
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Computation by interaction for space-bounded functional programming / Dal Lago, Ugo; Schöpp, Ulrich. -
In: INFORMATION AND COMPUTATION. - ISSN 0890-5401. - ELETTRONICO. - 248:(2016), pp. 150-194.
[10.1016/j.ic.2015.04.006]

Published Version:

Computation by interaction for space-bounded functional programming

Published:
DOI: http://doi.org/10.1016/j.ic.2015.04.006

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/543047 since: 2021-09-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ic.2015.04.006
https://hdl.handle.net/11585/543047

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Dal Lago, U., & Schöpp, U. (2016). Computation by interaction for space-bounded
functional programming. Information and Computation, 248, 150-194.

The final published version is available online at: https://doi.org/10.1016/j.ic.2015.04.006

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1016/j.ic.2015.04.006

Computation by Interaction for Space-Bounded Functional Programming

Ugo Dal Lagoa, Ulrich Schöppb

aUniversità di Bologna, Italy and INRIA, France
bLudwig-Maximilians-Universität München, Germany

Abstract

We consider the problem of supporting sublinear space programming in a functional programming language. Writing
programs with sublinear space usage often requires one to use special implementation techniques for otherwise easy
tasks, e.g. one cannot compose functions directly for lack of space for the intermediate result, but must instead compute
and recompute small parts of the intermediate result on demand. In this paper, we study how the implementation of
such techniques can be supported by functional programming languages.

Our approach is based on modelling computation by interaction using the Int construction of Joyal, Street & Verity.
We derive functional programming constructs from the structure obtained by applying the Int construction to a term
model of a given functional language. The thus derived core functional language intml is formulated by means of a
type system inspired by Baillot & Terui’s Dual Light Affine Logic. It can be understood as a programming language
simplification of Stratified Bounded Affine Logic. We show that it captures the classes flogspace and nflogspace of the
functions computable in deterministic logarithmic space and in non-deterministic logarithmic space, respectively. We
illustrate the expressiveness of intml by showing how typical graph algorithms, such a test for acyclicity in undirected
graphs, can be represented in it.

1. Introduction

A central goal in programming language theory is to design programming languages that allow a programmer to
express efficient algorithms in a convenient way. The programmer should be able to focus on algorithmic issues as much
as possible and the programming language should give him or her the means to delegate inessential implementation
details to the machine.

In this paper we study how a programming language can support the implementation of algorithms with sublinear
space usage. Sublinear space algorithms are characterised by having less memory than they would need to store their
input. They are useful for computing with large data that may not fit into memory. Examples of concrete application
scenarios are streaming algorithms [35], web crawling, gpu computing, and statistical data mining.

We focus in particular on algorithms with logarithmic space usage. A common intuition of such algorithms is that
they access externally stored large data using only a fixed number of pointers. A typical example is that of large graphs,
where the pointers are references to graph nodes. To encode a pointer to a node of a graph with n nodes, one needs
space O(log n). Logarithmic space graph algorithms are therefore often thought of as algorithms that work with only a
constant number of pointers to graph nodes. Another typical example of large data are long strings. In this case the
pointers are character positions.

While logarithmic space algorithms can only store a fixed number of pointers, they can produce large output that
does not fit into memory. They do so by producing the output bit by bit. A program that outputs a graph would output
the graph nodes one after the other, followed by a stream of the pairs of nodes that are connected by an edge. The
program may not have enough memory to store the whole output all at once, but it can produce it bit by bit.

When writing programs with logarithmic space usage, one must often use special techniques for tasks that would
normally be simple. Consider for example the composition of two programs. In order to remain in logarithmic space,
one cannot run the two algorithms one after the other, as there may not be enough space to store the intermediate result.
Instead, one needs to implement composition without storing the intermediate value at all. To compose two programs,
one begins by running the second program and executes it until it tries to read a bit from the output of the first program.
Only then does one start the first program to compute the requested bit, so that the execution of the second program can

be continued. Running the first program may produce more output than just the required bit, but this output is simply
discarded. In this way, the two programs work as coroutines and the output of the first program is only computed on
demand, one bit at a time.

Implementing such on-demand recomputation is tedious and error-prone. We believe that programming language
support should be very useful for the implementation of algorithms that rely on on-demand recomputation of intermedi-
ate values. Instead of implementing composition with on-demand recomputation by hand, the programmer should be
able to write function composition in the usual way and have a compiler generate a program that does not store the
whole intermediate value.

In this paper we ask: How can the implementation of functions with logarithmic space usage be supported in a
programming language? We follow the approach of viewing logarithmic space computation as computation with a
fixed number of pointers. Algorithms that use a fixed number of pointer values are not hard to capture by first-order
programming languages. Suppose we use a type int of unsigned integers to represent pointers. Then computation with
a fixed number of pointers simply becomes computation with a fixed number of int-values. In imperative programming,
this may be captured by a while-language [26]; in functional programming it may be captured by programs that are
restricted to first-order data and tail recursion [27].

But how should we represent large data like externally stored graphs or large intermediate results that should
only be recomputed in small parts on demand? First, we need some way to use the pointers to actually access some
large data. If we work with a large graph, for example, and pointers are just int-values, then we need some way of
finding out whether or not there is an edge between the nodes reference by two pointers. It would be easy to extend a
programming language with primitive operations for this purpose if we only had a single fixed large input graph. But
we would like to treat large data much like first-class values that can be passed around and transformed in the program.
Therefore, we must explain how to access large data and how to construct it, not just for a the input and output, but also
for intermediate results computed by the program itself.

In this paper we propose to model large data as interactive entities. The idea is to formalise the intuition that large
data is never computed all at once, but that pieces of data are requested when they are needed. For example, a large
graph may be represented by an entity that takes pairs of pointers to nodes as requests and that answers with true or
false depending on whether or not there is an edge in the graph. Large strings can be represented similarly as entities
that take requests for character positions and that answer with the character at that position.

Such interactive entities may be presented to the programmer as functions that map requests to answers. A large
string can be represented by its length together with a function of type int→ char that returns the character at the
given position (if it is smaller than the length). Graphs can be represented by the number of nodes together with a
function int × int→ bool that tells whether there is an edge between two nodes. Such functional representations of
data are suitable for on-demand recomputation. In practical implementations of functional programming languages, the
values of type int→ char are not stored by the whole graph of the function. Rather, they are given by code that can
compute a character for any given integer when required.

In a higher-order functional programming language, such functional representations of data can be used as first-class
values. To represent strings, we may use the type String := int × (int → char) of pairs of the word length and
a function mapping positions to characters. A predicate on strings then becomes a higher-order function of type
String→ bool. To work with strings, one may define basic operations directly, e.g. consc : String→ String for
prepending a character c:

consc = λx. let 〈n,w〉 = x in 〈n + 1, λi. if i = 0 then c else w (i − 1)〉 .

Having defined a suitable set of such operations, one does not need to know the encoding details of the string type
anymore and can use it as if it were a normal data type with operations. It is then not visible that strings may be too
large to fit into memory.

In this paper we show that this higher-order functional programming approach can be used for implementing
algorithms with logarithmic space usage. We argue that the higher-order approach captures typical algorithms with
logarithmic space in a natural way. Suppose we have a program p of type String → String; a simple example
would be λx. consc (consd x). Suppose we have a large externally stored string that we want to use as an input for this
program. We can construct a value 〈n,w〉 of type String, where n is the length of the string and w is a function that
when invoked with argument i has the effect of looking up the i-th character of the externally stored string (perhaps by

2

sending a network request to a database or similar). Now we can apply p to 〈n,w〉 and obtain a term of type String.
We use it to compute the characters of the result string one by one by applying the returned function to 0, 1, 2, etc.
Each time we ask for a character, the program will request from the input word the characters that it needs to compute
the requested character. This corresponds well to the on-demand recomputation that one finds in algorithms with
logarithmic space usage. But of course we have to be careful if we want to remain within logarithmic space. With
higher-order functions the restriction to tail recursion no longer guarantees that programs only store a constant number
of pointers during evaluation. Indeed, with a cps-translation any recursive program can be brought into a tail recursive
form.

In this paper we show that higher-order functions are nevertheless suitable for the implementation of functions
with logarithmic space usage in a functional language. We show how to combine computation with a fixed number of
pointers with higher-order functions in a functional programming language. We explain how one can extend a simple
first-order language for programming with a fixed number of pointers with higher-order functions in such a way that
programs are still guaranteed to use no more than a fixed number of pointers. The higher-order extensions will in fact
be fully definitional in the sense that any higher-order program will be translated to a first-order program. Since our
first-order programs cannot use more than a finite number of pointers, this property will then be true for higher-order
programs as well.

In this paper we work this out in the form of a minimal functional programming language, intml, for programming
with logarithmic space. The intml type system is conceptually simple, and, with the type inference procedure of [11],
which is outlined in Section 2.3.1, it is also relatively easy to use. Nevertheless, we argue that the type system is strong
enough to allow logarithmic space algorithms to be written in a natural way.

1.1. Organising Interactive Computation
The heart of the definition of intml is the construction of higher-order functions in a first-order language that

computes with a fixed number of pointers only. This construction is an instance of the Int-construction [28], see
Section 5.7. We begin with a simple first-order language that captures computation with a fixed number of pointers. We
then study how this language can implement interactive processes, such as the logarithmic space algorithms that access
their input by requesting it piece by piece. This model of interactive computation can interpret higher-order functions,
which is what intml makes available directly to the programmer. The point is that the whole construction is such that in
the end all computation will happen in the first-order language. Even with higher-order functions, programs use no
more than a fixed number of pointers and thus remain within logarithmic space.

For an informal explanation of the construction, the details of the first-order base language for computing with a
fixed number of pointers are not very important. Assume given a first-order programming language with types type
int, 1 (a unit type), A + A and A × A that captures a suitable form of computation with a fixed number of pointers.
Assume that it has the usual terms for these types and also a loop construct for possibly nonterminating iteration. A
first-order program of type A→ B is a program that takes a value of the first-order type A as input and that returns a
value of the first-order type output B. Our first-order programs do not have state and always return the same answer for
the same input. For now, the reader may think of programs of type A→ B simply as partial functions from the values
of type A to the values of type B. More details can be found in Section 2.1, but they should not be needed for now.

The construction of higher-order functions is based on a systematic analysis of on-demand interactive computation.
The interface of an interactive entity X can be represented by a pair of first-order types (X−, X+), where X− is the type
of all the requests that may be sent to the entity and X+ is the type of all possible answers. For a representation of long
strings, one may choose String− to be a type that can encode the questions “What is the length of the string?” and
“What is the i-th character?”. The type String+ would be chosen to encode the possible corresponding answers. An
implementation of the interface X is a first-order program that maps X− to X+ and thus explains how to answer requests.

In computation with logarithmic space one often finds the situation that one has access to one interactive entity
X = (X−, X+) representing the input and one wants to implement another interactive entity Y = (Y−,Y+) representing
the output. This can be done without higher-order types by a first-order program of type f : X+ + Y− → X− + Y+. It
explains how to answer requests to interface Y , given that one can answer requests to interface X. To answer a request
in Y−, we apply f to it. If the result is in Y+, then this is our answer. If it is in X−, then we can answer that request with
an element of X+ and then apply f to this answer. We repeat this until we get an answer in Y+ (i.e. possibly forever).

Let us think of the first-order program function f as a message-passing node with two input wires and two output
wires as drawn below:

3

f

X+

Y+

X−

Y−

When an input value arrives on an input wire then f is applied to it and the resulting output value (if any) is passed
along the corresponding output wire.

We will draw the two edges for X− and X+ as a single edge in which messages may travel both ways (and
likewise for Y). Thus we obtain the node depicted below, whose edges are bidirectional in the sense that an edge with
label X = (X−, X+) allows any message from X+ to be passed in the forward direction and any message from X− to be
passed in the backwards direction:

f

X

Y

Message passing nodes can be connected to form message-passing circuits. The composition g ◦ f : X → Z of
f : X → Y and g : Y → Z as shown on the left below is obtained simply by connecting the two nodes. The underlying
first-order program of type X+ + Z− → Z+ + X− is most easily described in terms of message passing:

f

X

Y

g

Z

f

X+

Y+

X−

Y−

g

Z+Z−

An input in X+ is given to f and one in Z− to g. If either f or g give an output in X− or Z+ then this is the output of
g ◦ f . If, however, f (resp. g) outputs a message on Y+ (resp. Y−), this message is given as an input to g (resp. f). This
may lead to a looping computation and g ◦ f may be partial even when g and f are both total.

This simple model of interactive computation can be used to support higher-order functions.

Thunks. As base type, one may take the interfaces of the form [A] := (1, A) for any type A. The single value of type 1
signals an explicit request for a value of type A, which may be provided as an answer. Thus, one may think of [A] as a
type of thunks that are evaluated on demand.

Pairs. The interface X ⊗ Y := (X− + Y−, X+ + Y+) corresponds to a pair type. It may be used to represent entities that
provide both an implementation of X and one of Y . The intention is that a query in X− is answered with an answer
in X+, and likewise for Y . In conjunction with pairs, the empty interface I := (∅, ∅) is sometimes useful, as X ⊗ I and X
can be considered as the same interface.

A message-passing node f of type X ⊗ Y → Z can be understood as a message passing node with two inputs; we
depict it as shown below. It corresponds to a program of type (X+ + Y+) + Z− → (X− + Y−) + Z+. It is indicated on the
right below, which type of messages should be passed in which direction along which wire.

f

Z

Y
X X+ X−

f
Y+

Y−

Z−
Z+

Figure 1: Types of messages

4

With this understanding, we can construct more complicated message passing circuits. For instance, given
h : X → V ⊗ U, g : V ⊗W → I and k : Y ⊗ Z → W, we can construct the following circuit.

h

ZX Y

U

k

g
V

X Z

U

Y

W

Figure 2: A circuit and its schematic notation

In this circuit, an element of U− may be passed to h against the direction of the output wire. With this input, the node h
may then perhaps decide to pass an element of V+ along the wire to g or to return an element of X− to the environment.
It may also go into an infinite loop, in which case the whole computation will be blocked. Also, message passing inside
the circuit may go on indefinitely in an infinite loop.

When only the interface of a circuit, but not its detailed implementation, is important, then we will only show a
schematic notation of the circuit, as shown on the right in Fig. 2.

Functions. Importantly, it is possible to model higher-order functions as interactive entities. We can define an interface
X (Y for functions from X to Y by letting (X (Y)− := X+ + Y− and (X (Y)+ := X− + Y+. To understand this,
suppose we have an implementation of this interface X (Y and implementation of interface X, as shown on the left in
the figure below. Then we can connect them to obtain an implementation of interface Y as shown on the right below. In
this figure, X∗ denotes the interface obtained by exchanging question and answer types, i.e. (X−, X+)∗ := (X+, X−). The
two unlabelled nodes are forwarding nodes. For each message arriving at either of these nodes, there is exactly one
possible choice of outgoing wire of the same type, and the message is just sent along this wire. For example, the node of
type (X (Y)→ X∗ ⊗ Y must be implemented by a program mapping (X (Y)+ + (X∗ ⊗ Y)− = (X− + Y+) + (X+ + Y−)
to (X (Y)− + (X∗ ⊗ Y)+ = (X+ + Y−) + (X− + Y+) and there is just one canonical program of this type.

X (Y X X X (Y

Y

X∗

c d cd=⇒

Figure 3: Application

One may think of X (Y as a way of formalising program parameterisation. A circuit implementing this interface
has the property that when it is linked to a circuit implementing interface X as shown above, then the resulting circuit
implements interface Y . In this sense, X (Y can be thought of as a type of functions from X to Y .

Another way of thinking about the interface X (Y = (X+ + Y−, X− + Y+) is in terms of interactive semantics, such
as game semantics [2, 24] or the Geometry of Interaction [18]. If one wants to know the result of the function, one
sends it a query from Y− for the result. The function may directly answer this request with an answer from Y+. Or, it
may respond with a request in X− for its argument. The environment can answer this request by passing the answer
in X+ as a new ‘question’ to the function.

Subexponentials. A final important construction in our simple model of interactive computation is that of subexponen-
tials. The message-passing nodes that make up circuits are all stateless, being just programs of the stateless first-order
language that we started with. They cannot remember any information from one request to the next.

5

This is a severe restriction on the expressiveness of functions. Suppose, for example, that String is an interface that
allows us to access long strings by requesting the characters one by one. Predicates on such strings may be given the
type String([bool], where bool is a type of booleans with values true and false. Suppose we want to implement
such a predicate. Then we cannot store any information between one request to the string and the next. This means that
we cannot even decide whether or not the first and the second character of the string are the same. We need to request
both characters and there is no way to remember the first character while we request the second one.

Subexponentials are a way of storing first-order data across a request to some entity. For any interface X and any
first-order type A, we define the subexponential A · X by (A × X−, A × X+). A request 〈a,m〉 ∈ A × X− is intended to
mean ‘Please answer the request m and remind me of a when you give the answer’. An answer to 〈a,m〉 has the form
〈a, p〉, where p answers m. The invariant of subexponentials is that a is always returned unchanged. Because of this
invariant, subexponentials can be used for data storage. The interface A · X in effect allows us to put any element of A
to the side, make a request to X and retrieve the element of A when an answer arrives. This is much like local variables
are preserved across function calls in machine code by using a call stack.

The above example of checking whether the first two characters of a string are the same, can be defined with type
((1 + char) · String)([bool]. The subexponential 1 + char is chosen so that we do not store anything when making
the first request to the string (hence the 1) and that we store the first returned character across the second request (hence
the char).

One situation that will often arise is that we have a function of type A · X (Y that we would like to apply to
an argument of type X. Above we have only explained the application of X (Y to X. What we need is to turn an
implementation of interface X into one of interface A · X in such a way that values of type A in the first component are
always returned unchanged. On the level of circuits this is easy to do. We can change the circuit for X so that each wire
of type Z becomes a wire of type A · Z. The nodes pass on the value of type A unchanged and otherwise behave as
before.

1.2. Overview

In this paper we develop the functional programming language intml. It is constructed from a simple first-order
programming language as a base language. Intml is obtained by adding to this base language a new class of types and
terms that allows us to construct message passing circuits whose nodes are implemented in the base language. We
call this the interactive language. The new types represent interfaces of wires in message-passing circuits, as outlined
above. In intml we use types of the form [A], X ⊗ Y and A · X (Y . The terms of the interactive language, which are
much like in a standard functional programming language, represent the circuits themselves.

By constructing intml in this way we obtain a language that allows the programmer to work both in the base and
in the interactive language. This reflects our experience with writing programs with logarithmic space usage. The
interactive language allows the programmer to work with large data. The base language can be used work with small
data and to manipulate pointers directly. It seems to be useful to keep such a distinction, as restrictions that need to be
imposed on the manipulation of large data in order to remain in logarithmic space are not necessary for small values.

We introduce intml in Section 2. The following Sections 3 and 4 contain programming examples and explain how
logarithmic space graph algorithms can be represented in intml. In Section 5 we show in detail how higher-order
functions in intml are translated to message-passing circuits and thus reduced to first-order programs. In Section 6 we
use this reduction to prove soundness and completeness of intml for the functions computable in logarithmic space.

This paper develops and expands the material first presented at esop 2010 [10]. It takes into account further
developments from aplas 2010 [11] and aplas 2011 [43]. We discuss related work in Section 7.

1.3. Contribution

The main contribution of this paper is to identify a higher-order functional language and a translation to circuits
that can be evaluated using logarithmic space. The idea of translating programs to circuits by means of interpretation
in an interactive model is not new. In the literature one can find a number of higher-order functional languages, such
as [32, 23], that are translated to circuits using this approach. However, without further restrictions one cannot prove
that circuits evaluate in sublinear space. Even in languages without recursion, e.g. [23], one may encounter messages
of exponential size during circuit evaluation. What is new in this paper is that we show how to refine language and
model in order to obtain an expressive language for sublinear space programming. The main issue is the control

6

of exponentials, which are responsible for size increases in message passing. In order to obtain space bounds, the
exponentials must therefore be restricted. The difficulty is to do so without the programming language becoming too
weak. In this paper we argue that intml with its subexponentials represents a good solution to this problem.

Subexponentials make intml an expressive higher-order language. For example, we show that it can type the
Kierstead terms, which cannot be typed in similar linear type systems, such as [14]. Moreover, the proof of flogspace-
completeness in this paper is completely straightforward. In earlier work, such as [36, 42], the completeness proofs
were more involved. The expressiveness of intml is further illustrated by the programming examples, such as in
Section 4. Subexponentials not only give us control over space usage, they also afford an efficient treatment of
controlled duplication. For example, Ghica and Smith [15] treat copying in the language by actual duplication of
terms. Here we show how to allow copying by sharing without the need to duplicate parts of the program. Finally, the
language intml presented in this paper is the first higher-order language with logarithmic space bounds that allows one
to use (and define!) higher-order combinators such as for tail recursion and call with current continuation.

Compared to [10], this paper includes full proofs of all main results presented there. Moreover, the characterisation
of logarithmic space from [10] has been generalised to nondeterminism. The presence not only of higher-order
functions but also the ability to define combinators, such as for call/cc or for block-scoped mutable variables like in
Idealised Algol, is the main novelty of the language we present here. Finally, the relation with Joyal, Street & Verity’s
Int construction is analysed in more detail and precision. As such, this paper is not just a revised and extended version
of previous work, but presents new contributions.

2. IntML

In this section we introduce intml and its type system.

2.1. Base Language
We begin by fixing the details of the base language. We emphasise that this language was chosen mainly for

simplicity and that richer languages can be chosen without affecting the construction of intml. The types of the base
language are generated by the grammar

A ::= α
∣∣∣ int ∣∣∣ 0

∣∣∣ 1
∣∣∣ A + A

∣∣∣ A × A .

They are built from type variables, a type of integers and product and coproduct types. We use lowercase Greek letters
α, β, γ to range over type variables. The type int contains the unsigned integers of some fixed bit-width k. We define
the interactive language without any assumptions on the choice of k. It shall be possible to evaluate any single program
with respect to different choices of k. Indeed, we shall use int as a type of pointers to access large data, which means
that we must choose k depending on the size of the data. In particular, we represent logspace-algorithms by programs
that are evaluated with respect to different bit-width, depending on the size of the input; see Section 2.1.1.

The terms of the base language are parameterised by a signature of constants C. For any two types A and B, a
signature specifies a set C(A, B) of constants that take an argument of type A and that have type B. We assume that any
signature contains constants for arithmetic operations {add, sub, mul} ⊆ C(int × int, int) and for (in)equality tests
on integers {eq, lt} ⊆ C(int × int, 1 + 1).

The terms of the base language are given by the grammar

f , g, h ::= x
∣∣∣ c(f)

∣∣∣ ∗ ∣∣∣ n
∣∣∣ 〈 f , g〉 ∣∣∣ fst(f)

∣∣∣ snd(f)∣∣∣ inl(f)
∣∣∣ inr(f)

∣∣∣ case f of inl(x)⇒ g | inr(y)⇒ h∣∣∣ let x = f loop g ,

in which x and y range over variables, c ranges over constants and n ranges over integer values. The base language
is typed in a standard way. The typing judgement Γ ` f : A states that term f has type A in context Γ. A context Γ

is simply a finite mapping from variables to base types. The typing rules are given in Fig. 4. There are no linearity
restrictions and the following weakening and contraction rules are admissible.

Γ ` f : B
Γ, x : A ` f : B

Γ, x : A, y : A ` f : B
Γ, z : A ` f [z/x, z/y] : B

7

Γ, x : A ` x : A Γ ` ∗ : 1
c ∈ C(A, B) Γ ` f : A

Γ ` c(f) : B

Γ ` f : A Γ ` g : B
Γ ` 〈 f , g〉 : A × B

Γ ` f : A × B
Γ ` fst(f) : A

Γ ` f : A × B
Γ ` snd(f) : B

Γ ` f : A
Γ ` inl(f) : A + B

Γ ` f : B
Γ ` inr(f) : A + B

Γ ` f : A + B Γ, x : A ` g : C Γ, y : B ` h : C
Γ ` case f of inl(x)⇒ g | inr(y)⇒ h : C

Γ ` f : A Γ, x : A ` g : B + A
Γ ` let x = f loop g : B

Figure 4: Base Language Typing Rules

We explain the base language terms by defining its (unsurprising) operational semantics. It is given by a small-step
reduction relation that is parameterised by a natural number k that represents the bit-width of all integer values. The set
of values for bit-width k is defined by the following grammar

v,w ::= x
∣∣∣ ∗ ∣∣∣ n

∣∣∣ 〈v,w〉 ∣∣∣ inl(v)
∣∣∣ inr(w) ,

in which n is an integer that can be represented using k bits.
The loop construct let x = f loop g is a simple way of capturing iteration in the language. Its operational

semantics is defined by the rewrite rule

let x = v loop g →k case g[v/x] of inl(y)⇒ y
| inr(z)⇒ (let x = z loop g) .

The special case (let x = f loop inl(g)) evaluates the loop body exactly once. We write (let x = f in g) as an
abbreviation for it. We shall also write 2 for 1 + 1 and use it as a type of booleans. We write true for inl(∗), false
for inr(∗) and (if f then g else h) for (case f of inl(x)⇒ g | inr(y)⇒ h), where x and y are fresh variables.

The rewrite rules for products and coproducts are standard:

fst(〈v,w〉) →k v

snd(〈v,w〉) →k w

case (inl(v)) of inl(x)⇒ f | inr(y)⇒ g →k f [v/x]
case (inr(v)) of inl(x)⇒ f | inr(y)⇒ g →k g[v/y]

The operational semantics of constants depends on the signature C. We assume that rewrite rules are specified as part
of the signature. The reduction rules for the arithmetic constants are:

add(〈v,w〉) →k min(v + w, 2k − 1) eq(〈v, v〉) →k inl(∗)
sub(〈v,w〉) →k max(0, v − w) eq(〈v,w〉) →k inr(∗) if v , w

mul(〈v,w〉) →k min(v ∗ w, 2k − 1) lt(〈v,w〉) →k inl(∗) if v < w

lt(〈v,w〉) →k inr(∗) if v ≥ w

For integer constants we let n →k 2k − 1 for any integer constant n that exceeds 2k − 1. Other integer constants are
already values and have no reduction. Reduction is allowed in any evaluation context. These are contexts defined as

8

follows:

E, F,G ::= [·]
∣∣∣ c(v1, . . . , vn, E, f1, . . . , fm)

∣∣∣ 〈E, g〉 ∣∣∣ 〈v, E〉 ∣∣∣ fst(E)
∣∣∣ snd(E)∣∣∣ inl(E)

∣∣∣ inr(E)
∣∣∣ case E of inl(x)⇒ g | inr(y)⇒ h∣∣∣ let x = E loop g

A term f is said to reduce to g in one step, written f 7→k g if and only if there are an evaluation context E and two
terms h, p such that h→k p, f = E[h] and g = E[p]. We write 7→∗k for the reflexive transitive closure of 7→k, as usual.

Example 1. The following term f can be seen to compute the factorial function. For example, we have f [4/x] 7→∗k 24,
provided that k is large enough that that all numbers can be represented using k bits.

let z = 〈x, 1〉 loop (let x = fst(z) in
let r = snd(z) in
let x′ = sub(〈x, 1〉) in
case eq(〈x′, 0〉) of inl(∗)⇒ inl(r)

| inr(∗)⇒ inr(〈x′, mul(〈r, x〉)〉))
Definition 1. Two terms Γ ` f : A and Γ ` g : A are extensionally equal, if, for any substitution σ that assigns to
each variable x : B in Γ a closed value of type B, and any closed value v of type A, and any k, we have f [σ] 7→∗k v if and
only if g[σ] 7→∗k v.

We shall consider a type A to be smaller than a type B when any closed value of type A can be encoded into a
closed value of type B, and encoding and decoding terms can be written in the base language. Formally, this is defined
by means of section-retraction pairs.

Definition 2. A section-retraction pair between types A and B in context Γ is a pair of terms s and r such that
Γ, x : A ` s : B and Γ, y : B ` r : A are derivable and such that Γ, x : A ` r[s/y] : A and Γ, x : A ` x : A are
extensionally equal.

Definition 3. Type A is a retract of B, written A / B, if there exists a section-retraction pair between A and B in the
empty context.

2.1.1. On Space Usage
Let us briefly discuss the space usage of base term reduction. In the rest of this paper we shall use values of type

int to represent pointers into some given input, e.g. as pointers to graph nodes. We will vary the bit-width of base
language integers with the size of the input, so that the integer type can represent such pointers. Given an input of
size n, we will choose the bit-width to be dlog ne, so that int can count at least up to n. This is much like in finite
model theory, where logics with counting have a universe as big as the size of the input [25].

With respect to space usage, it is therefore important to understand how much space is needed for term reduction as
a function of the bit-width of the int type. Suppose the bit-width of int is k. Consider a term x : int ` f : A and a
number n that can be represented with k bits. How much space does one need to reduce f [n/x] 7→∗k v, i.e. to compute a
value v? It is not hard to see that even in a naive implementation of the reduction relation 7→k by term rewriting the
reduction needs not more than O(k) space (see Lemma 22). The terms that can appear during reduction all have abstract
syntax trees of constant depth, the constant depending only on the term f . They can therefore contain only a constant
number of int values, each of which can be encoded using O(k) bits. One can thus think of base term reduction as
computing with a finite number of pointers.

2.2. Interactive Language

The base language is the basis of the definition of intml. To complete the definition, we now introduce the
interactive part of the language. This part adds higher-order functions to the base language. The interactive language
can be understood as a way of constructing message-passing circuits, as outlined in the Introduction, in which each

9

message-passing node is implemented by a base language term. Nevertheless, the interactive language takes the form of
a typed λ-calculus that can be described without reference to circuits and that allows one to write programs following a
handier functional paradigm.

Interactive types are defined by the grammar

X,Y ::= [A]
∣∣∣ X ⊗ Y

∣∣∣ A · X (Y ,

in which A ranges over base language types.
The type [A] represents computations that return a value of base type A if they terminate. One can think of [A]

much like a monadic type.
The type X ⊗ Y is a type of pairs. We use ⊗ instead of × to avoid confusion with the product types in the base

language.
The type A · X (Y is a type of functions from X to Y . It has an annotation A, a base language type, which we call

a subexponential annotation. This annotation is important for space bound control. It can be understood as a stack
shape annotation: Whenever the function makes a call to its argument, it puts a value of base type A on the stack. This
value remains there until the call returns. The caller then retrieves the value from the stack for use in the rest of the
computation. We write short X (Y for the type 1 · X (Y . These are functions that do not need to reserve any stack
space when making a call.

We believe that subexponential annotations are best considered as static space usage annotations that are inferred
and tracked by a compiler. For a programmer it is usually sufficient to think of the function type A · X (Y simply as
X → Y . Indeed, subexponential annotations do not appear explicitly in terms.

The terms of the interactive language are defined by the following grammar, in which f ranges over base language
terms.

s, t ::= x
∣∣∣ 〈s, t〉 ∣∣∣ let 〈x, y〉 = s in t

∣∣∣ λx. t
∣∣∣ s t

∣∣∣ [f]
∣∣∣ let [x] = s in t∣∣∣ case f of inl(x)⇒ s | inr(y)⇒ t

∣∣∣ copy s as x, y in t
∣∣∣ hack(x. f)

Although the meaning of the various constructs will be clear only when typing rules and reductions are introduced,
we can already introduce a classification of the interactive operators:

• First, there are λ-abstraction and application (λx. t and s t, respectively), as well as standard terms for linear pairs
(〈t, s〉 and let 〈x, y〉 = s in t).

• Base language terms can appear in interactive terms. First, the term [f] denotes the computation that on request
evaluates f to a value. The execution of a computation can be forced using the let-term let [x] = s in t. The
result of base-language computations can influence interactive terms. The case construct

case v of inl(x)⇒ s | inr(y)⇒ t ,

behaves as either s[w/x] or t[w/y], depending on whether v is inl(w) or inr(w). There is a third, more intricate,
way of making use of the base language in the interactive language, namely the operator hack(x. f), on which we
comment at the end of this section and in Section 3.

• The interactive calculus does not allow interactive variables to be used more than once. Controlled duplication is
nevertheless possible by means of the term copy t as x, y in s. This term captures a form of explicit sharing.
There will be only one copy of t and any requests from s to either x or y will be handled by the same copy of t. It
would be possible to formulate the type system without explicit copy terms, such that copy is inserted implicitly
when a variable is used more than once. While this may indeed be preferable for practical programming, we use
explicit terms here for conceptual clarity.

The type system for the interactive language derives typing judgements of the form

Γ | x1 : A1·X1, . . . , xn : An·Xn ` t : Y . (1)

In this judgement Γ is a base language context. The sequence x1 : A1·X1, . . . , xn : An·Xn is an interactive context. It is a
list of variable declarations of the form xi : Ai·Xi. This declaration declares xi to be a variable of the interactive type Xi.

10

Ax
Γ | x : 1·X ` x : X

Γ | Φ, x : A·X ` t : Y
Struct A / B

Γ | Φ, x : B·X ` t : Y

Γ | Φ ` t : Y
Weak

Γ | Φ, x : A·X ` t : Y
Γ | Φ, x : A·X, y : B·Y, Ψ ` t : Z

Exch
Γ | Φ, y : B·Y, x : A·X, Ψ ` t : Z

Γ | Φ ` s : X Γ | Ψ, x : A·X, y : B·X ` t : Z
Copy

Γ | Ψ, (A + B) · Φ ` copy s as x, y in t : Z

Figure 5: Interactive Typing: Structural Rules

The base language type Ai is a subexponential annotation that allows the type system to control the space usage of
programs. An interactive context may contain at most one declaration for any variable. In the above typing judgement
the variables x1, . . . , xn must be therefore be pairwise distinct.

To explain the subexponential annotations, we need to refer to message passing circuits that we have outlined in the
Introduction and that will be defined in detail in Section 5. For each interactive type X, we define two base language
types X− and X+ as follows. The informal meaning of these definitions are outlined in the Introduction.

[A]− = 1 [A]+ = A
(X ⊗ Y)− = X− + Y− (X ⊗ Y)+ = X+ + Y+

(A · X (Y)− = A × X+ + Y− (A · X (Y)+ = A × X− + Y+

The motivation of the interactive type system is that the term t in the typing judgement (1) will be translated to a
message passing circuit JtK with the following interface.

~t�

. . .

(Y−,Y+)

(A1 × X−1 , A1 × X+1) (An × X−n , An × X+n)

Each of the message-passing nodes in this circuit is implemented by a base language term, which may make use of the
variables from Γ. If the interactive term t is closed, then the circuit has no incoming wires and a single outgoing wire.

On the wire going out of the circuit we can send requests of base type Y− and expect answers of base type Y+.
To compute the answer, the circuit may need to query any of the xi. It does so by sending a request 〈a,m〉 : Ai × X−i
along the i-th input wire of the circuit. The circuit expects the answer to be of the form 〈a, p〉 : Ai × X+

i , i.e. it expects
the same a back with the answer. Since circuits are stateless and cannot store any information, this is useful for
remembering the value a across a call to Xi.

We next introduce the typing rules. In them we write Φ, Ψ for the concatenation of two interactive contexts Φ

and Ψ. Note that this is an interactive context only if no variable is declared in both Φ and Ψ. We write A · Φ for the
context obtained by replacing each declaration x : B·X in Φ with x : (A× B)·X. The structural rules in Fig. 5 allow one to
manipulate the context Φ, which is treated multiplicatively in the logical rules. Rule Ax allows one to type a variable x
if the context Φ consists of the sole declaration x : 1·X. The subexponential annotation 1 means that no additional space
is needed when requests are sent to x. Weak and Exch are standard rules for weakening and context reordering. With
rule Struct it is always possible to increase the subexponential annotations on a variable: in the premise of Struct, t
relies on the guarantee that any value of type A that it sends together with a request of type X− to x will be returned
unchanged. If A / B, then replacing A by B strengthens this guarantee. Any value of type A can be encoded into one of
type B, be sent along with the request, and be decoded when it is returned. There may be many ways to encode values
of type A into type B. It does not matter which one we choose. All that matters for intml is that by encoding and then
decoding we get back the value we started from. The definition of A / B by a retraction is just enough to guarantee this
property. Instead of the general semantic definition of A / B by retractions, one may also use syntactic approximations.
We refer to [11] for an exploration of possible choices.

11

Γ ` f : A
[]I

Γ | · ` [f] : [A]
Γ | Φ ` s : [A] Γ, x : A | Ψ ` t : [B]

[]E
Γ | Φ, A · Ψ ` let [x] = s in t : [B]

Γ | Φ ` s : X Γ | Ψ ` t : Y⊗I
Γ | Φ, Ψ ` 〈s, t〉 : X ⊗ Y

Γ | Φ ` s : X ⊗ Y
Γ | Ψ, x : A·X, y : A·Y ` t : Z

⊗E
Γ | Ψ, A · Φ ` let 〈x, y〉 = s in t : Z

Γ | Φ, x : A·X ` t : Y
(I

Γ | Φ ` λx. t : A · X (Y
Γ | Ψ ` s : X Γ | Φ ` t : A · X (Y

(E
Γ | Φ, A · Ψ ` t s : Y

Figure 6: Interactive Typing: Introductions and Eliminations

Γ ` v : A + B Γ, x : A | Φ ` s : X Γ, y : B | Φ ` t : X
+Ec v is a value

Γ | Φ ` case v of inl(x)⇒ s | inr(y)⇒ t : X

Figure 7: Interactive Typing: Cross-Eliminations

The structural rules are set up so that no variable in an interactive context Φ may be used more than once. However,
the calculus does support explicit duplication. A specific term construct serves this purpose, and can be typed by rule
Copy. The reader may want to refer to Fig. 12 to get an idea of how the circuits for s and t are connected.

The introduction and elimination rules for the three type formers [−], ⊗ and(appear in Fig. 6. These rules are
fairly standard for a linear λ-calculus. Only perhaps rules []I and []E for embedding base language computations and
for forcing their execution are of note. In rule []E the term (let [x] = s in t) allows one to force the computation s
and bind its value to a variable x in the base language context of t. The value of the thunk thus becomes available in t
and, as base language contexts are treated additively, this value may be used many times in t.

Fig. 7 gives the rules for eliminating base language terms over interactive terms. With our simple base language,
we only need a single rule +Ec, which allows one to define interactive terms by case distinction over a base language
term. In this rule v is restricted to be a value and it will typically be a variable. The typical use of the case-term is
of the form let [x] = s in case x of inl(y)⇒ t | inr(z)⇒ u. With the exception of Section 6.2, all results in this
paper remain true verbatim also if one allows arbitrary base terms for v in rule +Ec.

The intml type system is completed by rule Hack in Fig. 8. Rule Hack is the only rule that requires a detailed
understanding of the translation of interactive terms to message passing circuits. This rule allows one to define an
interactive term of type X by giving explicitly a base language term f that implements a message passing node with
a single outgoing wire of type X and no other wires. Therefore, rule Hack can only be explained properly once the
compilation to circuits that are implemented in the base language has been explained in detail. For now, the reader
should consider rule Hack like a method for inlining C code in an ML program, whose understanding requires a
detailed knowledge of the runtime system.

The other terms can however be understood without any reference to circuits. Below we define an operational
semantics for the interactive terms which specifies their meaning. The translation of interactive terms to circuits will
then be a space-efficient implementation of this specification.

Γ, x : X− ` f : X+

Hack
Γ | · ` hack(x. f) : X

Figure 8: Interactive Typing: Hacking

12

2.3. Typing Examples
We give a first simple example to explain the features of the intml type system. The term

λ f . λy. let [x] = y in f [x] [x] : α · (β · [α](γ · [α]([δ])([α]([δ]

defines a function that evaluates a thunk y, binds the returned value to variable x and then invokes a function f . When f
asks for either of its arguments, the value x is returned as answer.

In the type, α, β, γ and δ are type variables that can be instantiated with arbitrary types. That β and γ are type
variables means that no restriction is imposed on the subexponentials in the functions that may be given as argument
for f . That the type of the argument f appears under α · (. . .) tells us that a value of type α is sent along with any
request to the function f , and this value is expected to be returned unchanged. In this case, this is the value of the
variable x, which has type α.

The typing judgement of the term is derivable as follows.

Ax − | y : 1·[α] ` y : [α]
Π

x : α | f : 1·(β · [α](γ · [α]([δ]) ` f [x] [x] : [δ]
[]E − | y : 1·[α], f : (α × 1)·(β · [α](γ · [α]([δ]) ` let [x] = y in f [x] [x] : [δ]

Exch − | f : (α × 1)·(β · [α](γ · [α]([δ]), y : 1·[α] ` let [x] = y in f [x] [x] : [δ]
(I − | f : (α × 1)·(β · [α](γ · [α]([δ]) ` λy. let [x] = y in f [x] [x] : [α]([δ]

Struct − | f :α·(β · [α](γ · [α]([δ]) ` λy. let [x] = y in f [x] [x] : [α]([δ]
(I − | − ` λ f . λy. let [x] = y in f [x] [x] : α · (β · [α](γ · [α]([δ])([α]([δ]

The sub-derivation Π is shown below. In it we abbreviate (β · [α](γ · [α]([δ]) by T .

Ax x : α | f : 1·T ` f : (β · [α](γ · [α]([δ])
x : α ` x : α[]I

x : α | − ` [x] : [α]
(E x : α | f : 1·T ` f [x] : γ · [α]([δ]

x : α ` x : α[]I
x : α | − ` [x] : [α]

(E x : α | f : 1·T ` f [x] [x] : [δ]

Note that the similar term λ f . λy. f y y is not well-typed in intml, as the interactive variable y is used twice. However,
the following term can be typed for any X and Y; a typing derivation is constructed below.

λ f . λy. copy y as y1, y2 in f y1 y2 : (β · X (γ · X (Y)((β + γ) · X (Y

This term passes the same thunk y to both arguments of f . If f forces both its arguments one after the other, then y
will be computed twice. This is in contrast to the above term let [x] = y in f [x] [x], which first forces the thunk y,
binds its return value to x and then passes to f the thunks that immediately return x. In this case the computation in y is
executed only once.

2.3.1. Finding Subexponential Annotations
Let us use the typing judgement

λ f . λy. copy y as y1, y2 in f y1 y2 : (β · X (γ · X (Y)((β + γ) · X (Y

as an example to explain how subexponential annotations can be found.
The idea is to first use Hindley-Milner type inference to construct a skeleton of the typing derivation without

subexponentials. If we leave out all subexponential annotations and use X → Y in place of A · X (Y , then we obtain
the following skeleton of a derivation for the above term:

− | f : X → X → Y ` f : X → X → Y − | y1 : X ` y1 : X
− | f : X → X → Y, y1 : X ` f y1 : X → Y − | y2 : X ` y2 : X

− | f : X → X → Y, y1 : X, y2 : X ` f y1 y2 : Y
− | f : X → X → Y, y : X ` copy y as y1, y2 in f y1 y2 : Y
− | f : X → X → Y ` λy. copy y as y1, y2 in f y1 y2 : X → Y

− | − ` λ f . λy. copy y as y1, y2 in f y1 y2 : (X → X → Y)→ X → Y

13

This is not a proper intml typing derivation. To turn it into one we need to add subexponential annotations. To do so,
add fresh type variables for all missing subexponential annotations. In order to obtain a correct typing derivation, we
will need to insert rule Struct in a number of places. Without loss of generality, we can assume that Struct is being
applied after every rule to each variable in the interactive context. Let us denote these applications of Struct by double
lines. We obtain the following annotated skeleton of the derivation.

− | f :α1·(β1 · X (β2 · X (Y) ` f : β1 · X (β2 · X (Y − | y1 :α2·X ` y1 : X

− | f :α3·(β1 · X (β2 · X (Y), y1 :α4·X ` f y1 : β2 · X (Y − | y2 :α5·X ` y2 : X

− | f :α6·(β1 · X (β2 · X (Y), y1 :α7·X, y2 :α8·X ` f y1 y2 : Y

− | f :α9·(β1 · X (β2 · X (Y), y :α10·X ` copy y as y1, y2 in f y1 y2 : Y

− | f :α11·(β1 · X (β2 · X (Y) ` λy. copy y as y1, y2 in f y1 y2 : α10 · X (Y

− | − ` λ f . λy. copy y as y1, y2 in f y1 y2 : α11 · (β1 · X (β2 · X (Y)(α10 · X (Y

Now we simply gather the constraints on the type variables αi and βi in the side conditions of all the rules in the
derivation and we solve them. The side constraints in the above skeleton are:

• 1 / α1, 1 / α2 and 1 / α5 from the application of Struct after the axiom rules.

• α1 / α3 and (β1 × α2) / α4 from the application rule with conclusion f y1. The conclusion of the application rule
has context f :α1·(β1 · X (β2 · X (Y), y1 : (β1 × α)·X and applying Struct to each of the two variables gives
the two constraints.

• α3 / α6, α4 / α7 and (β2 × α5) / α8 from the application rule with conclusion f y1 y2.

• α6 / α9 and (α7 + α8) / α10 from the copying rule.

• α9 / α11 from the abstraction rule.

Notice that all constraints have the form A / α, where α is a type variable that does not appear in A. A number
of such constraints A1 / α,. . . , An / α can be solved simply by setting α := A1 + · · · + An. It is not hard to see that
Ai / (A1 + · · · + An) holds for i = 1, . . . , n. This simple observation can be used to solve the constraints one by one.
First we gather all the constraints with α1 as an upper bound and solve for α1, then we continue with α2 and so on.

Using this simple idea, we can find the following solution to the constraints completely mechanically:

α1 := 1 α2 := 1 α3 := 1 α4 := β1 × 1 α5 := 1 α6 := 1
α7 := β1 × 1 α8 := β2 × 1 α9 := 1 α10 := (β1 × 1) + (β2 × 1) α11 := 1

The definition of / further allows us to apply simplifications, such as using β1 instead of β1 × 1. We obtain a typing
derivation with the claimed type.

2.4. Type Inference
We note that the subexponential annotations in the above examples and all the examples in the rest of this paper

were found by the type inference procedure outlined in the example above. It is described in more detail in [11].
We have found that in practice when writing programs one usually does not have to be aware of particular

subexponentials in the type. In the above example on copying values, for instance, it is useful to ignore subexponential
annotations on functions at first and think of the type as ([α]→ [α]→ [δ])→ [α]→ [δ]. Keeping the restrictions on
variable duplication and the ways of introducing and eliminating []-types, it is straightforward to come up with the
term λ f . λy. let [x] = y in f [x] [x]. The precise type α · (β · [α](γ · [α]([δ])([α]([δ] with subexponential
annotations can then be computed using type inference.

We note that with the general definition of /, type inference is a hard problem. The simple and fast type inference
procedure described above is incomplete. It may fail to find a type even when one exists. Moreover, even if it finds a
typing derivation, it may not find the best one. Often, there will be many solutions for subexponential constraints. The

14

(λx.s) t →k s[t/x]
let 〈x, y〉 = 〈s, t〉 in u→k u[s/x][t/y]

case inl(v) of inl(x)⇒ s | inr(y)⇒ t →k s[v/x] if v is a value
case inr(v) of inl(x)⇒ s | inr(y)⇒ t →k t[v/y] if v is a value

let [x] = [v] in t →k t[v/x] if v is a value
copy s as x, y in u→k u[s/x][s/y]

[f]→k [g] if f 7→k g

Figure 9: Interactive Language: Closed Reduction Semantics

choice of the solution will affect the space usage of compiled programs. If we use rule Struct with side condition A / B,
then in the final implementation the type B will be used to encode values of type A. Thus, the smaller we choose B, the
less space will be used in the final program. This should illustrate why with the general definition of /, one should
expect the inference of the best type to be hard.

In [11] we study the hardness of type inference. We consider a number of possible syntactic approximations of /
and study the computational hardness of type inference with such choices.

2.5. Operational Semantics

While the interactive language will be implemented using message passing circuits, we specify its meaning using a
standard reduction-based operational semantics. We emphasise that the following operational semantics is a method of
specification only.

The operational semantics of the interactive language is formulated as a set of rewrite rules that are applicable in
any evaluation context derivable from the following grammar:

E, F ::= [·]
∣∣∣ 〈E, t〉 ∣∣∣ 〈t, E〉 ∣∣∣ let 〈x, y〉 = E in t∣∣∣ E t

∣∣∣ t E
∣∣∣ let [x] = E in t

∣∣∣ copy E as x, y in t

The evaluation contexts do not uniquely specify an evaluation order. Since we implement reduction only in the base
language, it is not necessary to do so. We will show soundness for any choice of evaluation order.

The rewrite rules are given in Fig. 9, where s and t are assumed to be closed terms, i.e. terms not containing any
free occurrence of any variable. Note that the case-terms is restricted to case distinction on values by the type system.
A term t reduces to s, written t 7→k s, if there are u, q such that u→k q, t = E[u] and s = E[q]. As in the base language,
the parameter k represents the bit-width of integers. In Section 5.6, we show that the translation of interactive terms to
message passing circuits is sound with respect to reduction: t 7→k s implies that the circuits for t and s have the same
message passing behaviour (even if they are not the same).

This completes the definition of the interactive language of intml. The reader may wonder if in addition to the
various ways of embedding base language terms into interactive terms, it is also possible to embed interactive terms into
base terms. It is indeed possible to add to the base language a term (let [x] = t in f) that evaluates a closed interactive
thunk t and uses the result in a base language term f . In fact, such a term is already admissible, see Corollary 16 in
Section 5.6, which is why we have not included it in the definition.

2.6. On Large Data and Space Usage

Base language programs can be understood as programs that store a constant number of pointers. If the bit-width of
integers is k, then any base language program evaluates in space O(k). The same is true for the interactive language. We
will show that the interactive part of the language can be compiled to the base language. Even though the interactive
language allows higher-order functions, it can nevertheless be evaluated in space O(k). Thus, intml can be seen as a
higher-order language for the computation with a finite number of pointers.

15

Let us outline with a simple concrete example how we use higher-order functions in intml to implement sublinear
space algorithms. We consider programs that work on long bit vectors, i.e. long sequences of 0s and 1s. The base
language type 2 = 1 + 1 can be seen as a type of bits, where inl(∗) stands for 0 and inr(∗) stands for 1. Bit vectors of
length n can be represented as a base type value of type 2 × · · · × 2 (n factors), but this representation would not be
space efficient. A value of this type has size O(n), i.e. it will need linear space.

A higher-order representation of bit vectors is more space-efficient. If we choose the bit-width of the base language
to be log n, then the positions in the bit vector can be represented by values of type int. Bit vectors of length n can
then be represented by functions of type

A · [int]([2] .

(There may be more than n bits, but we can just ignore superfluous elements.)
First, we explain how large bit vectors can be given as input to intml programs. Suppose we have a program of type

A · (1 · [int]([2])([2] that represents a predicate on bit vectors. We make no restriction on the subexponential and
allow any type A (we cannot use a type variable as the program may require a type of a particular form, such as 1 + B).
Suppose that we have a concrete large vector (e.g. stored in some database) of length n that we would like to pass to the
program. The program will translate to a circuit with one outgoing wire with interface (X−, X+).

X = A · (1 · [int] ([2]) ([2]
X− = A × (1 × 1 + 2) + 1
X+ = A × (1 × int + 1) + 2

To evaluate the program with the bit vector as input, we fix the bit-length of integers to be dlog ne and then use the
circuit to evaluate the result of the program. The values of type X− are the messages that we can send to the circuit,
the values of type X+ are the possible responses. A typical dialogue with this circuit will be as follows: we send
inr(∗) : X− (‘What is the value of the predicate?’) to the circuit. A typical answer will be inl(〈a, inr(∗)〉) : X+ (‘I
would like to know a bit of the input vector. Also, please remind me of a when you answer.’). We may answer by
sending inl(〈a, inl(〈∗, ∗〉)〉) : X− (‘Which bit would you like to know? Also, here is the a you asked me to return.’).
The reply will be inl(〈a, inl(〈∗, n〉)〉) : X+ (‘I would like to know the i-th bit.’). We may then look up the i-th bit x
of the large vector and return it by sending inl(〈a, inr(x)〉) : X− (‘The requested bit is x.’). This may continue for a
while until we receive the final answer inr(p) : X+ (‘The value of the predicate is p.’). Notice that in X− and X+ the
summands for requests and answers line up with the interactive type in X. For instance, inr(∗) : X− and inr(a) : X+

both pertain the type [2].
If large data appears as the output of programs, then it can be requested in a similar way. Suppose we have a closed

intml term of type B · [int]([2], again without restriction on the type B. The term will be translated to a circuit with
a single outgoing wire with interface (Y−,Y+), in which Y− and Y+ are base language types:

Y = B · [int] ([2]
Y− = B × int + 1
Y+ = B × 1 + 2

To compute the bit vector we again interact with the circuit. We begin by sending it the message inr(∗) : Y− (‘I would
like to know the value of the thunk of type [2] that the function returns.’). The circuit would then typically reply with
inl(b, ∗) : Y+ (‘I need to know the argument of the function, i.e. the value of the thunk of type [int]. When you answer
this request, please also remind me of value b.’). Suppose we want to know the character in position i : int. We then
send the message inl(b, i) : Y− (‘The argument thunk has value i. And you asked me to remind you of value b.’). To
this, the circuit will typically reply inr(p) : Y+ (‘The thunk returned by the function has value p.’). The whole bit
vector represented by the term of type A · [int]([2] can now be reconstructed by repeatedly querying the circuit.

Notice that the messages that we send to and receive from the circuits are all base language values of size O(k),
where k is the bit-width of integers. The intml type system guarantees that the same is true for the messages exchanged
internally in the circuit. The space needed for messages is thus logarithmic in the length of the bit vectors that are
represented, which is 2k. It is this basic observation that leads to logarithmic space bounds.

Direct interaction with circuits is needed only to supply the input value and to read off the output value. Intermediate
values can be defined using the terms of the interactive language. For example the exclusive or of two bit vectors can

16

be implemented as an interactive program

λx. λy. λz. copy z as z1, z2 in let [u1] = x z1 in let [u2] = y z2 in [xor(u1, u2)]

of type
(α · [int]([2])(2 · (β · [int]([2])((α + 2 × β) · [int]([2] .

In it, xor denotes a base language term x : 2, y : 2 ` xor(x, y) : 2 that computes the exclusive or of individual bits,
i.e. that satisfies xor(x, y)[a/x, b/y] 7→∗k a ⊕ b for all (encodings of) bits a and b. We omit the standard definition by
case distinction. A typing derivation be found in Fig. 17 on page 51. The program for the exclusive or of bit vectors
manipulates bit vectors of length 2k. Its circuit, however, works by passing only messages of size O(k). There are other
ways of writing the exclusive or function. In the above program the thunk z will typically be evaluated twice. It is also
possible to evaluate it only once up front and keep its value in memory:

λx. λy. λz. let [v] = z in let [u1] = x [v] in let [u2] = y [v] in [xor(u1, u2)].

The type reflects the changed memory behaviour:

int · (α · [int]([2])((int × 2) · (β · [int]([2])([int]([2].

A typing derivation be found in Fig. 17 on page 51.

3. Direct Definition of Combinators

The interactive language is a simple linear λ-calculus with restricted copying. As such it is quite weak. However,
with rule Hack a programmer can define interactive terms directly by giving an implementation of the message passing
nodes that implement them. The main intended use of this is to allow the programmer to enrich the interactive language
by implementing useful combinators of higher-order type that can then be used as if they were built-in constants. In
this section we give examples of how to implement a few useful combinators.

3.1. Iteration
The most important example of such a combinator is an iterator

loop : α · (γ · [α]([α + β])([α]([β]

that informally satisfies (loop s t) = [v] if (s t) = [inr(v)] and (loop s t) = loop s [v] if (s t) = [inl(v)]. We
implement this combinator directly by loop := hack(x.l) for a suitable base language term l of type x : X− ` l : X+,
where:

X = α · (γ · [α] ([α + β]) (([α] ([β])
X− = α × (γ × 1 + (α + β)) + (α + 1)
X+ = α × (γ × α + 1) + (1 + β)

The term hack(x.l) defines a single message passing node with an outgoing wire labelled X. It can therefore receive
messages of type X− and may reply with messages of type X+.

The term x : X− ` l : X+ implements the message passing node. It works by case distinction on x and gives the
following result in the five possible cases:

l[inr(inr(∗))/x] 7→∗k inr(inl(∗)) (2)
l[inr(inl(a))/x] 7→∗k inl(〈a, inr(∗)〉) (3)

l[inl(〈a, inr(inr(b))〉)/x] 7→∗k inr(inr(b)) (4)
l[inl(〈a, inr(inl(a′))〉)/x] 7→∗k inl(〈a′, inr(∗)〉) (5)

l[inl(〈a, inl(〈g, ∗〉)〉)/x] 7→∗k inl(〈a, inl(〈g, a〉)〉) (6)

We leave it as an easy exercise to write out a concrete term l that implements this specification.

17

The term l implements the following strategy: (2) says that a request for the value of loop s t results in the value
of t being requested. When an answer from t arrives, we put it in a memory cell (corresponding to α · − in the type)
and ask s for its return value (3). Whenever s asks for its argument, we supply the value from the memory cell (6).
If s returns value inr(b), then we are done and give b as output (4). If s returns value inl(a′), then we overwrite the
memory cell content with a′ and restart the step function s by asking for its result (5).

In Section 5 we will make precise the circuit implementation of intml and in Section 5.6 we show that is correctly
implements the operational semantics. With the techniques of Section 5.6, one can show:

Proposition 2. The following reduction is sound (in the sense of Theorem 13) in the interactive language.

loop s t →k let [x] = t in let [y] = s [x] in case y of inl(z)⇒ loop s [z]
| inr(z)⇒ [z]

The proof goes by spelling out the circuit implementing the right-hand side of the reduction. The direct implementation
of loop above is an explicit description of this strategy.

We give a typical example for a use of loop. Assume A is a base language type that we can iterate over in the
following sense: there are terms ` firstA : A and x : A ` nextA(x) : A and x : A ` islastA(x) : 2, such that firstA is
the first element of A and, by repeatedly evaluating nextA, we get all values of A. The term islastA indicates whether
we have arrived at the last element, in which case its value is inl(∗). Otherwise the value is always inr(∗). For any
variable-free type A such terms are easily defined.

With these assumptions, we define a combinator foldA with the property that foldA s t computes s xn (. . . (s x1 (s x0 t))),
where x0 = firstA and xi+1 = nextA(xi) and xn is the last element in the enumeration of A.

foldA : (A × β × A × β) · ([A]([β]([β])([β]([β]
foldA = λ f . λy. loop (λp. let [〈x, y〉] = p in

let [y′] = f [x] [y] in
let [b] = islastA(x) in
case b of inl(true)⇒ [return(y′)]

| inr(false)⇒ [continue(〈nextA(x), y′〉)]
) (let [y0] = y in [〈firstA, y0〉])

In this program we write let [〈x, y〉] = p in t as syntactic sugar for the more verbose let [p′] = p in t[fst(p′)/x, snd(p′)/y].
We use the suggestive abbreviations return := inr and continue := inl.

3.2. Call with Current Continuation

A second useful combinator is a version of callcc. It can be given the following type for any interactive type X:

callcc :
(
γ · ([α](X)([α]

)
([α]

Its definition is again callcc := hack(x.c), where c is a base language term of type x : Y− ` c : Y+:

Y = 1 · (
γ · ([α] (X) ([α]

)
([α]

Y− = 1 × (
γ × (α + X−) + α

)
+ 1

Y+ = 1 × (
γ × (1 + X+) + 1

)
+ α

We implement c by a nested case distinction, so that we have the following reductions:

c[inr(∗)/x] 7→∗k inl(〈∗, inr(∗)〉) (7)
c[inl(〈∗, inr(a)〉)/x] 7→∗k inr(a) (8)

c[inl(〈∗, inl(g, inr(v))〉)/x] 7→∗k inl(〈∗, inl(〈g, inl(∗)〉)〉) (9)
c[inl(〈∗, inl(g, inl(a))〉)/x] 7→∗k inr(a) (10)

18

These assignments implement callcc as follows: a request for callcc k results by (7) in a request for the return value
of k. If k produces a result value, then (8) applies and the request is forwarded as the return value of callcc k. If k
ever uses its argument, which amounts to calling the continuation, then the value passed to the continuation should be
returned as the final result. This is done by assignments (9) and (10). Whenever k requests the result of the continuation,
this request is turned into a request to k for the argument of the continuation (9). Upon supply of the argument to the
continuation, the computation is aborted and this argument is returned as the end result (10).

The implementation is similar to the interpretation of callcc in game semantics, see e.g. [30]. As an example for
callcc, we show the implementation of a tail recursion combinator tailfix.

tailfix : α · (γ · ([α]([β])((δ · [α]([β]))([α]([β]
tailfix = λ f . loop (λx. callcc (λk. let [w] = f (λy. let [v] = y in k [continue(v)]) x in [return(w)]))

This combinator may be used to define functions by tail recursion. The tail recursive definition of factorial may then be
defined as shown below.

fact : [int]([int]
fact = λx. let [v] = x in fact aux [〈v, 1〉]

fact aux : [int × int]([int]
fact aux = tailfix (λfact aux. λx. let [〈i, acc〉] = x in

if eq(〈i, 0〉) then [acc] else fact aux [〈sub(i, 1), mul(i, acc)〉])
The definition of tailfix using callcc may look complicated. It is also possible to define tailfix directly using
hack, in which case the definition is much like that of loop.

4. Larger Examples

While the syntax of intml is quite minimal, it is already possible to write meaningful programs. In this section we
give examples to substantiate this claim.

4.1. Logarithmic Space Graph Algorithms
First we show how typical algorithms with logarithmic space usage can be implemented. We implement two classic

logspace-complete decision problems [9]: the problem of deciding whether a given undirected graph has a cycle, and
the problem of deciding whether two nodes in an undirected forest are connected by a path. We implement the first
problem directly and solve the second one by reduction to the first. Section 4.1.2 is based on [11].

We use a higher-order representation of graphs, where a graph is given by its size together with a binary predicate
that represents the set of edges. A pair of a number n and a predicate χ : N × N→ 2 represents the graph with vertex
set V = {0, . . . , n − 1} and edges E = {〈m, n〉 ∈ V2 | χ(m, n) = true}. In intml such pairs can be represented by the
following interactive type.

GraphA = [int] ⊗ (A · [int × int]([2])

In the rest of this section we will elide subexponential annotations. Our aim in this section is to show that flogspace
functions can be implemented in intml. For this purpose it is sufficient to know that subexponential annotations can
be found. The programs in this section were written using a prototype implementation that infers subexponential
annotations using the simple method outlined in Section 2.3.1, see also [11]. If one is interested in concrete space
bounds, one can use type inference to compute the precise annotations, but in order to know that the implemented
algorithm is in flogspace it is enough to know that annotations exist. Therefore, instead of GraphA and A · X (Y we
write just Graph and X → Y , with the understanding that it is possible to write down suitable annotations.

To define functions on graphs it is convenient to define boolean functions also on the interactive level. Case
distinction if : [2] → X → X → X can be defined by λb. λx. λy. let [c] = b in case c of inl(t) ⇒ x | inr(f) ⇒ y
for arbitrary X. Boolean functions for negation, conjunction and disjunction can similarly be defined with types
neg : [2]→ [2], and : [2]→ [2]→ [2] and or : [2]→ [2]→ [2].

19

In graph algorithms we frequently need to iterate over all nodes of a graph. It is possible to do so directly using
the loop combinator. It may be used to define a fold-like function for this purpose, just like foldint in Section 3. In
this section we need only a function forall that checks a given property p for all nodes of a graph. It can be defined
concisely using foldint.

forall : [int]→ ([int]→ [2])→ [2]
forall = λsize. λp. let [n] = size in

foldint (λi. λr. let [m] = i in

(and r (or [lt(m, n)] (p [m])))

[true]

Using higher-order functions we can write functions to manipulate graphs. For example, a function that adds an
edge to a graph can be defined as follows.

addEdge : Graph→ [int × int]→ Graph

addEdge = λgraph. let 〈size, edge〉 = graph in

λnewedge. 〈size, λp. let [〈m, n〉] = p in

let [〈m′, n′〉] = newedge in

or (edge [〈m, n〉])
[if eq(〈m,m′〉) then eq(〈n, n′〉) else false])

In this definition we have allowed ourselves pattern matching notation to write let [〈m, n〉] = p in t instead of the
more verbose let [p′] = p in t[fst(p′)/m, snd(p′)/n].

4.1.1. Checking for Absence of Self-Loops
A first simple graph algorithm is a test that checks if a given graph contains a node with a self-loop, i.e. an edge to

itself. It may be defined as follows:

noSelfLoop : Graph→ [int × int]→ Graph

noSelfLoop = λgraph. let 〈size, edge〉 = graph in

let [n] = size in

forall [n] (λs′. let [s] = s′ in
forall [n] (λd′. let [d] = d′ in

neg (and (edge [〈s, d〉]) [eq(〈s, d〉)])))

4.1.2. Checking for Absence of Undirected Cycles
The algorithm of Cook & McKenzie for checking acyclicity of undirected graphs can be explained using the notion

of a right-hand walk. A right-hand walk is like a walk in a labyrinth where one always keeps his right hand on the
wall. One imagines the graph edges to be corridors and the nodes to be junctions. The edges connected to each node
are ordered as if the node were a junction of the arriving corridors. Cook & McKenzie’s observation then is that an
undirected graph is acyclic if and only if any right-hand walk will return to its starting point by traversing the edge over
which it has left this point in the opposite direction. This observation leads to a flogspace algorithm, since this property
can be checked by following right-hand walks, and for this one needs to keep in memory just a few graph nodes.

In order to implement right-hand walks, we first need a function

nextEdge : Graph→ [int × int]→ [int × int]
that takes an edge 〈s, d〉 and returns the next edge 〈s, e〉 emanating from the same source. To implement this function,
we first define a base language term x : int ` next(x) : int by

next(x) = let x′ = add(〈x, 1〉) in if eq(〈x′, x〉) then 0 else x′ .

20

It wraps around to 0 once the maximum int-value is exceeded.
Then we can define nextEdge as follows. Given 〈s, d〉, it starts from 〈s, next(d)〉 and applies next to the second

component of the pair until it has found an edge.

nextEdge : Graph→ [int × int]→ [int × int]
nextEdge = λgraph. let 〈size, edge〉 = graph in

loop (λedge.

let [〈src, dst〉] = edge in

let [c′] = [〈src, next dst〉] in
if (edge [c′]) [return(c′)] [continue(c′)])

We can then write a function checkPath, which follows a right-hand-rule walk starting from some given edge and
checks if this walk returns to its origin by walking the given edge in the opposite direction.

checkPath : Graph→ [int × int]→ [2] =

λgraph. λinputedge. copy graph as graph1, graph2 in

let 〈size, edge〉 = graph1 in

let [〈s, d〉] = inputedge in

if (edge [〈s, d〉])
(loop (λw. let [〈s′, d′〉] = w in

if [eq(d′, s)]
[return(eq(〈s′, d〉))]
(let [d] = nextEdge graph2 [〈d′, s′〉] in [continue(d)])) [〈s, d〉])

[true]

Now, writing a function checkCycle for testing for the presence of non-trivial cycles in undirected graphs is a simple
matter of verifying checkPath for all edges in the graph.

checkCycle : Graph→ [2] =

λgraph. let 〈size, edge〉 = graph in

let [n] = size in

copy edge as edge1, edge2 in

forall [n] (λs′. let [s] = s′ in
forall [n] (λd′. let [d] = d′ in

if (edge1 [〈s, d〉])
(checkPath 〈[n], edge2〉 [〈s, d〉])
[true]))

Finally, an acyclicity check can be defined by combining this test with a test for the absence of trivial cycles,
i.e. self-loops.

acyclic : Graph→ [2] =

λgraph. copy graph as graph1, graph2 in

and (noSelfLoop graph1) (checkCycle graph2)

4.1.3. Undirected Forest Accessibility
The problem of undirected forest accessibility is to decide whether two given nodes u and v in a given undirected

forest are connected by a path. Cook & McKenzie [9] show that this is a logspace-complete decision problem. To show

21

that the problem is in logspace, they reduce it to the problem of deciding undirected acyclicity. Two nodes u and v are
connected if and only if they are connected directly by an edge, or if adding an undirected edge between them makes
the graph cyclic.

This reduction is easy to implement in intml.

undirectedForestAccessible : Graph→ [int × int]→ Graph

undirectedForestAccessible = λgraph. copy graph as graph1, graph2 in

let 〈size, edge〉 = graph1 in

λe. copy e as e1, e2 in

〈size, or (edge e1) (neg (acyclic (addEdge graph2 e2)))〉
This is a simple example of how the use of higher-order functions in intml allows one to manipulate large data, in

this case graphs, as if they were a value in memory.

4.2. Encoding Algol-like Languages

The definition of intml was guided by the question of how programming with sublinear space can be supported in
functional programming languages. However, the direct definition mechanism in intml is expressive enough to express
imperative programming constructs as in Idealised Algol as well.

Reynolds has introduced Idealised Algol as a synthesis of functional and imperative programming [41]. Its core is
the simply-typed λ-calculus for functional programming, which is extended with constants for impertative programming
constructs. Assume the simply-typed λ-calculus with the following types

U,V ::= com
∣∣∣ expτ ∣∣∣ cellτ ∣∣∣ U × V

∣∣∣ U → V ,

where τ ∈ {bool, int}. The idea is that terms of type com are imperative commands that can be exectued and that may
have side effects, terms of type expτ are expressions that when executed return a value of type τ, and that cellτ
repesents memory cells with content of type τ that may be updated destructively. In order to be able to construct
programs of these types, one assumes suitable term constants. In the literature one can find a number of variants of
Idealised Algol with various choices of constants. A typical selection is:

true : expbool skip : com
neg : expbool → expbool seq : com × com→ com
or : expbool × expbool → expbool if : expbool × com × com→ com

0, 1, 2, . . . : expint while : expbool × com→ com
leq : expint × expint → expbool newvarτ : (cellτ → com)→ com

add, sub, times : expint × expint → expint asgτ : (cellτ × expτ)→ com
derτ : cellτ → expτ

The constants for expressions are a selection of standard operations on expressions. For example, leq 〈e1, e2〉 represents
the boolean expression e1 ≤ e2. The constants for commands represent imperative programs: skip is the command that
does nothing; seq 〈c1, c2〉 represents the sequential composition of c2 after c1; if and while are there for conditional
execution and while loops. Finally, the constants newvar, asg and der are there for the allocation of a memory cell,
for assignment and for dereferencing. The term newvarτ (λx. c) can be understood as follows. It first allocates a new
memory cell x that contains some default value of type τ, then it executes the command c, which may make use of the
cell x, and then it deallocates x. In Java, this corresponds block-scoped variables, as in {int x; c}. Using the term
asg 〈x, e〉 one can write the value of an expression to the cell x. The term der x is the expression that reads the value
from x.

One may think of these constants as constructors for the abstract syntax of a while-language. For example, the Java
program on the left below computes the factorial of an int-variable x (which is assumed to be declared before). It is
represented by the λ-term on the right, in which x is a free variable of type cellint. Note how the constant newvarint

22

takes a function as argument and how this is used to represent that the variable y is bound by the declaration. Definitions
of Idealised Algol typically come without the definition of a concrete syntax.

int y;

y = 1;

while (1 <= x) {

y = y * x;

x = x - 1

};

x = y

newvarint (λy.
seq 〈 asgint 〈y, 1〉,

seq 〈 while 〈 lt 〈1, derint x〉,
seq 〈asgint 〈y, mul 〈derint y, derint x〉,
asgint 〈x, sub 〈derint x, 1〉〉〉〉

asg 〈x, sub 〈derint y〉〉〉〉) : com

In this section we outline how constants as in Idealised Algol can be defined in intml. The aim is to implement
the constants of Idealised Algol so that the abstract syntax representation of imperative programs has the intended
behaviour. Since intml does not allow unrestricted copying of variables in the interactive language, we will not be able
to embed all of Idealised Algol, of course. However, there are interesting applications of Idealised Algol even without
full copying. Ghica [14] uses a restricted variant of Idealised Algol, Basic Syntactic Control of Interference (bSCI), as
a language for hardware synthesis. Ghica translates bSCI-programs to hardware circuits in a way that is very similar
to our translation of interactive terms to base language terms. Indeed, if one removes type variables from the base
language, base language programs become finite functions, which can be encoded directly in hardware. Thus, intml
can also be used as a language for hardware synthesis. In this section we show that its expressiveness is comparable
to bSCI. We note that the fine-grained control of copying in intml allows one to go beyond bSCI. For example, the
Kierstead terms cannot be typed in bSCI [14], but we will show in Section 4.3 how to express them in intml.

We now discuss how one may define an Algol-like language if in Reynolds’ definition [41] one replaces the
simply-typed λ-calculus with the interactive language of intml. We define Algol-like program constants, the choice of
which is guided by those in bSCI [14].

First, we define types for commands, expressions and memory cells by

com := [1] , expα := [α] , cellα := ([α](com) ⊗ [α] .

A command is thus represented by a thunk. Evaluation starts upon request of the thunk and termination is indicated by
receipt of the value of type 1. Expressions are modelled analogously, only that the returned value now represents a
value of the expression type. A memory cell is modelled as a pair of a thunk of type [α], from which the content of the
cell can be requested, and an update function of type [α](com, which can be used to overwrite the cell with a new
value.

Constants can be defined as follows. We define curried constants, as this allows us to give them more precise
subexponential types.

• Logical operations op on booleans are represented by terms of type

op : exp2 (2 · exp2 (exp2 .

For instance, or can be defined as

λb1. λb2. let [x1] = b1 in let [x2] = b2 in case x1 of inl(true)⇒ [inl(∗)] | inr(false)⇒ [x2] .

Other operations on integer expressions can be represented similarly.

• For commands there are terms for a skip-command and sequencing:

skip : com , seq : com(com(com .

These are defined simply by skip := [∗] and

seq := λc1. λc2. let [x] = c1 in let [y] = c2 in skip .

23

• Branching is available by means of a term

if : exp2 (2 · com(2 · com(com .

Its definition is
if := λb. λc1. λc2. let [x] = b in case x of inl(true)⇒ c1

| inr(false)⇒ c2 .

• For iteration we use a term
while : 2 · exp2 (2 · com(com

defined by

λb. λc. loop (λs. let [x] = b in

case x of inl(true)⇒ [return(∗)]
| inr(false)⇒ let [y] = c in [continue(y)]

) [∗] .

• It remains to define the terms for working with the type cellα of memory cells. By definition, a value of type
cellα consists of a pair of a function of type [α] (com for writing to the cell and a thunk of type [α] for
reading from it. Thus, terms

der : cellα(expα , asg : cellα(expα(com

for dereferencing a boolean cell and assigning to it can be defined simply by der := λm. let 〈x, y〉 = m in y and
asg := λm. λe. let 〈x, y〉 = m in x e. More interesting is a term newvarA, which actually implements a memory
cell of type A. It allocates a new memory cell of type A and makes it available to a given block:

newvarA : A · (β · cellA (com)(com.

Notice that newvarA has a subexponential annotation A on its argument. The content of the memory cell will be
encoded in the space given by this annotation. We implement newvarA using rule Hack. Even though we only
need the cases where A = 2 of A = int, in order to make clear which assumptions on A are made, we give the
implementation for an arbitrary type A with a given value vA : A that serves as the initial value of the memory
cell. We define newvarA as hack(x.n), where x : X− ` n : X+:

X = A · (β · (([A] (com) ⊗ [A]) (com) (com

X− = A × (β × ((A + 1) + 1) + 1) + 1
X+ = A × (β × ((1 + 1) + A) + 1) + 1

We implement n to satisfy the following reductions:

n[inr(∗)/x] 7→∗k inl(〈vA, inr(∗)〉) (11)
n[inl(〈v, inr(∗)〉)/x] 7→∗k inr(∗) (12)

n[inl(〈v, inl(〈w, inr(∗)〉)〉)/x] 7→∗k inl(〈v, inl(〈w, inr(v)〉)〉) (13)
n[inl(〈v, inl(〈w, inl(inr(∗))〉)〉)/x] 7→∗k inl(〈v, inl(〈w, inl(inl(∗))〉)〉) (14)
n[inl(〈v, inl(〈w, inl(inl(u))〉)〉)/x] 7→∗k inl(〈u, inl(〈w, inl(inr(∗))〉)〉) (15)

These can be understood as follows: Reduction (11) means that when the computation of newvarA c is started,
then value vA is put into the new memory cell and computation c is started. If c terminates, then, by (12), the
whole computation terminates. If, during the evaluation of c the content of the memory cell is being requested,
then (13) applies and the content v of the memory cell is being returned. A call of c to the update function results
by (14) in an immediate request to c for the value that should be written into the cell. Once c replies with a
value u this value is placed in the memory cell by (15), overwriting the previous value, and termination of the
update function is indicated to c.

24

• We note that it is also possible to define combinators seq′ and newvar′ that return an expression instead of a
command.

seq′ : com(expτ(expτ
newvar′A : A · (β · cellA (expτ)(expτ.

One may be define them directly by modifying the above definition appropriately. They can also be defined from
seq and newvar by using callcc to return an expression.

4.3. Kierstead Terms

To convince the reader that intml allows proper higher-order functions, we consider as an example the Kierstead
terms, which are a standard example from game semantics to illustrate the difficulties of higher-order functions (namely
to explain the need for justification pointers [24]). The following two λ-terms are quite similar in structure, but not
equivalent:

λ f . f (λx. f (λy.y)) λ f . f (λx. f (λy.x))

The terms can be turned into intml terms typeable as

t1 = λ f . copy f as f1, f2 in f1 (λx. f2 (λy. y)) : (1 + α) · (α · (X (X)(X)(X ,

t2 = λ f . copy f as f1, f2 in f1 (λx. f2 (λy. x)) : (1 + α) · (α · (α · X (X)(X)(X .

An intml type derivation for t1 has the following form (we abbreviate (α · (X (X)(X) by T):

Ax | f : 1·T ` f : T Π
Copy | f : ((1 + α) × 1)·T ` copy f as f1, f2 in f1 (λx. f2 (λy. y)) : X

Struct | f : (1 + α)·T ` copy f as f1, f2 in f1 (λx. f2 (λy. y)) : X
(I · | · ` t1 : (1 + α) · T (X

In the right-hand branch, Π stands for the following derivation.

Ax | f1 : 1·T ` f1 : T

Ax | f2 : 1·T ` f2 : T

Ax | y : 1·X ` y : X
(I · | · ` λy. y : X (X

(E | f2 : 1·T ` f2 (λy. y) : X
Weak | f2 : 1·T, x : 1·X ` f2 (λy. y) : X
(I | f2 : 1·T ` λx. f2 (λy. y) : X (X

(E | f1 : 1·T, f2 : (α × 1)·T ` f1 (λx. f2 (λy. y)) : X
Struct | f1 : 1·T, f2 :α·T ` f1 (λx. f2 (λy. y)) : X

To see that terms t1 and t2 can be distinguished in intml, consider the term

s = λg. copy g as g1, g2 in let [x1] = g1 [false] in let [x2] = g2 [true] in [nor(x1, x2)] .

The base language term x1 : 2, x2 : 2 ` nor(x1, x2) : 2 defines the usual logical nor, i.e. ¬(x1 ∨ x2). We omit its
straightforward definition by case distinction on x1 and x2.

The term s can be given the two types

(1 + 2) · ([2]([2])([2] , (1 + 2) · ((1 + 2) · [2]([2])([2] .

As a consequence, we can apply both t1 and t2 to s. However, we have t1 s 7→∗k [true] and t2 s 7→∗k [false].

25

5. Compiling Interactive Terms to Base Terms

Now we explain in detail how closed interactive terms are compiled down to base language terms, so that whole
intml-programs can be evaluated using base language reduction alone. The compilation works by interpreting interactive
terms as message passing circuits and then implementing these circuits by base language terms. The construction does
not depend on the bit-width of integers. In the following section we fix a bit-width k and consider all reduction with
respect to this bit-width. We note that the translation from interactive terms to base terms does not depend on k, i.e. for
any choice of k it produces the same base term.

5.1. Circuits

We start by defining the message passing circuits that serve as an intermediate language for the compilation. These
circuits implement bidirectional message passing, as explained in the Introduction. Circuits may also be understood as
a particular instance of string diagrams for monoidal categories [34]. They are also related to proof-nets, see [34] for a
discussion.

Circuits are directed graphs that represent message passing networks. The edges are communication channels along
which base language values can be passed. Each edge is labelled with a pair (X−, X+) of base language types. This
label specifies that values of type X+ may be passed from source to target of the edge, while messages of type X− may
be passed in the opposite direction.

The nodes of a circuit implement the processing and passing on of messages. At any time, only a single message
travels in a circuit. When it arrives at a node, it is processed there and as a result a new message may be sent from this
node to continue the message passing process. To define the behaviour of the nodes of a circuit, each node is labelled
with a base language term that is used to process incoming messages. When a base language value arrives as a message
along some edge, the term is used to compute a response, which is then passed on over some edge.

For the formal definition of circuits, we need the notion of a locally ordered graph. A local ordering for a graph
G = (V, E) specifies for each node v ∈ V a total ordering on both the set (V × {v}) ∩ E of incoming edges to v and on
the set ({v} × V) ∩ E of outgoing edges from v. The local ordering is used to distinguish edges with the same label, for
example in nodes like ⊗E below.

Definition 4. A circuit over Γ is a locally ordered directed graph in which each node is labelled with a pair (x, f) of a
base language term f and a variable x and each edge is labelled with a pair of base language types. This labelling must
be such that if any node is labelled with (x, f), its incoming edges are labelled with X1, X2, . . . , Xn and its outgoing
edges are labelled with Y1, Y2, . . . , Ym,

(x, f)

. . .

. . .

X1 XnX2 X3

Y1 Y2 Y3 Ym

then the following base language typing judgement must be derivable:

Γ, x : Y−1 + · · · + Y−m + X+
1 + · · · + X+

n ` f : Y+
1 + · · · + Y+

m + X−1 + · · · + X−n

Here, X− and X+ denote the first and second component of the pair X respectively.

For each interactive type X, we have defined a pair of base language types X− and X+ in Section 2.2. We will use an
interactive type X to stand for the edge label (X−, X+). It is useful to allow circuits to have a number of input and output
ports. We formalise these by means of two distinguished nodes: a source and a sink. Edges from the distinguished
source are input edges and edges to the sink are output edges. We write c : [X1, . . . , Xn] → [Y1, . . . ,Ym] for such a
circuit c with input edges of type X1, . . . , Xn and output edges of type Y1, . . . ,Ym (note that they are ordered because of
the local ordering for source and sink). We usually draw c as shown below.

26

c

X1 . . . Xn

Y1 Ym
. . .

Given two circuits c : [X1, . . . , Xn]→ [Y1, . . . ,Ym] and d : [Y1, . . . ,Ym]→ [Z1, . . . ,Zk], their sequential composition
d ◦ c : [X1, . . . , Xn] → [Z1, . . . ,Zk] is defined as depicted below: the i-th incoming edge to the sink of c and the i-th
outgoing edge from the source of d are joined to a single edge. The sink of c and the source of d are removed.

d ◦ c =

c

X1 . . . Xn

Y1 Ym
. . .

d

Z1 Zk
. . .

Given c : [X1, . . . , Xn]→ [Y1, . . . ,Ym] and d : [U1, . . . ,Uk]→ [V1, . . . ,Vl], we write c ⊗ d for the circuit obtained
by putting c and d in parallel.

c ⊗ d = c

X1 . . . Xn

Y1 Ym
. . .

d

V1 Vl
. . .

U1 . . . Uk

Notice that in a composition the local ordering on the intermediate edges (the ones labelled above with Y1,. . . Ym)
disappears. For example, if we let swapX,Y : [X,Y]→ [Y, X] be the circuit

YX

,

then swapY,X ◦ swapX,Y is idX ⊗ idY : [X,Y]→ [X,Y], where idX : [X]→ [X] is a single edge from input to output with
label X.

5.2. Message Passing
Let us now make precise the message passing in circuits. WriteVA for the set of all closed base language values

of type A with respect to bit-width k (recall the we have fixed k at the beginning of this section). Write EΓ for the
set of Γ-environments consisting of all functions that map the variables in Γ to closed values of their declared types.
Given σ ∈ EΓ and a term Γ ` f : A, we write f [σ] for the closed term obtained by simultaneous substitution with the
assignments in σ.

The set MΓ,X of messages that can be passed along an edge labelled with X in a circuit over Γ is defined by
MΓ,X = EΓ × (VX+ × {+} ∪ VX− × {−}). A message w ∈ MΓ,X is either a question or an answer depending on whether
its third component is ‘−’ or ‘+’. Answers travel in the direction of the edge, while questions travel in the opposite
direction. Messages are essentially the same as the contexts in context semantics [33].

To define message passing for a circuit c on Γ, let the set Mc of messages on c consist of all pairs (e,w) of an edge e
in c and a message w ∈ MΓ,X(e), where X(e) is the label of e. First, we define how each node in c locally reacts to
arriving messages. For each node v we define a partial function χv : Mc → Mc as follows: Let (x, f) be the label of v
and let i1, . . . , in and o1, . . . , om be the incoming and outgoing edges connected to v respectively. Recall that f must by
definition have type

Γ, x : X(o1)− + · · · + X(om)− + X(i1)+ + · · · + X(in)+ `
f : X(o1)+ + · · · + X(om)+ + X(i1)− + · · · + X(in)− .

27

The function χv is then defined by

χv(ok, (σ,w,−)) =

(ok′ , (σ,w′,+)) if f [σ][ink(w)/x] 7→∗k ink′ (w′) and k′ ≤ m,
(ik′−m, (σ,w′,−)) if f [σ][ink(w)/x] 7→∗k ink′ (w′) and k′ > m,

χv(ik, (σ,w,+)) =

(ok′ , (σ,w′,+)) if f [σ][inm+k(w)/x] 7→∗k ink′ (w′) and k′ ≤ m,
(ik′−m, (σ,w′,−)) if f [σ][inm+k(w)/x] 7→∗k ink′ (w′) and k′ > m,

where we write ink as a short-hand for the injection into the k-th summand of a sum type.
The message passing behaviour of the circuit as a whole is the partial function χc : Mc → Mc defined by repeatedly

applying the local functions χv for all nodes v:

χc = Tr
(⋃

v∈V(c)
χv

)
Tr(f)(w) =

Tr(f)(f (w)) if f (w) defined,
w if f (w) undefined.

It is not hard to see that message passing cannot end at an internal edge, i.e. χc(e,w) = (e′,w′) implies that e′ is an
input or an output edge. In fact, we will forget about the internal structure of c and consider just the restriction of χc to
messages on input or output edges of c. For a circuit c : [X1, . . . , Xn] → [Y1, . . . ,Ym], this restriction yields a partial
function χ̂c of type

EΓ ×VY−1 +···+Y−m+X+
1 +···+X+

n −→ VY+
1 +···+Y+

m+X−1 +···+X−n .

We call χ̂c the behaviour of c and consider circuits with the same behaviour to be equal.

Definition 5 (Equality of Circuits). Two circuits c and d of type [X1, . . . , Xn]→ [Y1, . . . ,Ym] over Γ are equal if their
behaviour is the same, i.e. if χ̂c = χ̂d holds. We write c = d for equality of circuits.

5.3. Implementing Message Passing

The message passing behaviour of any circuit can be implemented by a base language term. For any circuit
c : [X1, . . . , Xn] → [Y1, . . . ,Ym] we can construct a base language term ĉ that implements the behaviour χ̂c in the
following sense. Its type is

Γ, x : Y−1 + · · · + Y−m + X+
1 + · · · + X+

n ` ĉ : Y+
1 + · · · + Y+

m + X−1 + · · · + X−n

and χ̂c(σ, v) = w holds if and only if ĉ[σ][v/x] 7→∗k w does.
In essence, the construction of ĉ works in the same way as the definition of χ̂c above. First note that we can

represent the set of messages MΓ,X by the base language type (A1 × · · · ×An)× (X− + X+), where Γ is x1 : A1, . . . , xn : An.
Then, Mc can be represented in the base language by a big sum type and the function

⋃
v∈V(c) χv : Mc → Mc can be

implemented easily by a big case distinction. Using a single loop one can construct from this a base language term that
implements χ̂c.

5.4. Constructing Circuits

To organise the compilation of interactive terms to circuits and the soundness proof, we next identify some structure
of circuits. First we observe that sequential and parallel composition have the expected properties. Recall that the
equalities in these lemmas mean that the circuits have the same message-passing behaviour, cf. Definition 5.

Lemma 3. The equations c = c ◦ id = id ◦ c and (c ◦ d) ◦ e = c ◦ (d ◦ e) hold for all circuits c, d and e for which the
terms in these equations are defined.

Lemma 4. The equations id ⊗ id = id and (c ⊗ d) ◦ (c′ ⊗ d′) = (c ◦ c′) ⊗ (d ◦ d′) hold for all circuits c, c′, d and d′ for
which the terms in these equations are defined.

For the construction of circuits, we use a set of predefined nodes. We define the following nodes

28

⊗I

X Y

X ⊗ Y

⊗E

X Y

X ⊗ Y

w

X

η

X X∗ ε

X∗ X [f]

[A]

π

[A] A · [B]

[B]

over Γ for any X, Y , A and B and all f with Γ ` f : A. Rather than spelling out the base language terms for these nodes
explicitly, we just specify their (very simple) message-passing behaviour and note that it is easily implemented. The
behaviour of the above nodes is specified as the least functions satisfying the following equations. In these equations
we write i1 and i2 for the incoming edges of a node (ordered from left to right) and likewise o1 and o2 for the outgoing
edges (in the same order). There is no equation for χw, as this must be the empty function.

χ⊗I(i1, (σ, v,+)) = (o1, (σ, inl(v),+)) χ⊗E(i1, (σ, inl(v),+)) = (o1, (σ, v,+))
χ⊗I(i2, (σ, v,+)) = (o1, (σ, inr(v),+)) χ⊗E(i1, (σ, inr(v),+)) = (o2, (σ, v,+))

χ⊗I(o1, (σ, inl(v),−)) = (i1, (σ, v,−)) χ⊗E(o1, (σ, v,−)) = (i1, (σ, inl(v),−))
χ⊗I(o1, (σ, inr(v),−)) = (i2, (σ, v,−)) χ⊗E(o2, (σ, v,−)) = (i1, (σ, inr(v),−))

χη(o1, (σ, v,−)) = (o2, (σ, v,+)) χε(i1, (σ, v,+)) = (i2, (σ, v,−))
χη(o2, (σ, v,−)) = (o1, (σ, v,+)) χε(i2, (σ, v,+)) = (i1, (σ, v,−))

χ[f](o1, (σ, ∗,−)) = (o1, (σ, v,+)) if f [σ] 7→∗k v and v is a value

χπ(i1, (σ, v,+)) = (i2, (σ, (v, ∗),−))
χπ(i2, (σ, (v,w),+)) = (o1, (σ,w,+))

χπ(o1, (σ, ∗,−)) = (i1, (σ, ∗,−))

Informally, the nodes ⊗I and ⊗E serve for packing two message passing wires into one. Node w discards all messages;
it is used for weakening. Nodes η and ε serve to exchange the direction of messages; we use them to implement
functions. Node π is useful for sequencing thunks. If a question arrives at its output, this node queries its left input. If
an answer v arrives from this input, node π queries its second input and passes the value v along with the query. The
second input thus gets access to the result of the first input.

The following lemmas are immediate.

Lemma 5.

⊗I

X Y

X ⊗ Y

⊗E

X ⊗ Y X ⊗ Y

=

⊗I

X Y

X ⊗ Y

⊗E

X Y

X Y

=

Lemma 6.

η

X

X∗

ε

X X

=

η

X

X∗
ε

X∗ X∗

=

29

In addition to the general nodes defined above, we also need administrative nodes to deal with the subexponentials.
A subexponential can be understood as an iterated multiplication. We have administrative nodes that correspond to the
familiar high-school identities for exponentiation x1 = x, xa+b = xa · xb and xa·b = (xb)a

a1

1 · X

X

a+

(A + B) · X

A · X B · X

a×

(A × B) · X

A · (B · X)
,

along with their inverses

a−1
1

X

1 · X

a−1
+

(A + B) · X

A · X B · X

a−1
×

A · (B · X)

(A × B) · X
.

The behaviour of these nodes is given by the canonical terms of the respective type. We spell out the behaviour of a+

and a×:

χa+
(i1, (σ, (inl(v),w),+)) = (o1, (σ, (v,w),+))

χa+
(i1, (σ, (inr(v),w),+)) = (o2, (σ, (v,w),+))
χa+

(o1, (σ, (v,w),−)) = (i1, (σ, (inl(v),w),−))
χa+

(o2, (σ, (v,w),−)) = (i1, (σ, (inr(v),w),−))
χa× (i1, (σ, ((u, v),w),+)) = (o1, (σ, (u, (v,w)),+))
χa× (o1, (σ, (u, (v,w)),−)) = (i1, (σ, ((u, v),w),−))

For the reader familiar with Linear Logic, nodes a1, a+ and a× play a role similar to dereliction, contraction and digging
nodes (respectively) in proof-nets for the exponentials.

For the manipulation of subexponentials, we use a reindexing node. For any two terms Γ, b : B ` s : A and
Γ, a : A ` r : B we have a node

s��r

A · X

B · X

over Γ. This node modifies just the index in the subexponential. When a message travels from top to bottom, r is
applied to the index; in the other direction s is applied. We shall use the reindexing node in particular to interpret rule
Struct. In this case s and r will be a section-retraction pair.

Finally, we use a box construction that allows us to bind base language variables in circuits. Given a circuit
c : [X1, . . . , Xn]→ [Y1, . . . ,Ym] over (Γ, x : A), we define a circuit (x : A) · c : [A · X1, . . . , A · Xn]→ [A · Y1, . . . , A · Ym]
over Γ, which we depict graphically as follows:

x: A

c

YmY1 . . .

XnX1 . . .

A · YmA · Y1 . . .

A · XnA · X1 . . .

30

Informally, when a value (v,w) arrives from the outside to the box, the value v is bound to the variable x and the
message w is passed into the box. If a message w′ reaches the border from inside, then the value v is retrieved again by
looking up the variable x in the environment and then (v,w′) travels out from the box. The value of x does not change
inside the box.

More formally, the behaviour of (x : A) · c can be specified as follows. Let e1, . . . , em+n be the list of input and
output edges of (x : A) · c, in which first all the input edges appear in their order and then the output edges. Let
e′1, . . . , e

′
m+n be the input and output edges of c, listed in the same way. The behaviour of (x : A) · c is then specified by:

χ̂((x:A)·c)(ei, (σ, (v, u), p)) = (e j, (ρ, (v,w), r)) if and only if χ̂c(e′i , (σ[v/x], u, p)) = (e′j, (τ,w, r)) and ρ is the restriction
of τ to variables appearing in Γ. Concretely, such a circuit (x : A) · c can be constructed simply as a single node,
obtained from implementation of the behaviour χ̂c.

The variable x should be considered being bound in the above box; we have the usual α-conversion law (x : A) · c =

(y : A) · c[y/x] for any fresh variable y. Here, c[y/x] denotes substitution of y for x in each node in c. We write A · c
instead of (x : A) · c if x does not appear free in any of the nodes in c.

Boxes are easily seen to have the following properties:

Lemma 7. The equations A · id = id, (x : A) · (c ◦ d) = ((x : A) · c) ◦ ((x : A) · d) and (x : A) · (c ⊗ d) = ((x : A) · c) ⊗
((x : A) · d) hold for all circuits c and d, all variables x and all types A for which the circuits in the equations are
well-defined.

Having introduced all the building blocks for the construction of circuits, we state a few results that allow us to
prove soundness of the translation from the interactive to the base language.

Lemma 8. For any circuit c with one outgoing edge and no incoming edges, we have a1◦(1·c) = c and a+◦((A + B)·c) =

(A · c) ⊗ (B · c) and a× ◦ ((A × B) · c) = A · (B · c).

Lemma 9. For any value ` v : A, the following equality of circuits holds.

v��∗

A · [B]

1 · [B]
π

[A]

A · [B]

[B]

[v]

a1

[B]

=

Lemma 10. Let Γ, y : B ` s : A and Γ, x : A ` r : B be a section-retraction pair. For any circuit c over Γ, x : A with
no inputs and a single output labelled X we have:

s��r

A · X

B · X

x: A

c

X

B · X
y: B

c[s/x]

X
=

Lemma 11. For any circuit c : []→ [B · X] and any value ` v : A, the following equality of circuits holds.

31

v��∗

A · X

1 · X

=

a−1
+

(A + B) · X

A · X B · X

inl(v)��∗
1 · X

c

Lemma 12. For all circuits c : [X,Y] → [Z] over Γ, x : A and d : [X,Y] → [Z] over Γ, y : B and e : [] → X over Γ,
and all values Γ ` v : A + B, the following is true:

1

e

x : A

c

a−1
+

a+ a+

∗��v ∗��v

v��∗

e

x : A y : B

a−1
+

v��∗

e=

y : B

d

a+

∗��v

c d

Proof. Consider what form a message can have that leaves the box containing c over an incoming edge. Because all
input and output edges of the circuit are guarded by (∗��v) and (v��∗), such a message must have the form (σ, (w1,w2),−)
where inl(w1) = v[σ]. In this case, the message (σ,w2,−) will be passed to the circuit e. An answer (σ,w3,+) from e
will result in (σ, (w1,w2),+) being passed into the box containing c. This process can be shortcut by moving e inside
the box containing c. A similar argument applies to the box containing d.

5.5. Translating Interactive Terms to Circuits

We now interpret interactive terms by circuits. To each derivation δ ending with sequent Γ | x1 : A1·X1, . . . , xn : An·Xn `
s : Y we assign a circuit JδK : [A1 · X1, . . . , An · Xn] → [Y] on Γ. Each variable declaration in the interactive context
thus becomes an input wire of the translated circuit.

The definition of JδK goes by induction on derivations and is given in Fig. 10. Therein we use the following
notation: We denote the premises of δ by δs and δt depending on the term in the premise. Given an interactive context
Φ = x1 : A1·X1, . . . , xn : An·Xn, we write Φ also for the list [A1 · X1, . . . , An · Xn] of input/output wires of a circuit. We
write idΦ for (id ⊗ · · · ⊗ id) : Φ→ Φ and use similar notation for the evident circuits (a+)Φ : (A + B) ·Φ→ (A ·Φ, B ·Φ),
(a×)Φ : (A × B) · Φ→ A · B · Φ, etc.

To make it easier to read the interpretation of the rules, we spell out the more complicated cases in graphical form
in Figs. 11–15. We give full details, including all edge labels, in the case of ⊗E in Fig. 11, and omit the edge labels
otherwise. For well-definedness of the interpretation, notice that the side condition on rule Struct ensures that it is
always possible to choose a section-retraction pair. As an example we show in Fig. 16 the circuit that is obtained by
interpreting the derivation of the typing judgement ` λ f . λy. let [x] = y in f [x] [x] : α · ([α] ([α] ([β]) (
[α]([β] from Section 2.3.

32

Ax JδK = a1
Struct JδK = JδtK ◦ (idΦ ⊗ (s��r)), where Γ, x : A ` s : B and Γ, y : B ` r : A are an

arbitrarily chosen section-retraction pair witnessing A / B.
Weak JδK = JδtK ◦ (idΦ ⊗ w)
Exch JδK = JδtK ◦ (idΦ ⊗ swap ⊗ idΨ)
Copy JδK = JδtK ◦ (idΨ ⊗ (a+ ◦ ((A + B) · JδsK) ◦ (a×)Φ))

[]I JδK = [f]
[]E JδK = π ◦ (JδsK ⊗ ((x : A · JδtK) ◦ (a×)Ψ))
⊗I JδK = ⊗I ◦ (

JδsK ⊗ JδtK
)

⊗E JδK = JδtK ◦ (idΨ ⊗ ((A · JδsK) ◦ (a×)Φ))
(I JδK = ⊗I ◦ swap ◦ (

JδtK ⊗ idX
) ◦ (idΨ ⊗ η)

(E JδK = (idY ⊗ ε) ◦ ((swap ◦ ⊗E ◦ JδtK) ⊗ ((A · JδsK) ◦ (a×)Φ))
+Ec JδK = a1 ◦ (v��∗) ◦ a−1

+ ◦ (((x : A) · JδsK) ⊗ ((y : B) · JδtK)) ◦ (a+)Φ ◦ (∗��v)Φ ◦ (a−1
1)Φ

Hack JδK is the single node with label (x, f).

Figure 10: Interpretation of Interactive Derivations

A

~δs�

X ⊗ Y

An · XnA1 · X1
. . .

A · (An · Xn)A · (A1 · X1) . . .

a× a×

. . . (A × An) · Xn(A × A1) · X1

~δt�

Z

Bm · YmB1 · Y1 . . .

⊗E

X Y

A · YA · X

Figure 11: Circuit for ⊗E

A + B

~δs�

. . .

a× a×

. . .

a+

~δt�

. . .

. . .

Figure 12: Circuit for Copy

33

~δt�

. . .
η

⊗I

Figure 13: Circuit for(I

A

~δs�

. . .

a× a×

. . .

~δt�

⊗E

ε

. . .

Figure 14: Circuit for(E

x : A

~δs�

. . .

y : B

~δt�

. . .

a−1
+

a+ a+. . .

∗��v . . . ∗��v

a−1
1

. . . a−1
1

a1

v��∗

Figure 15: Circuit for +Ec

1

[x]

⊗E

ε

⊗E ε

a1

x : α

a×

η

π

⊗I

⊗I

a1

η

(α
×(

1
×α
+

1
×α
+

1)
,α
×(

1
×1
+

1
×1
+
β

))

(1
×1

,1
×α

)

(1 × α, 1 × 1)

(α × 1, α × β)

��

1

[x]

Figure 16: Example Circuit

34

5.6. Soundness
Having defined a translation from interactive terms to base language ones by translation to circuits and their

implementation, it now remains to show soundness of the translation with respect to the reduction semantics from
Section 2.2. We prove the following result:

Theorem 13 (Soundness). If δ derives · | · ` s : X and s 7→k t, then there exists a derivation ρ of · | · ` t : X with
JδK = JρK.

For the proof of the soundness theorem we need substitution lemmas.

Lemma 14 (Substitution). If ρ derives Γ | Φ, x : A·X, Ψ ` t : Y and δ derives Γ | · ` s : X, then there exists a
derivation ρ[δ/x] of Γ | Φ, Ψ ` t[s/x] : Y that satisfies Jρ[δ/x]K = JρK ◦ (idΦ ⊗ (A · JδK) ⊗ idΨ).

Proof. The proof goes by induction on ρ. We consider representative cases:

• Ax: If ρ ends in an application of Ax and thus derives x : 1·Y ` x : Y , then we have JρK = a1. We let ρ[δ/x] = δ.
We have Jρ[δ/x]K = JδK = a1 ◦ (1 · JδK) = JρK ◦ (1 · JδK), as required.

• Struct: If ρ ends with an application of Struct, two cases are possible:

1. The context Ψ is empty and ρ has the form:

ρ1 : Γ | Φ, x : B·X ` t : Y
Struct B / A

Γ | Φ, x : A·X ` t : Y

In this case JρK is Jρ1K ◦ (idΦ ⊗ (s��r)) for some section-retraction pair s and r from B to A. We let ρ[δ/x]
be ρ1[δ/x]. We have:

Jρ[δ/x]K = Jρ1[δ/x]K = Jρ1K ◦ (
idΦ ⊗ (B · JδK)

)
by defn. and i.h.

= Jρ1K ◦ (
idΦ ⊗ (

(s��r) ◦ (A · JδK)
))

by Lemma 10
= Jρ1K ◦ (idΦ ⊗ (s��r)) ◦ (

idΦ ⊗ (A · JδK)
)

= JρK ◦ (
idΦ ⊗ (A · JδK)

)
2. The context Ψ has the form Ψ1, y : D·Z and ρ has the form:

ρ1 : Γ | Φ, x : A·X, Ψ1, y : C·Z ` t : Y
Struct C / D

Γ | Φ, x : A·X, Ψ1, y : D·Z ` t : Y

In this case we let ρ[δ/x] be:

ρ1[δ/x] : Γ | Φ, Ψ1, y : C·Z ` t[s/x] : Y
Struct C / D

Γ | Φ, Ψ1, y : D·Z ` t[s/x] : Y

With this choice we have

Jρ[δ/x]K = Jρ1[δ/x]K ◦ (
id(Φ,Ψ1) ⊗ (s��r)

)
= Jρ1K ◦ (idΦ ⊗ JδK ⊗ id(Ψ1, y : C·Z)) ◦ (

id(Φ,Ψ1) ⊗ (s��r)
)

= Jρ1K ◦ (
id(Φ, x : A·X,Ψ1) ⊗ (s��r)

) ◦ (idΦ ⊗ JδK ⊗ id(Ψ1, y : D·Z))
= JρK ◦ (idΦ ⊗ JδK ⊗ id(Ψ1, y : D·Z)),

as was required to show.

• The cases for the other structural rules follow by similar arguments.

• (E: Suppose ρ ends in an application of rule(E:

ρ1 : Γ | Φ1 ` t : C · Z (Y ρ2 : Γ | Φ2 ` s : Z
(E

Γ | Φ1,C · Φ2 ` t s : Y

35

The context Φ1,C · Φ2 must be the same as Φ, x : A·X, Ψ. If the declaration x : A·X appears in Φ1, then the
assertion follows directly by applying the induction hypothesis to ρ1.

Suppose then that x : A·X appears in C ·Φ2. In this case, x : B·X appears in Φ2 for some B and we have A = C × B.
We define ρ[δ/x] to be the derivation obtained by applying(E to ρ1 and ρ2[δ/x]. We have

C

ρ2 =

a×

C × B

δ

C

C

δ

B

δ

B

=

C

ρ2[δ/x]=

.

. . .

. . .

C

ρ2

.

ρ2

by Lemmas 8 and 7 and the induction hypothesis. But now the leftmost circuit in the above equation appears in
JρK ◦ (idΦ ⊗ (A · JδK)⊗ idΨ). If we replace it by the rightmost circuit in the equation, then we obtain just Jρ[δ/x]K.
We have thus shown the required equality.

• The cases for rules(I, ⊗I, ⊗E and []E follow by similar arguments.

• The rules []-I, 0E and Hack cannot be the conclusion of ρ, as they all have an empty interactive context.

• If ρ ends with an application of +Ec

Γ ` f : B + C ρ1 : Γ, x : B | Θ ` s : Y ρ2 : Γ, y : C | Θ ` t : Y
+Ec

Γ | Θ ` case f of inl(x)⇒ s | inr(y)⇒ t : Y

then we use Lemma 12 to move JδK into the two inner boxes for ρ1 and ρ2, similarly to the case for(E above.
(Strictly speaking, we have formulated Lemma 12 only with one output and two input wires. It can be used if c
and d has a number of input and output wires by packing all these wires into a single one, which is possible
because of (r��s) ◦ (A · (⊗I)) = (B · (⊗I)) ◦ ((r��s) ⊗ (r��s)) and (B · (⊗E)) ◦ (r��s) = ((r��s) ⊗ (r��s)) ◦ (A · (⊗E)).).
Then, by induction hypothesis, the box contents are ρ1[δ/x] and ρ2[δ/x] respectively, which completes this case.

Lemma 15. Suppose ρ derives Γ, x : A | Φ ` t : Y and v is a closed value of type A. Then there exists a derivation
ρ[v/x] of Γ | Φ ` t[v/x] : Y with Jρ[v/c]K = JρK[v/x].

Proof. A straightforward induction on ρ.

With these substitution lemmas, we can now prove the Soundness Theorem:

Proof of Theorem 13. For any reduction s 7→k t there exist decompositions s = E[s′] and t = E[t′] such that s′ →k t′

is an instance of one of the basic reductions from Fig. 9.
The proof then goes by induction on the structure of E. The base case, where E is empty, amounts to showing the

assertion for the basic reductions. We spell out representative cases:

• s→k t is (λx. q) p→k q[p/x].

Since the derivation δ of s ends in a sequent with an empty context, it cannot end with a structural rule. Hence,
the last two rules in δ must be(E after(I. Let σ and τ be the derivations of the premises x : B·Z ` q : Y and
· | · ` p : Z of these rules. Then we use Lemmas 5 and 6 and the substitution lemma to calculate:

36

A

~τ�
⊗E

ε

~σ�

η

⊗I

=
A

~τ�

ε

~σ�

η

=

A

~τ�

~σ� = ~σ[τ/x]�=~δ�

• s→k t is (let [x] = [v] in p)→k p[v/x], where v is a closed value. Using Lemmas 9, 10 and 8 we calculate:

[v]

=π

x:A

~τ�

v��∗

a1

~τ�

= a1

1

~τ�[v/x]

=

x:A

~τ�[v/x]=~δ�

Letting ρ be τ[v/x] and using Lemma 15 completes this case.

• s→k t is (case inl(v) of inl(x)⇒ p | inr(y)⇒ q)→k p[v/x], where v is a closed value. Using Lemmas 11,
8 and 10 we calculate:

=~δ�

x:A

~σ� ~τ�

a−1
+

a1

y:B

inl(v)��∗

=

x:A

~σ�

a1

v��∗

=

1

~σ�[v/x]

a1 = ~σ�[v/x]

Again using Lemma 15, we can complete this case by letting ρ be σ[v/x].

• s →k t is (copy p as x, y in q) →k q[p/x][p/y]. In this case we use Lemma 8 and the substitution lemma to
show that ρ = τ[σ/x][σ/y] is a suitable choice.

=~δ�

A

~σ� ~σ�

B

= = ~τ[σ/x][σ/y]�

A + B

~σ�

a+

~τ� ~τ�

37

The induction step follows straightforwardly from the induction hypothesis. If, for example, E is 〈F, u〉, then δ must
end in rule ⊗I with two premises · | · ` F[s′] : Y and · | · ` u : Z, derived by σ and τ. We apply the induction hypothesis
to σ to obtain σ′. Then we note that replacing σ with σ′ in δ gives us a derivation ρ of the required term. The assertion
then follows because we have JδK = ⊗I ◦ (JσK ⊗ JτK) = ⊗I ◦ (Jσ′K ⊗ JτK) = JρK.

Corollary 16. For any interactive term t and any base language term f there exists a base language term (let [x] =

t in f) such that the typing rule

Γ | · ` t : [A] Γ, x : A ` f : B
[]Ec

Γ ` let [x] = t in f : B

is admissible and there are reductions

let [x] = [v] in f 7→∗k f [v/x] if v is a value ,

let [x] = s in f 7→∗k let [x] = t in f if s 7→k t .

Proof. Given Γ | · ` t : [A], the term t̂ implementing the message passing circuit JtK has type Γ, x : 1 ` t̂ : A. We can
then define the term (let [x] = t in f) to be (let y = t̂[∗/x] in f).

5.7. Relation to the Int-Construction
At the beginning of this article we have a construction of message passing circuits from the base language. We

have derived this construction from the categorical structure obtained by applying the Int construction to a term model
of a basic functional language. We have spelled out the details of intml without reference to this categorical structure,
as we believe this presentation to be more broadly accessible. Nevertheless, we would like to explain how intml and
the compilation from interactive to base terms can be understood as a model construction within the Int construction.

In this section we explain in which sense the circuits defined earlier can be understood as morphisms in a category
Int(C) obtained by Int construction from a suitable term model C. The main difficulty with this is that circuits may
contain free variables and so must appear in a suitably indexed variant of the Int construction, rather than the standard
one. In this section we show how to capture this indexing in a way that remains close to the original Int construction.

We start by organising the base language into a term model of computations indexed by (complex) values. This
structure is derived from the structure of the Enriched Effect Calculus [13] and that of Call-by-Push-Value [31], see [43].

5.7.1. Complex Values
Definition 6. A complex value is any base language term that can be formed by the following grammar:

f , g ::= x
∣∣∣ ∗ ∣∣∣ 〈 f , g〉 ∣∣∣ fst(f)

∣∣∣ snd(f)
∣∣∣ impossible(f)

∣∣∣ inl(f)
∣∣∣ inr(g)∣∣∣ case f of inl(x)⇒ g | inr(y)⇒ h

These terms have the same meaning and typing rules as in the base language. The term impossible(f) is to be typed
with the following elimination rule for type 0.

Γ ` f : 0
Γ ` impossible(f) : A

In the base language, impossible(f) may be seen as an abbreviation for the looping term let x = ∗ loop inr(∗),
which is why we have not included it in the definition of the base language.

Complex values can be organised into a category V: the objects are the base language types; the set V(A, B) of
morphisms from A to B consists of complex values of type x : A ` f : B, identified up to extensional equality of terms
and up to renaming of x.

Proposition 17. The category V has finite products and coproducts. Moreover, finite products distribute over finite
coproducts, i.e. the canonical map A × B + A ×C → A × (B + C) has an inverse.

We define complex evaluation contexts by the grammar obtained by modifying the grammar for base language
evaluation contexts such that complex values may be used instead of values.

38

5.7.2. Enriched Categories
For the rest of this section we assume that the reader is familiar with the basic notions of enriched category theory,

see e.g. [29]. Let V̂ be the category SetV
op

of functors from Vop to Set. For a functor F : Vop → Set we write FA

for the set it assigns to A; given f ∈ V(B, A) we write (−)[f] for the function F f : FA → FB. With this notation, the
functoriality laws for F become x[id] = x and x[f ◦ g] = x[f][g] for all x ∈ FA, f ∈ V(B, A) and g ∈ V(C, B).

We work with V̂-enriched categories. Recall that a V̂-enriched category C is given by a collection of objects, a
hom-object C(A, B) in V̂ for any two objects A and B, and maps in V̂ for identity idA : 1→ C(A, A) and composition
(−) ◦ (−) : C(A, B) × C(B,C) → C(A,C) satisfying the usual laws. The enrichment is thus taken with respect to the
cartesian product on V̂.

Since the enrichment is in V̂ = SetV
op

, the above data specifies an ordinary category CΓ for each object Γ of V: The
objects of CΓ are those of C and the set of morphisms CΓ(A, B) is defined to be C(A, B)Γ.

5.7.3. Computations
The V̂-category of computations C has the same objects as V. The set of morphisms C(A, B)Γ is defined to be the set

of all complex evaluation contexts E, for which Γ, x : A ` E[x] : B is derivable, identified up to extensional equality.
The functor action of C(A, B) is given by substitution. The composition of two maps is given by the complex evaluation
contexts Γ, x : A ` E[x] : B and Γ, x : B ` F[x] : C is defined to be the map given by Γ, x : A ` F[E[x]] : C. The
identity morphism is given by [·].
Proposition 18. The V̂-category C has V̂-enriched finite coproducts.

Proof. We need to define an isomorphism ψ : C(A,C)×C(B,C)→ C(A + B,C) that is V̂-natural in C. It can be defined
by ψΓ(E[·], F[·]) = case [·] of inl(x)⇒ E[x] | inr(y)⇒ F[y]. An inverse is ψ−1

Γ
(E[·]) = 〈E[inl([·])], E[inr([·])]〉.

The Int construction can be applied to any traced monoidal category [28]. We next show that C is traced with
respect to coproducts.

Definition 7. A uniform V̂-Conway operator is a map

(−)† : C(A, B + A)→ C(A, B)

satisfying the following equations:

1. (Fixpoint) [idB, f †] ◦ f = f † for all f ∈ C(A, B + A)Γ.
2. (Naturality) g ◦ f † = ((g + idA) ◦ f)† for all f ∈ C(A, B + A)Γ and all g ∈ C(B,C)Γ.
3. (Dinaturality) ([inl, g] ◦ f)† = [idC , ([inl, f] ◦ g)†] ◦ f for all f ∈ C(A,C + B)Γ and all g ∈ C(B,C + A)Γ.
4. (Diagonal) (f †)† = ([idB, inr] ◦ f)† for all f ∈ C(A, (C + A) + A)Γ.
5. (Uniformity) For all g ∈ C(A,C + A)Γ, h ∈ C(B,C + B)Γ and k ∈ C(A, B)Γ, if h ◦ k = (idC + k) ◦ g then g† = h† ◦ k.

Lemma 19. The V̂-category C has a V̂-Conway operator.

Proof. The operator is defined by mapping E ∈ C(A, B + A)Γ to (let y = [·] loop E[y]). We verify the dinaturality
law, leaving the other cases to the reader. The two morphism ([inl, g] ◦ f)† and [idC , ([inl, f] ◦ g)† ◦ f in C are given by
the following complex evaluation contexts E1 and E2:

E1 := let x = [·] loop case F[x] of inl(z)⇒ inl(z) | inr(y)⇒ G[y]
E2 := case F of inl(z)⇒ z | inr(y)⇒ E′2[y]

where E′2 := let y = [·] loop case G[y] of inl(x)⇒ inl(x)
| inr(y)⇒ F[y]

We have to show extensional equality of E1 and E2, that is for all closed values v and w, we have E1[v] 7→∗k w if and
only if E2[v] 7→∗k w. We show by well-founded induction on i that E1[v] 7→i

k w implies E2[v] 7→∗k w for all v and w. The
reduction E1[v] 7→∗k w takes one of the following two forms:

39

• The reduction of E1[v] has the following form, in which F[v] reduces to inl(w):

E1[v] 7→k case (case F[v] of inl(z)⇒ inl(z) | inr(y)⇒ G[y]) of inl(z)⇒ z
| inr(y)⇒ E1[y]

7→∗k case (case inl(w) of inl(z)⇒ inl(z) | inr(y)⇒ G[y]) of inl(z)⇒ z
| inr(y)⇒ E1[y]

7→k case inl(w) of inl(z)⇒ z | inr(y)⇒ E1[y]
7→k w

In this case, we get E1[v] 7→∗k w and immediately also E2[v] 7→∗k w, which is what we had to prove.

• The reduction of E1[v] starts as follows, where F[v] reduces to inr(u):

E1[v] 7→k case (case F[v] of inl(z)⇒ inl(z) | inr(y)⇒ G[y]) of inl(z)⇒ z
| inr(y)⇒ E1[y]

7→∗k case (case inr(u) of inl(z)⇒ inl(z) | inr(y)⇒ G[y]) of inl(z)⇒ z
| inr(y)⇒ E1[y]

7→∗k case G[u] of inl(z)⇒ z | inr(y)⇒ E1[y]

The reduction then continues by reduction of G[u]. We next make a case distinction on the value G[u] reduces to.
But note first that we also have

E2[v] 7→k E′2[u] 7→∗k case G[u] of inl(x)⇒ inl(x) | inr(y)⇒ E′2[y] .

– G[u] is reduced to inl(w), i.e. the reduction of E1[v] continues as follows:

case G[u] of inl(z)⇒ z | inr(y)⇒ E1[y] 7→∗k case inl(w) of inl(z)⇒ z | inr(y)⇒ E1[y]
7→k w

In this case we also have

E2[v] 7→∗k case G[u] of inl(x)⇒ inl(x) | inr(y)⇒ E′2[y]
7→∗k case inl(w) of inl(x)⇒ inl(x) | inr(y)⇒ E′2[y]
7→k w ,

as was required to show.
– G[u] is reduced to inr(u′), i.e. the reduction of E1[v] continues as follows:

case G[u] of inl(z)⇒ z | inr(y)⇒ E1[y] 7→∗k case inr(u′) of inl(z)⇒ z | inr(y)⇒ E1[y]
7→k E1[u′]

The rest of the reduction then is E1[u′] 7→ j
k w for some j < i. By induction hypothesis we get E2[u′] 7→∗k w.

We can then conclude this case by observing the following reduction sequence:

E2[v] 7→∗k case G[u] of inl(x)⇒ inl(x) | inr(y)⇒ E′2[y]
7→∗k case inr(u′) of inl(x)⇒ inl(x) | inr(y)⇒ E′2[y]
7→k E′2[u′] 7→k E2[u′] 7→∗k w

Proposition 20. The V̂-category C has a uniform trace with respect to coproducts. Precisely, this means that for all A,
B and C there is a map

Tr(A, B,C) : C(A + C, B + C)→ C(A, B)

such that, for all Γ, (Tr(A, B,C))Γ is a uniform trace in CΓ in the standard sense.

40

Proof. The natural transformation is given such that Tr(A, B,C)Γ maps E with Γ, x : A + C ` E[x] : B + C to

F = case E[inl(x)] of inl(x)⇒ x
| inr(y)⇒ let z = y loop E[inr(z)]

with Γ, x : A ` F[x] : B. This defines a uniform trace in each CΓ, see [20]. Naturality, i.e. closure under substitution
with complex values, follows immediately.

5.7.4. Int-Construction
We can now explain in which sense the circuits defined earlier in this section appear as morphisms in an instance of

the Int construction.
We use the following evident generalisation of the Int construction to V̂-enriched categories. The V̂-category Int(C)

has as objects pairs (X−, X+) of C-objects. The hom-objects are defined by

Int(C)((X−, X+), (Y−,Y+)) = C(X+ + Y−,Y+ + X−) .

Composition and identity are uniquely determined by requiring that Int(C)Γ agrees with the usual Int construction on
CΓ. In this V̂-enriched variant one finds the structure well-known from the Int construction, see [28]. For example, a
compact closed structure is given on objects by X ⊗ Y = (X− + Y−, X+ + Y+) and (X−, X+)∗ = (X+, X−). We do not spell
out this structure in detail here, because we have already defined it in terms of circuits earlier in this section.

A circuit over Γ with interface [X1, . . . , Xn] → [Y1, . . . ,Ym] is a representation of a map of type X1 ⊗ · · · ⊗ Xn →
Y1 ⊗ · · · ⊗ Ym in Int(C)Γ. The compact closed structure of Int(C) is given in Lemmas 5 and 6. For further information
on the categorical properties of the Int construction we refer to [28, 21], as the intention in this section is merely to
relate the construction of circuits to the standard Int construction.

6. Space Bounds

The translation of interactive terms to circuits is a compilation method that allows us to establish interesting space
bounds in a simple way. How much space does the circuit implementation of an interactive term use? Recall that a
circuit implements message passing. Messages travel from node to node; they are transformed by each node they pass.
Our circuit implementation takes any message that may be passed into the circuit and traces it through the circuit, until
it is returned to the environment. The space used by this implementation is proportional to the size of the circuit and
the maximum size that a message can attain. Both sizes are easy to estimate in our case. The circuit size depends only
on the term and will be fixed. The maximum message size too can be read off from the circuit. As circuit wires are
labelled with types, we know in advance all the possible (base language) types that the messages can have. So, a simple
bound on the maximum size of a message is the maximum of the sizes of all the values of any type that appears in the
circuit. Notice that this simple space bound can already be computed given only an intml typing derivation.

If we restrict our attention to types not containing int or type variables, all these types will be finite, and we obtain
finite size bounds. We immediately obtain:

Proposition 21 (Constant Space). If δ derives Γ | Φ ` t : X and δ does not contain any type variable of the type int,
then the behaviour of the circuit JδK can be implemented in constant space.

This proposition may perhaps seem trivial, but the constant space circuit implementation of intml terms is close to
Ghica’s method of hardware synthesis [14]. As intml is more expressive than Ghica’s bSCI, it may be interesting to
study the constant space variant of intml, e.g. for hardware synthesis.

In this section we show that this simple idea of analysing the space usage of circuit evaluation can be used to obtain
interesting space bounds for intml programs. We show that intml characterises the classes of functions computable in
logarithmic space (flogspace) and non-deterministic logarithmic space (nflogspace).

41

6.1. Logarithmic Space

We describe a precise correspondence between the class of functions representable in intml and the class of
functions computable in logarithmic space. We begin by analysing the space requirements of base language reduction.

We consider the space usage of a simple direct implementation of term reduction for the base language. The
size needed to encode a term will be proportional to the size of its abstract syntax trees, provided that the size of
int-constants is counted appropriately. We define the size of values to be |x| = | ∗ | = 1, |n| = dlog ne, |〈v,w〉| = |v| + |w|
and |inl(v)| = |inr(v)| = 1 + |v|. With this definition values can be encoded such that v needs space O(|v|). This
definition is extended to base terms in the evident way by counting any inner node in the abstract syntax tree as one,
e.g. |case f of inl(x)⇒ g | inr(y)⇒ h| = 1 + | f | + |g| + |h|, etc.

For the purposes of relating intml to flogspace, it suffices to prove the following lemma on the space requirements
of base language reduction. It states that the space needed for base language reduction is linear in bit-width of integers.

Lemma 22. Let x : A ` f : B be derivable for variable-free types A and B. There exist are constants c ∈ N and
d ∈ N such that for any k and any closed value v : A containing only k-bit integers, we have that f [v/x] 7→∗k g implies
|g| ≤ c · k + d.

Proof. Define the potential of a term Γ ` f : A to be the size of the largest term that can appear when we first substitute
closed values for the free variables in f and then apply an arbitrary number of reduction steps:

pot(Γ ` f : A) = max{ |g| | f [σ] 7→∗k g for some value-substitution σ ∈ EΓ}

Notice that pot(Γ ` f : A) is thus defined if and only if Γ ` f : A is derivable.
For any variable-free base type A, we can define an upper bound |A| on the size of its values as follows: |0| = |1| = 1

and |int| = k, |A × B| = |A + B| = 1 + |A| + |B|. We have |v| ≤ |A| for any closed value v of type A that contains only
k-bit integers.

Next we show that each of the following inequalities holds, given that the terms on both of its sides are defined.

pot(Γ ` x : A) ≤ |A| (16)
pot(Γ ` ∗ : 1) ≤ 1 (17)

pot(Γ ` 〈 f , g〉 : A × B) ≤ 1 + pot(Γ ` f : A) + pot(Γ ` g : B) (18)
pot(Γ ` fst(f) : A) ≤ 1 + pot(Γ ` f : A × B) (19)
pot(Γ ` snd(f) : B) ≤ 1 + pot(Γ ` f : A × B) (20)

pot(Γ ` inl(f) : A + B) ≤ 1 + pot(Γ ` f : A) (21)
pot(Γ ` inr(g) : A + B) ≤ 1 + pot(Γ ` g : B) (22)

pot(Γ ` case f of inl(x)⇒ g | inr(y)⇒ h : C) ≤ 1 + pot(Γ ` f : A + B)
+ pot(Γ, x : A ` g : C)
+ pot(Γ, y : B ` h : C)

(23)

pot(Γ ` let x = f loop g : A) ≤ 3 + pot(Γ ` f : B)
+ 2pot(Γ, x : B ` g : A + B)

(24)

(25)

We consider (23) as a representative case: Any reduction of case f [σ] of inl(x) ⇒ g[σ] | inr(y) ⇒ h[σ] must,
by definition, start with reducing f [σ]. In this stage all intermediate terms have the form case f ′ of inl(x) ⇒
g[σ] | inr(y) ⇒ h[σ] for some f ′ with f [σ] 7→∗k f ′. Clearly, the size of this term is bounded by 1 + pot(Γ `
f : A + B) + pot(Γ, x : A ` g : C) + pot(Γ, y : B ` h : C). Once f [σ] has been reduced to a value inl(v) or inr(w),
reduction continues with a contraction of the case and then with either g[σ][v/x] or h[σ][w/y]. In either case, the size
of the intermediate terms are bounded by the claimed bound.

To establish the bound claimed in the lemma, consider now a derivable typing judgement Γ ` f : A. By unfolding
the above inequality repeatedly as long as possible, we obtain an inequality pot(Γ ` f : A) ≤ c1 · |A1| + c2 · |A2| + · · · +

42

cn · |An| + d for some suitable types A1, . . . , An that all appear in the derivation of Γ ` f : A and some natural numbers
c1,. . . , cn, d. But by definition of the size of types, this means that there exists some c, such that

pot(Γ ` f : A) ≤ c · k + d

holds for all k. By definition of the potential, this is what we have to prove.

Having proved a linear space bound for reduction in the base language, we now show that the interactive language
can capture the functions computable in logarithmic space. Let Σ be a fixed, finite alphabet. We show that intml
captures the flogspace-computable functions Σ∗ → Σ∗.

First, we must define how to represent functions from Σ∗ to Σ∗ in intml. We choose an encoding that represents
functions in a space efficient way, making essential use of the interactive nature of intml-computation. Any finite set
can be represented as a variable-free base language type, e.g. by a sum 1 + · · · + 1 with one summand for each element.
We shall use finite sets as if they were base language types, with the understanding that such an encoding has been
applied implicitly.

For the representation of words we will assume that the bit width of integers is chosen to be dlog ne, where n is
the length of the input word. This means that the type int contains just enough values to point to any position in the
input word. A little care needs to be taken with the trivial cases where n ≤ 1, so we will choose the bit-width to be k(n),
defined as follows.

k(n) =

1 if n ≤ 1,
dlog ne otherwise.

Since logarithmic space functions can produce output of polynomial length, we need to be able to represent numbers
of up to nm for any constant m. We do so in the standard way by using the type intm := int × · · · × int (m factors).
If n is the maximum value of type int, then intm can represent values up to nm. We define the least value of intm

to be the vector of all zeros and order the values lexicographically. The basic arithmetic operations on intm can be
implemented in the base language. For any number i that can be encoded in intm, we write 〈i〉m for its representation
as a value of type intm.

Words over the alphabet Σ can be represented as functions that map positions to characters. That is, the word
w = w0w1 . . .wn is represented by a function mapping i to wi. Any position that goes beyond the end of the word is
mapped to a special blank symbol �. We write Σ� for Σ] {�}.

Formally, we represent Σ-words using types of the form Bm := 1 · [intm]([Σ�]:

Definition 8. A closed interactive term t of type Bm represents a word w0w1 . . .wn ∈ Σ∗ with respect to k-bit integers
if and only if n can be can be represented as a value of type intm (using k-bit integers) and we have

t 〈i〉m 7→∗k [c] ⇐⇒ (i ≤ n ∧ c = wi) ∨ (i > n ∧ c = �)

for all numbers i representable in intm (using k-bit integers).

We have defined Bm to be 1 · [intm]([Σ�]. The reader may wonder if the choice to 1 in the subexponential is a
restriction. It is certainly not a restriction for a program that is given a variable of such a type as an input. The program
can assume that the program does not need to store anything when it requests its argument. It is also not a restriction for
programs defining values of this type, as the A can be pulled out. If t has type A · [B](X, then λx. let [b] = x in t [b]
has type 1 · [B](X. The value b of type B is computed up front and stored in the environment, so that when t requests
its argument the value can be returned right away without having to query x again.

Lemma 23. For any w ∈ Σ∗ there exists a closed interactive term 〈w〉m : Bm that represents w with respect to k(|w|)-bit
integers.

Proof. We can define a suitable term by 〈w〉m = λx. let [i] = x in [w(i)], where w(i) is a base language term that
implements the pseudo-code if i = 〈0〉m then w0 else if i = 〈1〉m then w1

Definition 9. We say that a term ` t : A · Bm (Br represents a function ϕ : Σ∗ → Σ∗ if and only if for every
word w ∈ Σ∗ the term (t 〈w〉m) encodes ϕ(w) with respect to k(|w|)-bit integers.

43

We remark that one may also use an alternate definition that does not refer to reduction in the interactive language,
without affecting the truth of the following theorem. Instead of requiring t 〈w〉m 〈i〉r to reduce to one of ci or �, one
may ask for the circuit for this term to have the same behaviour as either [ci] or [�], depending on i.

Theorem 24 (Flogspace Soundness). If ϕ : Σ∗ → Σ∗ is represented by t, then ϕ is computable in logarithmic space.
Moreover, a flogspace algorithm computing ϕ is given by circuit-evaluation of t.

Proof. Compiling t to a base language term yields a term x : X− ` f : X+, where X has the form A · Bm (Br. By
Lemma 22, reduction of f with respect to k-bit integers (i.e. computation of ϕ on strings of length up to (2k)m) can be
implemented using space linear in k.

Using this observation, we now construct a logarithmic space Turing Machine Mϕ for ϕ. Given input w, we choose
the bit-width of integers to be k(|w|). With this choice the machine simulates the circuit for the term (t 〈w〉m 〈i〉r) : [Σ�]
with respect to k-bit integers, first for i = 0, then i = 1, etc. This will result in a sequence of characters, which the
machine writes on its output tape, as they are returned from the circuit. The machine stops once a blank symbol is
returned.

The machine Mϕ works as follows. Given input word w, it writes down the term f with all integers represented
using k := k(|w|) bits. It then reduces f inr(inr(∗)) with respect to k-bit integers. This amounts to asking the function
for a character. Depending on the result value, it continues as follows: (i) if the value is inr(inr(c)) (informally: ‘The
requested character is c.’) then it outputs c, advances the output head and if c was not a blank symbol it begins from
the start; (ii) if the value is inr(inl(v, ∗)) (informally: ‘Which character of ϕ(w) should be computed?’) it reduces
f inr(inl(v, 〈i〉r)), where i is the position of the output head, and continues with the same case distinction; (iii) if
the value is inl(v, inr(∗)) (informally: ‘A character from the input is requested.’), then it reduces f inl(v, inl(∗, ∗))
(informally: ‘What is the position of the requested character?’) and continues with the same case distinction; (iv) if the
value is inl(v, inl(∗, 〈i〉r)) (informally: ‘It is the i-th input character that is requested.’), then it moves its input head
to position i of the input tape, reads the character wi there and reduces f inl(v, inr(wi)) (informally: ‘The requested
character is wi.’) and continues with the same case distinction.

Theorem 25 (Flogspace Completeness). Any function ϕ : Σ∗ → Σ∗ computable in logarithmic space is represented by
some interactive term tϕ.

Proof. The proof goes by a simple encoding of logarithmic space Turing Machines in intml.
Let M be a logarithmic space Turing Machine computing ϕ. We can assume that it has one work tape. The content

of the work tape and the position of the work tape head can be encoded using two stacks that contain the characters that
one would see when reading from the work tape head to the left and to the right respectively. With a binary encoding,
these stacks can be encoded by two natural numbers. As the machine only uses logarithmic space, these numbers can
be bounded by a polynomial in the size of the input, as can the output length of the machine.

We can assume that the bit width of integers is large enough, so that int has enough elements to encode the
positions in an input word. The state of M can be encoded by values of a base language type of the form

S = Q × int × intm × intm × intr,

where Q is the set of states of M. The component of type int encodes the position of the input head. The two
components of type intm encode the content of the work tape of M to the left and right of M’s work head Finally, the
component of type intr encodes the position of the output head. Notice that m and r can always be found, as we have
defined k(n) so that int always has at least two elements.

The initial configuration of the machine M is readily encoded as a base language value ` init0 : S .
The step function of M is implemented as a base language term

c : Σ, n : P, s : S ` step0(c, s, n) : S + Σ�

that formalises the step of M, given that the currently scanned input character is c, the current state is s and that the
aim is to compute the character at position n on the output tape. The result of step0(c, s, n) is inl(s′) if M moves
from s to s′ in one step and the output head of M has not moved beyond the position represented by n. The result of
step0(c, s, n) is inr(d) if in this step M writes the character d the position addressed by n on the output tape. We omit
the details of the definition of step0, which is straightforward in the presence of iteration.

44

To simulate the computation of the Turing Machine M, we must read the character c from the input word, which is
encoded as an function in the interactive language. We define the step function as an interactive term

n : P | w : A · [int]([Σ�] ` step(w, n) : B · [S]([S + Σ�] ,

for suitable A and B:
step(w, n) = λs. let [〈q, pos, tapeleft, taperight, outpos〉] = s in

let [c] = w [pos] in
[step0(c, 〈q, pos, tapeleft, taperight, outpos〉, n)]

With these definitions, a term tϕ representing ϕ can be defined by

tϕ : A·([int]([Σ�])(([intr]([Σ�])
tϕ = λw. λn′. let [n] = n′ in loop step(w, n) [init0]

for some suitable A.

6.2. Nondeterministic Logarithmic Space
The functions computable in non-deterministic logarithmic space (Nflogspace) can be captured much in the same

way as those in Flogspace. Just as for Turing Machines one moves from deterministic to non-deterministic transition
functions, one can in intml allow non-determinism in the base language and capture non-deterministic logarithmic
space in this way.

The class Nflogspace is defined to consist of all functions f : Σ∗ → Σ∗ for which there exists a non-deterministic
Turing Machine M f with logarithmic space usage and the following property: f (w) = v if and only if M f accepts
input w and with v written on its output tape. Note that this implies that M f is single-valued. Given input w, it may
accept only with output f (w) = v; it must not accept with any other output. In the literature, the class of functions
definable in non-determinism logarithmic space is also called FNL [3] and is defined to be FlogspaceNlogspace – the set
of functions that can be computed in logaritmic space with access to an Nlogspace-oracle. It is not hard to see that this
definition is in fact equivalent to the definition of Nflogspace above. A proof of the equivalence can be found in [4,
Prop. 3.1].

We extend the base language with non-determinism by adding a new constant ` ndchoice : 1 + 1: Its two
reduction rules make ndchoice a non-deterministic choice operator:

ndchoice 7→k inl(∗) ndchoice 7→k inr(∗)

The reader should reconsider the definition of what it means for a term t of type ` t : A · Bm (Br to represent a
function ϕ : Σ∗ → Σ∗ in the light of the non-determinism in the base language: For any word w and any c ∈ Σ, if we
choose the bit-width of integers such that |w| can be represented as an int value, then there exists a reduction sequence
from t 〈w〉m 〈i〉r to [c] if and only if c is the character at position i in the word ϕ(w) (when considered padded with blank
symbols). This corresponds to the computation of a single-valued non-deterministic Turing Machine: the character at
position i on its output tape is c if and only if it has a run that outputs c on this position.

Theorem 26 (Nflogspace Soundness). If ϕ : Σ∗ → Σ∗ is represented by t, then ϕ is computable in non-deterministic
logarithmic space.

Proof. The proof goes just like that of Theorem 24 for logspace soundness. For the reduction of ndchoice we use
non-deterministic choice.

Theorem 27 (Nflogspace Completeness). Any function ϕ : Σ∗ → Σ∗ computable in non-deterministic logarithmic
space is represented by some interactive term tϕ.

Proof. Let Mϕ be a nflogspace Turing Machine that computes ϕ. We use the formulation of non-deterministic Turing
Machines where a machine has two deterministic transition functions and decides non-deterministically in each step
which of the two functions to apply.

45

We construct a term tϕ just as in the proof to Theorem 25. The state S of the machine is exactly as in Theorem 25.
For the two step functions of Mϕ we define terms step1

0(c, s, n) and step2
0(c, s, n) with

c : Σ, n : P, s : S ` stepi
0(c, s, n) : S + Σ�

as in Theorem 25. From this we define the non-deterministic step function step0(c, s, n) by:

c : Σ, n : P, s : S ` if ndchoice step1
0(c, s, n) else step2

0(c, s, n) : S + Σ�

The rest of the construction of tϕ is exactly as in Theorem 25.
Non-deterministic choices are thus accounted for in the definition of step0(c, s, n) by using the constant ndchoice.

That is, we define step0(c, s, n) such that, when given concrete values for c, s and n, there exist reduction sequences
leading to each possible successor configuration, and only to those configurations.

7. Related Work

7.1. Linear Logic

Linear Logic [16] has played an important role in the implicit characterisation of complexity classes by functional
programming languages. Intuitionstic Linear Logic has the formulae α, X ⊗ Y , X (Y , !X and ∀α. X. Under the
Curry-Howard correspondence, these can be seen as types of a polymorphic λ-calculus. The resulting type system
refines System F.

Girard, Scedrov and Scott [19] realised that by restricting the exponential !X, it is possible to carve out a class of
System F terms that captures the functions computable in polynomial time. They introduced Bounded Linear Logic
(bll) [19], which replaces the exponential !X with a bounded exponential !x<pX, where p is a polynomial. While the
unbounded exponential !X represents an arbitrary number of copies of X, the bounded exponential !x<pX represents a
polynomial number of copies of X, one for each number less than p.

If one further restricts universal quantification to ∀α ≤ p. X, then one can identify the functions computable in
logarithmic space. This has led to Stratified Bounded Affine Logic (sbal) [42] with formulae of the form α(~p), X ⊗ Y ,
X (Y , !x<pX and ∀α ≤ p. X.

The definition of intml can be seen as the result of a simplifying sbal for programming purposes. The formulae of
sbal play the same role as the interactive types in intml. In order to make the type system as simple as possible, intml
does not have polymorphism, and the resource polynomials have been enriched to become base language types.

The removal of polymorphism is motivated by programming language practice. In System F and the above-
mentioned linear logics, data types such as natural numbers are defined using impredicative encodings [17]. In sbal it
is possible to represent the natural numbers Np = {0, . . . , p} using a type of the form ∀α ≤ q. !x<p(α(x)(α(x + 1))(
α(0)(α(p). In practical programming languages it is more common to find such data types as primitive base types.
Intml removes polymorphism for simplicity and adds primitive data types instead. After removing polymorphism from
sbal, one is left with types of the form X ⊗ Y , X (Y and !pX. The now missing type of natural numbers may be
added as a primitive type of the form [Np], which is to be understood like [int] in intml. The bounded exponential
!pX corresponds to the subexponential Np · X in intml. Indeed, if we consider Np as a base language type, then t
he interactive interpretation of [Np], X ⊗ Y , X (Y and Np · X described in this paper is essentially the same as the
interactive interpretation of sbal in [42].

But adding a base type [Np] alone is not enough. We also need to add terms to be able to work with it. For example,
one may expect there to be an addition constant add : [Np](Np · [Np]([Np+q]. But a good choice of primitive
constants is not obvious. Since values of type Np can be stored in space log p using a binary encoding, they can be
stored fully in memory. The programmer should expect to be able to work with them without any language constraint.
At the same time the language must guarantee that the use of large data does not lead beyond logarithmic space.
Allowing unconstrained manipulation of small values that fully fit in memory was one motivation for making the base
language visible to the programmer in intml.

That intml uses base types in place of polynomials is also a result of a simplification. While it is possible to
formulate intml just with types of the form [Np], X ⊗ Y , X (Y and Np · X, the need for manipulation of polynomials
would make the language more complicated. Irrelevant encoding details would become visible in the type system. For

46

example, the intml type system works with (A × B) · X instead of A · (B · X). If we allow only base types of the form
Np, then Np · (Nq · X) could become Np·q · X, as it is possible to represent pairs of numbers in Np and Nq by a single
number in Np·q. But in an implementation one may like to use a fast and easy-to-implement pairing function that just
concatenates the bits of the two numbers. Then one would need to replace Np·q by Nr·q, where r is an upper bound for
next the power of two that is larger than p (it is not even obvious how to write a good bound as a polynomial). This
means that small changes in the implementation would influence the type system. It seems more natural to separate
concerns by writing (Np × Nq) · X in the type system and by handling the encoding details on the base language level.

Dual Light Affine Logic. The concrete definition of the interactive language of intml is inspired by Baillot and Terui’s
Dual Light Affine Logic (dlal) [6]. intml treats the subexponential A · X much like dlal treats the exponential
modality !X. Just as the exponential modality may only appear in negative positions in dlal, i.e. one can have !X (Y
but not X (!Y , intml only accounts for types of the form A · X (Y . The restriction to negative occurrences of A · X
much simplifies the type system without being limiting in applications.

Subexponentials. We use the term subexponential by analogy with the subexponentials introduced by Nigam and
Miller [37]. Nigam and Miller study a logic with labelled subexponentials. Depending on the label L, weakening and
contraction may or may not be allowed for !L and it may be possible to go from two subexponentials with a certain
labels !L!K X to one with a third label !RX.

In intml, the subexponential A · X is labelled with a base type A. All intml subexponentials allow weakening.
Since our base language does not contain infinite types, they do not allow contraction. If one added a base type N
of unbounded natural number, then N · X would support contraction. Moreover, the phenomenon of combining two
subexponentials into a third one appears in that A · (B · X) becomes (A × B) · X. Rule Struct also allows conversion
between different subexponentials.

7.2. Interaction Semantics

Geometry of Interaction Situations. Abramsky, Haghverdi & Scott [1] study an axiomatic framework for Girard’s
Geometry of Interaction (GoI) [18]. They introduce Geometry of Interaction situations to capture the structure of
the GoI abstractly. In particular, they show that the Int construction gives rise to one such GoI situation. The main
difference to our work in this paper is that in a GoI situation one assumes enough structure to model the exponentials
of Linear Logic. In our case this would amount to assuming a type N of unbounded natural numbers with properties
such as N + N / N. We consider it a main contribution of intml that we do not need to make such assumptions, as
this enables programming with strongly limited space, such as constant or logarithmic space, see Proposition 21 and
Theorems 24 and 26.

Game Semantics. The idea of viewing λ-terms as message passing circuits which communicate with their environment
by exchanging questions and answers is also reminiscent of game semantics. This comes with no surprise, given
the strong relation existing between the latter and geometry of interaction [5, 12]. Indeed, our construction is quite
similar to ajm games for multiplicative and exponential linear logic [2], the main difference being the way we treat
the exponentials. While we use a simple construction of subexponentials A · X, in ajm-games the exponentials are
constructed from N · X by identifying a set of possible plays and by identifying different plays that represent the same
computation. In intml there is no provision, such as the plays in ajm-games, that restricts the possible interactions with
a circuit. One may see intml as a programming language for implementing the (possibly ill-formed) raw strategies of
ajm-games.

Geometry of Synthesis. The way to see λ-terms as circuits is similar to Ghica’s Geometry of Synthesis [14], which
is defined on bSCI as described in Section 4.2. The main difference to our approach is the treatment of duplication.
In intml, duplication is handled through subexponential types, similarly to what happens with indexes in Abramsky-
Jagadeesan-Malacaria (ajm) games. This does not require circuits to have internal states, but forces tokens to be more
complex: whenever you interact with an object which could possibly be duplicated, you need to specify which specific
copy of it you are querying. In Ghica’s work, on the other hand, the target language consists of so-called handshake
circuits, which do have an internal state. This has of course the advantage of keeping tokens simple, but has a price: the
implementation of non-linear λ-terms is not always possible, Kierstead’s terms being an example.

47

Geometry of Implementation. Many years before the advent of the Geometry of Synthesis, Mackie had the idea of
turning the Geometry of Interaction into an abstract machine implementing λ-calculus reduction [32]: the source
language was pcf, while the object language took the form of a minimal assembly language for an abstract register
machine. Mackie’s translation is similar to ours, but no bounds on the space consumption of programs is are considered.
Mackie’s treatment of copying amounts to what happens when one adds to the base language a type of binary trees T (α):

type T (α) = Empty of 1
| Leaf of α

| Node of T (α) × T (α)

With such a type one has T (α) × T (α) / T (α) and T (α) + T (α) / T (α). Then, one can use T (1) for all subexponentials
and use the Struct to maintain this form after each rule application. Thus, arbitrary copying can be allowed. Of course,
the type system then does not yield interesting space bounds anymore. In this paper we have shown that this approach
to copying can be refined and controlled, so that space bounds can be proven.

Defunctionalization. We have developed intml directly from from an analysis of the demand-driven computation that
one finds in logarithmic space algorithms. However, it turns out that the translation from the interactive language
to the base language is closely related to the more traditional compilation techniques of cps-translation [22] and
defunctionalization [40]. These two techniques allow the translation of a higher-order functional language to a first-
order language with tail recursion. Given a higher-order language, one may first apply a cps-translation to fix the
evaluation order and then use defunctionalization to reduce the resulting higher-order program to a first-order program.

In intml we have used as the base language a simple first-order language with a loop construct. It is equally possible
to use a first-order language with tail recursion instead. For each message passing node and each incoming wire we
could define a first-order function that takes the incoming message as argument, that computes the output message and
that then invokes the first-order function of the destination node with the resulting output message with a tail call. The
translation from the higher-order interactive language to the first-order language with tail recursion that one obtains in
this way is closely related to the program one obtains by call-by-name cps-translation [22] followed by a particular
defunctionalization procedure [7]. Details are described in [44].

7.3. Implicit Characterisations of Logarithmic Space

The work in this paper builds on earlier work on implicit characterisations of logarithmic space complexity
classes. While implicit characterisations of complexity classes often focus on minimal formal systems, such as
function algebras [36, 38, 39] or while-languages [26], the results are useful in obtaining a better understanding of
the resource usage properties of programming languages. Bonfante [8] shows how to capture logspace by a first-
order functional language. In intml we work towards extending such results to higher-order functional programming
languages. For example, we believe that Møller-Neergaard’s function algebra BC−ε can be implemented in intml. The
logspace soundness of this function algebra depends on a complicated implementation of recursion with computational
amnesia [36]. An intml program for this can be found as an example in the experimental implementation of intml1. An
interesting direction for further work is to consider lazy data structures and corecursion in intml and the relation to the
work of Ramyaa and Leivant [39]. Where we use functions to represent long strings, Ramyaa and Leivant use streams.

8. Conclusion

We have found that an interactive approach to computation, as formalised by the Int construction, is a good way
of structuring space-bounded computation that can help us to understand the principles of space-bounded functional
programming. This view has guided the design of intml, a simple, expressive language capturing flogspace. Practical
experience with an experimental implementation of intml suggests that, with suitable type inference, intml can be
made to be quite usable [11].

1Available from: http://www.github.com/uelis/IntML

48

We believe that intml is not only interesting as a language for sublinear space computation. The interactive
computation model appears to have a wide range of applications – we have already commented on the connection
to hardware synthesis, for example – and the intml type system is general enough to be instantiated for different
applications. Regarding the intml type system itself, we intend to investigate the relation to the use of subexponentials
in the proof theory of linear logic, e.g. in [37].

References

[1] S. Abramsky, E. Haghverdi, P. J. Scott, Geometry of interaction and linear combinatory algebras, Mathematical Structures in Computer Science
12 (5) (2002) 625–665.

[2] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, Information and Computation 163 (2) (2000) 409–470.
[3] C. Àlvarez, J. L. Balcázar, B. Jenner, Functional oracle queries as a measure of parallel time, in: Symposium on Theoretical Aspects of

Computer Science, STACS 1991, 1991, pp. 422–433.
[4] C. Àlvarez, B. Jenner, A note on logspace optimization, Computational Complexity 5 (2) (1995) 155–166.
[5] P. Baillot, Approches dynamiques en sémantique de la logique lineaire: jeux et géometrie de l’interaction, Ph.D. thesis, University Aix-Marseille

II (1999).
[6] P. Baillot, K. Terui, Light types for polynomial time computation in lambda calculus, Information and Computation 207 (1) (2009) 41–62.
[7] A. Banerjee, N. Heintze, J. G. Riecke, Design and correctness of program transformations based on control-flow analysis, in: N. Kobayashi,

B. C. Pierce (eds.), Theoretical Aspects of Computer Software, TACS 2001, vol. 2215 of Lecture Notes in Computer Science, Springer, 2001,
pp. 420–447.

[8] G. Bonfante, Some programming languages for Logspace and Ptime, in: Algebraic Methodology and Software Technology, AMAST 2006, vol.
4019 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 66–80.

[9] S. Cook, P. McKenzie, Problems complete for deterministic logarithmic space, Journal of Algorithms 8 (3) (1987) 385–394.
[10] U. Dal Lago, U. Schöpp, Functional programming in sublinear space, in: European Symposium on Programming, ESPO 2010, vol. 6012 of

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010, pp. 205–225.
[11] U. Dal Lago, U. Schöpp, Type inference for sublinear space functional programming, in: Asian Conference on Programming Languages and

Systems, APLAS 2010, vol. 6461 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010, pp. 376–391.
[12] V. Danos, H. Herbelin, L. Regnier, Game semantics and abstract machines, in: Logic in Computer Science, LICS 1996, IEEE, Los Alamitos,

CA, 1996, pp. 394–405.
[13] J. Egger, R. E. Møgelberg, A. Simpson, Enriching an effect calculus with linear types, in: Computer Science Logic, CSL 2009, vol. 5771 of

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2009, pp. 240–254.
[14] D. R. Ghica, Geometry of synthesis: a structured approach to VLSI design, in: Principles of Programming Languages, POPL 2007, ACM, New

York, NY, 2007, pp. 363–375.
[15] D. R. Ghica, A. Smith, Geometry of synthesis III: resource management through type inference, in: T. Ball, M. Sagiv (eds.), Principles of

Programming Languages, POPL 2011, ACM, 2011, pp. 345–356.
[16] J. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.
[17] J. Girard, P. Taylor, Y. Lafont, Proofs and Types, Cambridge University Press, 1989.
[18] J.-Y. Girard, Geometry of interaction 1: Interpretation of System F, in: In Proceedings of Logic Colloquium ’88, vol. 127 of Studies in Logic

and the Foundations of Mathematics, Elsevier, Amsterdam, 1989, pp. 221 – 260.
[19] J.-Y. Girard, A. Scedrov, P. J. Scott, Bounded linear logic: a modular approach to polynomial-time computability, Theoretical Computer

Science 97 (1992) 1–66.
[20] M. Hasegawa, Models of Sharing Graphs (A Categorical Semantics of Let and Letrec), Springer, Berlin, Heidelberg, 1999.
[21] M. Hasegawa, On traced monoidal closed categories, Mathematical Structures in Computer Science 19 (2) (2009) 217–244.
[22] M. Hofmann, T. Streicher, Continuation models are universal for lambda-mu-calculus, in: Logic in Computer Science, LICS 1997, IEEE, Los

Alamitos, CA, 1997, pp. 387–395.
[23] N. Hoshino, A modified GoI interpretation for a linear functional programming language and its adequacy, in: M. Hofmann (ed.), Foundations

of Software Science and Computational Structures, FOSSACS 2011, vol. 6604 of Lecture Notes in Computer Science, Springer, 2011, pp.
320–334.

[24] J. M. E. Hyland, C.-H. L. Ong, On full abstraction for PCF: I, II, and III, Information and Computation 163 (2000) 285–408.
[25] N. Immerman, Descriptive complexity, Graduate texts in computer science, Springer, 1999.
[26] N. D. Jones, LOGSPACE and PTIME characterized by programming languages, Theoretical Computer Science 228 (1-2) (1999) 151–174.
[27] N. D. Jones, The expressive power of higher-order types or, life without CONS, Journal of Functional Programming 11 (1) (2001) 5–94.
[28] A. Joyal, R. Street, D. Verity, Traced monoidal categories, Mathematical Proceedings of the Cambridge Philosophical Society 119 (3) (1996)

447–468.
[29] G. M. Kelley, Basic Concepts of Enriched Category Theory, Cambridge University Press, Cambridge, UK, 1982.
[30] J. Laird, Full abstraction for functional languages with control, in: Logic in Computer Science, LICS 1997, IEEE, Los Alamitos, CA, 1997, pp.

58–67.
[31] P. B. Levy, Call-By-Push-Value: A Functional/Imperative Synthesis, vol. 2 of Semantics Structures in Computation, Springer, Berlin,

Heidelberg, 2004.
[32] I. Mackie, The geometry of interaction machine, in: Principles of Programming Languages, POPL 1995, ACM, New York, NY, 1995, pp.

198–208.
[33] H. G. Mairson, From hilbert spaces to dilbert spaces: Context semantics made simple, in: Foundations on Software Technology and Theoretical

Computer Science, FSTTCS 2002, Springer, Berlin, Heidelberg, 2002, pp. 2–17.

49

[34] P.-A. Melliès, Functorial boxes in string diagrams, in: Computer Science Logic, CSL 2006, vol. 4207 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2006, pp. 1–30.

[35] S. Muthukrishnan, Data streams: algorithms and applications, Foundations and trends in theoretical computer science, Now Publishers,
Hanover, MA, 2005.

[36] P. M. Neergaard, A functional language for logarithmic space, in: Asian Symposium on Programming Languages and Systems, APLAS 2004,
vol. 3302 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004, pp. 311–326.

[37] V. Nigam, D. Miller, Algorithmic specifications in linear logic with subexponentials, in: Principles and Practice of Declarative Programming,
PPDP 2009, ACM, New York, NY, 2009, pp. 129–140.

[38] I. Oitavem, Logspace without bounds., Frankfurt am Main: Ontos Verlag, 2010, pp. 355–362.
[39] R. Ramyaa, D. Leivant, Ramified corecurrence and logspace, Electronic Notes in Theoretical Computer Science 276 (2011) 247–261.
[40] J. C. Reynolds, Definitional interpreters for higher-order programming languages, in: Proceedings of the ACM annual conference - Volume 2,

ACM ’72, ACM, 1972, pp. 717–740.
[41] J. C. Reynolds, Syntactic control of interference, in: Proceedings of the Fifth ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’78), ACM, New York, NY, 1978, pp. 39–46.
[42] U. Schöpp, Stratified bounded affine logic for logarithmic space, in: Logic in Computer Science, LICS 2007, IEEE, Los Alamitos, CA, 2007,

pp. 411–420.
[43] U. Schöpp, Computation-by-interaction with effects, in: Asian Symposium on Programming Languages and Systems, APLAS 2011, vol. 7078

of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 305–321.
[44] U. Schöpp, On the relation of interaction semantics to continuations and defunctionalization, Logical Methods in Computer Science 10 (4)

(2014) 1–41.

50

−
|x

:1
·V

α
`

x
:
V
α

−
|z

1
:1
·[i
n
t

]
`

z 1
:

[i
n
t

]
−
|x

:1
·V

α
,

z 1
:(
α
×1

)·[
i
n
t

]
`

x
z 1

:
[2

]
−
|x

:1
·V

α
,

z 1
:α
·[i
n
t

]
`

x
z 1

:
[2

]

. . .
u 1

:
2
|y

:1
·V

β
,

z 2
:β
·[i
n
t

]
`

y
z 2

:
[2

]
u 1

:
2,

u 2
:

2
`
x
o
r

(u
1,

u 2
)

:
2

u 1
:

2,
u 2

:
2
|−
`

[x
o
r

(u
1,

u 2
)]

:
[2

]
u 1

:
2
|y

:1
·V

β
,

z 2
:β
·[i
n
t

]
`
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:1
·V

α
,

z 1
:α
·[i
n
t

],
y

:(
2
×1

)·V
β
,

z 2
:2
×β
·[i
n
t

]
`
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:1
·V

α
,

y
:2
·V

β
,

z 1
:α
·[i
n
t

],
z 2

:(
2
×β

)·[
i
n
t

]
`
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:1
·V

α
,

y
:2
·V

β
,

z:
(α

+
2
×β

)·[
i
n
t

]
`
c
o
p
y

z
a
s

z 1
,z

2
i
n
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:1
·V

α
,

y
:1
·V

β
`
λ

z.
c
o
p
y

z
a
s

z 1
,z

2
i
n
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
V

(α
+

2×
β

)

−
|x

:1
·V

α
`
λ

y.
λ

z.
c
o
p
y

z
a
s

z 1
,z

2
i
n
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
2
·V

β
(

V
(α

+
2×
β

)

−
|−
`
λ

x.
λ

y.
λ

z.
c
o
p
y

z
a
s

z 1
,z

2
i
n
l
e
t

[u
1]

=
x

z 1
i
n
l
e
t

[u
2]

=
y

z 2
i
n

[x
o
r

(u
1,

u 2
)]

:
V
α
(

2
·V

β
(

V
(α

+
2×
β

)

−
|z

:1
·[i
n
t

]
`

z
:

[i
n
t

]

. . .
v:
i
n
t
|x

:1
·V

α
`

x
[v

]
:

[2
]

. . .
v:
i
n
t
,u

1
:

2
|y

:1
·V

β
`

y
[v

]
:

[2
]

. . .
v:
i
n
t
,u

1
:

2,
u 2

:
2
|−
`

[x
o
r

(u
1,

u 2
)]

:
[2

]
v:
i
n
t
,u

1
:

2
|y

:1
·V

β
`
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
v:
i
n
t
|x

:1
·V

α
,

y
:(

2
×1

)·V
β
`
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
v:
i
n
t
|x

:1
·V

α
,

y
:2
·V

β
`
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:(
i
n
t
×1

)·V
α
,

y
:(
i
n
t
×2

)·V
β
,

z:
1·[
i
n
t

]
`
l
e
t

[v
]

=
z
i
n
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:i
n
t
·V

α
,

y
:(
i
n
t
×2

)·V
β
,

z:
1·[
i
n
t

]
`
l
e
t

[v
]

=
z
i
n
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
[2

]
−
|x

:i
n
t
·V

α
,

y
:(
i
n
t
×2

)·V
β
`
λ

z.
l
e
t

[v
]

=
z
i
n
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
V

1

−
|x

:i
n
t
·V

α
`
λ

y.
λ

z.
l
e
t

[v
]

=
z
i
n
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
(i
n
t
×2

)·
V
β
(

V
1

−
|−
`
λ

x.
λ

y.
λ

z.
l
e
t

[v
]

=
z
i
n
l
e
t

[u
1]

=
x

[v
]i
n
l
e
t

[u
2]

=
y

[v
]i
n

[x
o
r

(u
1,

u 2
)]

:
i
n
t
·V

α
(

(i
n
t
×2

)·
V
β
(

V
1

A
bb

re
vi

at
io

n:
V
α

de
no

te
s
α
·[i
n
t

]
(

[2
].

A
pp

lic
at

io
ns

of
ru

le
E
x
c
h

ha
ve

be
en

hi
dd

en
.

Fi
gu

re
17

:T
yp

in
g

D
er

iv
at

io
ns

fo
rJ

ud
ge

m
en

ts
fr

om
Se

ct
io

n
2.

6

51

