from π•

η by replacing at least one idX⊗X

subnet with γX,X , which proves π1 ≺ π
•
η .

So let d1, d
′
1 and d2, d

′
2 be the conclusions of t1 and t2, respectively. Again

by Lemma 21, and by the fact that Q is actually an indexing for θAi , we have
Q′(d1) = Q′(d′1) and Q

′(d2) = Q′(d′2). But even in exponential quasi-indexings
the premises of cut links must have the same index, soQ′(d1) = i andQ′(d2) = j,

which means that the levels of
←−
t1 and

←−
t2 are i and j, respectively. Then, t1 is

of the form γX,X , while t2 is of the form idX⊗X , as claimed. �

Since everything in the syntactic model is computed through cut-elimination,
the above results give us yet another definition of L3, which is of interactive
nature, i.e., a net is in L3 iff it “passes all tests”. Of course, this only works for
cut-free nets.

Theorem 23 (Interactive characterization of L3). Let π be a cut-free
DR-net of conclusion A, whose η-expansion we denote by πη. Then, π is in
L3 iff, for all k ∈ N, cut(π•

η , θ
A
k )→

∗
β π

•
η.

Proof. We start by observing that JπKs = π•
η (modulo the addition of a bottom

link), so by Lemma 19 and the definition of morphism of object with involutions,
cut(π•

η , θ
A
k )→

∗
β π

•
η is equivalent to JπKs ∈ LAMs (recall that this notation, intro-

duced just before Theorem 18, means JπKs ∈ (InvPN)[(1, id1), LAMs]). There-
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fore, the forward implication is a corollary of Theorem 18, applied to the syntac-
tic category PN. The converse is an immediate consequence of the Swapping
Lemma 22. �

3.4. Semantic characterization of L3

Basically, the syntactic model interprets proofs as cut-free, η-expanded
proofs. These latter may still be interpreted by means of a non-syntactic model,
into a linear category L. An easy but important remark is that the default
interpretation of a non-syntactic model always factors through the default in-
terpretation of the syntactic model, via a canonical interpretation of cut-free,
η-expanded proofs:

linear logic
synt. interpretation //

interpretation

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

PN

X

��
L

Technically, the above diagram commutes in the category of 2-graphs, recalling
the fact, mentioned in the opening of Sect. 2.1, that interpretation maps may be
seen as morphisms of 2-graphs. The morphism X is actually a functor, defined
as follows.

Consider a non-trivial model of linear logic, whose linear category is L, and
let Ξ be an object of L such that γΞ,Ξ 6= idΞ⊗Ξ, i.e., the object used by the
default assignment. We define an assignment mapping all propositional atoms
to Ξ; then, the interpretation map of the model under this assignment yields a
functor from PN to L, which we denote by X .

When we consider LL§ and the default interpretations of Definition 17 (syn-
tactic and semantic), thanks to the Inv functor the above diagram becomes

LL§
J·Ks //

J·K
))❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙
Inv(PN)

Inv(X )

��
Inv(L)

The commutation of such a diagram is the object of the following result:

Proposition 24 (Factoring). For every non-trivial model of linear logic, we
have J·K = Inv(X ) ◦ J·Ks (in the category of 2-graphs).

Proof. For clarity, we shall denote by ⊙ the semantic tensor, i.e., the functor
interpreting in L the multiplicative conjunction ⊗ of linear logic.

In the case of formulas, the proof is by induction. Let Z be a propositional
atom; we have Inv(X )(JZKs) = Inv(X )(X⊗X, ξ) = (Ξ⊙Ξ, (X (ξk))k∈Z), where ξ0
is the γX,X net and ξk is the identity net everywhere else. But then X (ξ0) = γΞ,Ξ
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and X (ξk) is the identity everywhere else, so Inv(X )(JZKs) = JZK. The inductive
cases are straightforward.

For proofs, recall that Inv(X ) acts like X on morphisms. Then, for every
DR-net π whose cut-free, η-expanded form is π0, we have X (JπKs) = X (π

•
0) =

Jπ0K = JπK. �

The following is the semantic equivalent of Lemma 19, from which it follows by
applying Proposition 24.

Lemma 25. Consider a non-trivial model of linear logic, let A be a linear logic
formula, and let LAM = (S, s). Then, for all k ∈ Z, sk = X (θAk ), where the nets
θAk are the tests introduced in Definition 20.

Proof. By applying, in the order, Definition 18, Proposition 24, Definition 18
again, Lemma 19 and the definition of Inv, we have

LAM = JA+K = Inv(X )(JA+Ks) = Inv(X )(LAMs) =

= Inv(X )(A•, (θAk )k∈Z) = (X (A•), (X (θAk ))k∈Z),

as desired. �

As already observed in the proof of Theorem 23, the interactive characteri-
zation of L3 may be stated as follows:

π is in L3 iff JπKs ∈ LAMs,

where π is a cut-free DR-net of conclusion A. Thanks to Proposition 24 and
Lemma 25, this equivalence may be lifted to any non-syntactic model, provided
the model does not “blur out” too many differences in proofs.

Definition 25 (Swap-sensitivity). A non-trivial model of linear logic is said
to be swap-sensitive if, for every cut-free, η-expanded DR-net π, π′ ≺ π implies
X (π′) 6= X (π).

Swap-sensitivity (which trivially holds in the syntactic model) is a very mild
condition; it is enjoyed by all models of linear logic which we are aware of. For
instance, coherence spaces are swap-sensitive, which implies the swap-sensitivity
of all web-based models of linear logic (relational model, finiteness spaces, etc.).

We may now give a converse of Theorem 18:

Theorem 26 (Semantic characterization of L3). Let π be a cut-free DR-
net of conclusion A, and fix a swap-sensitive model of linear logic. Then, π is
in L3 iff JπK ∈ LAM.

Proof. The forward implication is Theorem 18. For what concerns the con-
verse, let π be a cut-free linear logic DR-net of conclusion A, whose η-expansion
we denote by πη, such that π 6∈ L3. By Lemma 22, there exists k ∈ N such that
cut(θAk , π

•
η) reduces to a net π′ such that π′ ≺ π•

η . Let LAM = (S, s). Then, using
Lemma 25, Proposition 24, and the swap-sensitivity of the model, we have

sk ◦ JπK = X (θAk ) ◦ X (JπKs) = X (θ
A
k ◦ JπKs) 6= X (JπKs) = JπK,

which proves that JπK 6∈ LAM. �
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Danos, V., 1989. Logique linéaire, etude statique et dynamique. Ph.D. Thesis,
Université Paris 7.
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A. Some Categorical Background

Monoidal functors. In the following, when declaring a category to be (symmet-
ric) monoidal, we shall only specify the bifunctor and the unit object of the
monoidal structure, leaving implicit the natural transformations accounting for
associativity, left and right unit, and—if present—symmetry; these will always
be denoted by α, λ, ρ, γ, respectively. In case there is more than one monoidal
structure involved, we shall use superscripts to denote to which structure these
natural transformations belong; for instance, if we have two monoidal structures
given by the bifunctors ⊗ and ⊙, then their associativities will be denoted by
α⊗ and α⊙, respectively.

Let (A,⊗, 1) and (B,⊙, U) be two (symmetric) monoidal categories. A
monoidal functor from A to B is a triple (F,m, u) where F : A → B is a functor,
m : F (−)⊙ F (−)⇒ F (−⊗ −) is a natural transformation, and u : U → F1 is
an arrow of B, such that the following diagrams commute in B, for all objects
A,B,C of A:

(FA⊙ FB)⊙ FC

m⊙idFC

��

α⊙

// FA⊙ (FB ⊙ FC)

idFA⊙m

��
F (A⊗B)⊙ FC

m

��

FA⊙ F (B ⊗ C)

m

��
F ((A ⊗B)⊗ C)

Fα⊗

// F (A⊗ (B ⊗ C))
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U ⊙ FB

u⊙idFB

��

λ⊙

// FB

F1⊙ FB
m // F (1⊗B)

Fλ⊙

OO FA⊙ U

idFA⊙u

��

ρ⊙

// FA

FA⊙ F1
m // F (A⊗ 1)

Fρ⊙

OO

In case the natural transformationm and the arrow u are actually isomorphisms,
we speak of a strong monoidal functor.

If the monoidal structures on A and B are symmetric, one further speaks
of a symmetric monoidal functor whenever the following additional diagram
commutes in B, for all objects A,B of A:

FA⊙ FB
m //

γ⊙

��

F (A⊗ B)

Fγ⊗

��
FB ⊙ FA

m // F (B ⊗A)

Monoidal natural transformations. Let (A,⊗, 1), (B,⊙, U) be (symmetric)
monoidal categories, let (F,m, u), (G,n, v) be two (symmetric) monoidal func-
tors between them, and let ϕ : F ⇒ G be a natural transformation. We say
that ϕ is monoidal if the following diagrams commute in B, for all objects A,B
of A:

FA⊙ FB

m

��

ϕA⊙ϕB // GA⊙GB

n

��
F (A⊗B)

ϕA⊗B // G(A ⊗B)

U

u

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

v

  ❇
❇❇

❇❇
❇❇

❇

F1
ϕ1 // G1

2-categories and 2-functors. Basically, a 2-category is a category in which the
homsets are themselves categories, and in which the two compositions (the one
induced by the category and the one present in the homsets) interact in a certain
way.

More formally, a 2-category A is given by following data:

• a collection of objects and morphisms between them, forming a usual
category;

• for each ordered pair of morphisms f, g : A→ B, a collection of cells which
are said to be of horizontal source A, vertical source f , horizontal target
B, and vertical target g; if ϕ is such a cell, we write ϕ : f ⇒ g : A→ B;

• for each morphism f : A→ B, an identity cell ιf : f ⇒ f : A→ B;

• a notion of horizontal composition of cells, denoted by ◦ (just like the
usual composition of morphisms), giving, for all cells ϕ : f ⇒ g : A → B
and ψ : h⇒ k : B → C, a cell ψ ◦ ϕ : h ◦ f ⇒ k ◦ g : A→ C;

• a notion of vertical composition of cells, denoted by ∗, giving, for all cells
ϕ : f ⇒ g : A→ B and ψ : g ⇒ h : A→ B, a cell ψ ∗ ϕ : f ⇒ h : A→ B;
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• both notions of composition are required to be associative;

• identity cells of identity morphisms are required to be neutral elements
for horizontal composition, that is, for all ϕ : f ⇒ g : A → B, we have
ϕ ◦ ιidA

= ιidB
◦ ϕ = ϕ;

• identity cells are required to be neutral elements for vertical composition,
that is, for all ϕ : f ⇒ g : A→ B, we have ϕ ∗ ιf = ιg ∗ ϕ = ϕ;

• the two compositions must satisfy the following exchange law, for all ϕ :
f ⇒ g : A → B, ψ : g ⇒ h : A → B, θ : i ⇒ j : B → C, and
ζ : j ⇒ k : B → C:

(ζ ◦ ψ) ∗ (θ ◦ ϕ) = (ζ ∗ θ) ◦ (ψ ∗ ϕ).

In what follows, we shall often omit horizontal source and target of cells, i.e.,
we shall simply write ϕ : f ⇒ g instead of ϕ : f ⇒ g : A→ B whenever A and
B are clear from the context. Moreover, if f is a morphism, in the context of
an equation concerning cells we shall abusively denote its identity cell ιf simply
by f .

The prototypical example of 2-category is Cat, whose objects, morphisms
and cells are categories, functors and natural transformations, respectively. One
can check that symmetric monoidal categories, symmetric monoidal functors
and monoidal natural transformations also form a 2-category, which is of spe-
cial interest in this work, and which we denote by SMCat. A further, albeit
more trivial example is given by strict monoidal categories: each such category
induces a 2-category with one object, whose morphisms and cells are respectively
the objects and arrows of the original category.

Just as functors are the natural notion of morphism for categories, 2-functors
are the corresponding notion for 2-categories. Given two 2-categories A,B, a
2-functor F from A to B is a map associating with each object A, morphism f ,
and cell ϕ of A an object FA, a morphism Ff , and a cell Fϕ of B, in such a
way that:

• when restricting to objects and morphisms, F is a functor in the usual
sense;

• if ϕ : f ⇒ g : A→ B is a cell of A, then Fϕ : Ff ⇒ Fg : FA→ FB;

• for every morphism f of A, we have F (ιf ) = ιFf ;

• for every horizontally-composable cells ϕ, ψ of A, we have F (ψ ◦ ϕ) =
Fψ ◦ Fϕ;

• for every vertically-composable cells ϕ, ψ ofA, we have F (ψ∗ϕ) = Fψ∗Fϕ.
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Adjunctions in 2-categories. The concept of adjunction, fundamental in cate-
gory theory, can be nicely reformulated using the language of 2-categories. LetA
be a 2-category. An adjunction in A is a quadruple (f, g, η, ε) where f : A→ B,
g : B → A are morphisms (A,B being objects of A) and η : idA ⇒ g ◦ f ,
ε : f ◦ g ⇒ idB are cells, satisfying the so-called triangle identities (or zig-zag
identities)

(ε ◦ f) ∗ (f ◦ η) = f,

(g ◦ ε) ∗ (η ◦ g) = g.

The morphisms f and g are called the left and right adjoint of the adjunction,
respectively, and one writes f ⊣ g; the endomorphisms g ◦ f and f ◦ g are called
the monad and comonad of the adjunction; η is called the unit of the monad,
and ε the counit of the comonad.

If we apply the above formulation to Cat, we obtain the usual notion of
adjunction; moreover, the endofunctor g ◦ f (resp. f ◦ g) is a monad in the
category A (resp. a comonad in the category B) in the usual sense, with η as
its unit (resp. ε as its counit).

However, we can also apply this formulation to other 2-categories; in par-
ticular, here we are interested in symmetric monoidal adjunctions, which are
adjunctions in SMCat. Spelled out, given two symmetric monoidal categories
A,B, a symmetric monoidal adjunction is a quadruple ((F,m, u), (G,n, v), η, ε)
such that (F,m, u) : A → B, (G,n, v) : B → A are symmetric monoidal func-
tors, F ⊣ G in the usual sense, but the natural transformations η : IdA ⇒ G◦F ,
ε : F ◦G⇒ IdB are required to be monoidal.

An important fact that we use in our work is that 2-functors preserve ad-
junctions: if A,B are 2-categories, F is a 2-functor from A to B, and (f, g, η, ε)
is an adjunction in A, then (Ff, Fg, Fη, Fε) is an adjunction in B, as can be
immediately verified by applying F to both sides of the triangle identities, and
using the properties defining a 2-functor.

Another useful result, which we shall only state, is the following charac-
terization of symmetric monoidal adjunctions among usual adjunctions (i.e.,
adjunctions in SMCat among adjunctions in Cat):

Proposition 27. Let A,B be symmetric monoidal categories, and let (F,m, u)
be a symmetric monoidal functor from A to B such that F admits a right ad-
joint G. Then, the adjunction F ⊣ G lifts to a symmetric monoidal adjunction
(F,m, u) ⊣ (G,n, v) iff (F,m, u) is strong.
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