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Abstract

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1} is the minimum
degree of a real polynomial that approximates f to within error ε in the ℓ∞ norm. We prove
several lower bounds on this important complexity measure by explicitly constructing solutions
to the dual of an appropriate linear program. Our first result resolves the ε-approximate degree
of the two-level AND-OR tree for any constant ε > 0. We show that this quantity is Θ(

√
n),

closing a line of incrementally larger lower bounds [4, 16, 26, 37, 40]. The same lower bound was
recently obtained independently by Sherstov using related techniques [33]. Our second result
gives an explicit dual polynomial that witnesses a tight lower bound for the approximate degree of
any symmetric Boolean function, addressing a question of Špalek [42]. Our final contribution is
to reprove several Markov-type inequalities from approximation theory by constructing explicit
dual solutions to natural linear programs. These inequalities underly the proofs of many of the
best-known approximate degree lower bounds, and have important uses throughout theoretical
computer science.

1 Introduction

Approximate degree is an important measure of the complexity of a Boolean function. It captures
whether a function can be approximated by a low-degree polynomial with real coefficients in the ℓ∞
norm, and it has diverse applications in theoretical computer science. For instance, lower bounds
on approximate degree underly fundamental circuit complexity lower bounds [7, 25, 36] and oracle
separations between complexity classes [8]. In quantum computing, many tight lower bounds on
quantum query complexity have been proved via lower bounds on approximate degree [2, 5, 19].
Approximate degree lower bounds have also found important uses in communication complexity
[10, 13, 22, 38, 39, 41, 42], enabling the resolution of long-standing open problems regarding both
randomized and quantum formulations of bounded-error, small-bias, and multiparty communica-
tion. Meanwhile, upper bounds on approximate degree have had several important algorithmic
uses. For instance, in computational learning theory, approximate degree upper bounds underly
the best known algorithms for PAC learning DNF and read-once formulas, and agnostically learning
disjunctions [3, 18,20].
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In this paper, we seek to advance our understanding of this fundamental complexity measure.
We focus on proving approximate degree lower bounds by specifying explicit dual polynomials,
which are dual solutions to a certain linear program capturing the approximate degree of any
function. These polynomials act as certificates of the high approximate degree of a function, and
their construction is of interest because these dual objects have been used recently to resolve
several long-standing open problems in communication complexity (e.g. [10, 13,22,39,41,42]). See
the survey of Sherstov [34] for an excellent overview of this body of literature.

Our Contributions. Our first result resolves the approximate degree of the function f(x) =
∧N
i=1 ∨N

j=1 xij, showing this quantity is Θ(N). Known as the two-level AND-OR tree, f is perhaps
the simplest function whose approximate degree was not previously characterized. A series of works
spanning nearly two decades proved incrementally larger lower bounds on the approximate degree
of this function, and this question was recently re-posed by Aaronson in a tutorial at FOCS 2008
[1]. Our proof not only yields a tight lower bound, but it specifies an explicit dual polynomial for
the high approximate degree of f , answering a question of Špalek [42] in the affirmative.

Our second result gives an explicit dual polynomial witnessing the high approximate degree of
any symmetric Boolean function, recovering a well-known result of Paturi [28]. Our solution builds
on work of Špalek [42], who gave an explicit dual polynomial for the OR function, and addresses
an open question from that work.

Our final contribution is to reprove several classical Markov-type inequalities from approxi-
mation theory. These inequalities bound the derivative of a polynomial in terms of its degree.
Combined with the well-known symmetrization technique (see e.g. [1, 25]), Markov-type inequal-
ties have traditionally been the primary tool used to prove approximate degree lower bounds on
Boolean functions (e.g. [2,4,26,40]). Our proofs of these inequalities specify explicit dual solutions
to a natural linear program (that differs from the one used to prove our first two results). While
these inequalities have been known for over a century [9, 23, 24], to the best of our knowledge our
proof technique is novel, and we believe it sheds new light on these results.

2 Preliminaries

We work with Boolean functions f : {−1, 1}n → {−1, 1} under the standard convention that 1
corresponds to logical false, and −1 corresponds to logical true. We let ‖f‖∞ = maxx∈{−1,1}n |f(x)|
denote the ℓ∞ norm of f . The ε-approximate degree of a function f : {−1, 1}n → {−1, 1}, denoted
degε(f), is the minimum (total) degree of any real polynomial p such that ‖p − f‖∞ ≤ ε, i.e.,

|p(x) − f(x)| ≤ ε for all x ∈ {−1, 1}n. We use d̃eg(f) to denote deg1/3(f), and use this to refer
to the approximate degree of a function without qualification. The choice of 1/3 is arbitrary, as

d̃eg(f) is related to degε(f) by a constant factor for any constant ε ∈ (0, 1). We let ORn and ANDn

denote the OR function and AND function on n variables respectively, and we let 1n ∈ {−1, 1}n
denotes the n-dimensional all-ones vector. Define s̃gn(x) = −1 if x < 0 and 1 otherwise.

In addition to approximate degree, block sensitivity is also an important measure of the complex-
ity of a Boolean function. We introduce this measure because functions with low block sensitivity
are an “easy case” in the analysis of Theorem 2 below. The block sensitivity bsx(f) of a Boolean
function f : {−1, 1}n → {−1, 1} at the point x is the maximum number of pairwise disjoint subsets
S1, S2, S3, · · · ⊆ {1, 2, . . . , n} such that f(x) 6= f(xS1) = f(xS2) = f(xS3) = . . . Here, xS denotes
the vector obtained from x by negating each entry whose index is in S. The block sensitivity bs(f)
of f is the maximum of bsx(f) over all x ∈ {−1, 1}n.
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2.1 A Dual Characterization of Approximate Degree

For a subset S ⊆ {1, . . . , n} and x ∈ {−1, 1}n, let χS(x) =
∏

i∈S xi. Given a Boolean function f , let
p(x) =

∑
|S|≤d cSχS(x) be a polynomial of degree d that minimizes ‖p−f‖∞, where the coefficients

cS are real numbers. Then p is an optimum of the following linear program.

min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for each x ∈ {−1, 1}n

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)
such that

∑
x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d

φ(x) ∈ R for each x ∈ {−1, 1}n

Strong LP-duality yields the following well-known dual characterization of approximate degree
(cf. [39]).

Theorem 1 Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then degε(f) > d if and only if
there is a polynomial φ : {−1, 1}n → R such that

∑

x∈{−1,1}n
f(x)φ(x) > ε, (1)

∑

x∈{−1,1}n
|φ(x)| = 1, (2)

and ∑

x∈{−1,1}n
φ(x)χS(x) = 0 for each |S| ≤ d. (3)

If φ satisfies Eq. (3), we say φ has pure high degree d. We refer to any feasible solution φ to the
dual LP as a dual polynomial for f .

3 A Dual Polynomial for the AND-OR Tree

Define AND-ORM
N : {−1, 1}MN → {−1, 1} by f(x) = ∧M

i=1 ∨N
j=1 xij . AND-ORN

N is known as the
two-level AND-OR tree, and its approximate degree has resisted characterization for close to two
decades. Nisan and Szegedy proved an Ω(N1/2) lower bound on d̃eg(AND-ORN

N ) in [26]. This was
subsequently improved to Ω(

√
N logN) by Shi [40], and improved further to Ω(N2/3) by Ambainis

[4]. Most recently, Sherstov proved an Ω(N3/4) lower bound in [37], which was the best lower bound
prior to our work. The best upper bound is O(N) due to Høyer, Mosca, and de Wolf [16], which
matches our new lower bound.
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By refining Sherstov’s analysis in [37], we will show that d̃eg(AND-ORM
N ) = Ω(

√
MN), which

matches an upper bound implied by a result of Sherstov [35]. In particular, this implies that the
approximate degree of the two-level AND-OR tree is Θ(N).

Theorem 2 d̃eg(AND-ORM
N ) = Θ(

√
MN).

Independent work by Sherstov. Independently of our work, Sherstov [33] has discovered the

same Ω(
√
MN ) lower bound on d̃eg(AND-ORM

N ). Both his proof and ours exploit the fact that
the OR function has a dual polynomial with one-sided error. Our proof proceeds by constructing
an explicit dual polynomial for AND-ORM

N , by combining a dual polynomial for ORN with a dual
polynomial for ANDM . In contrast, Sherstov mixes the primal and dual views: his proof combines
a dual polynomial for ORN with an approximating polynomial p for AND-ORM

N to construct an
approximating polynomial q for ANDM . The proof in [33] shows that q has much lower degree than
p, so the desired lower bound on the degree of p follows from known lower bounds on the degree of
q.

The proof of [33] is short (barely more than a page), while our proof has the benefit of yielding
an explicit dual polynomial witnessing the lower bound.

3.1 Proof Outline

Our proof is a refinement of a result of Sherstov [37], which roughly showed that approximate degree
increases multiplicatively under function composition. Specifically, Sherstov showed the following.

Proposition 3 ([37, Theorem 3.3]) Let F : {−1, 1}M → {−1, 1} and f : {−1, 1}N → {−1, 1}
be given functions. Then for all ε, δ > 0,

degε−4δ bs(F )(F (f, . . . , f)) ≥ degε(F ) deg1−δ(f).

Sherstov’s proof of Proposition 3 proceeds by taking a dual witness Ψ to the high ε-approximate
degree of F , and combining it with a dual witness ψ to the high (1 − δ)-approximate degree of
f to obtain a dual witness ζ for the high (ε − 4δbs(F ))-approximate degree of F (f, . . . , f). His
proof proceeds in two steps: he first shows that ζ has pure-high degree at least degε(F ) deg1−δ(f),
and then he lower bounds the correlation of ζ with F (f, . . . , f). The latter step of this analysis
yields a lower bound on the correlation of ζ with F (f, . . . , f) that deteriorates rapidly as the block
sensitivity bs(F ) grows.

Proposition 3 itself does not yield a tight lower bound for d̃eg(AND-ORM
N ), because the function

ANDM has maximum block sensitivity bs(ANDM ) = M . We address this by refining the second
step of Sherstov’s analysis in the case where F = ANDM and f = ORN . We leverage two facts.
First, although the block sensitivity of ANDM is high, it is only high at one input, namely the
all-true input. At all other inputs, ANDM has low block sensitivity and the analysis of Proposition
3 is tight. Second, we use the fact that any dual witness to the high approximate degree of ORN

has one-sided error. Namely, if ψ(x) < 0 for such a dual witness ψ, then we know that ψ(x) agrees
in sign with ORN (x). This property allows us to handle the all-true input to ANDM separately:
we use it to show that despite the high block-sensitivity of ANDM at the all-true input y, this input
nonetheless contributes positively to the correlation between ζ and F (f, . . . , f). The details of our
construction follow.
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3.2 Proof of Theorem 2

Nisan and Szegedy [26] proved the now well-known result that for any constant 0 < ε < 1,
degε(ANDn) = degε(ORn) = Θ(

√
n). Let Ψ : {−1, 1}M → R be a dual witness for the (1/3)-

approximate degree of ANDM whose existence is guaranteed by Theorem 1. There is some ε > 1/3
and d = Θ(

√
M) such that Ψ satisfies:

∑

x∈{−1,1}M
Ψ(x)ANDM (x) = ε, (4)

∑

x∈{−1,1}M
|Ψ(x)| = 1, (5)

∑

x∈{−1,1}M
Ψ(x)χS(x) = 0 for each |S| ≤ d. (6)

Likewise, let ψ be the dual witness for the (1 − (ε − 1/3)/4)-approximate degree of ORN . By
Theorem 1, there is some δ < (ε− 1/3)/4 and some d′ = Θ(

√
N) such that ψ satisfies:

∑

x∈{−1,1}N
ψ(x)ORN (x) = 1− δ, (7)

∑

x∈{−1,1}N
|ψ(x)| = 1, (8)

∑

x∈{−1,1}N
ψ(x)χS(x) = 0 for each |S| ≤ d′. (9)

We will also make use of the following easy lemma, which tells us the precise values of ψ(1N )
and Ψ(−1M ). This is essentially a restatement of a result due to Gavinsky and Sherstov [14].

Lemma 4
1− δ =

∑

x∈{−1,1}N
ψ(x)ORN (x) = 2ψ(1N ). (10)

In particular, ψ(1N ) > 0. Similarly,

ε =
∑

x∈{−1,1}M
Ψ(x)ANDM (x) = −2Ψ(−1M ). (11)

In particular, Ψ(−1M ) < 0.

Proof of Lemma 4: The first part follows because

∑

x∈{−1,1}N
ψ(x)ORN (x) = 2ψ(1) −

∑

x∈{−1,1}N
ψ(x).

The second term on the right-hand side is zero because ψ is orthogonal to all polynomials of degree
at most d, and in particular ψ is orthogonal to the constant function. The proof for the second
part is similar.
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As in Sherstov’s proof of Proposition 3, we define ζ :
(
{−1, 1}N

)M → R by

ζ(x1, . . . , xM ) := 2MΨ(. . . , s̃gn(ψ(xi)), . . . )

M∏

i=1

|ψ(xi)|, (12)

where xi = (xi,1, . . . , xi,N ).
By Theorem 1, in order to show that ζ is a dual witness for the fact that the (1/3)-approximate

degree of AND-ORM
N is Ω(

√
MN), it suffices to show that

∑

(x1,...,xM)∈({−1,1}N )M

ζ(x1, . . . , xM )AND-ORM
N (x1, . . . , xM ) ≥ 1/3. (13)

∑

(x1,...,xM)∈({−1,1}N )M

|ζ(x1, . . . , xM )| = 1. (14)

∑

(x1,...,xM )∈({−1,1}N )M

ζ(x1, . . . , xM )χS(x1, . . . , xM ) = 0 for each |S| ≤ d · d′. (15)

Eq. (15) is proved exactly as in [37]; we provide Sherstov’s argument in Appendix A.2 for
completeness. We now argue that Expression (13) and Eq. (14) hold as well.

Proof of Eq. (14). Let µ be the distribution on
(
{−1, 1}N

)M
given by µ(x1, . . . , xM ) =

∏M
i=1 |ψ(xi)|.

Since ψ is orthogonal to the constant polynomial, it has expected value 0, and hence the string
(. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in {−1, 1}M when one samples (x1, . . . , xM ) according
to µ. Thus, ∑

(x1,...,xM)∈({−1,1}N )M

|ζ(x1, . . . , xM )| =
∑

z∈{−1,1}M
|Ψ(z)| = 1

by Eq. (5), proving Eq. (14).

Proof of Expression (13). Using the same distribution µ as in the proof of Eq. (14), observe
that ∑

(x1,...,xM )∈({−1,1}N )M

ζ(x1, . . . , xM )AND-ORM
N (x1, . . . , xM )

= 2MEµ[Ψ(. . . , s̃gn(ψ(xi)), . . . )ANDM (. . . ,ORN (xi), . . . )]

=
∑

z∈{−1,1}M
Ψ(z)


 ∑

(x1,...,xM )∈({−1,1}N )M

ANDM (. . . ,ORN (xi), . . . )µ(x1, . . . , xM |z)


 , (16)

where µ(x|z) denotes the probability of x under µ, conditioned on (. . . , s̃gn(ψ(xi)), . . . ) = z.
Let A1 = {x ∈ {−1, 1}N : ψ(x) ≥ 0,ORN (x) = −1} and A−1 = {x ∈ {−1, 1}N : ψ(x) <

0,ORN (x) = 1}, so A1 ∪ A−1 is the set of all inputs x where the sign of ψ(x) disagrees with
ORN (x). Notice that

∑
x∈A1∪A−1

|ψ(x)| = δ/2 because ψ has correlation 1− δ with ORN .

As noted in [37], for any given z ∈ {−1, 1}M , the following two random variables are identically
distributed:

• The string (. . . ,ORN (xi), . . . ) when one chooses (. . . , xi, . . . ) from the conditional distribution
µ(·|z).
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• The string (. . . , yizi, . . . ), where y ∈ {−1, 1}M is a random string whose ith bit independently
takes on value −1 with probability 2

∑
x∈Azi

|ψ(x)| ≤ δ.

Thus, Expression (16) equals

∑

z∈{−1,1}M
Ψ(z) ·E[ANDM (. . . , yizi, . . . )], (17)

where y ∈ {−1, 1}M is a random string whose ith bit independently takes on value −1 with
probability 2

∑
x∈Azi

|ψ(x)| ≤ δ.

We first argue that the term corresponding to z = −1M contributes −Ψ(z) to Expression (17).
By Eq. (10) of Lemma 4, if ORN (x) = 1 (i.e., if x = 1N ), then s̃gn(ψ(x)) = 1. This implies that A−1

is empty; that is, if s̃gn(ψ(x)) = −1, then it must be the case that ORN (x) = −1. Therefore, for z =
−1M , the yi’s are all −1 with probability 1, and hence Ey[ANDM (. . . , yizi, . . . )] = ANDM (−1M ) =
−1. Thus the term corresponding to z = −1M contributes −Ψ(z) to Expression (17) as claimed.

All z 6= −1M can be handled as in Sherstov’s proof of Proposition 3, because ANDM has low
block sensitivity at these inputs. To formalize this, we invoke the following proposition, whose
proof we provide in Appendix A.1 for completeness.

Proposition 5 ([37]) Let F : {−1, 1}M → {−1, 1} be a given Boolean function. Let y ∈ {−1, 1}M
be a random string whose ith bit is set to −1 with probability at most α ∈ [0, 1], and to +1 otherwise,
independently for each i. Then for every z ∈ {−1, 1}M ,

Py[F (z1, . . . , zM ) 6= F (z1y1, . . . , zMyM )] ≤ 2α bsz(F ).

In particular, since bsz(ANDM ) = 1 for all z 6= −1M , Proposition 5 implies that for all z 6= −1M ,
and F = ANDM , Py[F (z1, . . . , zM ) = F (z1y1, . . . , zkyk)] ≥ 1− 2δ.

Recalling that the term corresponding to z = −1M contributes −Ψ(−1M ) to the sum, we obtain
the following lower bound on Expression (17).

∑

z∈{−1,1}M
Ψ(z)·E[ANDM (. . . , yizi, . . . )] ≥ −Ψ(−1M )+


 ∑

z 6=−1M

Ψ(z)ANDM (z)


−4δ


 ∑

z 6=−1M

|Ψ(z)|




≥


 ∑

z∈{−1,1}M
Ψ(z)ANDM (z)


− 4δ = ε− 4δ > 1/3.

This completes the proof of Theorem 2.

Remark 6 Špalek [42] has exhibited an explicit dual witness showing that the ε-approximate degree
of both the AND function and the OR function is Ω(

√
n), for ε = 1/14 (in fact, we generalize

Špalek’s construction to any symmetric function in Section 4 below). In Section 4.6 we show how
to generalize Špalek’s argument in a different way to handle any constant ε ∈ (0, 1). With these
dual polynomials in hand, the dual solution ζ given in our proof is completely explicit. This answers
a question of Špalek [42, Section 4] in the affirmative.
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4 Dual Polynomials for Symmetric Boolean Functions

In this section, we construct a dual polynomial witnessing a tight lower bound on the approxi-
mate degree of any symmetric function. The lower bound we recover was first proved by Paturi
[28] via a symmetrization argument combined with the classical Markov-Bernstein inequality from
approximation theory (see Section 5). Paturi also provided a matching upper bound. Špalek [42],
building on work of Szegedy, exhibited an explicit dual witness to the Ω(

√
n) approximate degree

of the OR function and asked whether one could construct an analogous dual polynomial for the
symmetric t-threshold function [42, Section 4]. We accomplish this in the more general case of
arbitrary symmetric functions by extending the ideas underlying Špalek’s dual polynomial for OR.

4.1 Symmetric functions

For a vector x ∈ {−1, 1}n, let |x| = 1
2(n − (x1 + · · · + xn)) denote the number of −1’s in x. A

Boolean function f : {−1, 1}n → {−1, 1} is symmetric if f(x) = f(y) whenever |x| = |y|. That is,
the value of f depends only on the number of inputs that are set to −1. The simplest symmetric
functions are the t-threshold functions:

τt(x) =

{
−1 if |x| ≥ t

1 otherwise.

Important special cases include OR = τ1, AND = τn, and the majority function MAJ = τ⌈n/2⌉. Let
[n] = {0, 1, . . . , n}. To each symmetric function f , we can associate a unique univariate function
F : [n] → {−1, 1} by taking F (|x|) = f(x). Throughout this section, we follow the convention that
lower case letters refer to multivariate functions, while upper case letters refer to their univariate
counterparts.

We now discuss the dual characterization of approximate degree established in Theorem 1 as
it applies to symmetric functions. Following the notation in [42], the standard inner product
p · q =∑x∈{−1,1}n p(x)q(x) on symmetric functions p, q induces an inner product on the associated
univariate functions:

P ·Q :=
n∑

i=0

(
n

i

)
P (i)Q(i).

We refer to this as the correlation between P andQ. Similarly, the ℓ1-norm ‖p‖1 =
∑

x∈{−1,1}n |p(x)|
induces a norm ‖P‖1 =

∑n
i=0

(
n
i

)
P (i). These definitions carry over verbatim when f is real-valued

instead of Boolean-valued.
If f is symmetric, we can restrict our attention to symmetric φ in the statement of Theorem 1

and it becomes convenient to work with the following reformulation of Theorem 1.

Corollary 7 A symmetric function f : {−1, 1}n → {−1, 1} has ε-approximate degree greater than
d if and only if there exists a symmetric function φ : {−1, 1}n → R with pure high degree d such
that

Φ · F
‖Φ‖1

=
φ · f
‖φ‖1

> ε.

(Here, F and Φ are the univariate function associated to f and φ, respectively).
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We clarify that the pure high degree of a multivariate polynomial φ does not correspond to the
smallest degree of a monomial in the associated univariate function Φ (even though the ordinary
degree of a symmetric φ is the largest degree of a monomial in Φ). When we talk about the
pure high degree of a univariate polynomial Φ, we mean the pure high degree of its corresponding
multilinear polynomial φ.

We exploit the following method for constructing polynomials of pure high degree d. Let ψ
be a multivariate polynomial of degree n − d, and let χ[n](x) denote the parity function on n
variables. Consider the function φ(x) = ψ(x)χ[n](x), i.e., φ is obtained by multiplying ψ by the
parity function. It is straightforward to check that φ has pure high degree d. Notice that if ψ is
symmetric, then so is φ, and the corresponding univariate polynomials satisfy Φ(k) = Ψ(k) · (−1)k .
Therefore, to show that a symmetric function f with a “jump” at t has approximate degree greater
than d, it is enough to exhibit an (n− d)-degree univariate polynomial Ψ such that (−1)iΨ(i) has
high correlation with its associated univariate function F .

We are now in a position to state the lower bound that we will prove in this section. Paturi [28]
completely characterized the approximate degree of a symmetric Boolean function by the location
of the layer t closest to the center of the Boolean hypercube such that F (t− 1) 6= F (t).

Theorem 8 ([28, Theorem 4]) Given a nonconstant symmetric Boolean function f with asso-
ciated univariate function F , let Γ(f) = min{|2t − n − 1| : F (t − 1) 6= F (t), 1 ≤ k ≤ n}. Then

d̃eg(f) = Θ(
√
n(n− Γ(f)).

Paturi proved the upper bound non-explicitly by appealing to the Jackson theorems from ap-
proximation theory. He proved the lower bound by combining symmetrization with an appeal to
the Markov-Bernstein inequality (see Section 5) – however, his proof does not yield an explicit dual
polynomial. We construct an explicit dual polynomial to prove the following proposition, which is
easily seen to imply Paturi’s lower bound.

Proposition 9 Given f and F as above, let 1 ≤ t ≤ n be an integer with F (t− 1) 6= F (t). Then

d̃eg(f) = Ω(
√
t(n− t+ 1)).

In particular, the approximate degree of the symmetric t-threshold function is Ω(
√
t(n− t+ 1)).

This special case serves as a useful model for understanding our construction.

4.2 Proof outline

We start with an intuitive discussion of Špalek’s construction of a dual polynomial for OR, with
the goal of elucidating how we extend the construction to arbitrary symmetric functions. Consider
the perfect squares S = {k2 : k2 ≤ n} and the univariate polynomial

R(x) =
1

n!

∏

i∈[n]\S
(x− i).

This polynomial is supported on S, and for all k2 ∈ S,

(
n

k2

)
|R(k2)| =

(
n

k2

)
· 1

n!
·

∏
i∈[n]
i 6=k2

|k2 − i|
∏

i∈S
i 6=k2

|k2 − i| =
1∏

i∈S
i 6=k2

|k2 − i| .

9



Note the remarkable cancellation in the final equality. This quotient is maximized at k = 1. In
other words, the threshold point t = 1 makes the largest contribution to the ℓ1 mass of R. Moreover,
one can check that R(0) is only a constant factor smaller than R(1).

Špalek exploits this distribution of the ℓ1 mass by considering the polynomial P (x) = R(x)/(x−
2). The values of P (x) are related to R(x) by a constant multiple for x = 0, 1, but P (k) decays as
|P (k2)| ≈ |R(k2)|/k2 for larger values. This decay is fast enough that a constant fraction of the ℓ1
mass of P comes from the point P (0).1 Now P is an (n−Ω(

√
n))-degree univariate polynomial, so

we just need to show that Q(i) = (−1)iP (i) has high correlation with OR. We can write

Q ·OR = 2Q(0) −Q · 1 = 2Q(0),

since the multilinear polynomial associated to Q has pure high degree Ω(
√
n), and therefore has

zero correlation with constant functions. Because a constant fraction of the ℓ1 mass of Q comes
from Q(0), it follows that |Q · OR |/‖Q‖1 is bounded below by a constant. By perhaps changing
the sign of Q, we get a good dual polynomial for OR.

A natural approach to extend Špalek’s argument to symmetric functions with a “jump” at t is
the following:

Step 1: Find a set S with |S| = Ω(
√
t(n− t+ 1)) such that the maximum contribution to the ℓ1

norm of R(x) = 1
n!

∏
i∈[n]\S(x− i) comes from the point x = t. Equivalently,

(
n

j

)
|R(j)| = 1∏

i∈S
i 6=j

|j − i|

is maximized at j = t.

Step 2: Define a polynomial P (x) = R(x)/(x − (t − 1))(x − (t + 1)). Dividing R(x) by the factor
(x− t−1) is analogous to Špalek’s division of R(x) by (x−2). We also divide by (x− t+1)
because we will ultimately need our polynomial P (x) to decay faster than Špalek’s by a
factor of |x − t| as x moves away from the threshold. By dividing by both (x − t − 1)
and (x − t + 1), we ensure that most of the ℓ1 mass of P is concentrated at the points
t− 1, t, t+ 1.

Step 3: Obtain Q by multiplying P by parity, and observe that Q(t − 1) and Q(t) have opposite
signs. Since F (t− 1) and F (t) also have opposite signs, we can ensure that both t− 1 and
t contribute positive correlation. Suppose these two points contribute a 1/2 + ε constant
fraction of the ℓ1-norm of Q. Then even in the worst case where the remaining points all
contribute negative correlation, Q · F is still at least a 2ε fraction of ‖Q‖1 and we have a
good dual polynomial. Notice that the pure high degree of Q is |S|+2, yielding the desired
lower bound.

In Section 4.3, we carry out this line of attack in the case where t = Ω(n). This partial result
also gives the right intuition for general t, although the details are somewhat more complicated.
Namely, in Step 3, we may need to rely on the alternative points t and t + 2 to contribute high
positive correlation between F and Q, rather than inputs t− 1 and t.

1It is also necessary to check that P (2) is only a constant factor larger than P (0).
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4.3 A Dual Polynomial for MAJ

We first construct a dual polynomial that witnesses an Ω(t) lower bound for symmetric functions
having a “jump” at t ≤ n/2. Notice that this bound matches Proposition 9 if t = Ω(n), but is
weaker otherwise (e.g. in the case of OR). By setting t = ⌈n2 ⌉, we can write down down a clean
dual polynomial for the majority function MAJ. This case is illustrative, as one can view Špalek’s
dual polynomial for OR and our dual polynomial for MAJ as two ends of a spectrum, with our
general construction interpolating between the two extremes.

Proposition 10 Let f : {−1, 1}n → {−1, 1} be a Boolean function with associated univariate

function F . If 1 ≤ t ≤ n/2 such that F (t− 1) 6= F (t), then d̃eg(f) = Ω(t).

Proof: We follow the proof outline given in the previous section. Define the set

S = {t± 4ℓ : 0 ≤ ℓ ≤ t/4}.

Note that |S| = Ω(t). We claim that πS(i) :=
∏

j∈S,j 6=i |j − i| is minimized at i = t. Notice that
translating all points in S by a constant does not affect πS(i), and scaling all points in S by a
constant does not affect argminiπS(i). Thus, it is enough to show that πS∗(i) is minimized at i = 0
for the set S∗ = {±ℓ : ℓ ≤ t}. In this case, πS∗(i) takes the simple form (t− i)!(t+ i)!, and we see
that

πS∗(0)

πS∗(i)
=

(t!)2

(t− i)!(t+ i)!
=

t

t+ |i| ·
t− 1

t+ |i| − 1
· · · · · t− |i|+ 1

t+ 1

is a product of terms smaller than 1, so πS∗(i) is indeed minimized at i = 0.
With Step 1 completed, we let T = S ∪ {t− 1, t+ 1} and define the polynomial

P (x) = (−1)s
42h(h!)2

n!

∏

j∈[n]\T
(x− j),

where h = ⌊t/4⌋ and s is a sign bit to be determined later. The normalization is chosen so that(n
t

)
|P (t)| = 1. We divide by both (x− (t− 1)) and (x− (t+ 1)) to ensure that the rate of decay of

P (x) is at least quadratic as x moves away from t. This will ultimately allow us to show that most
of the ℓ1 mass of P comes from the points x = t− 1 and x = t.

Write the ℓ1 contribution due to the point r as

(
n

r

)
|P (r)| =

(
n

r

)
42h(h!)2

n!

∏
j∈[n]\{r} |r − j|
∏

j∈T\{r} |r − j| =
42h(h!)2∏

j∈T\{r} |r − j| .

For r = t± 1 this becomes

42h(h!)2

2
∏h

ℓ=1(4ℓ− 1)(4ℓ + 1)
=

1

2

h∏

ℓ=1

(
1 +

1

16ℓ2 − 1

)

≤ 1

2
exp

(
h∑

ℓ=1

1

15ℓ2

)

≤ 1

2
eπ

2/90 < 1,
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where the first inequality holds because 1+x ≤ ex for all x ≥ 0. This shows that the ℓ1 contributions
of the points t− 1 and t+ 1 are equal, and not too large:

(
n

t− 1

)
|P (t− 1)| =

(
n

t+ 1

)
|P (t+ 1)| < 1.

Now we analyze the remaining summands, and show that their total contribution is much
smaller than 1. Recall that the choice i = t minimizes πS(i), and that πS(t) = 42h(h!)2. Therefore,

(
n

t+ 4ℓ

)
|P (t+ 4ℓ)| = 42h(h!)2∏

j∈T\{t+4ℓ} |t+ 4ℓ− j| ≤
1

|4ℓ+ 1||4ℓ − 1| ≤
1

15ℓ2
.

We can use this quadratic decay to bound the total ℓ1 mass of the points outside of {t− 1, t, t+1}:

∑

j∈S\{t}

(
n

j

)
|P (j)| ≤

h∑

ℓ=−h

1

15ℓ2
≤ 2

15
· π

2

6
<

1

4
.

For the final part of our construction, we multiply P by parity to get Q(i) = (−1)iP (i). Since
P (t− 1) and P (t) have the same sign, Q(t− 1) and Q(t) have opposite signs. Since F (t− 1) and
F (t) also have opposite signs, we can choose s ∈ {−1, 1} to ensure that

Q · F >

(
n

t− 1

)
|P (t− 1)|+

(
n

t

)
|P (t)| −

(
n

t+ 1

)
|P (t+ 1)| −

∑

j∈S\{t}

(
n

j

)
|P (j)|

≥ 1− 1

4
=

3

4
.

As the total ℓ1 mass ‖P‖1 is at most 3 + 1
4 , we get that (Q · F )/‖Q‖1 > 3

13 . By Corollary 7, the
3
13 -approximate degree of f is Ω(t).

4.4 General Symmetric Boolean Functions

We now show how to generalize our dual polynomial for MAJ and Špalek’s dual polynomial for
OR to handle arbitrary symmetric functions. Recall that we are given a Boolean function f , an
associated univariate function F , and a number t such that F (t − 1) 6= F (t). As our goal is to

show that d̃eg(F ) = Ω(
√
t(n− t+ 1)), we may without loss of generality assume that t ≤ n/2

throughout this section. As the case of t = 1 is handled by Špalek’s construction, we may also
assume t ≥ 2 to improve the constants in our analysis.

As a first attempt at defining a suitable set S for use in constructing a dual polynomial for f ,
we consider the set S′ = {tk2 : k2 ≤ n/t}. Fact 24 in Appendix B implies that

∏
i∈S′,i 6=j |j − i|

is minimized at t. Unfortunately, the set S′ is too small – it has size only Θ(
√
n/t) instead of

Θ
(√

t(n− t+ 1)
)
. The trick is to notice that the distance between any two points in S′ is at least

t. Therefore, we should be able to interlace Θ(t) translated copies of S′, and still have the desired
product minimized near t. The following lemma gives the details, but its proof is rather technical
and deferred to Appendix B.

12



Lemma 11 Let

S = {tk2 + 4ℓ : 1 ≤ k ≤
√

(n− t+ 1) /t, 0 ≤ ℓ ≤ ct} ∪ {t− 4ℓ : 0 ≤ ℓ ≤ ct}

where c ≤ 1/32. Then for i ∈ S, the product

πS(i) :=
∏

i′∈S
i′ 6=i

|i− i′|

is minimized for some i∗ with (1− 4c)t ≤ i∗ ≤ (1 + 4c)t.

Thus the product of differences is minimized somewhere in a Θ(t)-sized neighborhood of t. The
exact location depends delicately on n and t. However, since the product πS(i) is invariant under
translations of S, we can assume that the minimizer i∗ is one of the points t− 1, t, or t+ 1.

For intuition, observe that one can view the set S of Lemma 11 as interpolating between the set
for OR used by Špalek, and the set used to prove our Ω(t) lower bound in Proposition 14. Notice
that S contains all points of the form t±4ℓ, plus additional points corresponding to perfect squares
when t = o(n).

Let S be the set in Lemma 11 (or a translate thereof), and suppose the corresponding product
is minimized at i∗. Let T = S ∪ {i∗ − 1, i∗ + 1}. Define the polynomial

P (x) = (−1)s
πS(i

∗)
n!

∏

j∈[n]\T
(x− j),

where the sign bit s is to be determined later. The choice of normalization is so that
(n
i∗

)
|P (i∗)| = 1.

Our goal is now to show that the ℓ1 mass of P is concentrated at the points i∗ − 1, i∗ and i∗ + 1.
The following lemma shows that the contribution of a point x to the ℓ1 mass of P decays at a
quadratic rate as x moves away from i∗. This is precisely because we include both points i∗ − 1
and i∗ + 1 in T . Full details are in Appendix B.

Lemma 12 Let r = tk2 + 4ℓ for k ≥ 2 and 0 ≤ ℓ ≤ ct. Then
(n
r

)
|P (r)| ≤ 1/(t2(k2 − 2)2). If

v = i∗ + 4ℓ, then
(
n
v

)
|P (v)| ≤ 1/(16ℓ2 − 1).

Since the sum of the inverse squares of the integers is bounded by a constant, the total contri-
bution of these points to ‖P‖1 is dominated by the mass contributed by P (i∗).

Lemma 13 ∑

j∈T\{i∗−1,i∗,i∗+1}

(
n

j

)
|P (j)| ≤ 2

5
.

This bound allows us to sketch a proof of Proposition 9 in full generality.

Proof sketch of Proposition 9: We consider three cases based on which of
( n
i∗−1

)
|P (i∗ −

1)|,
(n
i∗

)
|P (i∗)| = 1, and

( n
i∗+1

)
|P (i∗ + 1)| is the smallest. The relationship between these terms

determines how we choose the location of i∗ relative to the “jump” at t. We set i∗ so that after
multiplying P by parity to obtain a polynomial Q, the larger two of these terms contribute posi-
tively to Q · F . They will hence dominate the (possibly negative) correlation due to the smallest

13



term, as well as the contribution of size at most 2/5 due to remaining points in T . Ultimately, we
show that (Q · F )/‖Q‖1 ≤ 1

14 , which gives the asserted lower bound by Corollary 7. The calcu-
lations for each of these cases are analogous to those in the proof of Proposition 14 and given in
Appendix B.

4.5 On Complementary Slackness

In this section, we give some additional intuition, based on complementary slackness, that helps to
explain the structure of the dual polynomial exhibited in Section 4.4. The discussion that follows
is deliberately informal and is meant to complement the formal argument given in Section 4.4.

We illustrate the idea by considering the symmetric t-threshold function f , which evaluates
to −1 on inputs of Hamming weight at least t and evaluates to 1 on all other inputs. In [32],
Sherstov gives an explicit, asymptotically optimal polynomial p for approximating f in the ℓ∞
norm. If this polynomial p were in fact an exactly optimal solution to the primal linear program
of Section 2.1, then complementary slackness (cf. [29, pg. 95]) would imply that the optimal dual
polynomial φ is supported on the points corresponding to the constraints made tight by the primal
optimal polynomial p. That is, it would hold that φ(x) = 0 except for those x ∈ {−1, 1}n for which
|p(x)− f(x)| = ε. We will refer to such values of x as maximum-error points of p.

While it is not clear whether Sherstov’s polynomial p is exactly optimal, our dual polynomial is
still approximately consistent with the conditions obtained by applying complementary slackness
to p. Sherstov’s construction of p works by taking a Chebyshev polynomial of degree Θ(

√
n/t),

shifting and scaling it, and then composing it with a Chebyshev polynomial of degree Θ(t). This
is reminiscent of our dual solution, which interlaces Θ(t) copies of a set of size Θ(

√
n/t). In

general, it is difficult to determine the precise maximum-error points of Sherstov’s polynomial p.
However, our dual polynomial can be viewed as placing nonzero weight on close approximations to
the maximum-error points of p. We explain this viewpoint below.

Let Td : R → R denote the degree-d Chebyshev polynomial of the first kind. It is well-known
that the extreme points of Td are the degree-d Chebyshev nodes, which take the form cos(kπ/d) for
0 ≤ k ≤ d. Truncating the Taylor expansion of cos(x) = 1 − x2/2 + . . . after the quadratic term,
one sees that for d =

√
n, cos(kπ/d) ≈ 1− (ck2/d2) = 1− ck2/n for some constant c.

It is known [26] that an appropriately shifted-and-scaled Chebyshev polynomial Qd of degree d =
Θ(

√
n) itself yields an asymptotically optimal approximation Qd(

∑n
i=1 xi/n) to the OR function.

Recall from Section 4.2 that Špalek’s dual polynomial for the OR function [42] only places nonzero
weight on inputs of Hamming weight equal to a perfect square (or equal to two). We can therefore
view Špalek’s dual polynomial for the OR function as placing nonzero weight only on points whose
Hamming weight closely approximates a constant multiple of a Chebyshev node (Section 4.6 shows
that the dual polynomial for the OR function is robust to scaling the non-vanishing Hamming
weight values by constants, i.e., it suffices to place nonzero weight only on inputs of Hamming
weight ck2 or 1 for any constant c ≥ 2).

Moving to the general case and eliding many details, Sherstov approximates the symmetric
t-threshold function f with a polynomial p roughly of the form

p(x) = Tt

(
q

(
n∑

i=1

xi/n

))
,
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where q is a shifted-and-scaled version of the Chebyshev polynomial of degree
√
n/t. Following

the intuition above that the degree-d Chebyshev nodes are approximated by points of the form
1−ck2/d2 for some constant c, the inner polynomial q(

∑n
i=1 xi/n) in Sherstov’s construction hits its

extreme points at inputs of Hamming weight close to ctk2 for the non-negative integers k ≤
√
n/t.

Moreover, q alternates between −1 and +1 at its extreme points. Thus, as the Hamming weight
of the input x increases from ctk2 to ct(k+1)2, the inner polynomial q(

∑n
i=1 xi/n) passes through

all t maximum-error points of the outer polynomial Tt.
Note also that the degree-d Chebyshev nodes cos(kπ/d) ≈ 1 − k2/d2 are clustered near the

endpoints of the interval [−1, 1] rather than the middle of the interval, so most of the maximum-
error points of the composed polynomial in fact fall very close to inputs of Hamming weight ctk2.

To see how these maximum-error points correspond to the support of our dual polynomial φ
for the t-threshold function, recall that there is some constant c′ such φ takes nonzero values only
on inputs with Hamming weight in the set

S = {tk2 + 4ℓ : 1 ≤ k ≤
√

(n− t+ 1) /t, 0 ≤ ℓ ≤ c′t} ∪ {t− 4ℓ : 0 ≤ ℓ ≤ c′t}.

Roughly speaking, our dual witness thus takes nonzero values only on inputs of Hamming weight
very close to tk2 for each k ≤

√
n/t (i.e., for each Hamming weight of the form tk2, our dual witness

takes nonzero values on t distinct Hamming weights in the vicinity of tk2), just as as predicted
above.

4.6 A Dual Polynomial for the ε-Approximate Degree of OR

Špalek [42] constructed an explicit dual witness for the fact that the OR function on n variables has
(1/14)-approximate degree Ω(

√
n). We extend his argument to exhibit a dual witness that shows

that OR has ε-approximate degree Ω(
√
n) for any constant ε ∈ (0, 1).

Proposition 14 Let ε ∈ (0, 1). Then ORn has approximate degree Ω(
√
n(1− ε)).

Proof: As before, we associate with each symmetric function p a univariate function P and vice
versa. Let c = ⌈8/(1 − ε)⌉. Let m = ⌊

√
n/c⌋ and define the set

T = {1} ∪ {ck2 : 0 ≤ k ≤ m}.

Note that |T | = Ω(
√
n/c). Define the polynomial

P (x) = (−1)s
c2m(m!)2

n!

∏

j∈[n]\T
(x− j),

where s is a sign bit to be determined later. It is easy to check that |P (0)| = 1.
The ℓ1 contribution due to the r’th layer of the Boolean hypercube is

(
n

r

)
|P (r)| =

(
n

r

)
cm(m!)2

n!

∏
j∈[n]\{r} |r − j|
∏

j∈T\{r} |r − j| =
cm(m!)2∏

j∈T\{r} |r − j| .

For r = 1 the right hand side evaluates to

cm(m!)2∏m
i=1(ci

2 − 1)
=

m∏

i=1

i2

i2 − 1/c
≥ 1.
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Thus, the total ℓ1 contribution of the inputs of Hamming weight 1 is at least 1.
For r = ck2 where k > 0, we get

cm(m!)2

(ck2 − 1)
∏

i∈[m]\{k} |ci2 − ck2| =
(m!)2

(ck2 − 1)
∏

i∈[m]\{k}(i+ k)|i− k|

=
2(m!)2

(ck2 − 1)(m+ k)!(m− k)!

≤ 2

ck2 − 1

where the last inequality follows as in [42] because

(m!)2

(m+ k)!(m− k)!
=

m

m+ k
· m− 1

m+ k − 1
· . . . · m− k + 1

m+ 1

is a product of factors that are each smaller than 1. This shows that the total ℓ1 contribution of
the Hamming layers excluding 0 and 1 is at most

m∑

k=1

2

ck2 − 1
<

∞∑

k=1

4

ck2
<

8

c
.

For the final part of our construction, we let Q(i) = (−1)iP (i). Then the multilinear polynomial
corresponding to Q has pure high degree Ω(

√
n(1− ε)). Since P (0) and P (1) have the same sign,

Q(0) and Q(1) have opposite signs. Since OR(0) and OR(1) also have opposite signs, we can choose
s ∈ {−1, 1} to ensure that

Q ·OR ≥
(
n

0

)
|P (0)| +

(
n

1

)
|P (1)| −

∑

j∈S\{0,1}

(
n

j

)
|P (j)|

≥ 1 + n|P (1)| − 8

c
.

As the total ℓ1 mass ‖Q‖1 of Q is at most 1 + n|P (1)|+ 8/c, we see that

Q ·OR

‖Q‖1
≥ 1 + n|P (1)| − 8/c

1 + n|P (1)| + 8/c
= 1− 16

c+ cn|P (1)| + 8
≥ 1− 16

2c+ 8
.

Since c > 8/(1−ε), the right hand side is at least ε. Corollary 7 then implies that the ε-approximate
degree of OR is Ω(

√
n(1− ε)).

5 A Constructive Proof of Markov-Bernstein Inequalities

The Markov-Bernstein inequality for polynomials with real coefficients asserts that

|p′(x)| ≤ min

{
n√

1− x2
, n2
}
‖p‖[−1,1], x ∈ (−1, 1)
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for every real polynomial of degree at most n. Here, and in what follows,

‖p‖[−1,1] := sup
y∈[−1,1]

|p(y)|.

This inequality has found numerous uses in theoretical computer science, especially in conjunc-
tion with symmetrization as a method for bounding the ε-approximate degree of various functions
(e.g. [2, 8, 18,21,26,28,30,39]).

We prove a number of important special cases of this inequality based on linear programming
duality. Our proofs are constructive in that we exhibit explicit dual solutions to a linear program
bounding the derivative of a constrained polynomial.

The special cases of the Markov-Bernstein inequality that we prove are sufficient for many
applications in theoretical computer science. The dual solutions we exhibit are remarkably clean,
and we believe that they shed new light on these classical inequalities.

5.1 Proving the Markov-Bernstein Inequality at x = 0

The following linear program with uncountably many constraints captures the problem of finding
a polynomial p(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0 with real-valued coefficients that maximizes

|p′(0)| subject to the constraint that ‖p‖[−1,1] ≤ 1. Below the variables are c0, . . . cn, and there is a
constraint for every x ∈ [−1, 1]. To handle the case where i = 0 and x = 0, we use the convention
00 = 1.

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x ∈ [−1, 1]
−∑n

i=0 cix
i ≤ 1, ∀x ∈ [−1, 1]

One might initially be concerned that our goal is to bound |p′(x)|, while the above LP only
yields an upper bound on p′(x). But for any polynomial p satisfying ‖p‖[−1,1] ≤ 1 whose derivative
is negative, −p is a feasible solution to the above LP achieving value |p′(x)|. Thus, the value of
the above LP indeed equals supp∈Bn

|p′(0)|, where B denotes the set of all degree n polynomials p
satisfying ‖p′‖[−1,1] ≤ 1.

We will actually upper bound the value of the following LP, which is obtained from the above
by throwing away all but finitely many constraints. Not coincidentally, the constraints that we
keep are those that are tight for the primal solution corresponding to the Chebyshev polynomials
of the first kind. Throughout this section, we refer to this LP as Primal.

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x = cos(jπ/n), j ∈ {0, 2, . . . , n − 1}
−∑n

i=0 cix
i ≤ 1, ∀x = cos(jπ/n), j ∈ {1, 3, . . . , n}

The dual to Primal can be written as

min
∑n

i=0 yi
such that Ay = e1

yj ≥ 0 ∀j ∈ {0, . . . , n}
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where Aij = (−1)j cosi(jπ/n) and e1 = (0, 1, 0, 0, 0, . . . , 0)T , again taking 00 = 1. We refer to
this linear program as Dual.

Our goal is to prove that Primal has value at most n. For odd n, it is well-known that this
value is achieved by the coefficients of (−1)(n−1)/2Tn(x), the degree n Chebyshev polynomial of the
first kind. Our knowledge of this primal-optimal solution informed our search for a dual-optimal
solution, but our proof makes no explicit reference to the Chebyshev polynomials, and we do not
need to invoke strong LP duality; weak duality suffices.

Our arguments make use of a number of trigonometric identities that can all be established by
elementary methods. These identities are presented in Appendix C.

Proposition 15 Let n = 2m + 1 be odd. Define the (n + 1) × (n + 1) matrix A by Aij =
(−1)j+m cosi(jπ/n) for 0 ≤ i, j ≤ n. Then

y =
1

n
(1/2, sec2(π/n), sec2(2π/n), . . . , sec2((n − 1)π/n), 1/2)T

is the unique solution to Ay = e1, where e1 = (0, 1, 0, 0, . . . , 0)T .

Before proving the proposition, we explain its consequences. Note that y is clearly nonnegative,
and thus is the unique feasible solution for Dual. Therefore it is the dual-optimal solution, and
exactly recovers the Markov-Bernstein inequality at x = 0:

Corollary 16 Let p be a polynomial of degree n = 2m+ 1 with ‖p‖[−1,1] ≤ 1. Then p′(0) ≤ n.

Proof: Let y be as in Proposition 15. This is the unique feasible point for Dual. By Lemma 26
in Appendix C,

n−1∑

j=0

sec2
(
jπ

n

)
= n2,

so we immediately see that
∑n

j=0 yj = n. By weak LP duality, the value of Primal is at most n.

While we have recovered the Markov-Bernstein inequality only for odd-degree polynomials at
the point x = 0, a simple “shift-and-scale” argument recovers the asymptotic bound for any x
bounded away from the endpoints {−1, 1}.

Corollary 17 Let p be a polynomial of degree n with ‖p‖[−1,1] ≤ 1. Then for any x0 ∈ (−1, 1),

|p′(x0)| ≤ n+1
1−|x0|‖p‖[−1,1]. In particular, for any constant ε ∈ (0, 1), ‖p′‖[−1+ε,1−ε] = O(n)‖p‖[−1,1].

Proof: Assume without loss of generality that x0 ∈ [0, 1) – an identical argument holds if x0 ∈
(−1, 0]. By Corollary 16, |q′(0)| ≤ (n+1)‖q‖[−1,1] for any polynomial q of degree at most n. Define
the degree-n polynomial q(x) = p((1−x0)x+x0). Since (1−x0)x+x0 ∈ [−1, 1] for every x ∈ [−1, 1],
we have ‖q‖[−1,1] ≤ ‖p‖[−1,1]. Moreover, q′(x) = p′((1−x0)x+x0)(1−x0), so q′(0) = p′(x0)(1−x0).
Therefore,

|p′(x0)| =
|q′(0)|
1− |x0|

≤ n+ 1

1− |x0|
‖p‖[−1,1].
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We remark that the full Markov-Bernstein inequality guarantees that |p′(x)| ≤ n√
1−x2

‖p‖[−1,1],

which has quadratically better dependence on the distance from x to ±1. However, for x bounded
away from ±1 our bound is asymptotically tight and sufficient for many applications in theoretical
computer science. Moreover, we can recover the Markov-Bernstein inequality near ±1 by consider-
ing a different linear program (cf. Subsection 5.2).

Proof of Proposition 15: We write

(Ay)i =
(−1)m

2n
+

(−1)i+m+1

2n
+

1

n

n−1∑

j=1

(−1)j+m cosi−2

(
jπ

n

)
. (18)

Our goal is to show that (Ay)i = 1 for i = 1, and (Ay)i = 0 for all other i. The case where i is
even is easy. Since cos(π − θ) = − cos θ, the terms in the sum naturally pair up. Specifically,

(−1)j+m cosi−2

(
jπ

n

)
+ (−1)(n−j)+m cosi−2

(
(n− j)π

n

)
= 0,

so the sum in Eq. (18) is clearly zero.
Now suppose i is odd and larger than 1. Then Lemma 28 in Appendix C implies that (Ay)i = 0.

All that remains is the case of i = 1. We write the sum explicitly as

(Ay)1 =
(−1)m

n
+

1

n

n−1∑

j=1

(−1)j+m sec

(
jπ

n

)
.

By Lemma 29 in Appendix C, this evaluates to 1.

5.2 Proving the Markov-Bernstein Inequality at x = 1

A similar strategy allows us to bound the derivative of a degree-n polynomial p at the point x = 1.
We can expand p(x) around 1 as p(x) = cn(x− 1)n + cn−1(x− 1)n−1 + · · ·+ c1(x− 1) + c0. Then
p′(1) = c1. A modest update to Primal captures the problem of maximizing p′(1) subject to
boundedness constraints at the Chebyshev nodes.

max c1
such that

∑n
i=0 ci(x− 1)i ≤ 1, ∀x = cos(jπ/n), 0 ≤ j ≤ n, j even

−∑n
i=0 ci(x− 1)i ≤ 1, ∀x = cos(jπ/n), 0 ≤ j ≤ n, j odd

The dual linear program takes the form

min
∑n

i=0 yi
such that By = e1

yj ≥ 0 ∀j ∈ {0, . . . , n}

where B0,0 = 1 and Bij = (−1)j(cos(jπ/n) − 1)i otherwise. The determinant of B is, up to sign,
a Vandermonde determinant, and in particular is nonzero. Thus, By = e1 has a unique solution.
Again, we can write down this solution explicitly.
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Proposition 18 Let n be a natural number, and define the (n + 1) × (n + 1) matrix B as above.
Then

y =

(
2n2 + 1

6
, csc2

( π
2n

)
, csc2

(
2π

2n

)
, . . . , csc2

(
(n − 1)π

2n

)
,
1

2

)

is the unique solution to By = e1.

Proof: We just need to show that By = e1. First, if i 6= 0 then

(By)i =
(−1)n(−2)i

2
+

n−1∑

j=1

(−1)j csc2
(
jπ

2n

)(
cos

(
jπ

n

)
− 1

)i

.

Using the half-angle identity sin2(θ/2) = (1− cos θ)/2, this becomes

(By)i = (−1)i+n2i−1 + (−1)i2i
n−1∑

j=1

(−1)j sin2i−2

(
jπ

2n

)
.

If i = 1, then the sine terms are identically 1 so (By)1 evaluates to 1 (note that the calculation is
slightly different depending on whether n is even or odd). If i > 1, then by Lemma 30 in Appendix
C, the sum of sine terms evaluates to 1

2(−1)n − (−1)n = −1
2(−1)n. Therefore, (By)i = 0 for all

i > 1.
Finally, we need to show that (By)0 = 0. We expand

(By)0 =
2n2 + 1

6
+

1

2
(−1)n +

n−1∑

j=1

(−1)j csc2
(
jπ

2n

)
.

By Lemma 32, this evaluates to 0.

Corollary 19 If p is a polynomial of degree n with ‖p‖[−1,1] ≤ 1, then p′(1) ≤ n2.

Proof: Let y be as in Proposition 18. Notice that yj ≥ 0 for all j ∈ {0, . . . , n}. Combined with
Proposition 18, it is clear that y is dual-feasible. By Lemma 31,

n∑

j=0

yj =
2n2 + 1

6
+

1

2
+

n−1∑

j=1

csc2
(
jπ

2n

)

=
n2

3
+

2

3
+

4n2 − 4

6
= n2.

By combining Corollary 19 with a shifting and scaling argument similar to the one used to prove
Corollary 17, we recover an asymptotic statement of Markov’s inequality for the first derivative of
a constrained polynomial.

Corollary 20 If p is a polynomial of degree n, then for all x0 ∈ [−1, 1] with x0 6= 0, |p′(x0)| ≤
n2

|x0|‖p‖[−1,1]. Thus, for any constant ε ∈ (0, 1), ‖p′‖[−1,−ε]∪[ε,1] = O(n2)‖p‖[−1,1].
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Proof: The argument is the same as in the proof of Corollary 17, except we instead use the
auxiliary polynomial q(x) = p(|x0|x).

Combining this with Corollary 17, we recover an asymptotically tight version of Markov’s in-
equality for the whole interval [−1, 1].

Corollary 21 If p is a polynomial of degree n, then for all x ∈ [−1, 1], |p′(x)| ≤ O(n2)‖p‖[−1,1].

5.3 Markov’s inequality for higher derivatives

In 1892, V. Markov proved the following generalization of the Markov-Bernstein inequality to higher
derivatives. Let p be a real polynomial of degree at most n, and let Tn be the nth Chebyshev
polynomial of the first kind. Then

|p(k)(x)| ≤ T (k)
n (1)‖p‖[−1,1]

for every x ∈ [−1, 1]. We use complementary slackness to prove an important special case of this

inequality, namely that p(k)(1) ≤ T
(k)
n (1)‖p‖[−1,1].

While A. A. Markov’s inequality for the first derivative has a short proof (see [12] for a proof
using tools from approximation theory), the generalization to higher derivatives is considered a
deep theorem [31]. The shortest known proof of this theorem proceeds in two steps [31, Section
3.1]. In the first step, it is shown that among all points x ∈ [−1, 1], the quantity supp∈B |p(k)(x)| is
maximized at x = 1, where again B is the set of degree n polynomials p with real coefficients such

that ‖p‖[−1,1] ≤ 1. In the second step, it is shown that p(k)(1) ≤ T
(k)
n (1)‖p‖[−1,1]. It is this second

step that we prove here using complementary slackness.
The following lemma, found in [15], relates the determinant of a Vandermonde matrix having

the degrees of the monomials in its last (n − k) rows incremented by 1 to the determinant of an
ordinary Vandermonde matrix. For each integer 0 ≤ k ≤ n, we define the elementary symmetric
polynomial

ek(x1, . . . , xn) =
∑

1≤j1<j2<···<jk≤n

xj1xj2 . . . xjk .

Lemma 22 Let 0 ≤ k ≤ n. Then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 . . . xn
...

...
...

xk−1
1 xk−1

2 . . . xk−1
n

xk+1
1 xk+1

2 . . . xk+1
n

...
...

...
xn1 xn2 . . . xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= en−k(x1, x2, . . . , xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 . . . xn
...

...
...

xk1 xk2 . . . xkn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Proposition 23 Let p be a polynomial of degree n with |p(x)| ≤ 1 for x ∈ [−1, 1]. Then

p(k)(1) ≤ T (k)
n (1)

where Tn(x) is the n-th Chebyshev polynomial of the first kind.
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Proof: This is obvious if k = 0, since Tn(1) = 1, so we assume k > 0. Recall the expansion
p(x) = cn(x − 1)n + cn−1(x − 1)n−1 + · · · + c1(x − 1) + c0. Then the k-th derivative of p at 1 is
simply k!ck. We consider the linear program

max k!ck
such that

∑n
i=0 ci(x− 1)i ≤ 1, ∀x = cos(jπ/n), 0 ≤ j ≤ n, j even

−∑n
i=0 ci(x− 1)i ≤ 1, ∀x = cos(jπ/n), 0 ≤ j ≤ n, j odd

and its dual

min
∑n

i=0 yi
such that By = k!ek

yj ≥ 0 ∀j ∈ {0, . . . , n}

where B0,0 = 1 and Bij = (−1)j(cos(jπ/n) − 1)i otherwise. Notice that all primal constraints are
tight for the primal solution corresponding to Tn, the degree n Chebyshev polynomial of the first
kind.

The determinant of B is, up to sign, a Vandermonde determinant, and in particular is nonzero.
Thus, By = k!ek has a unique solution. If we can show that this solution has positive entries,
complementary slackness (cf. [29, pg. 95]) implies that Tn is a primal optimal solution, and the
result will follow.

We now use Cramer’s rule to investigate the solution to By = k!ek. Recall that Cramer’s rule
tells us that entry yj is given by detBj/detB where the matrix Bj is obtained from B by replacing
its jth column with k!ek. Using the formula for the Vandermonde determinant, detB is given by

(−1)⌊(n+1)/2⌋ ∏

0≤j<j′≤n

(
cos

(
j′π
n

)
− cos

(
jπ

n

))
.

Since cos(x) is a decreasing function on the interval [0, π], all the terms in the product are negative.

Therefore, the sign of detB is (−1)⌊(n+1)/2⌋+(n+1

2 ).
For convenience, let αj = cos(jπ/n)− 1. Consider the numerator of Cramer’s rule for entry yj.

This is the determinant of the matrix Bj ,




1 −1 . . . (−1)j−1 0 (−1)j+1 . . . (−1)n

0 −α1 . . . (−1)j−1αj−1 0 (−1)j+1αj+1 . . . (−1)n(−2)
...

...
...

...
...

...
0 −αk

1 . . . (−1)j−1αk
j−1 k! (−1)j+1αk

j+1 . . . (−1)n(−2)k

...
...

...
...

...
...

0 −αn
1 . . . (−1)j−1αn

j−1 0 (−1)j+1αn
j+1 . . . (−1)n(−2)n




.

Taking the cofactor expansion along the replaced column, and factoring out −1 from each of the
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appropriate columns gives

k!(−1)⌊(n+1)/2⌋+j · (−1)j+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 . . . 1
0 . . . αj−1 αj+1 . . . −2
...

...
... . . .

...

0 . . . αk−1
j−1 αk−1

j+1 . . . (−2)k−1

0 . . . αk+1
j−1 αk+1

j+1 . . . (−2)k+1

...
...

... . . .
...

0 . . . αn
j−1 αn

j+1 . . . (−2)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The matrix satisfies the conditions of Lemma 22, so we can write this as

k!(−1)⌊(n+1)/2⌋+ken−k(α0, . . . , αj−1, αj+1, . . . , αn)
∏

0≤i<i′≤n
i,i′ 6=j

(αi′ − αi).

There are
(n
2

)
strictly negative terms in the product, and as long as k > 0, en−k has sign (−1)n−k.

So the sign of the whole product is (−1)⌊(n+1)/2⌋+n+(n2). Dividing by the sign of detB, we get

(−1)n+(
n
2)−(

n+1

2 ) = 1.

6 Conclusion

The approximate degree is a fundamental measure of the complexity of a Boolean function, with
pervasive applications throughout theoretical computer science. We have sought to advance our
understanding of this complexity measure by resolving the approximate degree of the AND-OR tree,
and reproving known lower bounds through the construction of explicit dual witnesses. Nonetheless,
few general results on approximate degree are known, and many interesting open questions remain.

• Our understanding of the approximate degree of fundamental classes of functions remains
incomplete. For example, the approximate degree of AC0 remains open [2,6]: the best known
lower bound is Ω̃(n2/3) [2], while no o(n) upper bound is known. It is also open to determine
the least approximate degree of any “approximate majority” function (see [27, Page 11]).2

• While polynomial relationships are known between approximate degree and other complexity
measures such as decision-tree depth, exact degree (i.e. deg0), and block sensitivity, it is still
open to determine the largest possible gaps between these quantities. For instance, the exact
degree of the ORn function is n, exhibiting a quadratic gap between deg0 and d̃eg, which is
the largest known. Is this separation the best possible?

• Finally, the proof of our lower bound on the approximate degree of the AND-OR tree relied
crucially on the fact that a dual polynomial for OR has one-sided error. This same observation
was used by Gavinsky and Sherstov [14] to separate the multiparty communication versions
of NP and co-NP, and very recently by the current authors [11] to derive new discrepancy
and threshold weight bounds for AC0. What other functions have dual polynomials with
one-sided error, and are there further applications for these objects?

2This open problem is due to Srikanth Srinivasan.
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Resolving these open questions may require moving beyond traditional symmetrization-based
arguments, which transform a polynomial p on n variables into a polynomial q on m < n variables
in such a way that d̃eg(q) ≤ d̃eg(p), before obtaining a lower bound on d̃eg(q). Symmetrization
necessarily “throws away” information about p; in contrast, the method of constructing dual poly-
nomials appears to be a very powerful and complete way of reasoning about approximate degree.
Can progress be made on these open problems by directly constructing good dual polynomials?
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lem of proving Markov-type inequalities via the construction of a dual witness, and to Karthekeyan
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A Final Details of Theorem 2

A.1 Proof of Proposition 5

Let r = ⌊1/α⌋. Then

Py[F (z) 6= F (z1y1, . . . , zMyM)] ≤ Py[F (z) 6= F (z1w1, . . . , zMwM ) for some w � y] (19)

where w � y if {i : wi = −1} ⊆ {i : yi = −1}. By monotonicity, it suffices to bound the right hand
side under the assumption that each bit of y takes the value −1 independently with probability
exactly 1/r.

Consider a matrix Y ∈ {−1, 1}r×M where each column is chosen independently at random from
the r vectors having a −1 in one slot and a +1 in all the others. Let y1, y2, . . . , yr denote the rows
of Y . While these rows are not independent, each is individually a random string whose ith bit
independently takes the value −1 with probability 1/r. Thus the right-hand side of Expression
(19) equals

1

r

r∑

j=1

PY [F (z) 6=F (z1w1, . . . , zMwM ) for some w � yj]

=
1

r
EY

[
#{j : F (z) 6= F (z1w1, . . . , zMwM ) for some w � yj}

]

The latter count has at most bsz(F ) nonzero terms because y1, . . . , yj are the characteristic vectors
of disjoint sets. The asserted inequality follows because 1/r = 1/⌊1/α⌋ ≤ 2α.

A.2 Proof of Equation 15

We prove that the polynomial ζ defined in Eq. (12) satisfies Eq. (15), reproduced here for conve-
nience.

∑

(x1,...,xM )∈({−1,1}N )M

ζ(x1, . . . , xM )χS(x1, . . . , xM ) = 0 for each |S| ≤ d · d′. (15)

To prove Eq. (15), notice that since Ψ is orthogonal on {−1, 1}M to all polynomials of degree
at most d, we have the Fourier representation

Ψ(z) =
∑

T⊆{1,...,M}
|T |>d

Ψ̂(T )χT (z)

for some reals Ψ̂(T ). We can thus write

ζ(x1, . . . , xM ) = 2M
∑

|T |>d

Ψ̂(T )
∏

i∈T
ψ(xi)

∏

i/∈T
|ψ(xi)|.
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Given a subset S ⊆ {1, . . . ,M} × {1, . . . , N} with |S| ≤ d · d′, partition S = ({1} × S1) ∪ · · · ∪
({M} × SM ) where each Si ⊆ {1, . . . , N}. Then

∑

(x1,...,xM )∈({−1,1}N )M

ζ(x1, . . . , xM )χS(x1, . . . , xM )

= 2M
∑

|T |>d

Ψ̂(T )
∏

i∈T


 ∑

xi∈{−1,1}N
ψ(xi)χSi(xi)




︸ ︷︷ ︸

∏

i/∈T


 ∑

xi∈{−1,1}N
|ψ(xi)|χSi(xi)


 .

Since |S| ≤ d · d′, by the pigeonhole principle, |Si| ≤ d′ for at least M − d indices i ∈ {1, . . . ,M}.
Thus for each set T , at least one of the underbraced factors is zero, as χSi is orthogonal to ψ
whenever |Si| ≤ d′.

B Dual Polynomials for Symmetric Functions

Proof of Lemma 11: Fix an ℓ such that ℓ ∈ [⌊ct⌋] and let i(k) = tk2 + 4ℓ. It is enough to show
that

∏
i′∈S,i′ 6=i |i− i′| is minimized at k = 1. We can expand this product as

∏

i′∈S
i′ 6=i

|i− i′| =
⌊ct⌋∏

m=0


(tk2 + 4ℓ− (t− 4m))

⌊
√

(n−t+1)/t⌋∏

j=1
j 6=k

|tk2 + 4ℓ− (tj2 + 4m)|


 ×

⌊ct⌋∏

m=0
m6=ℓ

|4ℓ− 4m|.

Cancelling the factor independent of k and considering each index m separately, we just need to
show that for any fixed 0 ≤ ℓ,m ≤ ct, the product

(tk2 + 4ℓ− (t− 4m))
∏

j 6=k

|tk2 + 4ℓ− (tj2 + 4m)|

as a function of k ≥ 1 is minimized at k = 1. Divide each factor by t to obtain
(
k2 − 1 +

4(ℓ+m)

t

)∏

j 6=k

|k2 − j2|
(
1 +

4(ℓ−m)

t(k2 − j2)

)
. (20)

We first obtain a lower bound for this expression when k ≥ 2. Consider the following two facts.

Fact 24 Let k ≤ m be nonnegative integers. Then
∏

j∈[m]
j 6=k

|k2 − j2| ≥
∏

j∈[m]
j 6=1

|1− j2|. (21)

In other words, this product of differences of squares is minimized at k = 1.

Proof of Fact 24 This is clear if k = 0, so suppose k ≥ 2. Then the left-hand side of Expression
(21) can be written as

∏

j∈[m]
j 6=k

|k2 − j2| =
∏

j∈[m]
j 6=k

(k + j)|k − j| = (m+ k)!

2k(k − 1)!
· k!(m− k)! =

1

2
(m+ k)!(m− k)!.
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Taking the ratio of the left-hand side of Expression (21) to the right gives us

(m+ k)!(m− k)!

(m+ 1)!(m− 1)!
=

(m+ k)(m+ k − 1) . . . (m+ 2)

(m− 1)(m − 2) . . . (m− k + 1)

which is a product of numbers that are all at least 1.

Fact 25 Let k be a nonnegative integer. Then

∑

j∈Z
j 6=k

1

|j2 − k2| ≤
π2

3
.

Proof of Fact 25 First suppose j > k. Then

j2 − k2 = (j − k)2 + 2jk − 2k2 > (j − k)2.

Thus ∑

j>k

1

j2 − k2
<
∑

j>k

1

(j − k)2
=
π2

6
.

A similar argument holds for j < k.

Combining the two facts, Expression (20) is at least

(k2 − 1)
∏

j 6=k

(
1− 4c

|k2 − j2|

)∏

j 6=1

|1− j2| ≥


1−

∑

j 6=k

4c

|k2 − j2|


∏

j 6=1

|1− j2|

≥
(
1− 4cπ2

3

)∏

j 6=1

|1− j2|

whenever k ≥ 2. On the other hand, setting k = 1 in Expression (20) gives us at most

8c
∏

j 6=1

|1− j2|
(
1 +

4c

|1− j2|

)
≤ 8c exp


∑

j 6=1

4c

|1− j2|


∏

j 6=1

|1− j2|

≤ 8c exp

(
4cπ2

3

)∏

j 6=1

|1− j2|

which is easily verified to be smaller than our lower bound for the k ≥ 2 case if c ≤ 1/32.

Proof of Lemma 12: Write

|P (r)| = πS(i
∗)

n!

∏
j∈[n]\{r} |r − j|

|r − (i∗ − 1)||r − (i∗ + 1)|∏j∈S\{r} |r − j|

≤ 1

n!

r!(n− r)!

|r − (i∗ − 1)||r − (i∗ + 1)| by definition of i∗

≤ 1(
n
r

) 1

t2(k2 − (1 + 4c+ 1/t))2
.
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The bound follows since c ≤ 1/32 and t ≥ 2. The calculation for v is similar.

Proof of Lemma 13: Using the bounds from the previous lemma, as well as the facts that
c ≤ 1/32 and t ≥ 2, the left hand side is at most

∑

ℓ 6=0

1

16ℓ2 − 1
+
∑

k≥2

⌊ct⌋∑

ℓ=0

1

t2(k2 − 2)2
≤ 2

∞∑

ℓ=1

1

15ℓ2
+
ct+ 1

t2

∞∑

k=2

1

(k2 − 2)2

≤ π2

45
+

17

64

∞∑

k=2

4

k4

=
π2

45
+

17

16

(
π4

90
− 1

)

≤ 2

5
.

Proof of Proposition 9: By symmetry, we can assume that t ≤ n/2. Moreover, we may assume
that t is the largest such integer with F (t − 1) 6= F (t). We have already handled a few special
cases: The case of t = 1 corresponds to Špalek’s construction for the OR function [42], and the
case of t = Ω(n) follows from Proposition 14. We can therefore assume that 2 ≤ t ≤ n/4. We now
consider three separate cases based on which of the terms

( n
i∗−1

)
|P (i∗ − 1)|, 1,

( n
i∗+1

)
|P (i∗ + 1)| is

the smallest. In all of these cases, we will show that we can construct a polynomial Q such that
(Q · F )/‖Q‖1 ≥ 1/14.

Case 1:
( n
i∗−1

)
|P (i∗ − 1)|, 1 ≥

( n
i∗+1

)
|P (i∗ + 1)|.

Recall that by translating S by at most 4ct (thereby keeping it a subset of [n]), we can assume
that i∗ = t. Let Q(i) = (−1)iP (i). Then the multilinear polynomial associated to Q has pure high
degree |T | = Ω(

√
t(n− t+ 1)). The ℓ1 norm of Q is

‖Q‖1 =
∑

i∈T

(
n

i

)
|Q(i)|

≤
(

n

t− 1

)
|Q(t− 1)|+ 1 +

(
n

t+ 1

)
|Q(t+ 1)|+ 2

5
by Lemma 13

≤ 2

(
n

t− 1

)
|Q(t− 1)|+ 7

5
.

Choose the sign bit s in the definition of P so that Q(t) = F (t). Since P (t− 1) has the same sign
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as P (t), it holds that s̃gn(Q(t− 1)) = s̃gn(F (t− 1)). Therefore,

Q · F =

(
n

t− 1

)
|Q(t− 1)| + 1 +

∑

i∈T\{t−1,t}

(
n

i

)
F (i)Q(i)

≥
(

n

t− 1

)
|Q(t− 1)| + 1−

(
n

t+ 1

)
|Q(t+ 1)| − 2

5

≥ 1

2

(
n

t− 1

)
|Q(t− 1)|+ 1

2
− 2

5

=
1

2

(
n

t− 1

)
|Q(t− 1)|+ 1

10
.

Using the fact that (A+B)/(C +D) ≥ min(A/C,B/D) for positive A,B,C,D,

Q · F
‖Q‖1

≥ 1

14
.

Case 2: 1,
( n
i∗+1

)
|P (i∗ + 1)| ≥

( n
i∗−1

)
|P (i∗ − 1)|.

This time, translate S so that i∗ = t− 1. We remark that under this translation we still have
T ⊆ [n], since we assumed t ≥ 2. The remainder of the analysis is identical to Case 1, interchanging
the roles of t− 1 and t+ 1.

Case 3:
( n
i∗−1

)
|P (i∗ − 1)|,

( n
i∗+1

)
|P (i∗ + 1)| ≥ 1.

Translate S so that i∗ = t+ 1, and choose s so that Q(t) = (−1)i
∗−1P (i∗ − 1) = F (t). Observe

that F (t+ 2) = F (t), since we chose t ≤ n/4 to be the largest such integer with F (t− 1) 6= F (t).
Then Q(t+2) = (−1)i

∗+1P (i∗ +1) has the same sign as F (t+2). The ℓ1 norm calculation follows
as in Case 1 to give

‖Q‖1 ≤
(
n

t

)
|Q(t)|+

(
n

t+ 2

)
|Q(t+ 2)| + 7

5
≤ 17

10

(
n

t

)
|Q(t)|+ 17

10

(
n

t+ 2

)
|Q(t+ 2)|.

The correlation with F is

Q · F =

(
n

t

)
|Q(t)|+

(
n

t+ 2

)
|Q(t+ 2)| +

∑

i∈T\{t,t+2}

(
n

i

)
F (i)Q(i)

≥
(
n

t

)
|Q(t)|+

(
n

t+ 2

)
|Q(t+ 2)| − 7

5

≥ 3

10

(
n

t

)
|Q(t)| + 3

10

(
n

t+ 2

)
|Q(t+ 2)|,

so (Q · F )/‖Q‖1 ≥ 3/17.

C Index of Trigonometric Identities

Lemma 26 Let n be odd. Then
n−1∑

k=0

sec2
(
kπ

n

)
= n2.

31



Proof: We start with the identity [17, No. 445]

n−1∑

k=0

tan2
(
θ +

kπ

n

)
= n2 cot

(nπ
2

+ nθ
)
+ n(n− 1).

Letting θ = 0, this evaluates to n(n−1) as long as n is odd. Substituting tan2(kπ/n) = sec2(kπ/n)−
1 into the left-hand side gives the identity.

Lemma 27 ([17, No. 429])

n∑

j=0

(−1)j cos (jθ) =
1

2
+ (−1)n

cos((n + 1/2)θ)

2 cos(θ/2)
.

Lemma 28 Let i < n be odd natural numbers. Then

n∑

j=0

(−1)j cosi
(
jπ

n

)
= 1.

Proof: For odd i, consider the well-known power reduction formula

cosi θ = 21−i

(i−1)/2∑

k=0

(
i

k

)
cos((i− 2k)θ).

Applying the previous lemma with θ = (i− 2k)π/n,

n∑

j=0

(−1)j cosi
(
jπ

n

)
= 21−i

(i−1)/2∑

k=0

(
i

k

) n∑

j=0

(−1)j cos

(
(i− 2k)jπ

n

)

= 21−i

(i−1)/2∑

k=0

(
i

k

)(
1

2
+ (−1)n

cos((i− 2k)π/2n + (i− 2k)π)

2 cos((i − 2k)π/2n)

)
.

= 21−i

(i−1)/2∑

k=0

(
i

k

)
= 1.

Lemma 29 Let n = 2m+ 1 be odd. Then

n∑

k=0

(−1)k sec

(
kπ

n

)
= (−1)mn+ 1.

Proof: This follows from the identity [43]

m∑

k=0

sec

(
2kπ

2m+ 1

)
=

1

2
(−1)m(2m+ 1) +

1

2
,

and the observation that sec(2kπ/n) = − sec((n − 2k)π/n).
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Lemma 30 Let 2 ≤ 2i < n. Then

n∑

j=0

(−1)j sin2i
(
jπ

2n

)
=

1

2
(−1)n.

Proof: Consider the power reduction formula

sin2i(θ) = 2−2i

(
2i

i

)
+ 21−2i

i−1∑

k=0

(−1)i−k

(
2i

k

)
cos((2i − 2k)θ).

Let θ = jπ/2n. Then

n∑

j=0

(−1)j sin2i
(
jπ

2n

)
=

1

2
(1 + (−1)n)2−2i

(
2i

i

)
+ 21−2i

i−1∑

k=0

(−1)i−k

(
2i

k

) n∑

j=0

(−1)j cos

(
(i− k)jπ

n

)
.

By Lemma 27, the sum on the right simplifies to

21−2i
i−1∑

k=0

(−1)i−k

(
2i

k

)(
1

2
+ (−1)n

cos((i− k)π/2n + (i− k)π)

2 cos((i− k)π/2n)

)

= 21−2i
i−1∑

k=0

(−1)i−k

(
2i

k

)(
1

2
+

1

2
(−1)n+i−k

)

= 2−2i
i−1∑

k=0

(−1)i−k

(
2i

k

)
+ (−1)n2−2i

i−1∑

k=0

(
2i

k

)

Using the identity
2i∑

k=0

(−1)k
(
2i

k

)
= 0

and the symmetry of the binomial coefficients, the first sum evaluates to −1
2

(2i
i

)
. Therefore,

n∑

j=0

(−1)j sin2i
(
jπ

2n

)
= (1 + (−1)n)2−1−2i

(
2i

i

)
− 2−1−2i

(
2i

i

)
+ (−1)n2−2i

(
22i−1 − 1

2

(
2i

i

))

=
1

2
(−1)n.

Lemma 31 ([17, No. 440])
n−1∑

j=1

csc2
(
jπ

2n

)
=

4n2 − 4

6
.
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Lemma 32
n−1∑

j=1

(−1)j csc2
(
jπ

2n

)
= −n

2

3
− 1

6
− 1

2
(−1)n.

Proof: Consider the identity [17, Nos. 441, 442]

n−1∑

j=1
j odd

csc2
(
jπ

2n

)
=
n2

2
+

1

4
((−1)n − 1).

Let θ = π/2n and subtract twice the second identity from the identity in Lemma 31. Then we get

n−1∑

j=1

(−1)j csc2
(
jπ

2n

)
=

4n2 − 4

6
− n2 − 1

2
((−1)n − 1) = −n

2

3
− 1

6
− 1

2
(−1)n.
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