
ar
X

iv
:1

00
4.

38
42

v3
 [

cs
.C

C
]

 2
6

A
pr

 2
01

6

Distance Constraint Satisfaction ProblemsI

Manuel Bodirskya,1, Victor Dalmaub,2, Barnaby Martinc,4, Antoine Motteta,1,
Michael Pinskerd,3

aInstitut für Algebra, TU Dresden, Dresden, Germany
bUniversitat Pompeu Fabra, Barcelona, Spain.

cDepartment of Computer Science, Middlesex University, London, UK.
dDepartment of Algebra, MFF UK, Sokolovska 83, 186 00 Praha 8, Czech Republic.

Abstract

We study the complexity of constraint satisfaction problems for templates Γ
over the integers where the relations are first-order definable from the successor
function. In the case that Γ is locally finite (i.e., the Gaifman graph of Γ has
finite degree), we show that Γ is homomorphically equivalent to a structure with
one of two classes of polymorphisms (which we call modular max and modular
min) and the CSP for Γ can be solved in polynomial time, or Γ is homomorphi-
cally equivalent to a finite transitive structure, or the CSP for Γ is NP-complete.
Assuming a widely believed conjecture from finite domain constraint satisfac-
tion (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in
the special case of transitive finite templates), this proves that those CSPs have
a complexity dichotomy, that is, are either in P or NP-complete.

Keywords: constraint satisfaction problems, complexity dichotomy, integers
with successor, reducts, primitive positive definability, endomorphisms
2010 MSC: 03D15

1. Introduction

Constraint satisfaction problems appear naturally in many areas of theoret-
ical computer science, for example in artificial intelligence, optimization, com-

IAn extended abstract of this paper appeared at MFCS 2010 [4].
1Manuel Bodirsky and Antoine Mottet have received support from the European Research

Council under the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 257039).

2Victor Dalmau has been supported by the MCINN grant TIN2010-20967-C04-02.
3Michael Pinsker is grateful for support through Erwin-Schrödinger-Fellowship J2742-N18

and projects P21209 and P27600 of the Austrian Science Fund (FWF), as well as through an
APART-fellowship of the Austrian Academy of Sciences.

4Barnaby Martin is supported by EPSRC grant EP/L005654/1.

Preprint submitted to Elsevier May 23, 2018

http://arxiv.org/abs/1004.3842v3

puter algebra, computational biology, computational linguistics, and type sys-
tems for programming languages. Such problems are typically NP-hard, but
sometimes they are polynomial-time tractable. The question as to which CSPs
are in P and which are hard has stimulated a lot of research in the past 15 years.
For pointers to the literature, there is a collection of survey articles [15].

The constraint satisfaction problem CSP for a fixed (not necessarily finite)
structure Γ with a finite relational signature τ is the computational problem of
deciding whether a given primitive positive sentence is true in Γ. A formula is
primitive positive if it is of the form ∃x1, . . . , xn (ψ1 ∧· · ·∧ψm) where each ψi is
an atomic formula over Γ, that is, a formula of the form y1 = y2 or R(y1, . . . , yj)
for a relation symbol R of a relation from Γ. The structure Γ is also called the
template of the CSP.

The class of problems that can be formulated as a CSP for a fixed structure
Γ is very large. It can be shown that for every computational problem there
is a structure Γ such that the CSP for Γ is equivalent to this problem under
polynomial-time Turing reductions [5]. This makes it very unlikely that we can
give good descriptions of all those Γ where the CSP for Γ is in P. In contrast, the
class of CSPs for a finite structure Γ is quite restricted, and indeed it has been
conjectured that the CSP for Γ is either in P or NP-complete in this case [17].
So it appears to be natural to study the CSP for classes of infinite structures Γ
that share good properties with finite structures.

In graph theory and combinatorics, there are two major concepts of finiteness
for infinite structures. The first is ω-categoricity: a countable structure is ω-
categorical if and only if its automorphism group has for all n only finitely many
orbits in its natural action on n-tuples [14, 23, 21]. This property has been
exploited to transfer techniques that were known to analyze the computational
complexity of CSPs with finite domains to infinite domains [10, 7, 11]; see also
the introduction of [3].

The second concept of finiteness is the property of an infinite graph or struc-
ture to be locally finite (see Section 8 in [16]). A graph is called locally finite
if every vertex is contained in a finite number of edges; a relational structure is
called locally finite if its Gaifman graph (definition given in Section 2) is locally
finite. Many conjectures that are open for general infinite graphs become true
for locally finite graphs, and many results that are difficult become easy for
locally finite graphs.

In this paper, we initiate the study of CSPs with locally finite templates by
studying locally finite templates Γ that have a first-order definition in (Z; succ),
that is, Γ has the domain Z and all relations of Γ can be defined by a first-order
formula over the successor relation on the integers, succ = {(x, y) | y = x+ 1}.

As an example, consider the directed graph with vertex set Z which has an
edge between x and y if the difference, y−x, between x and y is either 1 or 3. This
graph is the structure (Z; Diff{1,3}) where Diff{1,3} = {(x, y) | y − x ∈ {1, 3}},
which has a first-order definition over (Z; succ) since Diff{1,3}(x, y) if and only

2

if
succ(x, y) ∨ ∃u, v (succ(x, u) ∧ succ(u, v) ∧ succ(v, y)).

Another example is the undirected graph (Z; Dist{1,2}) with vertex set Z

where two integers x, y are linked in Dist{1,2} if the distance, |y − x|, is one or
two.

Structures with a first-order definition in (Z; succ) are particularly well-
behaved from a model-theoretic perspective: all of those structures are strongly
minimal [23, 21], and therefore uncountably categorical. Uncountable models
of their first-order theory will be saturated; for implications of those properties
for the study of the CSP, see [6]. In some sense, (Z; succ) constitutes one of the
simplest infinite structures that is not ω-categorical.

The corresponding class of CSPs contains many natural combinatorial prob-
lems. For instance, the CSP for the structure (Z; Diff{1,3}) is the computational
problem of labeling the vertices of a given finite directed graph G such that if
(x, y) is an arc in G, then the difference between the label for y and the label
for x is one or three. It follows from our general results that this problem is
in P. The CSP for the undirected graph (Z; Dist{1,2}) is exactly the 3-coloring
problem, and thus NP-complete. This is readily seen if one observes that any
homomorphism of a graph G into the template modulo 3 gives rise to a 3-
coloring of G. In general, the problems that we study in this paper have the
flavor of assignment problems where we have to assign integers to variables such
that various given constraints on differences and distances (and Boolean com-
binations thereof) between variables are satisfied. We therefore call the class
of CSPs whose template is locally finite and definable over (Z; succ) distance
CSPs. Our main result is the following classification result for distance CSPs.

Theorem 1. Let Γ be a locally finite structure with a first-order definition in
(Z; succ). Then at least one of the following applies.

• Γ has an endomorphism with finite range, and the CSP for Γ equals the
CSP for a finite structure;

• the CSP for Γ is NP-complete;

• Γ is homomorphically equivalent to a structure with a first-order definition
in (Z; succ) which has a binary modular max or modular min polymor-
phism, and the CSP for Γ is in P.

If a locally finite structure Γ with a first-order definition in (Z; succ) has a
finite core, then a widely accepted conjecture about finite domain CSPs implies
that the CSP for Γ is either NP-complete or in P. In fact, for this we only need
the (open) special case of the conjecture of Feder and Vardi [17] that states that
the CSP for finite templates with a transitive automorphism group is either in
P or NP-complete (see Section 7 for details).

3

To show our theorem, we prove that if the first two items of the statement do
not apply, then Γ is homomorphically equivalent to a structure ∆ with a first-
order definition in (Z; succ) that has one of two specific classes of polymorphism
which we call modular max and modular min (defined in Section 5). Using
these polymorphisms, we further show that the CSP for ∆, and hence also that
for Γ, can be solved in polynomial time by certain arc consistency techniques.
Polynomial-time tractability results based on arc consistency were previously
known for finite or ω-categorical templates; using the local finiteness assumption
we manage to apply such techniques to templates which are not ω-categorical.

On the way to our classification result we derive several facts about struc-
tures definable in (Z; succ), and automorphisms and endomorphisms of these
structures, which might be of independent interest in model theory, universal
algebra, and combinatorics. For example, we show that every injective endo-
morphism of a connected locally finite structure Γ with a first-order definition
in (Z; succ) is either of the form x 7→ −x+ c or of the form x 7→ x+ c for some
c ∈ Z (see Theorem 2).

2. Preliminaries

A relational signature τ is a set of relation symbols Ri, each of which has an
associated arity ki. A τ -structure Γ consists of a set D (the domain) together
with a relation RΓ

i ⊆ D
ki for each relation symbol Ri from τ . We consider only

finite signatures in this paper.
For x, y ∈ Z, let d(x, y) be the distance between x and y, that is, |y−x|. The

relation {(x, y) | y = x+1} is denoted by succ, and the relation {(x, y) | d(x, y) =
1} is denoted by Dist{1}. It will be convenient to represent binary relations
R ⊆ Z

2 with a first-order definition in (Z; succ) by sets S of integers as follows.

DiffS :={(x, x+ k) | k ∈ S}

DistS :={(x, x+ k) | |k| ∈ S}

A k-ary relation R is said to be first-order (fo) definable in a τ -structure Γ
if there is a first-order τ -formula φ(x1, . . . , xk) such that R = {(a1, . . . , ak) ∈
Dk |Γ |= φ(a1, . . . , ak)}. A structure ∆ is said to be fo-definable in Γ if ∆ has
the same domain as Γ, and each of its relations is fo-definable in Γ. For example,
(Z; Dist{1}) is fo-definable in (Z; succ) (though the converse is false).

The structure induced by a subset S of the domain of Γ is denoted by Γ[S].
When ∆1 and ∆2 are two τ -structures with disjoint domains D1 and D2, then
the disjoint union of ∆1 and ∆2 is the structure Γ with domain D1 ∪D2 where
RΓ = R∆1∪R∆2 for each R ∈ τ . We say that a structure is connected if it cannot
be written as the disjoint union of two non-empty structures. The Gaifman
graph of a relational structure Γ with domain D is the following undirected
reflexive graph: the vertex set is D, and there is an edge between elements
x, y ∈ D when x = y or there is a tuple in one of the relations of Γ that has

4

both x and y as entries. A structure Γ is readily seen to be connected if and
only if its Gaifman graph is connected. The degree of a structure Γ is defined
to be the degree of the Gaifman graph of Γ. The degree of a relation R ⊆ Z

k is
defined to be the degree of the structure (Z;R). The notation (Γ, R) indicates
the expansion of Γ with the new relation R.

A first-order formula is primitive positive (pp) if it is of the form

∃x1, . . . , xn (ψ1 ∧ · · · ∧ ψm)

where ψi is an atomic formula over Γ, i.e., a formula of the form y1 = y2 or
of the form R(y1, . . . , yj) for a relation symbol R of a relation from Γ. A pp-
sentence is a pp-formula with no free variables. For a structure Γ with a finite
relational signature, CSP(Γ) is the computational problem of deciding whether
a given pp-sentence is true in Γ. It is not hard to see that CSP(∆) ≤P CSP(Γ)
for any Γ and ∆ with the same domain such that each of the relations of ∆
is pp-definable in Γ (see [22]); here, ≤P indicates polynomial-time many-to-one
reduction (though in fact, logspace reductions may be used).

Suppose Γ is a finite structure with finite relational signature τ and domain
D := {a1, . . . , as}. Let θΓ(x1, . . . , xs) be the conjunction of the positive facts of
Γ, where the variables x1, . . . , xs correspond to the elements a1, . . . , as. That
is, R(xλ1

, . . . , xλk
) appears as an atom in θΓ iff (aλ1

, . . . , aλk
) ∈ RΓ. Define the

pp-sentence ∃x1 . . . xs. θΓ(x1, . . . , xs) to be the canonical query of Γ. Conversely,
for a pp-sentence Θ := ∃x1 . . . xs. θ(x1, . . . , xs) over the relational signature τ
we define the canonical database ΓΘ as follows. Consider the undirected graph
with vertices x1, . . . , xs where two vertices xi, xj are connected if θ contains
the conjunct xi = xj . The domain of the canonical database is the set of
connected components of this graph, and (C1, . . . , Ck) ∈ R for R ∈ τ iff there
are y1 ∈ C1, . . . , yk ∈ Ck such that θ has a conjunct θ(x1, . . . , xs).

Let Γ and ∆ be τ -structures. A homomorphism from Γ to ∆ is a function
f from the domain of Γ to the domain of ∆ such that, for each k-ary relation
symbol R in τ and each k-tuple (a1, . . . , ak) from Γ, if (a1, . . . , ak) ∈ RΓ, then
(f(a1), . . . , f(ak)) ∈ R∆. In this case we say that the map f preserves the
relation R. Injective homomorphisms that also preserve the complement of each
relation are called embeddings. Surjective embeddings are called isomorphisms;
homomorphisms and isomorphisms from Γ to itself are called endomorphisms
and automorphisms, respectively. The set of automorphisms of a structure Γ
forms a group under composition. A (k-ary) polymorphism of a structure Γ over
domain D is a function f : Dk → D such that, for all m-ary relations R of Γ, if
(ai1, . . . , a

i
m) ∈ RΓ, for all i ≤ k, then (f(a11, . . . , a

k
1), . . . , f(a

1
m, . . . , a

k
m)) ∈ RΓ.

A unary function g over domain D is in the local closure of a set of unary
functions F over domain D if for every finite D′ ⊆ D there is a function f ′ ∈ F
such that g and f ′ agree on all elements in D′. We say that F generates f if f
is in the local closure of the set F ′ of all functions that can be obtained from
the members of F by repeated applications of composition. It is well-known

5

and easy to see that functions that are in the local closure of, or generated by,
the endomorphisms of a structure Γ are again endomorphisms of Γ.

If there exist homomorphisms f : Γ → ∆ and g : ∆ → Γ then Γ and ∆ are
said to be homomorphically equivalent. It is a basic observation that CSP(Γ)
= CSP(∆) if Γ and ∆ are homomorphically equivalent. A structure is a core if
all of its endomorphisms are embeddings [2] – a core ∆ of a structure Γ is an
induced substructure that is itself a core and is homomorphically equivalent to
Γ. It is well-known that if a structure has a finite core, then that core is unique
up to isomorphism (the same is in general not true for infinite cores).

We could have equivalently defined the class of distance CSPs as the class of
CSPs whose template is locally finite and first-order definable in (Z; s), where
s is the unary successor function, since (Z; succ) and (Z; s) fo-define the same
structures. The structure (Z; s) admits quantifier elimination; that is, for every
fo-formula φ(x) there is a quantifier-free (qf) φ′(x) (possibly equal to true or
false) such that (Z; s) |= ∀x(φ(x) ↔ φ′(x)); this is easy to prove, and can
be found explicitly in [18]. Thus we may have atomic formulas in φ′ of the
form y = sj(x), where sj is the successor function composed on itself j times.
Let Γ be a finite signature structure, fo-definable in (Z; succ), i.e., qf-definable
in its functional variant (Z; s). Let m be the largest number such that y =
sm(x) appears as a term in the qf definition of a relation of Γ. Consider now
CSP(Γ), the problem of evaluating Φ := ∃x1, . . . , xk.φ(x1, . . . , xk), where φ is a
conjunction of atoms, on Γ. Let S := {1, . . . , k · (m+ 1)}. It is not hard to see
that Γ |= Φ iff Γ[S] |= Φ. It follows that CSP(Γ) will always be in NP.

Convention.. From now on we assume that Γ is a relational structure with
domain Z which is first-order definable over (Z; succ) and is locally finite.

3. Endomorphisms

The main result of this section is the following theorem.

Theorem 2. Let Γ be connected. Then:

• Γ has either the same automorphisms as (Z; succ), or the same automor-
phisms as (Z; Dist{1}).

• Either Γ has a finite range endomorphism, or it has an endomorphism
whose range induces in Γ a structure that is isomorphic to a structure
which is fo-definable in (Z; succ) and all of whose endomorphisms are au-
tomorphisms.

The proof of this theorem can be found at the end of this section, and makes
use of a series of lemmata.

Before beginning the proof, we remark the following. If Γ has a first-order
definition in (Z; Dist{1}), then it is easy to see that the automorphisms of

6

(Z; Dist{1}) are also automorphisms of Γ, and hence the two structures have
the same automorphisms by Theorem 2. Now it is tempting to believe that also
the converse holds, i.e., that if Γ has the same automorphisms as (Z; Dist{1}),
then Γ is fo-definable in (Z; Dist{1}) (this would be true for ω-categorical struc-
tures). However, this is not true: Let

R := {(x, y, u, v) ∈ Z
4 | (succ(x, y) ∧ succ(u, v)) ∨ (succ(v, u) ∧ succ(y, x))},

and set Γ := (Z;R). The function which sends every x ∈ Z to −x is an auto-
morphism of Γ, so the automorphism group of Γ equals that of (Z; Dist{1}), by
Theorem 2. However, R is not fo-definable in (Z; Dist{1}). To see this, suppose
it were definable. Then R is also definable in (Z; Dist{1},Dist{2}, . . .), and even
with a quantifier-free formula φ(x, y, u, v) since this structure has quantifier-
elimination. Let n be the maximal natural number such that Dist{n} occurs
in φ(x, y, u, v). We claim that φ(0, 1, n+ 2, n+ 3) holds iff φ(0, 1, n+ 3, n+ 2)
holds. To see this, we show that any atom of the formula φ(x, y, u, v), i.e., any
occurrence of Dist{k}(a, b), where {a, b} ⊆ {x, y, u, v} and k ≤ n, evaluates to
true upon insertion of v1 := (0, 1, n + 2, n + 3) for the variables (x, y, u, v) if
and only if it evaluates to true upon insertion of v2 := (0, 1, n + 3, n + 2) for
(x, y, u, v). This is obvious when {a, b} ⊆ {x, y} since v1 and v2 have identical
values for x, y. If |{a, b} ∩ {x, y}| = 1 then the atom becomes false in both
evaluations, so the only remaining case is where {a, b} ⊆ {u, v}; but then the
atom becomes true in both evaluations if and only if k = 1 and a 6= b, so we are
done. Now since φ(0, 1, n+2, n+3) holds iff φ(0, 1, n+3, n+2) holds, we have
a contradiction since v1 is an element of R whereas v2 is not.

Denote by E the edge-relation of the Gaifman graph of Γ. It is clear that
every endomorphism of Γ preserves E. We claim that there are 0 < d1 < · · · <
dn such that E(x, y) holds iff d(x, y) ∈ {0, d1, . . . , dn}. To see this, observe that
if (x, y) ∈ E and u, v ∈ Z are so that d(x, y) = d(u, v), then also (u, v) ∈ E,
because there is an automorphism of (Z; succ) (and hence of Γ) which sends
{x, y} to {u, v} and this automorphism also preserves E. Hence, the relation
E is determined by distances. Moreover, there are only finitely many distances
since Γ is assumed to have finite degree.

Notation 3. We will refer to the distances defining the Gaifman graph of Γ as
d1, . . . , dn. We also write D for the largest distance dn.

The following basic claim characterizes when Γ is connected in terms of the
distance set.

Lemma 4. Γ is connected if and only if the greatest common divisor of d1, . . . , dn
is 1.

Proof: If d is the greatest common divisor of d1, . . . , dn it is clear that all
the nodes accessible from a node x ∈ Z are of the form x + c · d where c ∈

7

Z. Conversely, every node of the form x + c · d is accessible from x because
c · d = c1 · d1 + · · ·+ cn · dn for some c1, . . . , cn ∈ Z, by the extended Euclidean
algorithm. ✷

In order to lighten the notation we might use ex to denote e(x), where e is
an endomorphism of Γ and x ∈ Z.

Lemma 5. Suppose that Γ is connected. Then there exists a constant c = c(Γ)
such that for all endomorphisms e of Γ we have d(e(x), e(y)) ≤ d(x, y) + c for
all x, y ∈ Z.

Proof: We first claim that for every 0 < q < D, there exists a number cq
such that d(e(x), e(y)) ≤ cq for all endomorphisms e of Γ and all x, y ∈ Z with
d(x, y) = q. To see this, pick u, v with d(u, v) = q and a path between u and v
in the Gaifman graph of Γ; say this path has length lq. Then, since this path is
mapped to a path under any endomorphism, we have d(e(u), e(v)) ≤ D · lq for
all endomorphisms e. Since an isomorphic path exists for all x, y with the same
distance, our claim follows by setting cq := D · lq. Set c to be the maximum
of the cq, and let an endomorphism e and x, y ∈ Z be given. Assume without
loss of generality that x < y. There exists m ≥ 0 and 0 ≤ q < D such that
y = x+D ·m+ q. Set xr := x+D · r, for all 0 ≤ r ≤ m. Since xr and xr+1 are
adjacent in the Gaifman graph of Γ for all 0 ≤ r < m, so are exr and exr+1,
and hence d(exr, exr+1) ≤ D. Therefore,

d(ex, ey) ≤
∑

0≤r<m

d(exr, exr+1) + d(exm, ey) ≤ D ·m+ d(exm, ey)

≤ d(x, y) + d(exm, ey) ≤ d(x, y) + c.

✷

Observe that a constant c(Γ) not only exists, but can actually be calculated
given the distances d1, . . . , dn: by the proof of Lemma 5, it suffices to calculate
a constant cq for all 0 < q < D. To do this, one must find a path of length lq
between two numbers u, v ∈ Z with d(u, v) = q; this again amounts to solving
the equation x1 · d1 + · · ·+ xn · dn = q (with variables x1, . . . , xn) over Z, which
can be achieved by the extended Euclidean algorithm.

In the following, we will keep the symbol c reserved for the minimal constant
guaranteed by the preceding lemma.

Lemma 6. Suppose that Γ is connected, and let e be an endomorphism of Γ
with the property that for all k > c+ 1 there exist x, y ∈ Z with d(x, y) = k and
d(e(x), e(y)) < k. Then Aut(Z; succ) ∪ {e} generates an endomorphism whose
range has size at most 2(c+ 1).

Proof: Let A ⊆ Z be finite. We claim that F := Aut(Z; succ) ∪ {e} generates
a function fA which maps A into a set of diameter at most 2c+ 1. The lemma
then follows by the following standard local closure argument: Let S be the

8

set of all those functions α whose domain is a finite interval [−n;n] ⊆ Z and
whose range is contained in the interval [−c; c], and which have the property
that there exists a function generated by F which agrees with α on [−n;n]. By
our claim, S is infinite. For functions α, β in S, write α ≤ β iff β is an extension
of α. Clearly, the set S, equipped with this order, forms a finitely branching
tree; since the tree is infinite, it has an infinite branch (this easily verified fact
is called König’s lemma) B ⊆ S. The branch B defines a function f from Z into
the interval [−c; c]; since F generates functions which agree with f on arbitrarily
large intervals of the form [−n;n], we have that f is generated by F , too. This
completes the proof.

Enumerate the pairs (x, y) ∈ A2 with x < y by (x1, y1), . . . , (xr, yr). Now the
hypothesis of the lemma implies that by successive applications of e and shifts
we can map (x1, y1) to a pair of distance at most c + 1; in other words, there
exists t1 generated by F such that d(t1x1, t1y1) ≤ c+1. Similarly, there exists t2
generated by F such that d(t2t1x2, t2t1y2) ≤ c+1. Continuing like this we arrive
at a function tr generated by F such that d(trtr−1 · · · t1xr, trtr−1 · · · t1yr) ≤ c+1.
Now consider t := tr ◦ · · ·◦ t1. Set fj := tr ◦ · · ·◦ tj+1 and gj := tj ◦ · · ·◦ t1, for all
1 ≤ j ≤ r; so t = fj ◦ gj. Then, since by construction d(gj(xj), gj(yj)) ≤ c+ 1,
we have that for all 1 ≤ j ≤ r

d(txj , tyj) = d(fj(gj(xj)), fj(gj(yj))

≤ d(gj(xj), gj(yj)) + c (Lemma 5)

≤ 2c+ 1

and our claim follows. ✷

Lemma 7. Suppose that Γ is connected with an endomorphism e that does not
satisfy the hypothesis of the preceding lemma, i.e., there exists k > c + 1 such
that d(ex, ey) ≥ k for all x, y with d(x, y) = k. Then either e(s+D) = e(s)+D
for all s ∈ Z or e(s+D) = e(s)−D for all s ∈ Z.

Proof: Let k > c+ 1 be so that d(ex, ey) ≥ k for all x, y with d(x, y) = k.
Let w ∈ Z be arbitrary. Then, since d(e(w + k), e(w)) ≥ k, we have e(w) 6=
e(w + k). We furthermore assume that e(w + k) > e(w); the situation where
e(w+k) < e(w) can be treated symmetrically. We claim that e(v+k) ≥ e(v)+k
for all v ∈ Z. Suppose not, and say without loss of generality that there exists
v > w contradicting our claim. Then, since d(e(v + k), e(v)) ≥ k, we have
e(v + k) ≤ e(v) − k. Take the minimal v with v > w satisfying this property.
Then, by minimality, we have e(v− 1+k) ≥ e(v− 1)+k. Since by Lemma 5 we
have d(e(v−1+k), e(v+k)) ≤ c+1, we get that e(v−1)+k−c−1 ≤ e(v+k). On
the other hand, e(v)−c−1 ≤ e(v−1). Inserting this into the previous inequality,
we obtain e(v)−c−1+k−c−1 ≤ e(v+k), which yields e(v)−2c−2+k ≤ e(v+k).
By our assumption on v, we obtain e(v) − 2c − 2 + k ≤ e(v) − k, which yields
k ≤ c+ 1, a contradiction.

9

Set b := k ·D. We next claim that e(v + b) = e(v) + b for all v ∈ Z. First
observe that points at distance D cannot be mapped by e to points at larger
distance since D is by definition the largest distance in the Gaifman graph of Γ.
Since b is a multiple of D, we get that e(v + b) ≤ e(v) + b. On the other hand,
since b is also a multiple of k and since e(v + k) ≥ e(v) + k for all v ∈ Z, we
obtain e(v + b) ≥ e(v) + b, proving the claim.

We now prove that e(v) +D ≤ e(v +D) for all v ∈ Z. This is because

e(v) + kD = e(v) + b = e(v + b) = e(v + kD)

= e(v +D + (k − 1)D)

≤ e(v +D) + (k − 1)D

the latter inequality holding since D is the maximal distance in the relation E
and cannot be increased. Subtracting (k−1)D on both sides, our claim follows.

Since points at distance D cannot be mapped to points at larger distance
under e, we have e(v + D) ≤ e(v) + D for all v ∈ Z, and we have proved the
lemma. ✷

The following lemma summarizes the preceding two lemmas.

Lemma 8. Suppose that Γ is connected. The following are equivalent for an
endomorphism e of Γ:

(i) There exists k > c + 1 such that d(ex, ey) ≥ k for all x, y ∈ Z with
d(x, y) = k.

(ii) Aut(Z; succ) ∪ {e} does not generate a finite range operation.

(iii) e satisfies either e(v+D) = e(v)+D for all v ∈ Z, or e(v+D) = e(v)−D
for all v ∈ Z.

Proof: Lemma 7 shows that (i) implies (ii) and (iii). It follows from Lemma 6
that (ii) implies (i). Finally, it is clear that (iii) implies (ii). ✷

We know now that there are two types of endomorphisms of Γ: Those which
are periodic with period D, and those which generate a finite range operation.
We will next provide examples showing that both types really occur.

Example 9. Set Γ := (Z; Dist{1,3}). Set e(3k) := 3k, e(3k + 1) := 3k + 1, and
e(3k + 2) := 3k, for all k ∈ Z. Then e is an endomorphism of Γ that does not
generate any finite range operations since it satisfies e(v + 3) = e(v) + 3 for all
v ∈ Z.

Observe that in the previous example, we checked that e is of the non-finite-
range type by virtue of the easily verifiable Item (iii) of Lemma 8 and without
calculating c(Γ), which would be more complicated.

10

Example 10. For the structure Γ from Example 9, let e be the function which
maps every x ∈ Z to its value modulo 4. Then e is an endomorphism which has
finite range.

Example 11. The structure Γ := (Z; Dist{1,3,6},Dist{3}) has the endomor-
phism from Example 9. However, it does not have any finite range endomor-
phism. To see this, consider the set 3Z := {3m |m ∈ Z}. If e were a finite range
endomorphism, it would have to map this set onto a finite set. By composing e
with automorphisms of (Z; succ), we may assume that e(0) = 0 and e(3) > 0.
Then e(3) = 3 as e preserves Dist{3}. We claim e(s) = s for all s ∈ 3Z. Sup-
pose to the contrary that s is the minimal positive counterexample (the negative
case is similar). We have e(s − 3) = s − 3 and hence e(s) ∈ {s − 6, s} be-
cause e preserves Dist{3}. If we had e(s) = s − 6, then e(s − 6) = s − 6 and
(s− 6, s) ∈ Dist{1,3,6} yields a contradiction.

Example 12. Let Γ = (Z; Dist{1}), and let e be the function that maps every
x to its absolute value. Then e does not have finite range, but generates with
Aut(Z; succ) a function with finite range (namely, the function which sends the
even numbers to 0 and the odd numbers to 1).

The proof of Lemma 7 generalizes canonically to a more general situation.

Lemma 13. Suppose that Γ is connected. Let e be an endomorphism of Γ
satisfying the various statements of Lemma 8. Let q be so that d(x, y) = q
implies that d(ex, ey) ≤ q. Then e satisfies either e(v + q) = e(v) + q for all
v ∈ Z, or e(v + q) = e(v)− q for all v ∈ Z.

Proof: This is the same argument as in the proof of Lemma 7, with D replaced
by q. ✷

Definition 14. Given an endomorphism e of Γ, we call all positive integers q
with the property that e(v + q) = e(v) + q for all v ∈ Z or e(v + q) = e(v) − q
for all v ∈ Z stable for e.

Observe that if e satisfies the various statements of Lemma 8, then D is
stable for e. Note also that if p, q are stable for e, then they must have the same
“direction”: We cannot have e(v + p) = e(v) + p and e(v + q) = e(v)− q for all
v ∈ Z.

Lemma 15. Suppose that Γ is connected. Let e satisfy the various statements
of Lemma 8, and let q be the minimal stable number for e. Then the stable
numbers for e are precisely the multiples of q. In particular, q divides D.

Proof: Clearly, all multiples of q are stable. Now for the other direction
suppose that p is stable but not divisible by q. Write p = m · q + r, where m, r
are positive numbers and 0 < r < q. Since r is not stable, composing e and

11

shifts we can build a function t such that t(0) = 0 and d(t(mq), t(p)) 6= r. By
the property of p we should have t(p) = p or t(p) = −p. But this is impossible
since then d(t(mq), t(p)) = d(mq, p) = r, a contradiction. ✷

Lemma 16. Suppose that Γ is connected and has an endomorphism e satisfying
the statements of Lemma 8. Let q be its minimal stable number. Then there is
an endomorphism t of Γ which can be written as a functional composite using
automorphisms of (Z; succ) and e which has the following properties:

• t satisfies either t(v + q) = t(v) + q or t(v + q) = t(v)− q

• t(0) = 0

• t[Z] = {q · z | z ∈ Z}.

Proof: Assume 1 < q (otherwise t can be chosen to be the identity and
there is nothing to do). We claim that Aut(Z; succ) ∪ {e} generates a function
t1 such that t1(0) = 0 and t1(1) ∈ {q · z | z ∈ Z}. To see this, observe that
since 1 < q and since q is the smallest positive number with the property
that d(x, y) = q implies d(ex, ey) ≤ q (Lemma 13), there exist x0, y0 ∈ Z with
d(x0, y0) = 1 and d(ex0, ey0) > 1. Write r1 := d(ex0, ey0). If r1 is not a multiple
of q, then there exist x1, y1 ∈ Z with d(x1, y1) = r1 and d(ex1, ey1) =: r2 > r1.
Again, if r2 is not a multiple of q, then there exist x2, y2 ∈ Z with d(x2, y2) = r2
and d(ex2, ey2) =: r3 > r2. Consider the sequence (xi, yi) of pairs of distance ri
(setting r0 := 1). By exchanging xi+1 and yi+1 if necessary, we may assume that
xi+1 < yi+1 iff exi < eyi, for all i. There exist automorphisms αi of (Z; succ)
such that (αi(e(xi)), αi(e(yi))) = (xi+1, yi+1). Set si := αi ◦e◦αi−1 ◦ · · ·◦α0 ◦e.
Then the endomorphism si sends (x0, y0) to (xi+1, yi+1), a pair of distance
ri+1 > ri > · · · > r0. Thus the sequence must end at some finite i, by Lemma 5.
By construction of the sequence, this happens only if ri+1 is a multiple of q.
Therefore, ri+1 = d(si(x0), si(y0)) ∈ {q · z | z ∈ Z}. By applying shifts we may
assume x0 = 0, y0 = 1, and si(0) = 0. Set t1 := si.

Now if 2 < q, then consider the number t1(2). We claim that Aut(Z; succ)∪
{e} generates a function t2 such that t2(0) = 0 and t2(t1(2)) is a multiple of
q. If already t1(2) is a multiple of q, then we can choose t2 to be the identity.
Otherwise, we can increase the distance of t1(2) from 0 successively by applying
shifts and e just as before, where we moved away 1 from 0. After a finite number
of steps, we arrive at a function t2 such that d(t2(0), t2t1(2)) is a multiple of q.
Applying a shift one more time, we may assume that t2(0) = 0, and so t2 has
the desired properties.

We continue inductively, constructing for every i < q a function ti such that
ti(0) = 0 and ti ◦ · · · ◦ t1(j) is a multiple of q for all j ≤ i. At the end, we set
t := tq−1◦· · ·◦t1. Since e satisfies either e(v+q) = e(v)+q or e(v+q) = e(v)−q,
so does t, as it is composed of e and automorphisms of (Z; succ). It is also clear
from the construction that t(0) = 0 holds. These two facts together imply that

12

t[Z] contains the set {q ·z | z ∈ Z}. For the other inclusion, let v ∈ Z be arbitrary,
and write v = q · z + r, where z ∈ Z and 0 ≤ r < q. Then t(v) = q · z + t(r)
or t(v) = −q · z + t(r), which is a multiple of q since t(r) is a multiple of q by
construction. ✷

Observe that we did not need local closure in the preceding lemma.

Lemma 17. Suppose that Γ is connected and has an endomorphism e which is
not an automorphism of (Z; Dist{1}). Then e is not injective.

Proof: If Aut(Z; succ)∪{e} generates a finite range operation then the lemma
follows immediately, so assume this is not the case. Then e has a minimal stable
number q. Since e is not an automorphism of (Z; Dist{1}), we have q > 1. But
now the statement follows from the preceding lemma, since the function t is not
injective (e.g., t maps {q ·z : z ∈ Z} surjectively to {q ·z : z ∈ Z}, so t(1) = t(w)
for some w ∈ {q · z : z ∈ Z}). ✷

Lemma 18. Suppose that Γ is connected and has an endomorphism which is
not an automorphism of (Z; Dist{1}) such that {e}∪Aut(Z; succ) does not gen-
erate a finite range operation. Then e is not surjective.

Proof: This is a direct consequence of Lemma 16, since being surjective is
preserved under composition (and we used just composition in Lemma 16 and
not local closure). ✷

Define Γ/k to be the substructure of Γ induced by {k · z | z ∈ Z}. Note
that when Γ is fo-definable in (Z; succ), then Γ/k is isomorphic to a structure
∆ that is fo-definable in (Z; succ) via the map which sends an element x of Γ/k
to x/k ∈ Z. From a defining quantifier-free formula φ for a relation RΓ of Γ
over (Z; s), we obtain a definition for R∆ over (Z; s) as follows. For all i ∈ ω
not divisible by k, replace every occurrence of si by ∀x(x 6= x). For all other i,
replace every occurrence of si by si/k.

Proof: (of Theorem 2) We prove the first statement. It is a direct conse-
quence of Lemma 17 that the automorphism group of Γ is contained in that of
(Z; Dist{1}). Since Γ is fo-definable in (Z; succ), its automorphism group con-
tains that of (Z; succ). The statement now follows from the easily verifiable
fact that there are no permutation groups properly between the automorphism
groups of (Z; succ) and (Z; Dist{1}).

For the second statement, suppose that Γ has no finite range endomorphism.
If all of its endomorphisms are automorphisms, then we are done. Otherwise, Γ
has an endomorphism t as in Lemma 16, with q > 1. Let ∆ be a structure that
is isomorphic to Γ/q and first-order definable in (Z; succ). In Γ/q, two points
x, y are adjacent iff d(x, y) ∈ {d1, . . . dn}; moreover, d(x, y) is divisible by q.
Therefore, the remaining relevant distances are those divisible by q. In other
words, if {di1 , . . . , dir} are those distances from {d1, . . . , dn} which are divisible

13

by q, then the Gaifman graph of ∆/q is isomorphic to the graph on Z defined by

the distances {
di1

q , . . . ,
dir

q }. Since before, from Lemma 4, the greatest common
divisor of all possible distances was 1, we must have lost at least one distance,
i.e., r < n.

Observe that Γ/q (and hence ∆) is connected as it is the image of an en-
domorphism of Γ. Note moreover that Γ/q (and hence ∆) cannot have a finite
range endomorphism: If s were such an endomorphism, then s ◦ t would be a
finite range endomorphism for Γ, contrary to our assumption. If all endomor-
phisms of Γ/q are automorphisms, then we are done. Otherwise ∆ satisfies all
assumptions that we had on Γ, and we may repeat the argument. Since in every
step we lose a distance for the Gaifman graph, this process must end, meaning
that we arrive at a structure all of whose endomorphisms are automorphisms.
✷

4. Definability of Successor

In this section we show how to reduce the complexity classification for dis-
tance constraint satisfaction problems with template Γ to the case where either
Γ has a finite core, or the relation succ is pp-definable in Γ. We make essential
use of the results of the previous section; but note that in this section we do not
assume that Γ is connected.

Theorem 19. Suppose that Γ does not have an endomorphism of finite range.
Then Γ is homomorphically equivalent to a connected finite-degree structure ∆
with a first-order definition in (Z; succ) which satisfies one of two possibilities:
CSP(∆) (and, hence, CSP(Γ)) is NP-hard, or succ is definable in ∆.

The following lemma demonstrates how the not necessarily connected case
can be reduced to the connected case.

Lemma 20. Γ is homomorphically equivalent to a connected finite-degree struc-
ture ∆ with a first order definition in (Z; succ).

Proof: If all edges of the Gaifman graph of Γ are self-loops, then the statement
is clear. Otherwise, let g be the greatest common divisor of d1, . . . , dn (the
distances in the Gaifman graph, see Section 3, Notation 3). If Γ is connected,
there is nothing to prove.

Otherwise, if Γ is disconnected, by Lemma 4, we have g > 1. Then Γ must
be a disjoint union of g copies of a connected structure ∆ (and these copies
are isomorphic to each other by an isomorphism of the form x 7→ x + d, for
appropriate constant d). In particular, Γ is homomorphically equivalent to ∆.
Moreover, ∆ itself has a first-order definition in (Z; succ). The proof here is as
in the proof of Theorem 2, with g taking the role of q. ✷

The following is obvious.

14

Lemma 21. Let (a1, . . . , ak), (b1, . . . , bk) ∈ Z
k. Then there is an automorphism

α of (Z; succ) with α(ai) = bi for all i ≤ k if and only if ai− aj = bi− bj for all
1 ≤ i, j ≤ k.

Lemma 22. Suppose that Γ is connected. Then there is an n0 such that the
structure Γ[{1, . . . , n}] is connected for all n ≥ n0.

Proof: Let d1 be the smallest distance of the distances {d1, . . . , dn} defining
the Gaifman graph G of Γ (as in Section 3). By connectivity of G, for each pair
a, b of elements from {1, . . . , d1} there is a path from a to b in G. Fix such a
path for each pair a, b. Let n0 be the smallest number such that all vertices on
those paths are smaller than n0. We claim that Γ[{1, . . . , n}] is connected for
all n ≥ n0. To see that c, d ≤ n are connected, observe that both c and d are
connected to vertices in {1, . . . , d1} (via a sequence of vertices at distance d1).
Since all vertices in {1, . . . , d1} are connected in Γ[{1, . . . , n0}] by construction,
we conclude that c and d are connected by a path in Γ[{1, . . . , n}]. ✷

Lemma 23. Suppose that Γ is connected. Then there is an n0 and c such that
for all n ≥ n0 and any homomorphism f from Γ[{1, . . . , n}] to Γ we have that
d(f(x), f(y)) ≤ c+ d(x, y) for all x, y ∈ {1, . . . , n}.

Proof: Let n0 be the number from Lemma 22. Then for all n ≥ n0, the
structure Γ[{1, . . . , n}] is connected. Now, proceed as in Lemma 5. ✷

Proposition 24. Let Γ be connected and such that every endomorphism of Γ
is an automorphism of (Z; Dist{1}). Then for all a1, a2 ∈ Z there is a finite
S ⊆ Z that contains {a1, a2} such that for all homomorphisms f from Γ[S] to
Γ we have d(f(a1), f(a2)) = d(a1, a2).

Proof: Suppose that there are a1 < a2 ∈ Γ such that for all finite subsets S
of elements of Γ that contain {a1, a2} there is a homomorphism from Γ[S] to Γ
where d(f(a1), f(a2)) 6= d(a1, a2). We have to show that Γ has an endomorphism
that is not an automorphism of (Z; Dist{1}). Let S be a subset of Z that contains
{a1, a2}, and let f, g be functions from S → Z. Then we define f ∼ g if
there exists an automorphism α of Γ such that f(x) = α(g(x)) for all x ∈
S. Homomorphisms from Γ[S] to Γ where d(f(a1), f(a2)) 6= d(a1, a2) will be
called good. Observe that since all automorphisms of Γ preserve distances, if
one function in an equivalence class is good, then all other functions in the
equivalence class are also good.

Let n0 be the number from Lemma 23, and let n1 be max(n0, |a1|, |a2|).
Consider the following infinite forest T : the vertices are the equivalence classes
of good functions f : V → Z for V = {−n, . . . , n}, for all n ≥ n1, and T has an
arc from one such equivalence class F to another H if there are f ∈ F , h ∈ H ,
such that f is a restriction of h, and f is defined on {−n, . . . , n}, and h is defined
on {−n− 1, . . . , n+ 1}, for some n ∈ N. Observe that

15

• by our assumptions the forest T is infinite;

• by Lemma 23, for every n ≥ n1 there is a b such that d(f(x), f(y)) < b
for all x, y ∈ {−n, . . . , n}. Using Lemma 21 it follows that T is finitely
branching;

• the forest T has only finitely many roots.

By König’s lemma, there is an infinite branch in T . It is straightforward to
use this infinite branch to construct an endomorphism f of Γ with d(a1, a2) 6=
d(f(a1), f(a2)). This endomorphism cannot be an automorphism of (Z; Dist{1}),
which concludes the proof. ✷

Proposition 25. Let Γ be connected and such that every endomorphism of Γ
is an automorphism of (Z; succ). Then for all a1, a2 ∈ Z there is a finite S ⊆ Z

that contains {a1, a2} such that for all homomorphisms f from Γ[S] to Γ we
have f(a1)− f(a2) = a1 − a2.

Proof: The proof is similar to the proof of Proposition 24. ✷

Corollary 26. Suppose that Γ is connected and that all endomorphisms of Γ
are automorphisms of Γ. Then either the relation Dist{k} is pp-definable in Γ
for every k ≥ 1, or the relation Diff{k} is pp-definable in Γ for every k ≥ 1.

Proof: First consider the case that Γ is preserved by the unary operation
x 7→ −x, and let k ≥ 1 be arbitrary. Let a1, a2 be any two elements of Z at
distance k. Since all endomorphisms of Γ are automorphisms of Γ, they are
automorphisms of (Z; Dist{1}) by the first statement of Theorem 2. Hence we
may apply Proposition 24, and there is a finite set S ⊆ Z such that every homo-
morphism f from Γ[S] to Γ satisfies d(f(a1), f(a2)) = d(a1, a2). Let φ(a1, a2)
be the primitive positive formula obtained from the canonical query for Γ[S] by
existentially quantifying all vertices except for a1 and a2. We claim that φ is a
pp-definition of Dist{k}.

The relation defined by φ contains the pair (a1, a2) (since the identity map-
ping is a satisfying assignment for the canonical query Γ[S]), and since Γ is
preserved by all automorphisms of (Z; Dist{1}) it also contains all other pairs
(x, y) ∈ Z

2 such that d(x, y) = k = d(a1, a2). Conversely, φ does not con-
tain any pair (x, y) with d(x, y) 6= k. Otherwise, there must be a assignment
f : S → Z that satisfies the canonical query and maps a1 to x and a2 to y. This
assignment is a homomorphism, and therefore contradicts the assumption that
d(f(a1), f(a2)) = d(a1, a2). This proves the claim.

Now consider the case that Γ is not preserved by the unary operation −.
Again we use Theorem 2 and this time Proposition 25 to construct a primitive
positive formula φ that defines the relation Diff{k}. ✷

Proposition 27. Suppose that for all k the relation Dist{k} is pp-definable in
Γ. Then CSP(Γ) is NP-hard.

16

Proof: Observe that the primitive positive formula ∃y (d(x, y) = 1 ∧ d(y, z) =
5) defines the relation Dist{4,6}. The structure (Z; Dist{4,6}) decomposes into
two copies of the structure (Z; Dist{2,3}). This structure has the endomorphism
x 7→ x mod 5, and the image induced by this endomorphism is a cycle of
length 5, which has a hard CSP (this is well-known; for a much stronger result
on undirected graphs, see Hell and Nešetřil [19]). ✷

Proof: (of Theorem 19) By Lemma 20, we can assume without loss of gen-
erality that Γ is connected. If Γ does not have a finite range endomorphism,
then by Theorem 2 there is an endomorphism of Γ whose range induces in Γ a
substructure ∆ which is first-order definable in (Z; succ), and where all endo-
morphisms are automorphisms. Being the homomorphic image of the connected
structure Γ, ∆ must also be connected. We now apply Corollary 26 to ∆. If
the relation Dist{k} is pp-definable in ∆ for every k ≥ 1, then CSP(Γ) (which
is equal to CSP(∆) since Γ and ∆ are homomorphically equivalent) is NP-hard
by Proposition 27. Otherwise, by Corollary 26, the relation Diff{k} and in
particular the relation succ is pp-definable in ∆. ✷

5. Tractability of Modular Max

This section discusses the distance CSPs that can be solved in polynomial
time.

Definition 28. For d ≥ 1, the d-modular max is the operation maxd : Z
2 → Z

that is defined by maxd(x, y) = max(x, y) if x = y mod d and maxd(x, y) = x
otherwise. The d-modular min is similarly defined as the operation mind : Z

2 →
Z which satisfies mind(x, y) = min(x, y) if x = y mod d and mind(x, y) = x
otherwise.

The results of this section improve the algorithmic results that have been
presented in the conference version of the present paper [4].

Theorem 29. Suppose that Γ has a d-modular max or d-modular min polymor-
phism. Then CSP(Γ) is in P.

The proof of Theorem 29 can be found at the end of the section. The first
algorithm Solve-Semilattice we present in this section solves the CSP of
structures that are closed under a semilattice operation. A semilattice oper-
ation is a binary function f : Z2 → Z that is idempotent, commutative, and
associative. Note that for d = 1, the d-modular max equals the maximum op-
eration, which is a semilattice operation. The situation for the d-modular min
is dual, and we therefore restrict our discussion in this section to the d-modular
max in the following.

17

Also note that the d-modular max is not commutative when d > 1, i.e.,
maxd is a semilattice operation only when d = 1. We first treat the special case
d = 1, i.e., the case that Γ is preserved by max, using the technique of sampling
presented in [8]. This case will then be used later to solve the general case.

Definition 30. Let ∆ be a relational structure. A sampling algorithm for ∆
is an algorithm that takes as input a natural number n and returns a finite
induced substructure Σ of ∆ such that for all instances Φ of CSP(∆) with at
most n variables, we have ∆ |= Φ if and only if Σ |= Φ.

Theorem 31 (Theorem 2.4 from [8]). Let ∆ be a structure over a finite re-
lational signature with a semilattice polymorphism. If there exists a polynomial-
time sampling algorithm for ∆, then CSP(∆) is in P.

Thus, in order to obtain the polynomial-time algorithm Solve-Semilattice

for CSP(Γ) when Γ is preserved by max, it remains to prove that we can ef-
ficiently sample from Γ. Note that φ(x1, . . . , xn) is satisfiable in Γ iff it is
satisfiable in the substructure induced by Γ on {0, . . . , (D + 1)n}. The sam-
pling algorithm for Γ then simply returns this structure, and the running time
is polynomial in n.

We now present a more general algorithm that solves the CSP of any struc-
ture fo-definable in (Z; succ) that is preserved by at least one of d-modular max.
We need the following concept, which is important also in Section 6.

Definition 32. A set of the form [a, b]d := {a, a + d, a + 2d, . . . , b} will be
called an arithmetic d-progression. A d-progression is a binary relation of the
form Diff [a,b]d for a ≤ b and b− a divisible by d.

A binary relation is called trivial if it is pp-definable in (Z; succ), and non-
trivial otherwise. Note that Diff [a,b]d is non-trivial if and only if a < b. An
arithmetic d-progression [a, b]d is called non-trivial if a < b.

Lemma 33. Suppose that Γ is preserved by maxd, and that R is a non-trivial
binary relation that is pp-definable in Γ. Then R is a d-progression.

Proof: Suppose for contradiction that R is not a d-progression. There are two
cases.

• R contains (0, a) and (0, b) where a 6= b mod d. Let φ(x, y) be the primi-
tive positive definition of R in Γ. As R is distinct from Z

2, in the canonical
database of φ the vertices x and y must lie in the same connected compo-
nent, and it follows that R has finite degree. Therefore, and because R is
non-trivial, there exists a smallest p ∈ Z so that (0, p) ∈ R. Choose some
p′ > p so that (0, p′) ∈ R and p 6= p′ mod d, which exists by assumption.
Applying maxd to (0, p) and (d, d + p′) we get (d, p) ∈ R and therefore
(0, p− d) ∈ R, in contradiction to the choice of p.

18

• Suppose that case 1 does not apply. Then R must contain some (0, a)
and (0, c) but not (0, b) for 0 < a < b < c (with a = b = c mod d). In
this case, choose a, b, c so that c is minimal. Applying maxd to (0, c) and
(d, d+ a) we get (d, c) ∈ R in contradiction to the minimality of c.

In both cases we reached a contradiction, so R must indeed be a d-progression.
✷

Lemma 34. Let d be a positive integer and let Γ be such that the non-trivial
binary relations pp-definable in Γ are d-progressions. Then there is an fo-
expansion ∆ of (Z; succ) such that

• every relation of ∆ is pp-definable in Γ;

• every relation of Γ is pp-definable in ∆;

• each relation R of ∆ but succ satisfies that for all (a1, . . . , an) ∈ R, we
have a1 = ai mod d for all 1 ≤ i ≤ n.

Proof: Let R be a relation of Γ, of arity n. It follows from the fact that
the non-trivial binary relations pp-definable in Γ are d-progressions that for all
(a1, . . . , an), (b1, . . . , bn) ∈ R, we have that ai − a1 = bi − b1 mod d for each
i ∈ {1, . . . , n}, and let pi ∈ {0, . . . , d−1} be this quantity. Define R′(y1, . . . , yn)
by ∃x2, . . . , xn

(
R(y1, x2, x3, . . . , xn) ∧

∧

i≥2 xi = spi(yi)
)
. Then it is easy to

check that if (c1, . . . , cn) is a tuple in R′, then we have ci = c1 mod d for all
1 ≤ i ≤ n. Let ∆ = (Z;R′

1, . . . , R
′
m, succ), where R

′
j is the relation constructed

as above from Rj ∈ Γ. The claim about the form of the relations of ∆ easily
follows from our construction. ✷

We say that Γ is d-nice if it satisfies the third item in Lemma 34 for some
positive integer d. Per the lemma, it suffices to do the complexity classification
for d-nice structures Γ.

Lemma 35. Let Γ be d-nice. Γ is preserved by maxd if and only if Γ/d is
preserved by max.

Proof: Let R be a relation of Γ that is not succ (succ is preserved by the
four operations mentioned in the statement so there is nothing to prove for this
relation).

(Forwards.) Let (a1, . . . , an), (b1, . . . , bn) be tuples in R such that ai =
bi = 0 mod d for all i. Then we have that (max(a1, b1), . . . ,max(an, bn)) =
(maxd(a1, b1), . . . ,maxd(an, bn)), and this tuple is in R by hypothesis. Further-
more, the entries of this tuples are divisible by d, and thus the tuple belongs to
RΓ/d.

(Backwards.) Let (a1, . . . , an), (b1, . . . , bn) be tuples in R. Note that ai −
aj = bi − bj = 0 mod d for all i, j. Thus, if ai 6= bi mod d for some i, then

19

ai 6= bi mod d for all i and in this case (maxd(a1, b1), . . . ,maxd(an, bn)) =
(a1, . . . , an), which is in R. Otherwise, ai = bi mod d for all i, and thus the
two tuples (0, a2− a1, . . . , an− a1) and (b1 − a1, . . . , bn − a1) are in R and have
all their entries divisible by d. Hence, (maxd(0, b1− a1), . . . ,maxd(an− a1, bn−
a1)) is in RΓ/d, since Γ/d is preserved by max. It follows that (maxd(0, b1 −
a1), . . . ,maxd(an−a1, bn−a1))+a1 = (maxd(a1, b1), . . . ,maxd(an, bn)) is in R,
and R is preserved by maxd. ✷

Suppose Γ is d-nice and has the relations R1, . . . , Rm and succ, and let
Φ = ∃x1, . . . , xn.φ be an instance of CSP(Γ). Our algorithm works as follows:

1. Compute the finest equivalence relation on the set of variables V with
parts V1, . . . , Vℓ so that there is no constraint succ(x, y) in φ when x, y are
in the same subset, and so that if a constraint Ri(y1, . . . , yk) is in φ then
y1, . . . , yk are all in the same equivalence class, and if y1 = y2 is in φ then
y1 and y2 are in the same equivalence class. If no such partition exists,
reject Φ. It is clear that this computation can be performed in polynomial
time in the size of the input.

2. Build a primitive positive sentence Ψ that contains an existentially quanti-
fied variable vi for each subset Vi, and that contains a conjunct succ(vj , vi)
iff there exist variables x ∈ Vi, y ∈ Vj so that succ(y, x) is a conjunct in φ.

3. Test whether Ψ is true in ~Cd, the directed cycle with the vertex set
{0, 1, . . . , d − 1} (we also use succ to denote the edge predicate in this

structure). Reject Φ if Ψ is not true in ~Cd.

4. Otherwise let p : {v1, . . . , vℓ} → ~Cd be a satisfying assignment to the
quantifier-free part of Ψ.

5. Define a new sentence Ξ as follows: for each variable x in Vi add an (exis-

tentially quantified) variable z
−p(i)
x . For each constraintR(y1, . . . , yk) with

y1, . . . , yk ∈ Vi and R ∈ {R1, . . . , Rm} we add the constraint R(z
−p(i)
y1 , . . . ,

z
−p(i)
yk

). Finally, for each constraint succ(y, x) with x ∈ Vj , y ∈ Vi, if

p(j) > 0 add the constraint z
−p(j)
x = z

−p(i)
y and if p(j) = 0 (which means

that p(i) = d− 1) add succ-constraints to express that z0x = sd(z
−p(i)
y).

6. Run Solve-Semilattice on Ξ, as an input to CSP(Γ/d), and accept Φ
iff Solve-Semilattice accepts Ξ.

Note that at the steps 3 and 4, we need a polynomial-time algorithm that
solves CSP(~Cd) and that also builds a solution. It is well-known that a greedy
approach works here, which we describe below for the sake of completeness.
Assign the first variable x to any vertex of ~Cd. At each step, if the variables
in V have already been assigned, consider a variable y such that there exist
x ∈ V and an atomic formula succ(x, y). If all such variables x are assigned to

the same value, then assign y to the next vertex in ~Cd. Otherwise, reject the
instance. It is clear that this algorithm builds a satisfying assignment if and
only if a satisfying assignment exists.

20

Lemma 36. The formula Ξ is true in Γ if and only if it is true in Γ/d.

Proof: If Ξ is true in Γ, we may assume by translation that for all i at least one
of the variables of Vi is mapped to some integer in Γ/d. Since all the relations of
Γ with the exception of succ only contain tuples (a1, . . . , ar) with ai = aj mod d
for all 1 ≤ i < j ≤ r, and since the succ constraints in Ξ only appear to express
formulas of the form y = sd(x), it follows that all the variables are actually
mapped to Γ/d. The converse is trivial, Γ/d being an induced substructure of
Γ. ✷

We finally prove the main result of this section, Theorem 29.

Proof: By Lemma 33, all non-trivial binary relations with a primitive pos-
itive definition in Γ are d-progressions. By Lemma 34, we can assume without
loss of generality that Γ is d-nice. Let Φ = ∃x1, . . . , xn. φ be an instance of
CSP(Γ), and suppose that Φ is true in Γ. Let h : {x1, . . . , xn} → Z be a sat-
isfying assignment of φ. Then congruence of the h-image of a variable modulo
d defines an equivalence relation on V with the properties required in the first
item of the algorithm, so the algorithm does not reject at this step.

We prove first that Ψ is true in ~Cd, and thus that Φ is not rejected by
the algorithm at Step 3. If v1, . . . , vk are the variables in Ψ, define t(vi) =
h(x) mod d for any x ∈ Vi. This is well-defined, for if two variables x, y are
in the same set Vi, there are tuples of variables a1, . . . , am with x being an
element of a1, y being an element of am and with constraints R(ak) in φ for all
1 ≤ k ≤ m. Since Γ is d-nice, it must be that h(x) = h(y) mod d, so that t(vi)
is well defined. If there is a constraint succ(vj , vi) in Ψ, there is a corresponding
constraint succ(y, x) with x ∈ Vi, y ∈ Vj . Thus, we have that h(x) = h(y) + 1,
which entails that t(vi) = t(vj) + 1 mod d, and t satisfies the constraint in Φ.

Therefore, Ψ is true in ~Cd.
We now prove that the sentence Ξ (computed by the algorithm) is true

in Γ (and hence in Γ/d, by Lemma 36), and thus that Φ is accepted by the

algorithm. Define r(z
−p(i)
x) := h(x) − p(i) (which explains the notation we

employed). We claim that r satisfies the constraints in Ξ. If R(z
−p(i)
y1 , . . . , z

−p(i)
yk

)
for R ∈ {R1, . . . , Rm} is a constraint in Ξ, then R(y1, . . . , yk) is a constraint
in Φ, so that we have Γ |= R(h(y1), . . . , h(yk)). As a consequence, we have
Γ |= R(h(y1)− p(i), . . . , h(yk)− p(i)) since translations preserve Γ. Noting that

h(yl) − p(i) = r(z
−p(i)
yl

), we have Γ |= R(r(z
−p(i)
y1), . . . , r(z

−p(i)
yk

)). It remains to

be checked that the equality constraints are satisfied by r. Let z
−p(j)
x = z

−p(i)
y be

such an equality constraint, and let succ(y, x) be the corresponding constraint
in φ, with x ∈ Vj , y ∈ Vi, and p(j) > 0. By the properties of p, we have that
p(j) = p(i)+1, and it follows from h(x) = h(y)+1 that h(x)−p(j) = h(y)−p(i),

i.e., r(z
−p(j)
x) = r(z

−p(i)
y). If z0x = sd(z

−p(i)
y) is in Ξ, then succ(y, x) is in Φ with

y ∈ Vd−1, x ∈ Vj , and p(j) = 0. As a consequence, from h(x) = h(y)+ 1 follows

21

that r(z0x) = r(z
−(d−1)
y) + d− 1 + 1 = r(z

−(d−1)
y) + d.

Let us now prove that if the algorithm accepts Φ, then Φ is indeed true in
Γ. Let r be an assignment that satisfies the constraints in Ξ. For x ∈ Vi, define

h(x) := r(z
−p(i)
x)+p(i). If R(y1, . . . , yk) is a constraint in φ with all the variables

in Vi and R ∈ {R1, . . . , Rm}, then R(z
−p(i)
y1 , . . . , z

−p(i)
yk

) is a constraint in Ξ

so that R(r(z
−p(i)
y1), . . . , r(z

−p(i)
yk

)) holds in Γ, and by translation we have that

R(r(z
−p(i)
y1)+p(i), . . . , r(z

−p(i)
yk

)+p(i)) also holds in Γ. If succ(y, x) is a constraint
in Φ, then we have x ∈ Vj , y ∈ Vi, and p(j) = p(i) + 1 mod d. If p(j) = 0 then

the constraint z0x = sd(z−d+1
y) is in Ξ, so that r(z0x) = r(z

−(d−1)
y) + (d− 1) + 1,

i.e., h(x) = h(y) + 1. If p(j) > 0, the constraint z
−p(j)
x = z

−p(i)
y is in Ξ, so that

h(x) = r(z
−p(j)
x) + p(j) = r(z

−p(i)
y) + p(j) = h(y) − p(i) + p(j), and by Step 3,

we have p(j) = p(i) + 1 so that h(x) = h(y) + 1. ✷

6. Classification

In this section we finish the complexity classification for those Γ that do
not have a finite core. The main result of Section 4 shows that, unless Γ has a
finite core, for the complexity classification of CSP(Γ) we can assume that the
structure Γ contains the relation succ. In the following we therefore assume that
the structure Γ contains the relation succ; moreover, we freely use expressions
of the form y − x = d, for fixed d, in primitive positive definitions since such
expressions have themselves pp-definitions from succ and therefore from Γ. Our
main result will be the following.

Theorem 37. Suppose that Γ contains the relation succ. Then Γ is preserved
by a modular max or modular min and CSP(Γ) is in P, or CSP(Γ) is NP-hard.

An n-ary relation R on a set X is r-decomposable if R contains all n-tuples
(a1, . . . , an) such that for every r-element subset I of {1, . . . , n} there is a tuple
(b1, . . . , bn) ∈ R such that ai = bi for all i ∈ I.

Lemma 38. Suppose that Γ contains the relation succ and does not admit a
modular max or modular min polymorphism. Then there is a pp definition in Γ
of a non-trivial binary relation of finite degree.

Proof: Assume for contradiction that the binary relations pp-definable in Γ
are already pp-definable in (Z; succ). If every relation S pp-definable in Γ were
2-decomposable, then S would be invariant under a modular max or modu-
lar min operation, since the 2-decomposable relations that have a pp-definition
in Γ already have a pp-definition in (Z; succ), which means that they are pre-
served by the d-modular max and d-modular min for all d ≥ 1. Hence, there
is a relation pp-definable in Γ that is not 2-decomposable. Let R be such
a relation of smallest possible arity r ≥ 3. In particular, R is not (r − 1)-
decomposable, and hence there exists a tuple (a1, . . . , ar) /∈ R such that for

22

all i ∈ [r], (a1, . . . , pi, . . . , ar) ∈ R for some integer pi. By replacing R by the
pp-definable relation

∃y1, . . . , yr
(
R(y1, . . . , yr) ∧

∧

i∈[r]

(yi = xi + ai)
)

we can further assume that ai = 0 for all i ∈ [r]. We can also assume, w.l.o.g.,
that p1 6= −p2 because r ≥ 3.

Suppose that the arity of R is greater than 3, and consider now the ternary
relation T (x1, x2, x3) defined by R(x1, x2, x3, . . . , x3). Suppose there is a z so
that R(0, 0, z, . . . , z), then T would not be 2-decomposable since (0, 0, 0) 6∈ T ,
although (p1, 0, 0), (0, p2, 0), and (0, 0, z) are all in T , which contradicts the
minimality of the arity of R. If there is no such z then ∃x3.R(x1, x2, x3, . . . , x3)
defines a binary relation omitting (0, 0) and containing (0,−p1) and (0, p2). This
relation is non-trivial, a contradiction.

Thus we are in the situation in which r = 3. If a binary projection of R is
non-trivial, we are done, so suppose that all binary projections are trivial. We
claim that every binary projection of R must in fact be Z

2: otherwise one such
binary projection, w.l.o.g. ∃x1.R(x1, x2, x3), would be equivalent to x3 = x2+p
for some p ∈ Z. Let (a, b, c) be such that (a, b) is in the projection of R along
coordinates {1, 2}, (a, c) is in the projection of R along {1, 3}, and (b, c) is in the
projection of R along {2, 3} (i.e., c = b+p). Since (a, b) is in the first projection
of R, there exists d ∈ Z such that (a, b, d) is in R, but since the third projection
is trivial we have d = b+p = c, so that (a, b, c) is in R and R is 2-decomposable,
contradicting our assumptions. Thus every binary projection of R is Z2.

A formula over the signature of (Z; s) in disjunctive normal form (DNF) is
called reduced when every formula obtained by removing literals or clauses is
not logically equivalent over (Z; s), and if every atomic formula is of the form
y = sn(x) for n ∈ N. Let φ(x1, x2, x3) be a formula in reduced DNF that defines
R. This formula has at least two disjuncts, otherwise R would be pp-definable
over (Z; s). We claim that there is a disjunct in φ that consists of only one
literal. If that was not the case, every disjunct Di would be equivalent to x1 =
spi(x2)∧x1 = sqi(x3) for some pi, qi ∈ Z (for negative p, the expression x = sp(y)
is notational sugar for y = s−p(x)). In this case, the formula ∃x2.φ(x1, x2, x3)
defines a binary non-trivial finite-degree relation, contradicting what we proved
in the previous paragraph. Furthermore, there are at least two such disjuncts: if
there is only one, say x1 = sp(x2), then the relation defined by ∃x3.φ(x1, x2, x3)
is binary non-trivial finite-degree, a contradiction. Hence there are two disjuncts
in φ, which are up to renaming the variables x1 = sp(x2) and x1 = sq(x3). Then
the formula ∃x3

(
φ(x1, x2, x3) ∧ x3 = sp−q+1(x2)

)
is equivalent to a formula in

DNF which is reduced and contains the two disjuncts x1 = sp(x2) and x1 =
sp+1(x2). The relation defined by this formula proves the lemma. ✷

Proposition 39. Let a, b be two odd numbers such that a < b. Then the prob-
lem CSP(Z; succ,Diff{0,a,b,a+b}) is NP-hard.

23

Proof: Let k be the integer a+b
2 . Note that the pp-formula

φ(x, z) = ∃y (Diff{0,a,b,a+b}(x, y) ∧ y − z = k)

defines the relation C := Dist{ b−a

2
, b+a

2
} =

{
(x, z) | d(x, z) ∈ { b−a

2 , b+a
2 }

}
. Con-

sider the mapping f : Z→ {0, . . . , b− 1} defined by f(x) = x mod b. It follows
from b−a

2 = − b+a
2 mod b that f preserves C. It also follows by the same reason

that the restriction of C to {0, . . . , b − 1} defines a graph D where every node
has two edges. Furthermore, if m is gcd(b−a

2 , b+a
2) then D is the disjoint union

of m cycles of b
m nodes. Since b

m is odd we have that CSP(Z;C) is NP-hard
(this follows from [19]). ✷

Lemma 40. Let a, b, c ∈ Z with b 6= c. Then CSP(Z; succ,Diff{a,b},Diff{a,c})
is NP-hard.

Proof: First observe that the pp-formula ∃u (Diff{a,b}(x, u) ∧ u = y + a) de-
fines the relation Diff{0,b−a}; similarly, there is a pp-definition of Diff{0,c−a} in
(Z; succ,Diff{a,b},Diff{a,c}). Let d = b − a and e = c − a; we will show that
CSP(Z; succ,Diff{0,d},Diff{0,e}) is NP-hard.

The relation defined by ∃u (Diff{0,d}(x, u)∧Diff{0,e}(u, y)) is Diff{0,d,e,d+e}.
If both d and e are odd, we obtain hardness of the CSP from the previous
proposition applied to (Z; succ,Diff{0,d,e,d+e}). If both d and e are even, then
the structure ∆ := (Z; Diff{0,d},Diff{0,e}, {(x, y) | x − y = 2}) is pp-definable
in Γ. The structure ∆ is isomorphic to the disjoint union of two copies of the
structure (Z; succ,Diff{0,d/2},Diff{0,e/2}); the claim now follows by induction
on the minimum even among d and e (the case where they are both odd being
already solved).

Finally, assume that precisely one of d or e is even; say d is even. Write
lcm(d, e) for the least common multiple of d and e, and set u := lcm(d, e)/d and
v := lcm(d, e)/e. The formula

∃y1, . . . , yu, z1, . . . , zv
(
Diff{0,d}(p, y1) ∧Diff{0,d}(y1, y2) ∧ · · · ∧Diff{0,d}(yu−1, q)

∧Diff{0,e}(p, z1) ∧Diff{0,e}(z1, z2) ∧ · · · ∧Diff{0,e}(zv−1, q)
)

with free variables p and q defines Diff{0,lcm(d,e)}. We are now again in the case
that we can pp-define two relations Diff{0,g} and Diff{0,h} for even g, h (namely,
g = d and h = lcm(d, e)), and thus we are done. ✷

Lemma 41. Let S be a finite set of integers with |S| > 1 with elements of the
form i · d where i ∈ Z. Let md = min(S), Md = max(S), let [jd, kd]d ⊆ S
be maximal, let l be such that l ≥ max(j −m − 1,M − k − 1, 0) and such that
k ≥ j + l. Then every d-progression with at most r := k − j − l+ 1 elements is
pp-definable in (Z; succ,DiffS).

24

Proof: We shall show first how to pp-define a d-progression DiffT where T ⊆ Z

has exactly r = k − j − l + 1 elements. For every 0 ≤ i ≤ l, let φi(x, y) be the
formula ∃z (z = x + id ∧ DiffS(z, y)) which is equivalent to a pp-formula over
the relations DiffS and succ. There exists T ⊆ Z such that DiffT is the relation
defined by φ :=

∧

0≤i≤l φi(x, y). We claim that T is precisely [(j + l)d, kd]d.
We have T ⊆ S because the formula contains the conjunct φ0(x, y). Let

s = nd be any element of S. Let us do a case analysis.

1. Case m ≤ n < j − 1. In this case 0 ≤ j −m− 1 ≤ l, and thus φ contains
the conjunct φj−m−1(x, y) = ∃z

(
z = x+ (j −m− 1)d∧DiffS(z, y)

)
. The

smallest y such that φj−m−1(0, y) holds is (j − 1)d. Hence, in this case
s 6∈ T .

2. Case j − 1 ≤ n < j + l. By the maximality of [jd, kd]d it follows that
(j−1)d 6∈ S. Then φi(0, nd) does not hold if we pick i = n− j+1. Hence,
s 6∈ T .

3. Case j + l ≤ n ≤ k. For every 1 ≤ i ≤ l, we have that φi(0, nd) holds as
j + i ≤ n ≤ k + i. This implies that s ∈ T .

4. Case k < n ≤M . By the maximality of [jd, kd]d we have that (k+1)d 6∈ S.
Hence, by choosing i = n − (k + 1) we have that φi(0, s) does not hold.
Consequently s 6∈ T .

Hence, T has exactly r elements with largest element kd, and DiffT is a d-
progression with the pp-definition φ. Now, if DiffP is a d-progression where P
has exactly r elements, then DiffP can be defined by the pp-formula ∃z (z =
x+ p ∧ φ(z, y)) choosing p := max(P)− kd.

Finally, we turn our attention to arithmetic d-progressions T with less then
r elements. If T has r − 1 elements we can use the pp-formula ∃z (z = x+ d ∧
φ(x, y)∧φ(z, y)) and apply some shift by successor to pp-define DiffT . Iterating
the previous construction we can pp-define every d-progression. ✷

Let us illustrate the construction of DiffP in the previous proof with an
example. Assume S is the set {1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20}
which we can represent as:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

S • • • • • • • • • • • • • • • •

We have d = 1. Consider [7, 16]1 ⊆ S. Then we have m = 1, M = 20, j = 7,
and k = 16. Fix l = 6. Then r = 16− 7− 6+ 1 = 4. For every i ∈ {0, . . . , l} let
Zi be such that φi defines DiffZi

. The situation can be illustrated as follows.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Z0 • • • • • • • • • • • • • • • •

Z1 • • • • • • • • • • • • • • • •

Z2 • • • • • • • • • • • • • • • •

Z3 • • • • • • • • • • • • • • • •

Z4 • • • • • • • • • • • • • • • •

Z5 • • • • • • • • • • • • • • • •

Z6 • • • • • • • • • • • • • • • •

P • • • •

Case 1 Case 2 Case 3 Case 4

25

Corollary 42. Let r > 0, let S be a finite set of multiples of d, and assume
that [rd, 3rd]d ⊆ S and S ⊆ [0, 4rd]d. Then every d-progression DiffT where
|T | ≤ r is pp-definable in (Z; succ,DiffS).

Proof: Directly from Lemma 41. Note that the assumptions of the Corollary
guarantee that 0 ≤ m, M ≤ 4r, j ≤ r, and 3r ≤ k. It is straightforward to
verify that l = r gives the desired result. ✷

Lemma 43. Let S be a finite set of integers with |S| > 1 and let d be the
greatest common divisor of all a − a′ with a, a′ ∈ S and a 6= a′. Then any
d-progression is pp-definable in (Z; succ,DiffS).

Proof: The set of non-trivial maximal arithmetic d-progressions contained
in S can be totally ordered by setting T1 ≤ T2 if min(T1) ≤ min(T2). If T1 < T2
then we define the distance from T1 to T2 to be min(T2)−max(T1).

For any m ≥ 1, let (DiffS)
m be the relation

m
︷ ︸︸ ︷

DiffS ◦DiffS ◦ · · · ◦DiffS which
we can write as DiffSm where Sm contains all integers that we can express as
a1+ · · ·+ am with a1, . . . , am ∈ S. Clearly, (DiffS)

m is pp-definable from DiffS .
By the definition of d it follows that if m is large enough there exists some
integer a, such that {a, a + d} ⊆ Sm, or, in other words, that Sm contains a
non-trivial arithmetic d-progression. For ease of notation we shall assume that
already S contains a non-trivial arithmetic d-progression (otherwise replace S
by Sm).

Let n be the maximum distance between two consecutive arithmetic d-
progressions contained in S, and set n = 0 if there is only one maximal arith-
metic d-progression. Let l− (respectively l+) be minimal (respectively maxi-
mal) with the property that {min(Sm)+ l−,min(S)+ l− + d} ⊆ S (respectively
{max(S)− l+ − d,max(S)− l+} ⊆ S). Finally, define l to be max(l−, l+). Let
n2 and l2 be defined as n and l, but with respect to S2 instead of S.

Claim 1. l2 ≤ l.

Proof: Follows from the fact that {2min(S)+l−, 2min(S)+l−+d, 2max(S)−
l+ − d, 2max(S)− l+} ⊆ S2.

Claim 2. If l = 0 then n2 ≤ n. Furthermore, if n > 0 the inequality is strict.

Proof: If n = 0 then S2 is necessarily an arithmetic d-progression and the
claim follows. If n > 0 then let X < Y be consecutive non-trivial maximal arith-
metic d-progressions contained in S2 (such X and Y always exists if n2 > 0, oth-
erwise there is nothing to prove). We claim that there exist non-trivial maximal
arithmetic d-progressions A ≤ B in S such that max(A) + max(B) ≤ max(X).
Indeed, set A = B to be the maximal arithmetic d-progression containing
{min(S),min(S) + d}. Consequently, we can choose A ≤ B satisfying the con-
ditions of the claim with max(A) + max(B) maximal.

26

Since X < Y it follows that max(A) < max(S) which implies that there
exists a non-trivial maximal arithmetic d-progression C in S with A < C (in
particular consider the one containing {max(S) − d,max(S)}). Pick any such
C with min(C) minimal.

Since S contains arithmetic d-progressions A and B it follows that S2 con-
tains the (not necessarily maximal) non-trivial arithmetic d-progression [min(A)+
min(B),max(A) + max(B)]d. Let X ′ be a maximal arithmetic progression
in S2 containing it. Similarly let Y ′ be a maximal arithmetic d-progression
in S2 containing [min(B) + min(C),max(B) + max(C)]d. Since max(A) +
max(B) ≤ max(X) it follows that X ′ ≤ X . Furthermore, by the maximal-
ity of max(A) + max(B) and A < C we have X < Y ′. As Y is consecutive
to X it follows that Y ≤ Y ′. The distance from from X ′ to Y ′ is at most
min(B)+min(C)−max(A)−max(B), which, as we will show, is strictly smaller
than n. Indeed, since C is consecutive to A, we have min(C)−max(A) ≤ n and
since B is non-trivial max(B)−min(B) > 0. This finishes the proof of Claim 2.

We can assume that min(S) = 0 by applying some shift by successor to S.
This implies that the elements of S (and hence of Sm) are of the form i · d
where i ∈ Z. From Claim 1 it follows that the value of l does not increase if we
replace S by S2. Since max(S) certainly increases it follows that we can assume
(by replacing S by Sm for sufficiently large m) that max(S) ≥ 4l. Further, by
applying iteratively Claims 1 and 2 to S′ = S ∩ [min(S) + l−,max(S)− l+]d we
conclude that (S′)m is an arithmetic d-progression whenever m ≥ 2n, namely
(S′)m = [m(min(S) + l−),m(max(S)− l+)]d . Since S′ ⊆ S it follows that Sm

contains (S′)m. Now assume thatm is a multiple of 4 and set r = m·max(S)/4d.
It follows from max(S) ≥ 4l that rd ≥ ml− and hence that rd ∈ (S′)m. It is
shown in the same manner that 3rd ∈ (S′)

m
. In summary, we have that Sm

and r satify the hypothesis of Corollary 42. Hence, every d-progression DiffT

where |T | ≤ r is pp-definable in (Z; succ,DiffS). The statement follows, because
r can be made arbitrarily large by increasing m. ✷

Lemma 44. Suppose that S is finite, but not an arithmetic d-progression, for
any d > 0. Then CSP(Z; succ,DiffS) is NP-hard.

Proof: Let S = {a1, . . . , ak} be such that a1 < · · · < ak. Let d be the gcd of all
ai−aj with i, j ∈ {1, . . . , k}. By Lemma 43, for all i < k the relation Diff [ai−1,ai]d

is pp-definable in Γ. Then we obtain Diff{ai−1,ai} as Diff [ai−1,ai]d ∩ DiffS. Since
S is not an arithmetic d-progression, for any d > 0, there exists an i such that
ai − ai−1 6= ai+1 − ai. The result then follows from Lemma 40. ✷

Lemma 45. Let S be an arithmetic d-progression and S′ be an arithmetic d′-
progression such that |S| > 1, |S′| > 1, and d 6= d′. Then CSP(Z; succ,DiffS,DiffS′)
is NP-complete.

Proof: We can pp-define Diff{a,a+d} and Diff{b,b+d′}, normalize using succ,
and then apply Lemma 40. ✷

27

As per the previous lemmas, we can now restrict our study to the situation
where all binary relations that are pp definable in Γ are d-progressions, for some
fixed d. We next treat the case where d = 1. The following technical lemma
plays an important role in the sequel.

Lemma 46. Suppose that Γ contains a non-trivial 1-progression and a relation
R that is not 2-decomposable, and that all binary relations pp-definable in Γ are
1-progressions. Then there exists d ∈ {−1, 1} such that Γ pp-defines for each
m ≥ 3 a relation Tm of arity m′ ≥ m with

← − m − →
(d, 0, . . . , 0, 0 , 0, . . . , 0)
(0, d, . . . , 0, 0 , 0, . . . , 0)

...
...

(0, 0, . . . , d, 0 , 0, . . . , 0)
(0, 0, . . . , 0, d , 0, . . . , 0) ∈ Tm
(0, 0, . . . , 0, 0 , 0, . . . , 0) /∈ Tm.

Proof: Assume Γ has a relation R that is not 2-decomposable. By replacing
R with a projection of R to a subset of the arguments, we can assume that R
has arity r ≥ 3 and is not (r − 1)-decomposable. This implies that there exists
a tuple (a1, . . . , ar) /∈ R such that for all i ∈ {1, . . . , r} there exists an integer
pi such that (a1, . . . , ai−1, pi, ai+1, . . . , ar) ∈ R. Replacing R by the relation
defined by the pp-formula

∃y1, . . . , yr
(∧

i∈{1,...,r}

(yi = xi + ai) ∧R(y1, . . . , yr)
)

we can further assume that ai = 0 for all i ∈ {1, . . . , r}. Furthermore, we can
also assume that pi ∈ {−1, 1} for all i ∈ {1, . . . , r}. To see this, observe that
pi 6= 0 by assumption; if pi > 0, choose pi minimal, if pi < 0, choose pi maximal.
Let Ri be Diff [0,pi−1|1] if pi > 0, and let Ri be Diff [pi+1,0|1] if pi < 0. Note that
by Lemma 43, the relation Ri has a pp definition φi in Γ. Now the formula

θ := ∃y1, . . . , yr
(∧

i∈{1,...,r}

φi(xi, yi) ∧R(y1, . . . , yr)
)
.

defines a relation where pi ∈ {−1, 1} for all i ∈ {1, . . . , r}.
Let P be the set of all i ∈ {1, . . . , r} such that the tuple with a 1 at the

i-th position and 0 everywhere else is in R. Likewise, let N be the set of all
i ∈ {1, . . . , r} such that the tuple with a −1 at the i-th position and 0 everywhere
else is in R.

Case 1. Suppose one of P or N is empty, w.l.o.g. N . Note that the relations
Diff{0,1} and Diff{−1,0,1} are pp-definable in Γ by Lemma 43, so we may use them
in pp-formulas over Γ. Define χr := θ, and inductively define the pp-formula

χj(x1, . . . , xj−1) := ∃xj
(
χj(x1, . . . , xj) ∧Diff{0,1}(xr, xj+1)

)

28

for all j ∈ {3, . . . , r−1}. Define Nj as the set of indices i such that the tuple that
contains −1 at the ith entry and 0 otherwise is in the relation defined by χj . We
define Pj analogously. Note that Pj is non-empty for every j ∈ {3, . . . , r − 1}.
If Nj 6= ∅, jump to Case 2.

So assume that N3 is empty. Then the relation defined by

∃xr, yr, z
(
θ(x1, . . . , xr) ∧ θ(y1, . . . , yr) ∧ χ3(xr , yr, z)

∧Dist{0,1}(x1, xr) ∧Dist{0,1}(y1, yr) ∧Dist{0,1}(x1, z) ∧Dist{0,1}(xr , z)
)

has the required properties for T2(r−1): if all of x1, . . . , xr−1, y1, . . . , yr−1 are
equal to zero, then xr = yr = 1 because of the conjuncts θ(x1, . . . , xr) and
θ(y1, . . . , yr), the assumption thatN is empty, and the conjuncts Dist{0,1}(x1, xr)
and Dist{0,1}(y1, yr). Hence, z = 2 because of the conjuncts χ3(xr , yr, z) and
Dist{0,1}(xr, z), in contradiction to Dist{0,1}(x1, z). On the other hand, if xi is
set to 1 for 1 ≤ i < r and all other variables in {x1, . . . , xr−1, y1, . . . , yr−1} are
set to 0, then yr can be set to 1, xr can be set to 0, and z can be set to 0, and
this satisfies all conjuncts of the formula.

Iterating this construction we obtain pp-definitions of relations Tm, for ar-
bitrary m > r, with the required properties.

Case 2. Suppose that both P andN are non-empty and let i ∈ P and j ∈ N .
Consider the pp-formula φ(x1, . . . , xi−1, xi+1, . . . , xr, y1, . . . , yj−1, yj+1, . . . , yr)
given by

∃x, y
(
succ(y, x) ∧R(x1, . . . , xi−1,x, xi+1, . . . , xr)

∧ R(y1, . . . , yj−1,y, yj+1, . . . , yr)

∧ Diff{−1,0,1}(x, x1) ∧ Diff{−1,0,1}(y, y1)
)
.

Assume w.l.o.g. that there is k ∈ P \{i}, i.e., |P | > 1. Reordering the arguments
of the relation defined by φ such that the variables yi, yk, and xk correspond to
the first m = 3 arguments, we obtain a relation T3 of arity m′ := r ≥ 3 with
the desired properties. To see this, consider the case that all variables from
V := {x1, . . . , xi−1, xi+1, . . . , xr, y1, . . . , yj−1, yj+1, . . . , jr} are set to 0. Then
the first conjunct of φ implies that x 6= 0 and the second conjunct that y 6= 0,
and then the conjuncts Diff{−1,0,1}(x, xk) and Diff{−1,0,1}(y, yk) are inconsistent
with succ(y, x). On the other hand,

• if yi = 1 and all other variables in V are set to 0, then setting x to 1 and
y to 0 satisfies all conjuncts of φ.

• if yk = 1 and all other variables in V are set to 0, then setting x to 1 and
y to 0 satisfies all conjuncts of φ.

• if xk = 1 and all other variables in V are set to 0, then setting x to 0 and
y to −1 satisfies all conjuncts of φ.

29

Informally, this can be illustrated by the following table.

y x yi yk xk
0 1 1 0 0
0 1 0 1 0
−1 0 0 0 1

0 0 0

For the case m > 3, we can iterate this construction, replacing R by the
relation R′ defined by φ. To see this, note that the set P redefined with respect
to R′ contains the entries for the variables yi, yk, xk, and thus |P | > 2. Moreover,
because all conjuncts of φ are true under the assignment xj = −1, y = −1,
x = 0, and all other variables set to 0, the set N redefined with respect to R′

contains the entry for the variable xj , so that |N | ≥ 1. ✷

The following proposition replaces the proof of Theorem 31 in the conference
version of this paper which contained an important error.

Proposition 47. Suppose that Γ contains the relation succ and a non-trivial
1-progression. Then Γ is preserved by one of max or min; or CSP(Γ) is NP-hard.

Proof: If CSP(Γ) is not NP-hard, then by Lemmas 45 and 44 we can assume
that all the binary relations with a pp-definition in Γ are 1-progressions. It
follows that every 2-decomposable relation is preserved by both max and min.
If every relation is preserved by both max and min, then we are done, so assume
in the following that Γ has a relation R that is not 2-decomposable. We now
find ourselves with the preconditions of Lemma 46. W.l.o.g. assume d = 1 (for
d = −1 we potentially generate min instead of max in the following).

We now claim that for every finite set [−n, n] := {−n,−n+1, . . . , n−1, n} ⊂
Z, the operation max: [−n, n]2 → [−n, n] is a polymorphism of the substruc-
ture of Γ induced by [−n, n], which we denote by Γ[−n, n] in the following. If
CSP(Γ[−n, n], 0) were NP-hard, then CSP(Γ) would also be NP-hard. Indeed,
we have by Lemma 43 that the 1-progression DiffS with S = {−1, 0, 1} is pp-
definable in Γ. As a consequence, the progression DiffT with T = [−n, n] is pp-
definable in Γ by a pp formula of size O(n). Our reduction from CSP(Γ[−n, n], 0)
to CSP(Γ) works as follows: from an input Φ of CSP(Γ[−n, n], 0) with variable
set V , create the instance Ψ := ∃z

(
Φ∧

∧

v∈V DiffT (z, v)
)
of CSP(Γ) where each

atom v = 0 in Φ is replaced by v = z. Note that Ψ can be computed in polyno-
mial time from Φ. By transitivity of the structure Γ, we have that Φ is true in
(Γ[−n, n], 0) iff Ψ is true in Γ, thus proving our claim that CSP(Γ) is NP-hard.

Thus we may assume that each CSP(Γ[−n, n], 0) is not NP-hard. Note
that all polymorphisms f of (Γ[−n, n], 0) are idempotent, i.e., f(x, . . . , x) = x
for all x ∈ [−n, n], since 0 and succ are in the language of Γ. It is known
from the theory of finite-domain constraint satisfaction, by a combination of
a result of Jeavons, Bulatov, and Krokhin [13] (Corollary 7.3) and of Maróti

30

and McKenzie [24] (Theorem 1.1; in order to match the terminology between
these papers, we refer to Section 3.2 in the survey article [12]), that in this case
Γ[−n, n] has an (idempotent) weak near-unanimity polymorphism fn, that is,
fn has arity k ≥ 2 and satisfies for all x, y ∈ [−n, n] the equation

fn(y, x, . . . , x) = fn(x, y, x, . . . , x) = · · · = fn(x, . . . , x, y) .

Fix now an integer n, and let k be the arity of fn. We will prove that
fn(x, . . . , x, y) = max(x, y) for all x, y ∈ [−n, n]. Since fn(0, . . . , 0) = 0,
and fn must preserve Diff [0,1|1], we deduce that fn(a1, . . . , ak) ∈ {0, 1} for all
a1, . . . , ak ∈ {0, 1}. Consider now the following k tuples contained in Tk:

(1, 0, 0, . . . 0, 0, . . . 0),
(0, 1, 0, . . . 0, 0, . . . 0),

. . .
...

(0, 0, 0, . . . 1, 0, . . . 0).

Since fn is an idempotent weak near-unanimity, by applying fn to these tuples
we obtain (a, . . . , a, 0, . . . , 0), where a = fn(0, . . . , 0, 1) Moreover, a 6= 0 since
(0, . . . , 0) /∈ Tk. We obtain that fn(a1, . . . , ak) = 1 whenever exactly one of the
ai equals 1 and the other ai equal 0. By preservation of succ, we also obtain
that fn(2, 1, . . . , 1) = 2. Since (1, 2), (1, 1), . . . , (1, 1), (0, 1) ∈ Diff[0, 1|1] we have
fn(1, . . . , 1, 0) ∈ {1, 2}. We have already observed that fn(1, . . . , 1, 0) ∈ {0, 1},
and hence fn(1, . . . , 1, 0) = 1. Analogously, the value of fn is determined when
all arguments are 1, except for one that equals 0. It follows by preservation of
succ that for all p, q ∈ [−n, n] with |p− q| = 1

fn(p, . . . , p, q) = max(p, q) .

We now aim to prove that this holds for all p, q ∈ [−n, n]. Assume by induction
on t that we have the result for |p − q| ≤ t, and that we want to show it
for |p − q| = t + 1. By inductive hypothesis we have f(0, . . . , 0, t) = t, and
f(0, . . . , 0, t + 1) ∈ {t, t + 1} by preservation of Diff [0,1|1]. We now apply fn
componentwise to the following tuples from Tk:

(0, 1, 0, . . . , 0, 0) ∈ Tk

...

(0, 1, 0, . . . , 0, 0) ∈ Tk

(t+ 1, t, . . . , t, t) ∈ Tk

Since f(0, . . . , 0, t+ 1) ∈ {t, t+ 1} and (t, . . . , t) /∈ Tk, we obtain f(0, . . . , 0, t+
1) = t+ 1. A similar argument shows that fn(t + 1, . . . , t+ 1, 0) = t+ 1. This
implies the inductive claim for p, q ∈ [−n, n] with |p − q| = t + 1 because fn

31

is idempotent and preserves succ. Since max agrees on each finite set with a
polymorphism of Γ[−n, n], it follows that max is a polymorphism of Γ. ✷

Proof of Theorem 37. If Γ is preserved by a modular max or modular
min, then CSP(Γ) is in P by Theorem 29. So suppose that this is not the case.
By Lemma 38 there is a binary relation R with a pp-definition in Γ but not in
(Z; succ). If R is not a d-progression for any d ≥ 1, then CSP(Γ) is NP-hard
by Lemma 44. So suppose that R is a d-progression. If there is a non-trivial
d′-progression with d′ 6= d then CSP(Γ) is NP-hard by Lemma 45. So suppose
that all non-trivial binary relations with a pp-definition in Γ are d-progressions.
Then the conditions of Lemma 34 apply and we can assume without loss of
generality that Γ is d-nice.

The relation defined by y = sd(x) is pp-definable in Γ, and by adding this
relation we see that Γ/d contains succ and so is as in Proposition 47. By
Lemma 35, the d-nice structure Γ/d is not preserved by max or min, and hence
Proposition 47 implies that CSP(Γ/d) is NP-hard. Now we reduce CSP(Γ/d) to
CSP(Γ) to prove the latter is also NP-hard. Recall that D denotes the largest
distance in the Gaifman graph of Γ (Notation 3). Note that an instance of
Γ on n variables has a solution if and only if it has a solution in the interval
[0, Dn]. From an instance Φ of CSP(Γ/d) we build an instance Ψ of CSP(Γ). To
build Ψ from Φ, we augment with a new variable z as well as Dn new variables
x1 . . . , xDn for each extant variable x of Ψ. Then Ψ is as Φ but with the
additional constraints Dist[0,Ddn]d(x, z), where we define Dist[0,Ddn]d(x, z) by
Dist[0,d]d(x, x1)∧Dist[0,d]d(x1, x2)∧ . . .∧Dist[0,d]d(xDn, z). It is straightforward
to see that Γ/d |= Φ if and only if Γ |= Ψ and the result follows. ✷

Proof of Theorem 1. Suppose that Γ does not have a finite core. Let ∆
be the structure as described in Theorem 19; that is, ∆ is a connected finite-
degree structure with a first-order definition in (Z; succ) such that there is a
homomorphism e from Γ to ∆ and a homomorphism i from ∆ to Γ. Clearly,
CSP(Γ) and CSP(∆) are the same problem. Theorem 19 asserts that the relation
succ is pp-definable in ∆ unless CSP(∆) (and CSP(Γ)) is NP-hard. If succ is
pp-definable in ∆, then the CSP of the expansion of ∆ by the successor relation
has the same complexity as CSP(∆). Theorem 37 implies that ∆ has a modular
max or modular min, and CSP(∆) and CSP(Γ) are in P, or CSP(∆) and CSP(Γ)
are NP-hard. ✷

7. Concluding Remarks

Structures Γ with a first-order definition in (Z; succ) have a transitive au-
tomorphism group, i.e., for every x, y ∈ Z there is an automorphism of Γ that
maps x to y. We call such structures Γ transitive as well. It is well-known and
easy to prove (see e.g. [20]) that a finite core of a transitive structure is again

32

transitive. Our main result thus implies that a complete complexity classifica-
tion for distance CSPs follows from a complexity classification for CSPs whose
template is a finite transitive core. In general, the complexity of CSPs for finite
transitive templates has not yet been classified. The following is known.

Theorem 48 (of [13, 1]). Let ∆ be finite. If ∆ has no polymorphism f of
arity n ≥ 2 satisfying

∀x1, . . . , xn.f(x1, . . . , xn) = f(x2, . . . , xn, x1)

then CSP(∆) is NP-complete.

The following conjecture is widely believed in the area.

Conjecture 49 (of [13, 1]). Let ∆ be finite. If ∆ has for some n ≥ 2 an
n-ary polymorphism f satisfying

∀x1, . . . , xn.f(x1, . . . , xn) = f(x2, . . . , xn, x1)

then CSP(∆) is in P.

The authors believe that this conjecture might be easier to show for transitive
finite structures Γ.

We mention that recently, the (infinite) lattice of structures over Z with a
first-order definition in (Z; succ) considered up first-order interdefinability has
been described [25].

The general classification program of distance CSPs, in which one relaxes
the requirement of local finiteness, but still insist on a finite signature, has
recently been completed [9]. All distance CSPs are in P or NP-complete, or they
are homomorphically equivalent to transitive finite structures, in which case a
general complexity classification is not known. The quest for understanding the
infinite signature case, under encodings in disjunctive normal form, is ongoing.

Acknowledgements

We are grateful to several anonymous reviewers for their valuable comments.

References

[1] Libor Barto and Marcin Kozik. New conditions for Taylor varieties and
CSP. In Proceedings of LICS, pages 100–109, 2010.

[2] Manuel Bodirsky. Cores of countably categorical structures. Logical Meth-
ods in Computer Science, 3(1):1–16, 2007.

33

[3] Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equal-
ity up to primitive positive interdefinability. Journal of Symbolic Logic,
75(4):1249–1292, 2010.

[4] Manuel Bodirsky, Vı́ctor Dalmau, Barnaby Martin, and Michael Pinsker.
Distance constraint satisfaction problems. In Petr Hlinený and Antońın
Kucera, editors, Proceedings of Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, pages 162–173. Springer Verlag,
August 2010.

[5] Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satis-
faction complexity. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, edi-
tors, Proceedings of the International Colloquium on Automata, Languages
and Programming (ICALP), Lecture Notes in Computer Science, pages 184
–196. Springer Verlag, July 2008.

[6] Manuel Bodirsky, Martin Hils, and Barnaby Martin. On the scope of the
universal-algebraic approach to constraint satisfaction. In Proceedings of
the Annual Symposium on Logic in Computer Science (LICS), pages 90–99.
IEEE Computer Society, July 2010.

[7] Manuel Bodirsky and Jan Kára. The complexity of temporal constraint
satisfaction problems. Journal of the ACM, 57(2):1–41, 2009. An extended
abstract appeared in the Proceedings of the Symposium on Theory of Com-
puting (STOC’08).

[8] Manuel Bodirsky, Dugald Macpherson, and Johan Thapper. Constraint
satisfaction tractability from semi-lattice operations on infinite sets. Trans-
action of Computational Logic (ACM-TOCL), 14(4):1–30, 2013.

[9] Manuel Bodirsky, Antoine Mottet, and Barnaby Martin. Constraint satis-
faction problems over the integers with successor. In Proceedings of ICALP,
2015. ArXiv:1503.08572.

[10] Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with
countable homogeneous templates. Journal of Logic and Computation,
16(3):359–373, 2006.

[11] Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. Jour-
nal of the ACM, 62(3):#19, 52 pages, 2015. A conference version appeared
in the Proceedings of STOC 2011, pages 655–664.

[12] A. Bulatov and M. Valeriote. Results on the algebraic approach to the
csp. Complexity of Constraints: An Overview of Current Research Themes,
pages 68–92, 2008. Springer Verlag.

34

[13] Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Classify-
ing the complexity of constraints using finite algebras. SIAM Journal on
Computing, 34:720–742, 2005.

[14] Peter J. Cameron. Oligomorphic permutation groups. Cambridge University
Press, Cambridge, 1990.

[15] Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Com-
plexity of Constraints - An Overview of Current Research Themes [Result
of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Science.
Springer, 2008.

[16] Reinhard Diestel. Graph Theory. Springer–Verlag, New York, 2005. 3rd
edition.

[17] Tomás Feder and Moshe Y. Vardi. The computational structure of mono-
tone monadic SNP and constraint satisfaction: a study through Datalog
and group theory. SIAM Journal on Computing, 28:57–104, 1999.

[18] Shawn Hedman. A First Course in Logic: An Introduction to Model The-
ory, Proof Theory, Computability, and Complexity (Oxford Texts in Logic).
Oxford University Press, Inc., New York, NY, USA, 2004.

[19] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal
of Combinatorial Theory, Series B, 48:92–110, 1990.

[20] Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford
University Press, Oxford, 2004.

[21] Wilfrid Hodges. A shorter model theory. Cambridge University Press,
Cambridge, 1997.

[22] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of
constraints. Journal of the ACM, 44(4):527–548, 1997.

[23] David Marker. Model Theory: An Introduction. Springer, New York, 2002.

[24] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric
operations. Algebra Universalis, 59(3), 2008.

[25] Alexei Semenov, Sergey Soprunov, and Vladimir Uspensky. The lattice of
definability. Origins, recent developments, and further directions. In Com-
puter Science Russia, volume 8476 of Lecture Notes in Computer Science,
pages 23–38, 2014.

35

