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Abstract
We study the time-bounded reachability problem for continuous-time Markov decision processes
(CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation tech-
niques to break time into discrete intervals of size ε, and optimal control is approximated for each
interval separately. Current techniques provide an accuracy of O(ε2) on each interval, which leads
to an infeasibly large number of intervals. We propose a sequence of approximations that achieve
accuracies of O(ε3), O(ε4), and O(ε5), that allow us to drastically reduce the number of intervals
that are considered. For CTMDPs, the performance of the resulting algorithms is comparable to
the heuristic approach given by Buckholz and Schulz [5], while also being theoretically justified.
All of our results generalise to CTMGs, where our results yield the first practically implementable
algorithms for this problem. We also provide memoryless strategies for both players that achieve
similar error bounds.
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1 Introduction

Probabilistic models are being used extensively in the formal analysis of complex systems,
including networked, distributed, and most recently, biological systems. Over the past 15
years, probabilistic model checking for discrete-time Markov decision processes (MDPs)
and continuous-time Markov chains (CTMCs) has been successfully applied to these rich
academic and industrial applications [8, 7, 9, 3]. However, the theory for continuous-time
Markov decision processes (CTMDPs), which mix the non-determinism of MDPs with the
continuous-time setting of CTMCs [2], is less well developed.

This paper studies the time-bounded reachability problem for CTMDPs and their ex-
tension to continuous-time Markov games, which is a model with both helpful and hostile
non-determinism. This problem is of paramount importance for model checking applica-
tions [4]. The non-determinism in the system is resolved by providing a scheduler. The
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time-bounded reachability problem is to determine or to approximate, for a given set of goal
locations G and time bound T , the maximal (or minimal) probability of reaching G before
the deadline T that can be achieved by a scheduler.

For CTMCs, this problem can be solved efficiently by the Runge-Kutta method. How-
ever, this method requires that the target function can be continuously differentiated four
times. Once we move to the CTMDP setting, our target function is not continuously dif-
ferentiable at all. This is because changing the choice of action at a state introduces a
discontinuity in the derivative of the time bounded-reachability probability.

Early work on this problem for CTMDPs focused on restricted classes of schedulers, such
schedulers without any access to time in systems with uniform transition rates [1]. Recently
however, results have been proved for the more general class of late schedulers [13], which will
be studied in this paper. The different classes of schedulers are contrasted by Neuhäußer et.
al. [12], and they show that late schedulers are the most powerful class. Several algorithms
have been given to approximate the time-bounded reachability probabilities for CTMDPs
using this scheduler class [4, 6, 13, 15].

The current state-of-the-art techniques for solving this problem are based on different
forms of discretisation. This technique splits the time bound T into small intervals of length
ε. Optimal control is approximated for each interval separately, and these approximations
are combined to produce the final result. Current techniques can approximate optimal
control on an interval of length ε with an accuracy of O(ε2). However, to achieve a precision
of π with these techniques, one must choose ε ≈ π/T , which leads to O(T 2/π) many intervals.
Since the desired precision is often high (it is common to require that π ≤ 10−6), this leads
to an infeasibly large number of intervals that must be considered by the algorithms.

A recent paper of Buckholz and Schulz [5] has addressed this problem for practical ap-
plications, by allowing the interval sizes to vary. In addition to computing an approximation
of the maximal time-bounded reachability probability, which provides a lower bound on the
optimum, they also compute an upper bound. As long as the upper and lower bounds do not
diverge too far, the interval can be extended indefinitely. In practical applications, where
the optimal choice of action changes infrequently, this idea allows their algorithm to consider
far fewer intervals while still maintaining high precision. However, from a theoretical per-
spective, their algorithm is not particularly satisfying. Their method for extending interval
lengths depends on a heuristic, and in the worst case their algorithm may consider O(T 2/π)
intervals, which is not better than other discretisation based techniques.

Our contribution. In this paper we present a method of obtaining larger interval
sizes that satisfies both theoretical and practical concerns. Our approach is to provide
more precise approximations for each ε length interval. While current techniques provide
an accuracy of O(ε2), we propose a sequence of approximations, called double ε-nets, triple
ε-nets, and quadruple ε-nets, with accuracies O(ε3), O(ε4), and O(ε5), respectively. Since
these approximations are much more precise on each interval, they allow us to consider far
fewer intervals while still maintaining high precision. For example, Table 1 gives the number
of intervals considered by our algorithms, in the worst case, for a normed CTMDP with time
bound T = 10.

Of course, in order to become more precise, we must spend additional computational
effort. However, the cost of using double ε-nets instead of using current techniques requires
only an extra factor of log |Σ|, where Σ is the set of actions. Thus, in almost all cases, the
large reduction in the number of intervals far outweighs the extra cost of using double ε-nets.
Our worst case running times for triple and quadruple ε-nets are not so attractive: triple
ε-nets require an extra |L| · |Σ|2 factor over double ε-nets, where L is the set of locations,
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Table 1 The number of intervals needed by our algorithms for precisions 10−7, 10−9, and 10−11.

Technique Error π = 10−7 π = 10−9 π = 10−11

Current techniques O(ε2) 1, 000, 000, 000 100, 000, 000, 000 10, 000, 000, 000, 000
Double ε-nets O(ε3) 81, 650 816, 497 8, 164, 966
Triple ε-nets O(ε4) 3, 219 14, 939 69, 337

Quadruple ε-nets O(ε5) 605 1, 911 6, 043

and quadruple ε-nets require yet another |L| · |Σ|2 factor over triple ε-nets. However, these
worst case running times only occur when the choice of optimal action changes frequently,
and we speculate that the cost of using these algorithms in practice is much lower than
our theoretical worst case bounds. Our experimental results with triple ε-nets support this
claim.

An added advantage of our techniques is that they can be applied to continuous-time
Markov games as well as to CTMDPs. Buckholz and Schulz restrict their analysis to
CTMDPs. Moreover, previous works on CTMGs have been restricted to simplified set-
tings, such as the time-abstract setting [4]. Therefore, to the best of our knowledge, we
present the first practically implementable approximation algorithms for the time-dependent
time-bounded reachability problem in CTMGs. Each of our approximations also provide
memoryless strategies for both players that achieve similar error bounds.

2 Preliminaries

I Definition 1. A continuous-time Markov game (or simply Markov game) is a tuple
(L,Lr, Ls,Σ,R,P, ν), consisting of a finite set L of locations, which is partitioned into
locations Lr (controlled by a reachability player) and Ls (controlled by a safety player), a
finite set Σ of actions, a rate matrix R : (L × Σ × L) → Q>0, a discrete transition matrix
P : (L× Σ× L)→ Q ∩ [0, 1], and an initial distribution ν ∈ Dist(L).

We require that the following side-conditions hold: For all locations l ∈ L, there must be an
action a ∈ Σ such that R(l, a, L) :=

∑
l′∈L R(l, a, l′) > 0, which we call enabled. We denote

the set of enabled actions in l by Σ(l). For a location l and actions a ∈ Σ(l), we require
for all locations l′ that P(l, a, l′) = R(l,a,l′)

R(l,a,L) , and we require P(l, a, l′) = 0 for non-enabled
actions. We define the size |M| of a Markov game as the number of non-zero rates in the
rate matrix R.

A Markov game is called uniform with uniformisation rate λ, if R(l, a, L) = λ holds for
all locations l and enabled actions a ∈ Σ(l). We further call a Markov game normed, if its
uniformisation rate is 1. Note that for normed Markov games we have R = P. We will
present our results for normed Markov games only. The following lemma states that our
algorithms for normed Markov games can be applied to solve Markov games that are not
normed.

I Lemma 2. We can adapt an O(f(M)) time algorithm for normed Markov games to solve
an arbitrary Markov game in time O(f(M) + |L|).

We are particularly interested in Markov games with a single player, which are
continuous-time Markov decision processes (CTMDPs). In CTMDPs all positions belong to
the reachability player (L = Lr), or to the safety player (L = Ls), depending on whether
we analyse the maximum or minimum reachability probability problem.

FSTTCS 2011



402 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

lS

⊥ lR

G

l

b, 1
8

b, 7
8

a, 1
a, 1

10

a, 1
20

a, 3
20 b, 1

5

Figure 1 Left: a normed Markov game. Right: the function f within [0, 4] for lR and lS .

As a running example, we will use the normed Markov game shown in the left half
of Figure 1. Locations belonging to the safety player are drawn as circles, and locations
belonging to the reachability player are drawn as rectangles. The self-loops of the normed
Markov game are not drawn, but rates assigned to the self loops can be derived from the
other rates: for example, we have R(lR, a, lR) = 0.8. The locations G and ⊥ are absorbing,
and there is only a single enabled action for l. It therefore does not matter which player
owns l, G, and ⊥.

2.1 Schedulers and Strategies
We consider Markov games in a time interval [0, T ] with T ∈ R≥0. The non-determinism in
the system needs to be resolved by a pair of strategies for the two players which together form
a scheduler for the whole system. Formally, a strategy is a function in Pathsr/s× [0, T ]→ Σ,
where Pathsr and Pathss are the sets of finite paths l0

a0,t0−−−→ l1 . . .
an−1,tn−1−−−−−−−→ ln with ln ∈ Lr

and ln ∈ Ls, respectively. We use Sr and Ss to denote the strategies of reachability player
and the strategies of safety player, respectively, and we use Πr and Πs to denote the set of
all strategies for the reachability and safety players, respectively. (For technical reasons one
has to restrict the schedulers to those which are measurable. This restriction, however, is of
no practical relevance. In particular, simple piecewise constant timed-positional strategies
L× [0, T ]→ Σ suffice for optimal scheduling [14, 13, 2], and all schedulers that occur in this
paper are from the particularly tame class of cylindrical schedulers [14].)

If we fix a pair (Sr,Ss) of strategies, we obtain a deterministic stochastic process, which
is in fact a time inhomogeneous Markov chain, and we denote it byMSr,s

. For t ≤ T , we use
PrSr+s(t) to denote the transient distribution at time t over S under the scheduler (Sr,Ss).

Given a Markov game M, a goal region G ⊆ L, and a time bound T ∈ R≥0, we are
interested in the optimal probability of being in a goal state at time T (and the corresponding
pair of optimal strategies). This is given by:

sup
Sr∈Πr

inf
Ss∈Πs

∑
l∈G

PrSr+s
(l, T ),

where PrSr+s(l, T ) := PrSr+s(T )(l). It is commonly referred to as the maximum time-
bounded reachability probability problem in the case of CTMDPs with a reachability player
only. For t ≤ T , we define f : L × R≥0 → [0, 1], to be the optimal probability to be in the
goal region at the time bound T , assuming that we start in location l and that t time units
have passed already. By definition, it holds then that f(l, T ) = 1 if l ∈ G and f(l, T ) = 0 if
l 6∈ G. Optimising the vector of values f(·, 0) then yields the optimal value and its optimal
piecewise deterministic strategy.

Let us return to the example shown in Figure 1. The right half of the Figure shows
the optimal reachability probabilities, as given by f , for the locations lR and lS when the
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time bound T = 4. The points t1 ≈ 1.123 and t2 ≈ 0.609 represent the times at which the
optimal strategies change their decisions. Before t1 it is optimal for the reachability player
to use action b at lR, but afterwards the optimal choice is action a. Similarly, the safety
player uses action b before t2, and switches to a afterwards.

2.2 Characterisation of f

We define a matrix Q such that Q(l, a, l′) = R(l, a, l′) if l′ 6= l and Q(l, a, l) =
−

∑
l′ 6=l R(l, a, l′). The optimal function f can be characterised as a set of differential

equations [2], see also [11, 10]. For each l ∈ L we define f(l, T ) = 1 if l ∈ G, and 0 if l 6∈ G.
Otherwise, for t < T , we define:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · f(l′, t), (1)

where opt ∈ {max,min} is max for reachability player locations and min for safety player
locations. We will use the opt-notation throughout this paper.

Using the matrix R, Equation (1) can be rewritten to:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (f(l′, t)− f(l, t)) (2)

For uniform Markov games, we simply have Q(l, a, l) = R(l, a, l) − λ, with λ = 1 for
normed Markov games. This also provides an intuition for the fact that uniformisation does
not alter the reachability probability: the rate R(l, a, l) does not appear in (1).

3 Approximating Optimal Control for Normed Markov Games

In this section we describe ε-nets, which are a technique for approximating optimal values
and strategies in a normed continuous-time Markov game. Thus, throughout the whole
section, we fix a normed Markov gameM = (L,Lr, Ls,Σ,R,P, ν).

Our approach to approximating optimal control within the Markov game is to break
time into intervals of length ε, and to approximate optimal control separately in each of the
dTε e distinct intervals. Optimal time-bounded reachability probabilities are then computed
iteratively for each interval, starting with the final interval and working backwards in time.
The error made by the approximation in each interval is called the step error. In Section 3.1
we show that if the step error in each interval is bounded, then the global error made by
our approximations is also bounded.

Our results begin with a simple approximation that finds the optimal action at the start
of each interval, and assumes that this action is optimal for the duration of the interval.
We refer to this as the single ε-net technique, and we will discuss this approximation in
Section 3.2. While it only gives a simple linear function as an approximation, this technique
gives error bounds of O(ε2), which is comparable to existing techniques.

However, single ε-nets are only a starting point for our results. Our main observation
is that, if we have a piecewise polynomial approximation of degree c that achieves an error
bound of O(εk), then we can compute a piecewise polynomial approximation of degree c+ 1
that achieves an error bound of O(εk+1). Thus, starting with single ε-nets, we can construct
double ε-nets, triple ε-nets, and quadruple ε-nets, with each of these approximations becom-
ing increasingly more precise. The construction of these approximations will be discussed
in Sections 3.3 and 3.4.

FSTTCS 2011
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In addition to providing an approximation of the time-bounded reachability probabilities,
our techniques also provide memoryless strategies for both players. For each level of ε-net, we
will define two approximations: the function p1 is the approximation for the time-bounded
reachability probability given by single ε-nets, and the function g1 gives the reachability
probability obtained by following the memoryless strategy that is derived from p1. This
notation generalises to deeper levels of ε-nets: the functions p2 and g2 are produced by
double ε-nets, and so on.

We will use E(k, ε) to denote the difference between pk and f . In other words, E(k, ε) gives
the difference between the approximation pk and the true optimal reachability probabilities.
We will use Es(k, ε) to denote the difference between gk and f . We defer formal definition
of these measures to subsequent sections. Our objective in the following subsections is to
show that the step errors E(k, ε) and Es(k, ε) are in O(εk+1), with small constants.

3.1 Step Error and Global Error

In subsequent sections we will prove bounds on the ε-step error made by our approximations.
This is the error that is made in a single interval of length ε. However, in order for our
approximations to be valid, they must provide a bound on the global error, which is the
error made by our approximations over every ε interval. In this section, we prove that, if
the ε-step error of an approximation is bounded, then the global error of the approximation
is bounded by the sum of these errors.

We define f : [0, T ] → [0, 1]|L| as the vector valued function f(t) 7→
⊗

l∈L f(l, t) that
maps each point of time to a vector of reachability probabilities, with one entry for each
location. Given two such vectors f(t) and p(t), we define the maximum norm ‖f(t)−p(t)‖ =
max{|f(l, t)− p(l, t)| | l ∈ L}, which gives the largest difference between f(l, t) and p(l, t).

We also introduce notation that will allow us to define the values at the start of an ε

interval. For each interval [t − ε, t], we define f tx : [t − ε, t] → [0, 1]|L| to be the function
obtained from the differential equations (1) when the values at the time t are given by the
vector x ∈ [0, 1]|L|. More formally, if τ = t then we define f tx(τ) = x, and if t − ε ≤ τ < t

and l ∈ L then we define:

−ḟ tx(l, τ) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′)f tx(l′, τ). (3)

The following lemma states that if the ε-step error is bounded for every interval, then
the global error is simply the sum of these errors.

I Lemma 3. Let p be an approximation of f that satisfies ‖f(t)− p(t)‖ ≤ µ for some time
point t ∈ [0, T ]. If ‖f tp(t)(t− ε)− p(t− ε)‖ ≤ ν then we have ‖f(t− ε)− p(t− ε)‖ ≤ µ+ ν.

3.2 Single ε-Nets

In single ε-nets, we compute the gradient of the function f at the end of each interval, and
we assume that this gradient remains constant throughout the interval. This yields a linear
approximation function p1, which achieves a local error of ε2.

We now define the function p1. For initialisation, we define p1(l, T ) = 1 if l ∈ G and
p1(l, T ) = 0 otherwise. Then, if p1 is defined for the interval [t, T ], we will use the following
procedure to extend it to the interval [t− ε, T ]. We first determine the optimising enabled
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actions for each location for f tp1(t) at time t. That is, we choose, for all l ∈ L, an action:

atl ∈ arg opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · p1(l′, t). (4)

We then fix ctl =
∑
l′∈L Q(l, atl , l′) · p1(l′, t) as the descent of p1(l, ·) in the interval [t− ε, t].

Therefore, for every τ ∈ [0, ε] and every l ∈ L we have:

−ṗ1(l, t− τ) = ctl and p1(l, t− τ) = p1(l, t) + τ · ctl .

Let us return to our running example. We will apply the approximation p1 to the example
shown in Figure 1. We will set ε = 0.1, and focus on the interval [1.1, 1.2] with initial values
p1(G, 1.2) = 1, p1(l, 1.2) = 0.244, p1(lR, 1.2) = 0.107, p1(lS , 1.2) = 0.075, p1(⊥, 1.2) = 0.
These are close to the true values at time 1.2. Note that the point t1, which is the time at
which the reachability player switches the action played at lR, is contained in the interval
[1.1, 1.2]. Applying Equation (4) with these values allows us to show that the maximising
action at lR is a, and the minimising action at lS is also a. As a result, we obtain the
approximation p1(lR, t− τ) = 0.0286τ + 0.107 and p1(lS , t− τ) = 0.032τ + 0.075.

We now prove error bounds for p1. Recall that E(1, τ) denotes the difference between f
and p1 after τ time units. We can now formally define this error, and prove the following
bounds.

I Lemma 4. If ε ≤ 1, then E(1, ε) := ‖f tp1(t)(t− ε)− p1(t− ε)‖ ≤ ε2.

The approximation p1 can also be used to construct strategies for the two players with
similar error bounds. We will describe the construction for the reachability player. The
construction for the safety player can be derived analogously.

The strategy for the reachability player is to play the action chosen by p1 during the
entire interval [t−ε, t]. We will define a system of differential equations g1(l, τ) that describe
the outcome when the reachability fixes this strategy, and when the safety player plays an
optimal counter strategy. For each location l, we define g1(l, t) = f tp1(t)(l, t), and we define
g1(l, τ), for each τ ∈ [t− ε, t], as:

−ġ1(l, τ) =
∑
l′∈L

Q(l, atl , l′) · g1(l′, τ) if l ∈ Lr, (5)

−ġ1(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g1(l′, τ) if l ∈ Ls. (6)

We can prove the following bounds for Es(1, ε), which is the difference between g1 and
f tp1(t) on an interval of length ε.

I Lemma 5. We have Es(1, ε) := ‖g1(t− ε)− f tp1(t)(t− ε)‖ ≤ 2 · ε2.

Lemma 4 gives the ε-step error for p1, and we can apply Lemma 3 to show that the
global error is bounded by ε2 · Tε = εT . If π is the required precision, then we can choose
ε = π

T to produce an algorithm that terminates after T
ε ≈

T 2

π many steps. Hence, we obtain
the following known result.

I Theorem 6. For a normed Markov game M of size |M|, we can compute a π-optimal
strategy and determine the quality ofM up to precision π in time O(|M| · T · Tπ ).

FSTTCS 2011



406 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

a

[1.1

b
a

1.2]1.2− z

b

Figure 2 This figure shows how −ṗ2 is computed on the interval [1.1, 1.2] for the location lR.
The function is given by the upper envelope of the two functions: it agrees with the quality of a on
the interval [1.2− z, 1.2] and with the quality of b on the interval [1.1, 1.2− z].

3.3 Double ε-Nets
In this section we show that only a small amount of additional computation effort needs to
be expended in order to dramatically improve over the precision obtained by single ε-nets.
This will allow us to use much larger values of ε while still retaining our desired precision.

In single ε-nets, we computed the gradient of f at the start of each interval and assumed
that the gradient remained constant for the duration of that interval. This gave us the
approximation p1. The key idea behind double ε-nets is that we can use the approximation p1
to approximate the gradient of f throughout the interval.

We define the approximation p2 as follows: we have p2(l, T ) = 1 if l ∈ G and 0 otherwise,
and if p2(l, τ) is defined for every l ∈ L and every τ ∈ [t, T ], then we define p2(l, τ) for every
τ ∈ [t− ε, t] as:

−ṗ2(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (p1(l′, τ)− p1(l, τ)) ∀l ∈ L. (7)

By comparing Equations (7) and (2), we can see that double ε-nets uses p1 as an approx-
imation for f during the interval [t − ε, t]. Furthermore, in contrast to p1, note that the
approximation p2 can change it’s choice of optimal action during the interval. The ability
to change the choice of action during an interval is the key property that allows us to prove
stronger error bounds than previous work.

I Lemma 7. If ε ≤ 1 then E(2, ε) := ‖p2(τ)− f tp2(t)(τ)‖ ≤ 2
3ε

3.

Let us apply the approximation p2 to the example shown in Figure 1. We will again use
the interval [1.1, 1.2], and we will use initial values that were used when we applied single
ε-nets to the example in Section 3.2. We will focus on the location lR. From the previous
section, we know that p1(lR, t− τ) = 0.0286τ + 0.107, and for the actions a and b we have:
•

∑
l′∈L R(lR, a, l′)p1(l′, t− τ) = 1

20 + 4
5p1(lR, t− τ),

•
∑
l′∈L R(lR, b, l′)p1(l′, t− τ) = 1

5p1(l, t− τ) + 4
5p1(lR, t− τ).

These functions are shown in Figure 2. To obtain the approximation p2, we must take the
maximum of these two functions. Since p1 is a linear function, we know that these two
functions have exactly one crossing point, and it can be determined that this point occurs
when p1(l, t − τ) = 0.25, which happens at τ = z := 5

63 . Since z ≤ 0.1 = ε, we know that
the lines intersect within the interval [1.1, 1.2]. Consequently, we get the following piecewise
quadratic function for p2:
• When 0 ≤ τ ≤ z, we use the action a and obtain −ṗ2(lR, t − τ) = −0.00572τ + 0.0286,

which implies that p2(lR, t− τ) = −0.00286τ2 + 0.0286τ + 0.107.
• When z < τ ≤ 0.1 we use action b and obtain −ṗ2(lR, t− τ) = 0.0094τ + 0.0274, which

implies that p2(lR, t− τ) = 0.0047τ2 + 0.0274τ + 0.107047619.
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As with single ε-nets, we can provide a strategy that obtains similar error bounds.
Once again, we will consider only the reachability player, because the proof can easily be
generalised for the safety player. In much the same way as we did for g1, we will define
a system of differential equations g2(l, τ) that describe the outcome when the reachability
player plays according to p2, and the safety player plays an optimal counter strategy. For
each location l, we define g2(l, t) = f tp2(t)(l, t). If aτl denotes the action that maximises
Equation (7) at the time point τ ∈ [t− ε, t], then we define g2(l, τ), as:

−ġ2(l, τ) =
∑
l′∈L

Q(l, aτl , l′) · g2(l′, τ) if l ∈ Lr, (8)

−ġ2(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g2(l′, τ) if l ∈ Ls. (9)

The following lemma proves that difference between g2 and f tp2(t) has similar bounds to
those shown in Lemma 7

I Lemma 8. If ε ≤ 1 then we have Es(2, ε) := ‖g2(t− ε)− f tp2(t)(t− ε)‖ ≤ 2 · ε3.

Computing the approximation p2 for an interval [t − ε, t] is not expensive. The fact
that p1 is linear implies that each action can be used for at most one subinterval of [t− ε, t].
Therefore, there are less than |Σ| points at which the strategy changes, which implies that p2
is a piecewise quadratic function with at most |Σ| pieces. It is possible to design an algorithm
that uses sorting to compute these switching points, achieving the following complexity.

I Lemma 9. Computing p2 for an interval [t− ε, t] takes O(|M|+ |L| · |Σ| · log |Σ|) time.

Since the ε-step error for double ε-nets is bounded by ε3, we can apply Lemma 3 to
conclude that the global error is bounded by ε3 · Tε = ε2T . Therefore, if we want to compute
f with a precision of π, we should choose ε ≈

√
π
T , which gives T

ε ≈
T 1.5
√
π

distinct intervals.

I Theorem 10. For a normed Markov game M we can approximate the time-bounded
reachability, construct π optimal memoryless strategies for both players, and determine the
quality of these strategies with precision π in time O(|M| ·T ·

√
T
π + |L| ·T ·

√
T
π · |Σ| log |Σ|).

3.4 Triple ε-Nets and Beyond
The techniques used to construct the approximation p2 from the approximation p1 can be
generalised. This is because the only property of p1 that is used in the proof of Lemma 7 is
the fact that it is a piecewise polynomial function that approximates f . Therefore, we can
inductively define a sequence of approximations pk as follows:

−ṗk(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (pk−1(l′, τ)− pk−1(l, τ)) (10)

We can repeat the arguments from the previous sections to obtain the following error bounds:

I Lemma 11. For every k > 2, if we have E(k, ε) ≤ c · εk+1, then we have E(k + 1, ε) ≤
2
k+2 · c · ε

k+2. Moreover, if we additionally have that Es(k, ε) ≤ d · εk+1, then we also have
that Es(k + 1, ε) ≤ 8c+3d

k+2 · ε
k+2.

Computing the accuracies explicitly for the first four levels of ε-nets gives:

k 1 2 3 4 . . .

E(k, ε) ε2 2
3ε

3 1
3ε

4 2
15ε

5 . . .

Es(k, ε) 2ε2 2ε3 17
6 ε

4 67
30ε

5 . . .

FSTTCS 2011



408 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

We can also compute, for a given precision π, the value of ε that should be used in order
to achieve an accuracy of π with ε-nets of level k.

I Lemma 12. To obtain a precision π with an ε-net of level k, we choose ε ≈ k
√

π
T , resulting

in T
ε ≈ T

k

√
T
π steps.

Unfortunately, the cost of computing ε-nets of level k becomes increasingly prohibitive
as k increases. To see why, we first give a property of the functions pk. Recall that p2
is a piecewise quadratic function. It is not too difficult to see how this generalises to the
approximations pk.

I Lemma 13. The approximation pk is piecewise polynomial with degree less than or equal
to k.

Although these functions are well-behaved in the sense that they are always piecewise
polynomial, the number of pieces can grow exponentially in the worst case. The following
lemma describes this bound.

I Lemma 14. If pk−1 has c pieces in the interval [t−ε, t], then pk has at most 1
2 ·c·k ·|L|·|Σ|

2

pieces in the interval [t− ε, t].

The upper bound given above is quite coarse, and we would be surprised if it were found
to be tight. Moreover, we do not believe that the number of pieces will grow anywhere close
to this bound in practice. This is because it is rare, in our experience, for optimal strategies
to change their decision many times within a small time interval.

However, there is a more significant issue that makes ε-nets become impractical as k
increases. In order to compute the approximation pk, we must be able to compute the
roots of polynomials with degree k − 1. Since we can only efficiently compute the roots
of quadratic functions, and efficiently approximate the roots of cubic functions, only the
approximations p3 and p4 are realistically useful.

Once again it is possible to provide a smart algorithm that uses sorting in order to find
the switching points in the functions p3 and p4, which gives the following bounds on the
cost of computing them.

I Theorem 15. For a normed MarkovM we can construct π optimal memoryless strategies
for both players and determine the quality of these strategies with precision π in time
O(|L|2 · 3

√
T
π ·T ·|Σ|

4 log |Σ|) when using triple ε-nets, and in time O(|L|3 · 4
√

T
π ·T ·|Σ|

6 log |Σ|)
when using quadruple ε-nets.

It is not clear if triple and quadruple ε-nets will only be of theoretical interest, or if
they will be useful in practice. It should be noted that the worst case complexity bounds
given by Theorem 15 arise from the upper bound on the number of switching points given
in Lemma 14. Thus, if the number of switching points that occur in practical examples
is small, these techniques may become more attractive. Our experiments in the following
section give some evidence that this may be true.

4 Experimental Results and Conclusion

In order to test the practicability of our algorithms, we have implemented both double and
triple-ε nets. We evaluated these algorithms on two sets of examples. Firstly, we tested
our algorithms on the Erlang-example (see Figure 3) presented in [4] and [15]. We chose
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l1

Erlang(30,10)

. . . l4

l3 l5

a,1

b,1

10 10 10 10

a,0.5
a,0.5

Figure 3 A CTMDP offering the choice between a long chain of fast transition and a slower path
that looses some probability mass in l5.

Table 2 Experimental evalutation of our algorithms.

Erlang model Game model
precision \ method MRMC [4] Double-nets Triple-nets Double-nets Triple-nets

10−4 0.05 s 0.04 s 0.01 s 0.29 s 0.06 s
10−5 0.20 s 0.10 s 0.02 s 0.93 s 0.13 s
10−6 1.32 s 0.32 s 0.03 s 2.94 s 0.28 s
10−7 8 s 0.98 s 0.06 s 9.35 s 0.60 s
10−8 475 s 3.11 s 0.12 s 29.21 s 1.29 s
10−9 — 9.91 s 0.27 s 94 s 2.78 s
10−10 — 31.24 s 0.58 s 299 s 6.05 s

to consider the same parameters used by those papers: we consider maximal probability to
reach location l4 from l1 within 7 time units. Since this example is a CTMDP, we were able to
compare our results with the Markov Reward Model Checker (MRMC) [4] implementation,
which includes an implementation of the techniques proposed by Buckholz and Schulz.

We also tested our algorithms on continuous-time Markov games, where we used
the model depicted in Figure 4, consisting of two chains of locations l1, l2, . . . , l100 and
l′1, l
′
2, . . . , l

′
100 that are controlled by the maximising player and the minimising player, re-

spectively. This example is designed to produce a large number of switching points. In
every location li of the maximising player, there is the choice between the short but slow
route along the chain of maximising locations, and the slightly longer route which uses the
minimising player’s locations. If very little time remains, the maximising player prefers
to take the slower actions, as fewer transitions are required to reach the goal using these
actions. The maximiser also prefers these actions when a large amount of time remains.
However, between these two extremes, there is a time interval in which it is advantageous
for the maximising player to take the action with rate 3. A similar situation occurs for the
minimising player, and this leads to a large number of points where the players change their
strategy.

The results of our experiments are shown in Table 2. The MRMC implementation was
unable to provide results for precisions beyond 1.86 · 10−9. For the Erlang examples we
found that, as the desired precision increases, our algorithms draw further ahead of the
current techniques. The most interesting outcome of these experiments is the validation
of triple ε-nets for practical use. While the worst case theoretical bounds arising from
Lemma 14 indicated that the cost of computing the approximation for each interval may
become prohibitive, these results show that the worst case does not seem to play a role in
practice. In fact, we found that the number of switching points summed over all intervals
and locations never exceeded 2 in this example.
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. . .

. . .

G

⊥

l1 l2 l99 l100

l ′1 l ′2 l ′99 l ′100

1 1 1 1 1

5 5 5 5

a,3

a,2

3 3 3 33 3 3 3

Figure 4 A CTMG with many switching points.

Our results on Markov games demonstrate that our algorithms are capable of solving non-
trivially sized games in practice. Once again we find that triple ε-nets provide a substantial
performance increase over double ε-nets, and that the worst case bounds given by Lemma 14
do not seem occur. Double ε-nets found 297 points where the strategy changed during an
interval, and triple ε-nets found 684 such points. Hence, the |L||Σ|2 factor given in Lemma 14
does not seem to arise here.
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