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Abstract

One of the most important recent developments in the complexity of approximate
counting is the classification of the complexity of approximating the partition functions of
antiferromagnetic 2-spin systems on bounded-degree graphs. This classification is based
on a beautiful connection to the so-called uniqueness phase transition from statistical
physics on the infinite ∆-regular tree. Our objective is to study the impact of this clas-
sification on unweighted 2-spin models on k-uniform hypergraphs. As has already been
indicated by Yin and Zhao, the connection between the uniqueness phase transition and
the complexity of approximate counting breaks down in the hypergraph setting. Nev-
ertheless, we show that for every non-trivial symmetric k-ary Boolean function f there
exists a degree bound ∆0 so that for all ∆ ≥ ∆0 the following problem is NP-hard: given
a k-uniform hypergraph with maximum degree at most ∆, approximate the partition
function of the hypergraph 2-spin model associated with f . It is NP-hard to approximate
this partition function even within an exponential factor. By contrast, if f is a trivial
symmetric Boolean function (e.g., any function f that is excluded from our result), then
the partition function of the corresponding hypergraph 2-spin model can be computed
exactly in polynomial time.

Keywords: Approximate counting, bounded-degree hypergraphs, 2-spin systems, counting constraint
satisfaction.

1 Introduction

One of the most important recent developments in the complexity of approximate counting is the
classification of the complexity of approximating the partition functions of antiferromagnetic 2-spin
systems on bounded-degree graphs [14, 21]. This classification is based on a beautiful connection to
the so-called uniqueness phase transition from statistical physics on the infinite ∆-regular tree, which
was first established in the context of the hard-core model in the works of [22, 20] (see also [10, 17] for
related results) and later developed [19, 12, 21, 14] in the more general framework of antiferromagnetic
2-spin systems.

∗An extended abstract of this paper appears in the proceedings of SODA 2016. The research leading to
these results has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828. The paper reflects only the au-
thors’ views and not the views of the ERC or the European Commission. The European Union is not liable
for any use that may be made of the information contained therein.

†Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD,
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Our objective is to study the impact of this classification on unweighted 2-spin models on k-uniform
hypergraphs. A k-uniform hypergraph H = (V,F) consists of a vertex set V and a set F of arity-k
hyperedges which are k-element subsets of V . Thus, a 2-uniform hypergraph is the same as a graph.
The degree of a vertex v ∈ V is the number of edges that contain v, namely |{e ∈ F | v ∈ e}|. The
maximum degree of H is (naturally) the maximum degree of the vertices of H .

A 2-spin model on the class of k-uniform hypergraphs is specified by a symmetric function f :
{0, 1}k → R+. The 2-spin model is unweighted if the function f is Boolean, meaning that its range is
a subset of the two-element set {0, 1}. Given a k-uniform hypergraph H = (V,F), each assignment
σ : V → {0, 1} induces a weight

wf ;H(σ) :=
∏

{v1,...,vk}∈F

f(σ(v1), . . . , σ(vk)).

The assignment σ is sometimes referred to as a configuration. The partition function Zf ;H correspond-
ing to f and H is defined as follows.

Zf ;H :=
∑

σ:V →{0,1}

wf ;H(σ) =
∑

σ:V →{0,1}

∏

{v1,...,vk}∈F

f(σ(v1), . . . , σ(vk)).

Given a symmetric function f : {0, 1}k → R+ and a hypergraph H = (V,F) we will use µf,H(·) to
denote the distribution on configurations σ : V → {0, 1} in which the probability of configuration σ is
proportional to its weight so µf ;H(σ) ∝ w(σ). The distribution µf,H(·) is called the Gibbs distribution
associated with the partition function Zf ;H .

The computational problem that we study is the problem of approximating Zf ;H , given H as
input. Formally, this problem has three parameters — a symmetric arity-k Boolean function f , a
degree bound ∆, and a value c > 1 which specifies the desired accuracy of the approximation. The
problem is defined as follows.

Name #Hyper2Spin(f,∆, c).

Instance An n-vertex k-uniform hypergraph H with maximum degree at most ∆.

Output A number Ẑ such that c−nZf ;H ≤ Ẑ ≤ cnZf ;H .

The most well-known example of an unweighted 2-spin model is the independent set model on
graphs. In this case k = 2, and f is the function given by f(0, 0) = f(0, 1) = f(1, 0) = 1 and
f(1, 1) = 0. Independent sets are in one-to-one correspondence with configurations in the model —
vertices that are in a given independent set are assigned spin 1 by the corresponding configuration σ.
The partition function Zf ;H is simply the number of independent sets of the graph H .

Let us now consider larger arity. A (weak) independent set in a hypergraph is a subset of vertices
that does not contain a hyperedge as a subset. Weak independent sets correspond to configurations
in the unweighted 2-spin model in which f is the function f : {0, 1}k → {0, 1} where f(s1, . . . , sk) = 1
iff at least one of s1, . . . , sk is 0. A strong independent set in a hypergraph is a subset of vertices that
does not contain more than one vertex of any given hyperedge. Strong independent sets correspond
to the unweighted 2-spin model in which f(s1, . . . , sk) = 1 iff at most one of s1, . . . , sk is 1. Note that
the two notions of hypergraph independent set coincide in the case k = 2, which is the graph case that
we have already considered.

The main motivation for our work is the following striking result about the complexity of approxi-
mating the partition function of the independent set model on bounded-degree graphs: (i) There exists
an FPRAS for the number of independent sets in graphs of maximum degree at most 5 [22]; (ii) There
is no FPRAS for the number of independent sets in graphs of maximum degree at most 6 [20] (unless
NP=RP). This computational transition was proved using insights from phase transitions and, in fact,
the transition coincides with the so-called uniqueness threshold of the independent set model on the
infinite ∆-regular tree.
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The question that we seek to address in this work is whether a similar computational transition
occurs for the complexity of approximating the partition function of (unweighted) 2-spin models on k-
uniform hypergraphs, in terms of the maximum degree ∆. While the case k = 2 is completely covered
by the results in the previous paragraph, the picture for k ≥ 3 appears to be much more intricate and
the complexity threshold may differ from the uniqueness threshold.

This issue has been discussed in [23] in the special case of approximately counting the strong
independent sets of a hypergraph. While the full picture is still incomplete, it is useful to see why the
complexity threshold may differ from the uniqueness threshold in this particular model for k = 3. As
is implicit in [15] and was spelled out explicitly in [23], uniqueness holds for this model on the infinite
∆-regular 3-uniform hypertree if and only if ∆ ≤ 3. For ∆ ≤ 3, the results of [15, 23] establish that
a (non-trivial) analogue of Weitz’s self-avoiding walk computational-tree approach yields an efficient
approximation scheme for the partition function by (implicitly) establishing a strong spatial mixing
result. Strong spatial mixing does not hold when ∆ ≥ 4 because the infinite ∆-regular 3-uniform
hypertree is in non-uniqueness. While it is known that it is hard to approximate the partition function
for ∆ ≥ 6, Yin and Zhao [23] show that natural gadgets cannot be used to show hardness for ∆ = 4, 5
and these cases remain open.

Generally, as the results of [15, 23] suggest, one would expect that, for “natural” functions f ,
an FPRAS should exist up to the strong spatial mixing threshold, but this is (in general) below the
uniqueness threshold of the ∆-regular k-uniform hypertree.

Above the uniqueness threshold, approximating the partition function may be hard, but this is
not known in general, even for the special case of strong independent sets. Thus, it is not clear from
the literature that there is a computational threshold where approximating the partition function on
hypergraphs of maximum degree ∆ becomes intractable and it is not clear whether this threshold, if
it exists, coincides with the uniqueness threshold.

The main contribution of this paper is showing that, for every function f (apart from seven special
“easy” functions), there is indeed a “barrier” value ∆0 such that for all ∆ ≥ ∆0, it is NP-hard to
approximate the partition function.

Definition 1. For k ≥ 2, let EASY(k) be the set containing the following seven functions.

f (k)
zero(x1, . . . , xk) = 0, f (k)

one (x1, . . . , xk) = 1, f
(k)
allzero(x1, . . . , xk) = 1{x1 = . . . = xk = 0},

f
(k)
allone(x1, . . . , xk) = 1{x1 = . . . = xk = 1}, f

(k)
EQ (x1, . . . , xk) = 1{x1 = . . . = xk},

f (k)
even(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 0}, f

(k)
odd(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 1}.

Considering each of the functions in EASY(k), we obtain the following observation.

Observation 2. Let k ≥ 2 and f ∈ EASY(k). Then, the problem of (exactly) computing Zf :H , given
as input a k-uniform hypergraph H, can be solved in time polynomial in the size of H.

Our main theorem is a contrasting hardness result.

Theorem 3. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a symmetric Boolean function such that
f /∈ EASY(k). Then, there exists ∆0 such that for all ∆ ≥ ∆0, there exists c > 1 such that
#Hyper2Spin(f,∆, c) is NP-hard.

Thus we show that for all k ≥ 2, for all non-trivial symmetric Boolean functions f , for all sufficiently
large ∆, it is NP-hard to approximate Zf ;H , even within an exponential factor, given a k-uniform
hypergraph H of maximum degree at most ∆. We do not pursue the task of obtaining an explicit
bound on ∆, since this would require heavy numerical work (depending on the function f) and we do
not expect that it would yield the exact value of the threshold, even if such a threshold exists.

Note added in final version: Subsequent to this paper, the authors, together with Bezáková,
Guo and Štefankovič [1], have studied the issue of a computational transition specifically for the
problem of counting the weak independent sets of a hypergraph. They found further evidence, for
this problem, that the complexity threshold, if it exists, may differ from the uniqueness threshold.
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Particularly, for the weak independent set model, they gave an FPTAS which works even beyond
the strong spatial mixing threshold and they showed inapproximability even below the uniqueness
threshold.

Note, however that, while Theorem 3 does not guarantee the existence of a complexity threshold,
it does at least show inapproximability if the degree bound is sufficiently large. That is, for every
non-trivial f , it shows that for all sufficiently large ∆, it is NP-hard to approximate the partition
function Zf ;H , given a k-uniform hypergraph H of maximum degree at most ∆.1

1.1 Counting Constraint Satisfaction and Related Results

Suppose that Γ is a set of Boolean functions of different arities. Thus, an arity-k function in Γ is a
function from {0, 1}k to {0, 1}. The counting constraint satisfaction problem #CSP(Γ) is the problem
of computing the CSP partition function ZΓ,I where I is a CSP instance consisting of a set V of
variables and a set S2 of constraints, where each constraint C = (v1, . . . , vk, f) ∈ S constrains the
variables v1, . . . , vk by applying a particular k-ary function f ∈ Γ. The value of the partition function
is given by

ZΓ;I :=
∑

σ:V →{0,1}

∏

(v1,...,vk,f)∈S

f(σ(v1), . . . , σ(vk)).

The constraint C = (v1, . . . , vk, f) could use a particular variable more than once. For example, it
is possible that v1 and v2 are both the same variable. The problem #CSP∆(Γ) is the problem of
computing ZΓ,I given an instance I in which each variable is used at most ∆ times. We can also define
a related approximation problem, similar to #Hyper2Spin(f,∆, c).

Name #CSP∆,c(Γ).

Instance An n-variable instance I of a CSP in which all constraints apply functions from Γ and each
variable is used at most ∆ times.

Output A number Ẑ such that c−nZΓ;I ≤ Ẑ ≤ cnZΓ;I .

It is clear that our problem #Hyper2Spin(f,∆, c) is closely related to the problem #CSP∆,c({f}).
In particular, #Hyper2Spin(f,∆, c) is the special case of #CSP∆,c({f}) in which constraints are not
allowed to re-use variables. Thus, Theorem 3 has the following immediate corollary.

Corollary 4. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a symmetric Boolean function such that f /∈
EASY(k). Then, there exists ∆0 such that for all ∆ ≥ ∆0, there exists c > 1 such that #CSP∆,c({f})
is NP-hard.

The combined results of [7] and [5] show that for (exact) counting CSPs, adding a degree bound
∆ ≥ 3 does not change the complexity of the problem. The situation is less clear for decision and
approximate counting. Previous work on bounded-degree decision CSP [9] and bounded-degree ap-
proximate counting CSP [11] considered only the so-called conservative model where intractability
arises more easily. In this model, δ0 is the unary pinning-to-0 function which is defined by δ0(0) = 1
and δ0(1) = 0. Also, δ1 is the unary pinning-to-1 function which is defined by δ1(0) = 0 and δ1(1) = 1.

Theorem 24 of [11] allows us to deduce (see Observation 27) that for every ∆ ≥ 6 and k ≥ 2 and
every symmetric k-ary Boolean function f 6∈ EASY(k), there is no FPRAS for #CSP({f, δ0, δ1}) unless
NP = RP.3 This hardness result extends from the uniqueness phase transition of the independent set

1It is an open question whether Theorem 3 continues to hold if the input H is further restricted to be a
∆-regular k-uniform hypergraph. Our result does not apply to this input restriction because our gadgets are
not regular hypergraphs.

2The reader who is familiar with weighted counting CSP may have expected S to be a multiset rather than
a set, but this is not necessary here since the functions in Γ have range {0, 1}. Restricting S to be a set allows
some technical simplifications later.

3We remark here that [11] also gave a partial classification for ∆ = 3, 4, 5, the remaining cases were
(partially) resolved in [15].
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model (which occurs at ∆ = 6) because pinning allows constructions which realise arbitrarily bad
configurations.

The result of [11] does not apply to our hypergraph 2-spin context where the pinning functions δ0
and δ1 are not present. To see this, consider the following contrasting positive result of [3] which is
proved via the MCMC method: an FPRAS exists for approximating the number of (weak) independent
sets in a k-uniform hypergraph of maximum degree ∆ whenever k ≥ 2∆ + 1. Thus, even though the
weak independent function f (given by f(s1, . . . , sk) = 1 iff at least one of s1, . . . , sk is 0) is not in
EASY(k) for any k ≥ 2, the result of Bordewich et al. [3] shows that for every ∆ ≤ (k − 1)/2, there is
an FPRAS for the partition function Zf ;H on the class of k-uniform hypergraphs H with maximum
degree at most ∆.

Thus, it is clear that ∆ = 6 cannot always be a computational threshold in the hypergraph
2-spin framework (where there is no pinning). However, our Theorem 3 shows that, for every non-
trivial symmetric Boolean function f , there is degree-bound ∆0 such that approximating the partition
function is intractable beyond this degree bound.

1.2 Proof Techniques

In order to prove Theorem 3, we will construct a k-uniform hypergraph H such that the spin-system
induced by f on H induces an anti-ferromagentic binary 2-spin model that is in the non-uniqueness
region of the corresponding ∆-regular tree. It follows from a result of Sly and Sun (Theorem 20) that
approximating the partition function of the binary model is intractable, and we will use this to show
that approximating the partition function of the k-ary model is also intractable.

While this high-level approach is analogous to the one followed in [11], in our setting where the
pinning functions δ0 and δ1 are not available, we have to tackle several obstacles. A first indicator of
the difficulties that arise is that, in [11], the target 2-spin model is always the independent set model
(largely due to the availability of the pinning functions δ0 and δ1). In contrast, our target binary 2-spin
model will be weighted and depend on the function f . In fact, we will only know the parameters of
the binary 2-spin model only approximately which, as we shall discuss later in detail, poses difficulties
in showing that it is intractable.

To explain the argument in more detail, let us backtrack and discuss a natural approach that one
might hope would lead to proof of Theorem 3. First, if one were able to construct hypergraphs to
“realise” the pinning functions δ0 and δ1 then these hypergraphs could be combined with the reduction
in [11] to prove Theorem 3. The proof would even be straightforward if perfect reaslisations could be
found. For example, to realise δ0 perfectly we would need a hypergraph H whose partition function
is non-zero which has a vertex v such that every configuration σ with wf ;H(σ) > 0 satisfies σ(v) = 0.
More realistically, one might hope that even “approximate” versions of the pinning functions δ0 or
δ1 would suffice to simulate the reduction in [11]. Unfortunately, this fails rather formidably: first,
as we shall see below, there are functions f which simply cannot realise (approximate) pinning, and,
second, even for those functions f which do support pinning, the bounded-degree assumption poses
strict limits on the accuracy of the approximations that can be achieved.

Despite the failure of the above approach, it does turn out to be useful to explore the extent
to which the pinning functions δ0 and δ1 can be simulated using hypergraphs. We know from the
binary case (where the uniqueness phase transition coincides with the computational transition) that
the achievable “boundary conditions” play an important role. Understanding the pinnings that can
be (approximately) achieved gives us the relevant boundary information for the higher-arity case. To
make the following discussion concrete, consider the following definition (stated more generally for
weighted functions f).

Definition 5. Let f : {0, 1}k → R+ be symmetric. Suppose that ε ≥ 0 and s ∈ {0, 1}. The hypergraph
H is an ε-realisation of pinning-to-s if there exists a vertex v in H such that µf ;H(σv = s) ≥ 1 − ε.
We will refer to v as the terminal of H.

Note that the perfect realisation discussed earlier corresponds to taking ε = 0. Suppose that we
have an ε-realisation of pinning-to-s but we want an ε′-realisation for some very small positive ε′.
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This can be done via standard powering (see the upcoming Lemma 12): Given a hypergraph H
which ε-realises pinning-to-s for some ε < 1/2, one can construct a hypergraph H ′ which ε′-realises
pinning-to-s. Note, however, that the size of H ′ may depend on ε′. For example, in the construction
Lemma 12, the maximum degree of H ′ is proportional to log(1/ε′). Nevertheless, the possibility of
powering motivates the following definition.

Definition 6. Let s ∈ {0, 1}. We say that f supports pinning-to-s if for every ε > 0, there is a (finite)
hypergraph H which is an ε-realisation of pinning-to-s.

We will next consider an example which demonstrates the limits of what can be achieved. Let
f : {0, 1}k → {0, 1} be the weak independent set function where f(s1, . . . , sk) = 1 if and only if at
least one of s1, . . . , sk is 0. First, note that f does not support pinning-to-1 since for every hypergraph
H and every vertex v in H it holds that µf ;H(σ(v) = 1) ≤ 1/2. The function f does support
pinning-to-0 but there is still a limit on how small ε can be. In particular, for every k-uniform
hypergraph H with maximum degree ∆, and every vertex v of H we can obtain the crude bound
µf ;H(σ(v) = 0) ≤ 1 − 1/2k∆. This shows that we cannot hope to pin the spin of a vertex to 0 with
arbitrary polynomial precision using bounded-degree hypergraphs. Note that this example already
shows that it is impossible to prove Theorem 3 by approximating the pinning functions δ0 and δ1 and
then applying the result of [11].

Nevertheless, pinning-to-0 and pinning-to-1 will be important for us since, whenever a function
f supports one (or both) of these notions, we will be able to use them to decrease the arity of the
function f . This is particularly useful since, recall, our ultimate goal is to obtain an intractable
binary 2-spin model. Intriguingly, there are functions f which do not support either pinning-to-
0 or pinning-to-1. For example, consider the function f which is induced by the “not-all-equal”
constraint. Then, for every hypergraph H with Zf,H > 0 and every vertex v of H , it is easy to see
that µf ;H(σ(v) = 1) = µf ;H(σ(v) = 0) = 1/2. More generally, the same phenomenon holds for any
function f whose value is unchanged when the argument is complemented; such functions are called
“self-dual”.

The first point that we address in this work is a complete characterisation of the functions f which
support either the notion of pinning-to-0 or pinning-to-1. We show (Lemma 13 and Lemma 14) that
any function f other than those that are self-dual do support either pinning-to-0 or pinning-to-1 (but
perhaps not both). We show this classification even for weighted functions f , see Section 2 for more
details. The classification allows us to split the proof of Theorem 3 into three cases: (i) f supports
both pinning-to-0 and pinning-to-1, (ii) f is self-dual, and (iii) f supports exactly one of pinning-to-0
and pinning-to-1.

In cases (i) and (iii) (Sections 4.1 and 4.3, respectively) where pinning is available we show how to
use the approximate pinning to simulate binary antiferromagnetic 2-spin models that are intractable.
A difficulty that arises in the proof is that not every anti-ferromagnetic binary 2-spin model is in the
non-uniqueness region. In fact, there are relevant values of the parameters for which the corresponding
binary 2-spin model is actually in the uniqueness region for all sufficiently large ∆. To make matters
worse, we will not be able to control the parameters of the resulting binary model with perfect accuracy.
In particular, to analyse the k-ary gadgets, we will use ε-realisations of pinnings via hypergraphs for
some small ε > 0. Thus, we are faced with the possibility that the idealised binary 2-spin model (i.e.,
the one corresponding to ε = 0) may be in the non-uniqueness region, but we need to prove that the
approximate version that we actually achieve is also in the non-uniqueness region. In fact, the idealised
binary 2-spin model will sometimes even be on the boundary of the region where intractability holds
for sufficiently large ∆, which makes our task harder.

Our approach to this is to revisit (Section 3.1) antiferromagnetic binary 2-spin models, showing
(Lemma 22) that there is a sufficiently-wide strip outside of the natural square where the parameters
are at most 1 where the system is in the non-uniqueness region. We will then carefully ensure that all of
the idealised systems are inside this strip, so that even the approximations are still in non-uniqueness.

In case (ii) (Section 4.2), where the function f is self-dual and hence no pinning is possible, we
first classify those self-dual functions f where the related decision problem is NP-hard. In order to
do so, we use techniques (polymorphisms) from constraint satisfaction, which are explained in detail
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in Section 4.2.1. While this hardness is not for the bounded-degree setting, we show how to lift the
results to bounded-degree hypergraphs by showing that one can force the spins of two vertices to be
equal (Lemma 28). The proof for this class of self-dual functions f is given in Section 4.2.2.

For those self-dual functions f where the associated decision problem is not hard (Section 4.2.3),
we show that one can realise approximate equality in the following sense.

Definition 7. Let ε ≥ 0 and t ≥ 2 be an integer. The hypergraph H is an ε-realisation of t-equality
if there exist distinct vertices v1, . . . , vt such that for each s ∈ {0, 1},

µf ;H(σv1 = . . . = σvt = s) ≥ (1− ε)/2.

We will refer to v1, . . . , vt as the terminals of H.

Definition 8. A function f supports t-equality if for every ε > 0, there is a (finite) hypergraph H
which is an ε-realisation of t-equality.

Using the upcoming Lemmas 10 and 13, we show that a self-dual function f supports t-equality
for every integer t ≥ 2. Roughly, this allows us to decrease the arity of the function by carefully using
(approximate) equality to obtain an anti-ferromagnetic binary 2-spin model which is intractable (note
that we again have to deal with the approximation issue that we described for cases (i) and (iii)).

1.3 Notation

We conclude this section with a piece of notation. Given a configuration σ and a subset T ⊆ V , we
will use the notation σT to denote the restriction of σ to vertices in T . For a vertex v ∈ V , we will
also use σv to denote the spin σ(v) of vertex v in σ. Given a hyperedge e ∈ F , we will denote by H \ e
the hypergraph (V,F \ e).

2 Properties of non-negative symmetric functions with do-

main {0, 1}k
In this section, we study the concepts of pinning and equality that we will use for the proof of
Theorem 3. While our primary interest is in symmetric Boolean functions f , the results of this section
extend effortlessly to non-negative symmetric functions f with domain {0, 1}k and range R+. For the
remainder of this section, we consider a symmetric function f : {0, 1}k → R+. Since f is symmetric,
there are values w0, w1, . . . , wk ∈ R+ such that f(x1, . . . , xk) = wℓ whenever x1 + . . . + xk = ℓ. We
will refer to f and to the values wi in the definitions and proofs in this section.

2.1 Pinning and equality

We start with the following remark, which follows from Defintion 7 (and makes the definition easier
to apply).

Remark 9. If H is an ε-realisation of t-equality and v1, . . . , vt are the terminals of H, then it also
holds that µf ;H(σv1 = . . . = σvt = s) ≤ (1 + ε)/2 for each s ∈ {0, 1}. Further, we have that
µf ;H(∃i, j : σvi 6= σvj ) ≤ ε.

Next, we give a straightforward extension to the notion of supporting t-equality (see Definition 8).

Lemma 10. Let t ≥ 2 be an integer. The function f supports t-equality iff f supports 2-equality.

Proof. It is immediate that if f supports t-equality for some t ≥ 2 then it supports 2-equality (terminals
v3, . . . , vt can simply be ignored).

7



We will now suppose that f supports 2-equality and show that it supports t-equality for a given
t > 2. Consider ε > 0. Choose δ > 0 to be sufficiently small (with respect to ε and t) so that
δ ≤ ε2−(t+2) and

(

1− δ

1 + δ

)(t2)
≥ max

{

1− ε/2

1 + ε/2
,
1

2

}

.

Suppose that H is a δ-realisation of 2-equality so it has terminals x and y so that for each s ∈ {0, 1}
1− δ

2
≤ µf ;H(σx = σy = s) ≤ 1 + δ

2
and µf ;H(σx = s;σy = s⊕ 1) ≤ δ.

Let H ′ be the hypergraph constructed as follows. Let T = {v1, . . . , vt} be a set of t vertices which will
be the terminals of H ′. For each 1 ≤ i < j ≤ t, let Hij be a new copy of H but identify the terminal x
of Hij with vi and the terminal y of Hij with vj . Let H ′ be the resulting hypergraph. Now for any
τ : {v1, . . . , vt} → {0, 1} that does not satisfy τ(v1) = · · · = τ(vt), the contribution to Zf ;H′ from
configurations σ with σT = τ is at most

δZf ;H

((

1 + δ

2

)

Zf ;H

)(t2)−1

=

(

δ

1 + δ

)

(1 + δ)(
t

2)
Z
(t2)
f ;H

2(
t

2)−1

On the other hand, by considering the contribution from configurations σ with σ(v1) = · · · = σ(vt),
we obtain that Zf ;H′ is at least

2

((

1− δ

2

)

Zf ;H

)(t2)
= (1− δ)(

t

2)
Z
(t2)
f ;H

2(
t

2)−1
,

Thus

µf ;H′ (σT = τ) ≤

(

δ
1+δ

)

(1 + δ)(
t

2)

(1− δ)(
t

2)
≤ 2δ

1 + δ
≤ 2δ

so, since 2t(2δ) ≤ ε/2, µf ;H′ (∃i, j : σvi 6= σvj ) ≤ ε/2. Furthermore, for any s ∈ {0, 1},

µf ;H′(σ(v1) = · · · = σ(vt) = s)

µf ;H′(σ(v1) = · · · = σ(vt) = s⊕ 1)
≥
(

1− δ

1 + δ

)(t2)
≥ 1− ε/2

1 + ε/2
.

It follows that

(1 + ε/2)µf ;H′(σ(v1) = · · · = σ(vt) = s) ≥ (1− ε/2)µf ;H′(σ(v1) = · · · = σ(vt) = s⊕ 1)

≥ (1− ε/2)(1− µf ;H′ (σ(v1) = · · · = σ(vt) = s)− ε/2),

so µf ;H′(σ(v1) = · · · = σ(vt) = s) ≥ (1− ε)/2. Thus, H ′ is an ε-realisation of t-equality.

Lemma 10 motivates the following definition.

Definition 11. A function f supports equality if, for some t ≥ 2, it supports t-equality. (In this case,
Lemma 10 shows that f supports t-equality for every t ≥ 2.)

The following lemma gives sufficient conditions for pinning-to-0, pinning-to-1 and 2-equality.

Lemma 12. Let H be a hypergraph and f : {0, 1}k → R+ be symmetric.

1. If there is a vertex v in H such that µf ;H(σv = 0) > µf ;H(σv = 1), then f supports pinning-to-0.

2. If there is a vertex v in H such that µf ;H(σv = 1) > µf ;H(σv = 0), then f supports pinning-to-1.

3. If there are vertices x, y in H such that µf ;H(σx = σy = 0) = µf ;H(σx = σy = 1) and µf ;H(σx =
σy) > µf ;H(σx 6= σy), then f supports 2-equality.
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z1
. . .

z2 zk−1x y

e1 e2

Figure 1: The hypergraph H used in the proof of Lemma 13. The hypergraph has two hyperedges
e1, e2 such that e1 ∩ e2 = {z1, . . . , zk−1}, e1\e2 = {x} and e2\e1 = {y}. We focus on the spins s1, s2
of the vertices x, y, respectively, i.e., for a configuration σ on H , s1 = σx and s2 = σy.

Proof. We start with Item 3, which is the most difficult. Given ε > 0, we will use H to construct
a hypergraph H ′ which is an ε-realisation of 2-equality. We start by constructing a hypergraph H ′′

with terminals v1 and v2. We construct H ′′ by taking two copies of H . In the first copy, we identify
the vertex x with the terminal v1 and the vertex y with the terminal v2. The second copy is disjoint
from the first one, except that we identify the vertex x of the second copy with the terminal v2 and
the vertex y of the second copy with the vertex v1.

Let µ := µf ;H . Then let p = µ(σx = σy = 0)2 = µ(σx = σy = 1)2 and q = µ(σx = 0, σy =
1)µ(σx = 1, σy = 0).

If q = 0 then we can take H ′ to be H ′′. Then µf ;H′(σv1 6= σv2 ) = 0. However, µf ;H′(σv1 = σv2 =
0) = µf ;H′ (σv1 = σv2 = 1) so for s ∈ {0, 1}, µf ;H′(σv1 = σv2 = s) = 1/2 and H ′ is a 0-realisation of
2-equality.

So suppose q > 0. Contruct H ′ by taking r = 1+ ⌈ln ε/ ln(q/p)⌉ disjoint copies of H ′′, identifying
all terminals v1 and all terminals v2. Let µ

′ := µf ;H′ . We have

µ′(σv1 = σv2 = 0) ∝ pr, µ′(σv1 = σv2 = 1) ∝ pr, µ′(σv1 = 0, σv2 = 1) = µ′(σv1 = 1, σv2 = 0) ∝ qr.

Our choice of r ensures that µ′(σv1 = 0, σv2 = 1)/µ′(σv1 = σv2 = 0) < ε, so H ′ is an ε-realisation of
2-equality.

The proofs for Items 1 and 2 are similar but simpler. We will do Item 1. Let p = µ(σv = 0)
and q = µ(σv = 1). Construct H ′ by taking r = 1 + ⌈ln ε/ ln(q/p)⌉ disjoint copies of H , identifying
vertex v in all copies. Then µf ;H′(σv = 1) = qr/(qr + pr) ≤ (q/p)r ≤ ε so H ′ is an ε-realisation of
pinning-to-0.

2.2 Classifying functions with respect to pinning and equality

The following lemma will be used in our classification.

Lemma 13. Let k ≥ 2. For all f : {0, 1}k → R+ which are not constant, it holds that f supports at
least one of pinning-to-0, pinning-to-1 and 2-equality.

Proof. Assume that f does not support pinning-to-0 or pinning-to-1. We will show that f supports
2-equality.

Let H be the hypergraph with vertex set {x, y, z1, . . . , zk−1} and hyperedge set F = {e1, e2}, where
e1 = {x, z1, . . . , zk−1} and e2 = {y, z1, . . . , zk−1} (see Figure 1). Let µ := µf ;H . We have that

µ(σx = s1, σy = s2) ∝ Zs1s2 for s1, s2 ∈ {0, 1},

where Zs1s2 =
∑k−1

ℓ=0

(

k−1
ℓ

)

wℓ+s1wℓ+s2 . Note that Z01 = Z10.
We first show that Z00 = Z11. Assume otherwise. Note that µ(σx = 0) ∝ Z01 + Z00 and

µ(σx = 1) ∝ Z10 + Z11. Since Z01 = Z10, Z00 6= Z11 would imply µ(σx = 0) 6= µ(σx = 1),
contradicting that f does not support pinning-to-0 or pinning-to-1 (by Lemma 12).

Further, we have that Z00Z11 ≥ Z2
01, since

[

k−1
∑

ℓ=0

(

k − 1

ℓ

)

w2
ℓ

][

k−1
∑

ℓ=0

(

k − 1

ℓ

)

w2
ℓ+1

]

≥
[

k−1
∑

ℓ=0

(

k − 1

ℓ

)

wℓwℓ+1

]2

(1)
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v1 v2 vk

H ′′

e

. . .

Figure 2: The hypergraph H ′ used to show that w0 = wk in Lemma 14. It consists of a hypergraph
H ′′ (dashed in the figure) which ε-realises k-equality among its terminals v1, . . . , vk and the hyperedge
e = {v1, . . . , vk}. We show that if w0 > wk, then H ′ realises pinning-to-0.

holds as an immediate consequence of the Cauchy-Schwartz inequality. From Z00 = Z11, we thus
obtain that Z00 ≥ Z01. Equality in (1) holds only if there exists α ≥ 0 such that wℓ+1 = αwℓ for every
ℓ = 0, . . . , k− 1, which yields wℓ = αℓw0 for ℓ = 0, . . . , k. This gives Z11 = α2Z00, so Z00 = Z11 leaves
only the possibility α = 1, which in turn yields that f is a constant function.

Thus, it holds that Z00 = Z11 > Z01 = Z10, so Item 3 of Lemma 12 yields that f supports
2-equality.

Lemma 14. Let k ≥ 2. If f supports 2-equality but neither pinning-to-0 nor pinning-to-1, then it
holds that wℓ = wk−ℓ for all ℓ = 0, . . . , k.

Proof. Let k ≥ 2 and suppose that f supports 2-equality but neither pinning-to-0 nor pinning-to-1.
Let H be the hypergraph with the vertex set {v1, . . . , vk} and the single hyperedge e = {v1, . . . , vk}.
We may assume that f is not a constant function since a constant function does not support 2-equality.
Thus, at least one of the wℓ’s is non-zero and hence Zf ;H > 0.

We will start by establishing the claim for ℓ = 0, by showing that w0 = wk. Assume for contradic-
tion that w0 6= wk. W.l.o.g we may assume that w0 > wk (if it is the other way around, then we can
swap 0’s and 1’s in the following argument). Since f supports 2-equality, it also supports k-equality
by Lemma 10. Choose ε > 0 sufficiently small so that

w0

(

1− ε

2

)

> wk

(

1 + ε

2

)

+ 2kε.

Construct H ′ by taking H and a distinct ε-realisation H ′′ of k-equality and identifying the vertices
of H with the terminals of H ′′ (see Figure 2). Then the contribution to Zf,H′ from configurations
with σ(vk) = 0 is at least the contribution from all configurations that assign spin 0 to all terminals
(giving a contribution of at least w0

(

1−ε
2

)

Zf,H′′ since H ′′ is an ε-realisation of k-equality) so we get

µf,H′ (σ(vk) = 0)Zf,H′ ≥ w0

(

1−ε
2

)

Zf,H′′ .

Now consider the contribution to Zf,H′ from configurations with σ(vk) = 1. The contribution from
configurations which map all terminals to spin 1 is at most wk

(

1+ε
2

)

Zf,H′′ since H ′′ is an ε-realisation
of k-equality. In addition, configurations which do not make the spins at the terminals equal contribute
at most 2kεZf,H′′ . So we get

µf ;H′(σ(vk) = 1)Zf,H′ ≤ wk

(

1+ε
2

)

Zf,H′′ + 2kεZf ;H′′ .

It follows by the choice of ε that µf ;H′(σ(vk) = 0) > µf,H′ (σ(vk) = 1), so Lemma 12 shows that f
supports pinning-to-0, contrary to the statement of the lemma. Thus, we have shown that w0 = wk.

For ease of notation, we let Z0,k = w0 and Z1,k = wk. Then, for t ∈ {1, . . . , k − 1} let Vt =

{v1, . . . , vt}. For s ∈ {0, 1} let Z ′
s,t =

∑k−1−t
ℓ=0

(

k−1−t
ℓ

)

wℓ+s and Z ′′
s,t =

∑k−1−t
ℓ=0

(

k−1−t
ℓ

)

wℓ+s+t. Let
Zs,t = Z ′

s,t + Z ′′
s,t. We will establish the following system of equalities.

For t ∈ {1, . . . , k}, Z0,t = Z1,t. (2)
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v1 vt

H ′′

e
. . .

vt+1 vk
. . .

Figure 3: The hypergraph H ′ used to show that Z0,t = Z1,t for t ∈ {2, . . . , k − 1}. It consists of a
hypergraph H ′′ (dashed in the figure) which ε-realises t-equality among its terminals v1, . . . , vt and the
hyperedge e = {v1, . . . , vt, vt+1, . . . , vk}. We show that if Z0,t > Z1,t, then H ′ realises pinning-to-0.

We have already dealt with the case t = k. Next, consider t = 1. Note that µf ;H(σ(vk) = 0) =
Z0,1/Zf ;H and µf ;H(σ(vk) = 1) = Z1,1/Zf,H (to see these, observe that Z ′

s,1 is the contribution from
configurations where, say, vertex v1 has spin 0 and vk has spin s; similarly, Z ′′

s,1 is the contribution
where v1 has spin 1 and vk has spin s). Thus, if Z0,1 6= Z1,1 then µf ;H(σ(vk) = 0) 6= µf ;H(σ(vk) = 1)
so Lemma 12 shows that f supports pinning-to-0 or pinning-to-1, contrary to the statement of the
lemma.

We will now show that Equation (2) holds for t ∈ {2, . . . , k− 1}. The proof is similar to the proof
that w0 = wk above. Consider some t ∈ {2, . . . , k− 1}, and suppose for contradiction that Z0,t > Z1,t.
Let ρ = Z1,t ≥ 0 and δ = Z0,t−Z1,t > 0. Again, since f supports 2-equality, it also supports t-equality
by Lemma 10. Choose ε sufficiently small so that

(ρ+ δ)

(

1− ε

2

)

> ρ

(

1 + ε

2

)

+ 2kε

Construct H ′ by taking H and a distinct ε-realisation H ′′ of t-equality and identifying the terminals
v1, . . . , vt in H and H ′′ (see Figure 3). Note that vertex vk is not a vertex of H ′′. So the contribution
to Zf,H′ from configurations with σ(vk) = 0 is at least the contribution from such configurations which
also satisfy σ(v1) = · · · = σ(vt) = 0 (giving a contribution of at least Z ′

0,t

(

1−ε
2

)

Zf,H′′ ) and a similar
contribution from configurations which also satisfy σ(v1) = · · · = σ(vt) = 1 (giving a contribution of
at least Z ′′

0,t

(

1−ε
2

)

Zf,H′′ ) so we get

µf,H′(σ(vk) = 0)Zf,H′ ≥ Z ′
0,t

(

1−ε
2

)

Zf,H′′ + Z ′′
0,t

(

1−ε
2

)

Zf,H′′ = Z0,t

(

1−ε
2

)

Zf,H′′

≥ (ρ+ δ)
(

1−ε
2

)

Zf,H′′ .

Now consider the contribution to Zf,H′ from configurations with σ(vk) = 1. This is at most the con-
tributions which also satisfy σ(v1) = · · · = σ(vt) = 0 (giving a contribution at most Z ′

1,t

(

1+ε
2

)

Zf,H′′ )

and a similar term Z ′′
1,t

(

1+ε
2

)

Zf,H′′ from the contributions which also satisfy σ(v1) = · · · = σ(vt) = 1.

In addition, configurations which do not satisfy σ(v1) = · · · = σ(vt) contribute at most 2kεZf,H′′ . So
we get

µf ;H′(σ(vk) = 1)Zf,H′ ≤ ρ
(

1+ε
2

)

Zf,H′′ + 2kεZf ;H′′ .

Again by the choice of ε, we have µf ;H′(σ(vk) = 0) > µf,H′(σ(vk) = 1), so Lemma 12 shows that
f supports pinning-to-0, contrary to the statement of the lemma. So we have now established the
system of equations (2).

We view (2) as a system of equations over the k + 1 (real) variables w0, . . . , wk. We refer to the
equation Z0,t = Z1,t as “Equation t” or “the t’th equation”. In the remainder of the proof we will
show that the solutions to this system of equations are exactly the assignments of real values to the
variables satisfying

wℓ = wk−ℓ for ℓ = 0, . . . , k. (3)

We first show that any solution satisfying (3) satisfies (2). The case t = k is obvious. For
t ∈ {1, . . . , k − 1}, we will show that any solution satisfying (3) satisfies Z ′

0,t = Z ′′
1,t and Z ′

1,t = Z ′′
0,t.
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To see the first of these, consider the coefficient
(

k−1−t
ℓ′

)

of wℓ′+1+t in Z ′′
1,t. Now let ℓ = k− (ℓ′+1+ t)

so wℓ = wℓ′+1+t. The coefficient of wℓ in Z ′
0,t is

(

k−1−t
ℓ

)

=
(

k−1−t
k−1−t−ℓ

)

=
(

k−1−t
ℓ′

)

. This establishes
Z ′
0,t = Z ′′

1,t. The proof that Z ′
1,t = Z ′′

0,t is similar. We will now show that the solution in (3) has the
appropriate dimension, so there are no other solutions of (2). It is simplest to split the calculation
into two cases, depending on the parity of k.

First, suppose k = 2r + 1 is odd. Consider 1 ≤ t ≤ t′ ≤ k − 1. We will compute the coefficients
of the variable wt in the quantities Z ′

0,t′ , Z
′′
0,t′ , Z

′′
1,t′ and Z ′′

1,t′ using the convention that
(

a
b

)

= 0 if

b 6∈ {0, . . . , a}. These are
(

2r−t′

t

)

,
(

2r−t′

t−t′

)

,
(

2r−t′

t−1

)

and
(

2r−t′

t−t′−1

)

, respectively. Consider the case where

t ≥ r+1. Then 2r− t′ < t− 1 < t so these can be simplified to 0,
(

2r−t′

t−t′

)

, 0 and
(

2r−t′

t−t′−1

)

, respectively.
If t′ > t then all four coefficients are 0 so wt is not in Equation t′. If t′ = t then the final coefficient
is 0, but the 2nd of these coefficients is 1, so wt has a non-zero coefficient in Equation t. We conclude
for t ≥ r+1 that wt is not in Equations t+1, . . . , k−1, but it has a non-zero coefficient in Equation t.

Thus, Equations k, k− 1, . . . , r+1 give us k− r = r+1 linearly independent equations. Thus the
solution space of the system over our k + 1 variables has dimension at most k + 1 − (r + 1) = r + 1.
But we have already shown that Equation (3) gives a solution, and the dimension of this solution is
r + 1.

Similarly, suppose that k = 2r is even. Once again consider 1 ≤ t ≤ t′ ≤ k − 1 and compute the

coefficients of the variable wt in the quantities Z ′
0,t′ , Z

′′
0,t′ , Z

′′
1,t′ and Z ′′

1,t′ . These are
(

2r−1−t′

t

)

,
(

2r−1−t′

t−t′

)

,
(

2r−1−t′

t−1

)

and
(

2r−1−t′

t−t′−1

)

, respectively. Consider the case where t ≥ r + 1. Then 2r − 1− t′ < t− 1 < t

so these can again be simplified to 0,
(

2r−1−t′

t−t′

)

, 0 and
(

2r−1−t′

t−t′−1

)

, respectively. Once again, if t′ > t
then all four coefficients are 0 so wt is not in Equation t′. However, if t′ = t then the final coefficient
is 0, but the 2nd of these coefficients is 1, so wt has a non-zero coefficient in Equation t. As before, we
conclude that the equations k, k− 1, . . . , r+1 give us r linearly independent equations, so the solution
space of the system has dimension at most (k + 1)− (r) = r + 1. But wℓ = wk−ℓ is a solution whose
dimension is r + 1.

2.3 Realising conditional distributions induced by pinning and equality

We will use pinnings or equality to construct and analyze gadgets; the upcoming Lemma 15 is a
first step in doing this effortlessly. It asserts that when f supports one of the properties pinning-
to-0, pinning-to-1 or equality we can consider appropriate conditional distributions (depending on
the property); these conditional distributions can then be realised using appropriately constructed
hypergraphs.

Given a set S of vertices, it will be convenient to write σS = 0 to denote the event that all vertices
in S are assigned the spin 0 under the assignment σ. We will similarly write σS = 1. We will also use
σeq
S to denote the event that all vertices in S have the same spin under σ (the spin could be 0 or 1).

Lemma 15. Let f : {0, 1}k → R+ be symmetric. Let H = (V,F) be a hypergraph and S ⊆ V . Let
ε > 0.

1. Suppose that f supports pinning-to-s for some s ∈ {0, 1}. Suppose that u ∈ V satisfies µf ;H(σu =
s) > 0. Then there is a hypergraph H ′ = (V ′,F ′) with V ⊆ V ′ and F ⊆ F ′ such that for every
τ : S → {0, 1} it holds that

∣

∣µf ;H′(σS = τ)− µf ;H

(

σS = τ | σu = s
)∣

∣ ≤ ε.

2. Suppose that f supports equality and that R ⊆ V satisfies µf ;H(σeq
R ) > 0. Then there is a

hypergraph H ′ = (V ′,F ′) with V ⊆ V ′ and F ⊆ F ′ such that for every τ : S → {0, 1} it holds
that ∣

∣

∣µf ;H′ (σS = τ) − µf ;H

(

σS = τ | σeq
R

)

∣

∣

∣ ≤ ε,
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u ≡ v0

H0

S

H

Figure 4: The hypergraph H ′ used in the proof of Item 1 in Lemma 15. It consists of the hypergraph
H and a hypergraph H0 with terminal v0 which ε′-realises pinning-to-0. We identify the vertex u of
H with the terminal vertex v0 of H0 keeping otherwise the two hypergraphs H,H0 disjoint. Then, for
any subset S of vertices in H (which may in general include u as well), the distribution µf ;H′(σS = ·)
is well approximated by the conditional distribution µf,H(σS = · | σu = 0).

Proof. Denote µf ;H by µ. We begin with the proof of Item 1. We will take s = 0. The proof for s = 1
is similar, swapping 0’s and 1’s. Let ε′ > 0 be sufficiently small so that

(

ε′

1− ε′

)(

µ(σu = 1)

µ(σu = 0)

)

≤ ε

1− ε
. (4)

Since f supports pinning-to-0, there exists a hypergraph H0 with vertex set V0 which ε′-realises
pinning-to-0. Denote by v0 the terminal of H0. For i ∈ {0, 1}, let pi = µf ;H0

(σv0 = i), so that
p0 ≥ 1− ε′, p1 ≤ ε′. To construct the hypergraph H ′ (see Figure 4), take a (distinct) copy of H0 and
identify v0 with u (the copy of H0 is otherwise disjoint from the rest of H). Let µ′ := µf ;H′ . Note
that µ′(σu = s) ∝ ps µ(σu = s) for s ∈ {0, 1}, so that

µ′(σu = 1)

µ′(σu = 0)
=

(

p1
p0

)(

µ(σu = 1)

µ(σu = 0)

)

.

Equation (4) yields µ′(σu = 1) ≤ ε.
Let τ : S → {0, 1}. Note that

µ′(σS = τ) = µ′(σu = 0)µ′(σS = τ | σu = 0) + µ′(σS = τ, σu = 1)

= µ′(σu = 0)µ(σS = τ | σu = 0) + µ′(σS = τ, σu = 1),

where in the second equality we used that conditioned on the spin of u, σS is independent of the
configuration σV0\{u}. It follows that

|µ′(σS = τ)− µ(σS = τ | σu = 0)| ≤ µ′(σu = 1) ≤ ε

completing the proof of Item 1.
The proof of Item 2 is completely analogous, though slightly more technical. Let r = |R|. As

before, let ε′ > 0 be sufficiently small, to be picked later. Since f supports equality, there exists a
hypergraph H1 with vertex set V1 which ε′-realises r-equality. Denote by T = {v1, . . . , vr} the set
of terminals of H1. For η : T → {0, 1}, let pη := µf ;H1

(σR = η). Since H1 is an ε′-realisation of
r-equality, we have that

(1 − ε′)/2 ≤ p0, p1 ≤ (1 + ε′)/2,
∑

η 6=0,1

pη ≤ ε′.
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To construct the hypergraph H ′, take a (distinct) copy of H1 and identify (in an arbitrary way)
vertices in the set R with terminals in the set T (the copy of H1 is otherwise disjoint from the rest of
H), we will keep the notation R for the merged vertices in H ′ (see Figure 5). Let µ′ := µf ;H′ . For
η : R → {0, 1}, we µ′(σR = η) ∝ pη µ(σR = η), so that

µ′(σR = η) =
pη µ(σR = η)

p0 µ(σR = 0) + p1 µ(σR = 1) +
∑

η′ 6=0,1 pη′ µ(σR = η′)
.

For s ∈ {0,1}, we use the upper and lower bounds on ps to obtain

µ′(σR = s) ≤ ps µ(σR = s)

p0 µ(σR = 0) + p1 µ(σR = 1)
≤
(

1 + ε′

1− ε′

)(

µ(σR = s)

µ(σR = 0) + µ(σR = 1)

)

, (5)

µ′(σR = s) ≥ ps µ(σR = s)

p0 µ(σR = 0) + p1 µ(σR = 1) + ε′
≥
(

1− ε′

1 + ε′

)

(

µ(σR = s)

µ(σR = 0) + µ(σR = 1) + 2ε′

1+ε′

)

.

(6)

From (5) and (6), we obtain that for s ∈ {0,1}, as ε′ ↓ 0, it holds that

µ′(σR = s) → µ(σR = s)

µ(σR = 0) + µ(σR = 1)
= µ(σR = s | σeq

R ), and thus µ′(¬σeq
R ) → 0, (7)

where the latter limit follows by observing that µ′(¬σeq
R ) = 1− µ′(σR = 0)− µ′(σR = 1).

Let τ : S → {0, 1}. Note that

µ′(σS = τ) = µ′(σR = 0)µ′(σS = τ | σR = 0)+

µ′(σR = 1)µ′(σS = τ | σR = 1) + µ′(σS = τ,¬σeq
R )

= µ′(σR = 0)µ(σS = τ | σR = 0)+

µ′(σR = 1)µ(σS = τ | σR = 1) + µ′(σS = τ,¬σeq
R ), (8)

where again in the second equality we used that conditioned on σR, σS is independent of the configu-
ration σV1\R. Using the limits in (7) and the equality (8), it is not hard to see that as ε′ ↓ 0, it holds
that

µ′(σS = τ) → µ(σR = 0 | σeq
R )µ(σS = τ | σR = 0) + µ(σR = 1 | σeq

R )µ(σS = τ | σR = 1). (9)

The right-hand side in (9) is equal to µ(σS = τ | σeq
R ), from where it follows that by choosing small ε′,

the hypergraph H ′ satisfies
∣

∣µ′(σS = τ)− µ
(

σS = τ | σeq
R

)∣

∣ ≤ ε, as wanted.
This concludes the proof of Lemma 15.

Typically, when f satisfies, say, pinning-to-0 we will be interested in “pinning” more than one
vertex to zero, while Item 1 from Lemma 15 accomodates only one vertex. We will also be interested
in cases where f satisfies multiple properties amongst pinning-to-0, pinning-to-1 and equality. We
extend Lemma 15 to address this more general framework. Prior to that, it will be useful for our
applications to set up a convenient notation.

Definition 16. Let f : {0, 1}k → R+ be symmetric. Let H = (V,F) be a hypergraph and assume that
V := (V0, V1, V2, . . . , Vr) is a labelled collection of disjoint subsets of V such that: (i) V0 = ∅ if f does
not support pinning-to-0, (ii) V1 = ∅ if f does not support pinning-to-1, (iii) V2 = . . . = Vr = ∅ if f
does not support equality, (iv) it holds that µf ;H(σV0

= 0, σV1
= 1, σeq

V2
, . . . , σeq

Vr
) > 0. We will then say

that V is admissible for the hypergraph H (with respect to f) and denote by µ
cond(V)
f ;H the probability

distribution µf ;H(· | σV0
= 0, σV1

= 1, σeq
V2
, . . . , σeq

Vr
).

Definition 16 provides the framework to prove the following generalization of Lemma 15. In simple
words, we will now be able to combine the conditional distributions that we can realize via hypergraphs
using f .
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Figure 5: The hypergraphH ′ used in the proof of Item 2 in Lemma 15. It consists of the hypergraphH
and a hypergraph H1 which realises r-equality among its terminals v1, . . . , vr. We identify the vertices
in R with the terminal vertices v1, . . . , vr of H1 keeping otherwise the two hypergraphs H,H1 disjoint.
Then, for any subset S of vertices in H (which may in general include any of the vertices v1, . . . , vr),
the distribution µf ;H′ (σS = ·) is well approximated by the conditional distribution µf,H(σS = · | σeq

R ).

Lemma 17. Let f : {0, 1}k → R+ be a symmetric function. Let H be a hypergraph with vertex set V
and let S be a subset of V . Let V an admissible collection of subsets of V with respect to H. Then,
for every ε > 0, there is a hypergraph H ′ = (V ′,F ′) with V ⊆ V ′ and F ⊆ F ′ such that, for every
τ : S → {0, 1}, it holds that

∣

∣µf ;H′(σS = τ)− µ
cond(V)
f ;H (σS = τ)

∣

∣ ≤ ε,

where µ
cond(V)
f ;H (·) is as in Definition 16.

Proof. To treat the different cases which arise as uniformly as possible, it will be convenient to use
the following notation for the purposes of this proof. Let σ : V → {0, 1} and X ⊆ V . For s ∈ {0,1},
we will write σs

X as an alternative notation to σX = s.
We are now set to prove the claim. Suppose that V = (V0, V1, V2, . . . , Vr). We proceed by induction

on W := |V0|+ |V1|+(r− 1). The base case W = 0 is trivial — we can take H ′ = H . To carry out the
induction step, assume that the claim holds when W = t, we show it when W = t+ 1. We have that
at least one of the following holds: (i) |V0| ≥ 1, (ii) |V1| ≥ 1, (iii) r ≥ 2. For each of these cases, we
will have a collection of sets V for which we will invoke the inductive hypothesis and a set X which we
wish to add to V to conclude the claim for V . Also, we want to be able to condition on the event σs

X

for some s ∈ {0,1, eq} (the value of s will depend on the case that we consider). More precisely, the
set X , the value of s ∈ {0,1, eq} and the collection of sets V are specified as follows for the respective
cases:

• X = {v} for some v ∈ V0, s = 0, and V = (V0 \X,V1, V2, . . . , Vr),

• X = {v} for some v ∈ V1, s = 1, and V = (V0, V1 \X,V2, . . . , Vr),

• X = Vr, s = eq, and V = (V0, V1, V2, . . . , Vr−1).

Note that since V is admissible for H under f , the same is trivially true for V as well.
Let S′ be an arbitrary subset of V (which may be our target set S). By induction, for the collection

of subsets V , we have that for every ε > 0, there exists a hypergraph H ′ with V ⊆ V ′ and F ⊆ F ′

such that, for every τ ′ : S′ → {0, 1}, it holds that
∣

∣µf ;H′(σS′ = τ ′)− µ
cond(V)
f ;H (σS′ = τ ′)

∣

∣ ≤ ε, (10)

Since µ(σ0
V0
, σ1

V1
, σeq

V2
, . . . , σeq

Vr
) > 0 (by the assumption that V is admissible), we also have that

M := µ
cond(V)
f ;H (σs

X) > 0, where X, s,V were defined above. Let

ε1 := ε/2, ε2 := ε1M
2/4, ε3 := ε2/2

|S|.
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Now consider τ : S → {0, 1}. if µf ;H(σS = τ, σs

X) = 0 then µ
cond(V)
f ;H

(

σS = τ, σs

X) = 0. Also, since

V ⊆ V ′ and F ⊆ F ′. µf ;H′

(

σS = τ, σs

X

)

= 0.
Otherwise, µf ;H(σS = τ, σs

X) > 0. In this case, applying (10) with S′ = S ∪X we find that there
is a hypergraph H ′ = (V ′,F ′) with vertex set V ⊆ V ′ and F ⊆ F ′ such that for each assignment
τ ′ : S′ → {0, 1} that is consistent with τ ′S = τ and τ ′

s

X , we have

∣

∣µf ;H′(σS′ = τ ′)− µ
cond(V)
f ;H (σS′ = τ ′)

∣

∣ ≤ ε.

Summing over all τ ′ : S′ → {0, 1} that satisfy both τ ′S = τ and τ ′
s

X , we conclude that

∣

∣µf ;H′

(

σS = τ, σs

X

)

− µ
cond(V)
f ;H

(

σS = τ, σs

X

)∣

∣ ≤ ε3. (11)

So now we have established (11) for all τ : S → {0, 1} (whether µf ;H(σS = τ, σx

X) is 0 or not).
Summing over τ : S → {0, 1}, we obtain

∣

∣µf ;H′

(

σs

X

)

− µ
cond(V)
f ;H

(

σs

X)
∣

∣ ≤ 2|S|ε3 = ε2. (12)

This implies µf ;H′ (σs

X) ≥ M − ε2 > M/2 > 0.

Now to simplify the notation define A := µ
cond(V)
f ;H

(

σS = τ, σs

X

)

. Now note that

µ
cond(V)
f ;H

(

σS = τ
)

= A/M.

Let A′ = µf ;H′(σS = τ, σs

X) and let M ′ = µf ;H′(σs

X). Equation (11) (together with ε3 ≤ ε2) shows
that A′ − ε2 ≤ A ≤ A′ + ε2. Also, Equation (12) shows M ′ − ε2 ≤ M ≤ M ′ + ε2. Then we will use
the bound

max

(

A+ ε2
M − ε2

− A

M
,
A

M
− A− ε2

M + ε2

)

≤ ε2(M +A)

M(M − ε2)
≤ 2ε2

M(M − ε2)
≤ 4ε2/M

2 = ε1

to conclude that
∣

∣

∣

∣

A′

M ′
− A

M

∣

∣

∣

∣

=
∣

∣

∣
µf ;H′

(

σS = τ | σs

X

)

− µ
cond(V)
f ;H

(

σS = τ
)

∣

∣

∣
≤ ε1. (13)

We will now apply Lemma 15 to H ′ and S with error parameter ε1. To apply the lemma, we need
the fact that f supports pinning-to-s if s is 0 or 1. If s = eq then we need the fact that f supports
equality. Both of these follow from the admissibility of V and the construction of X and s. We aso
need the fact that µf ;H′(σs

X) > 0, which we have established above. Then Lemma 15 shows that there
exists a hypergraph H ′′ = (V ′′,F ′′) with V ′ ⊆ V ′′ and F ′ ⊆ F ′′ such that for every τ : S → {0, 1}, it
holds that

∣

∣µf ;H′′ (σS = τ) − µf ;H′

(

σS = τ | σs

X

)∣

∣ ≤ ε1. (14)

It follows by (13) and (14) that

∣

∣µf ;H′′ (σS = τ)− µ
cond(V)
f ;H

(

σS = τ
)∣

∣ ≤ 2ε1 = ε.

This completes the induction.

3 A general inapproximability lemma

The purpose of this section is to prove the following lemma, which will allow us to exploit our study
of pinning-to-0, pinning-to-1 and equality.
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Lemma 18. Let f : {0, 1}k → R+ be symmetric. Let H be a hypergraph, let V be admissible for H
and let x and y be vertices of H. For s1, s2 ∈ {0, 1}, define µs1s2 by

µs1s2 := µ
cond(V)
f ;H (σ(x) = s1, σ(y) = s2).

Suppose that all of the following hold:

µ00 + µ11 > 0, min{µ00, µ11} <
√
µ01µ10, max{µ00, µ11} ≤ √

µ01µ10.

Then, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

The proof of Lemma 18 uses inapproximability results for antiferromagnetic 2-spin systems on
bounded-degree graphs. Thus, before giving its proof, it will be helpful to make a detour to extract
the results that will be useful in the proof of Lemma 18.

Remark 19. Note that the inequalities for the µij ’s are stronger than the standard antiferromagnetic
condition µ00µ11 < µ01µ10 for 2-spin models on graphs. This is to ensure that the corresponding 2-spin
system lies in the non-uniqueness region for all sufficiently large ∆ (and hence is intractable). In fact, if
max{µ00, µ11} >

√
µ01µ10, for the corresponding binary 2-spin system (even if it is antiferromagnetic),

approximating its partition function may be tractable for all graphs (when the external field is fixed).

3.1 Inapproximability for antiferromagnetic 2-spin systems

We review inapproximability results for the partition function of antiferromagnetic 2-spin models on
graphs. We start with a few relevant definitions following [14]. A 2-spin model on a graph is specified
by three parameters β, γ ≥ 0 and λ > 0. For a graph G = (V,E), configurations of the model are all
possible assignments σ : V → {0, 1} and the partition function is given by

Zβ,γ,λ;G =
∑

σ:V →{0,1}

λ|σ−1(0)|
∏

(u,v)∈E

β1{σ(u)=σ(v)=0}γ1{σ(u)=σ(v)=1},

where we adopt the convention that 00 ≡ 1 when one of the parameters β, γ is equal to zero. The case
β = γ corresponds to the Ising model, while the case β = 0 and γ = 1 corresponds to the hard-core
model.

The 2-spin system with parameters β, γ, λ is called antiferromagnetic if βγ < 1. In [21], it was
shown that the computational hardness of approximating the partition function in antiferromagnetic
2-spin systems on ∆-regular graphs is captured by the so-called uniqueness threshold on the infinite
∆-regular tree. More precisely, we have the following.

Theorem 20 ([21, Theorems 2 & 3]). Consider the 2-spin systems specified by the following parameters
β, γ, λ: (i) 0 < β = γ < 1, λ > 0 (antiferromagnetic Ising model), (ii) β = 0, γ = 1, λ > 0 (hard-core
model). If the 2-spin system specified by the parameters β, γ, λ is in the non-uniqueness regime of the
infinite ∆-regular tree for ∆ ≥ 3, then there is a c > 1 such that it is NP-hard to approximate Zβ,γ,λ;G

within a factor of cn on the class of ∆-regular graphs G.

Note that it is not important for us that Theorem 20 shows hardness all the way to the uniqueness
threshold. It would suffice to have a weaker bound for the antiferrogmanetic Ising model and the
hard-core model. Luby and Vigoda [16] provide such a result for the hard-core model. Rather than
explicitly deriving such a bound for the antiferromagnetic Ising model, we use Theorem 20. Cai et al
[4, Theorems 1 & 2] give similar results that apply in some of the relevant parameter space, however
it is simpler to work with the later paper [21], especially since the latter shows that the partition
function is hard to approximate even within an exponential factor.

For future use, we point out the following characterisation of the uniqueness regime on the infinite

∆-regular tree. For a 2-spin system with parameters β, γ, λ, let h(x) := λ
(

βx+1
x+γ

)∆−1
and let x∗ be

the (unique) positive solution of x∗ = h(x∗). Then, uniqueness holds on the infinite ∆-regular tree iff
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|h′(x∗)| ≤ 1, i.e., the absolute value of the derivative of h evaluated at x∗ is less than or equal than
1. When, instead, |h′(x∗)| > 1, non-uniqueness holds on the infinite ∆-regular tree. Equivalently, one
can derive the following equivalent criterion: non-uniqueness on the infinite ∆-regular tree holds iff
the system of equations

x = λ
(βy + 1

y + γ

)∆−1

, y = λ
(βx+ 1

x+ γ

)∆−1

(15)

has multiple (i.e., more than one) positive solutions (x, y).
It is well-known (see, e.g., [21]) that antiferromagnetic 2-spin systems on ∆-regular graphs can be

expressed in terms of either the Ising model or the hard-core model. Theorem 20 thus also gives the
regime where general antiferromagnetic 2-spin systems are hard, albeit somewhat implicitly. For the
sake of completeness we do this explicitly in the following simple corollary of Theorem 20 (which is
nevertheless lengthy to prove).

Corollary 21. Let β, γ ≥ 0 with βγ < 1, γ > 0, λ > 0 and ∆ ≥ 3. If the 2-spin system specified by
the parameters β, γ, λ is in the non-uniqueness regime of the infinite ∆-regular tree, then there is a
c > 1 such that it is NP-hard to approximate Zβ,γ,λ;G within a factor of cn on the class of ∆-regular
graphs G.

Proof. For β, γ, λ,∆ as in the statement of the lemma, consider the following map:

R(β, γ, λ) =

{

(√
βγ,

√
βγ, λ(β/γ)∆/2

)

, if β > 0,
(

0, 1, λ/γ∆
)

, if β = 0.

To prove the claim, it suffices to show the following two facts and then to use Theorem 20.

Fact 1. For a ∆-regular graph G, a multiplicative approximation of Zβ,γ,λ;G within a factor C yields
a multiplicative approximation of ZR(β,γ,λ);G within a factor C.

Fact 2. The 2-spin system with parameters β, γ, λ is in the non-uniqueness regime of the infinite ∆-
regular tree iff the 2-spin system with parameters R(β, γ, λ) is in the non-uniqueness regime
of the infinite ∆-regular tree.

We consider first the case β > 0. Let λ′ be defined from (λ′)1/∆ = λ1/∆
√
β/

√
γ and let β′ =

√
βγ.

Note that R(β, γ, λ) = (β′, β′, λ′).
We first show Fact 1. Let G = (V,E) be a ∆-regular graph. Observe that

Zβ,γ,λ;G =
∑

σ:V →{0,1}

λ|σ−1(0)|
∏

(u,v)∈E

β1{σ(u)=σ(v)=0}γ1{σ(u)=σ(v)=1}

=
∑

σ:V →{0,1}

∏

(u,v)∈E

(βλ2/∆)1{σ(u)=σ(v)=0}(λ1/∆)1{σ(u) 6=σ(v)}γ1{σ(u)=σ(v)=1}

=
(

√
γ√
β

)|E| ∑

σ:V →{0,1}

∏

(u,v)∈E

(

β′(λ′)2/∆
)1{σ(u)=σ(v)=0}(

(λ′)1/∆
)1{σ(u) 6=σ(v)}(

β′
)1{σ(u)=σ(v)=1}

=
(

√
γ√
β

)|E| ∑

σ:V →{0,1}

(λ′)|σ
−1(0)|

∏

(u,v)∈E

(

β′
)1{σ(u)=σ(v)}

=
(

√
γ√
β

)|E|

Zβ′,β′,λ′;G,

which clearly yields the desired fact.
We next show Fact 2. Note that for positive x, y, (15) is equivalent to

x
(βy + 1

y + γ

)

= λ
(βy + 1

y + γ

)∆

, y
(βx+ 1

x+ γ

)

= λ
(βx+ 1

x+ γ

)∆

(16)
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Thus, it suffices to show that the positive solutions (x, y) of (16) are in one-to-one correspondence
with positive solutions (x′, y′) to

x′
(β′y′ + 1

y′ + β′

)

= λ′
(β′y′ + 1

y′ + β′

)∆

, y′
(β′x′ + 1

x′ + β′

)

= λ′
(β′x′ + 1

x′ + β′

)∆

, (17)

where β′ =
√
βγ and λ′ = λ(

√
β/

√
γ)∆ are as before.

Let x′ = (
√
β/

√
γ)x and y′ = (

√
β/

√
γ)y. Note that for β > 0 we have that x, y are positive iff

x′, y′ are positive and that x, y are in one-to-one correspondence with x′, y′. It is also simple to verify
that x, y, x′, y′ satisfy the equations

βx+ 1

x+ γ
=

√
β√
γ
·
√
βγx′ + 1

x′ +
√
βγ

,
βy + 1

y + γ
=

√
β√
γ
·
√
βγy′ + 1

y′ +
√
βγ

, (18)

and

x
(βy + 1

y + γ

)

= x′
(

√
βγy′ + 1

y′ +
√
βγ

)

, y
(βx+ 1

x+ γ

)

= y′
(

√
βγx′ + 1

x′ +
√
βγ

)

. (19)

Using (18) and (19), one can easily check that x, y satisfy (16) iff x′, y′ satisfy (17).
Next consider the case β = 0. The arguments are completely analogous to the case β > 0, up to

minor technical details. Let λ′ be defined from (λ′)1/∆ = λ1/∆/γ and note that R(β, γ, λ) = (0, 1, λ′).
For Fact 1, we have that

Zβ,γ,λ;G =
∑

σ:V →{0,1}

λ|σ−1(0)|
∏

(u,v)∈E

β1{σ(u)=σ(v)=0}γ1{σ(u)=σ(v)=1}

=
∑

σ:V →{0,1}

∏

(u,v)∈E

(βλ2/∆)1{σ(u)=σ(v)=0}(λ1/∆)1{σ(u) 6=σ(v)}γ1{σ(u)=σ(v)=1}

= γ|E|
∑

σ:V →{0,1}

∏

(u,v)∈E

(

βγ(λ′)2/∆
)1{σ(u)=σ(v)=0}(

(λ′)1/∆
)1{σ(u) 6=σ(v)}

= γ|E|
∑

σ:V →{0,1}

(λ′)|σ
−1(0)|

∏

(u,v)∈E

(

βγ
)1{σ(u)=σ(v)=0}

= γ|E|Z0,1,λ′;G,

which again yields the desired fact.
For Fact 2, set x = γx′ and y = γy′. The following equivalence is easy to see by inspection: x, y

satisfy
x

y + γ
= λ

( 1

y + γ

)∆

,
y

x+ γ
= λ

( 1

x+ γ

)∆

(20)

iff x′, y′ satisfy
x′

y′ + 1
= λ′

( 1

y′ + 1

)∆

,
y′

x′ + 1
= λ′

( 1

x′ + 1

)∆

. (21)

Note that (20) and (21) correspond to equation (16) for the 2-spin systems with parameters β = 0, γ, λ
and β = 0, γ = 1, λ′, respectively.

This concludes the proof of the corollary.

For us, the case λ = 1 (which is usually referred to as the case without an external field) will be
especially important. To motivate what follows, the reader should first bear in mind the following two
facts [14, Lemma 21] about the uniqueness regime for antiferromagnetic 2-spin systems. The two cases
correspond to whether or not one of the parameters β, γ is larger than 1. These parameters cannot
both be larger than 1 because of the antiferromagnetic condition βγ < 1.

1. when β and γ satisfy 0 ≤ β < 1 and 0 < γ ≤ 1, non-uniqueness holds on the infinite ∆-regular
tree for all sufficiently large ∆.
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2. when β and γ satisfy 0 ≤ β < 1 and γ > 1 then uniqueness holds on the infinite ∆-regular tree
for all sufficiently large ∆.

In order to prove Theorem 3, we will construct a family of k-uniform hypergraphs so that the 2-
spin model that f induces on these hypergraphs simulates an anti-ferromagnetic binary 2-spin model.
Thus, the constructed hypergraphs will be viewed as binary gadgets. It will be important that the
induced binary 2-spin model is in the non-uniqueness region so that we can prove hardness using
Theorem 20. Our constructions will use the conditional distributions induced by pinning or equality
to simplify the analysis of the gadgets.

The conditional distribution will yield an idealised antiferromagnetic 2-spin system with param-
eters β0 and γ0, say. The delicate issue that arises is that the hypergraphs that we can construct to
simulate these conditional distributions (see Lemmas 15 and 17) are imperfect. There is always a small
error ε. So even if the ideal antiferromagnetic spin-system given by β0 and γ0 is in the non-uniqueness
region, we will have constructed some nearby binary spin-system given by (say) parameters β and γ
and we will have to prove that the spin-system given by β and γ is also an anti-ferromagnetic spin
system in the non-uniqueness region.

In general, the error bound that we will get from Lemma 17 will tell us that for some small constant
ε, |β − β0| < ε and |γ − γ0| < ε. The most difficult case will be when γ0 is close to 1 (including the
case where γ0 is actually 1). In this case, we might have γ slightly larger than 1 and we will thus need
to exclude Item 2 above.

In order to overcome these obstacles, we rely on making the error ε very small, at the expense,
of course, of potentially increasing the degree bound ∆. By a continuity-type of argument, we will
show that for β0 strictly less than 1 and γ0 ≤ 1, for all β, γ which are sufficiently close to β0, γ0, there
exists a ∆ such that the 2-spin system with parameters β, γ is in the non-uniqueness regime of the
infinite ∆-regular tree (which can then be used to derive hardness).4 We will prove a slightly stronger
statement by giving a bound on the required accuracy ε in terms of the degree ∆, which will allow
us to switch the order of quantifiers. Also, our result will be monotone in the degree-bound ∆ (as in
Item 1 above).

Lemma 22. Suppose 0 ≤ β0 < 1. Then, for all sufficiently large ∆, for ε = 1/∆, for all β, γ which
satisfy

max{β0 − ε, 0} ≤ β < β0 + ε and 0 < γ < 1 + ε, (22)

the 2-spin system with parameters β, γ and λ = 1 (no external field) is antiferromagnetic and in the
non-uniqueness regime of the infinite ∆-regular tree.

Proof. By choosing ∆ sufficiently large, for all β, γ which satisfy (22), it clearly holds that βγ < 1 and
thus the corresponding 2-spin system is antiferromagnetic. We next show that for all ∆ sufficiently
large the 2-spin system is also in the non-uniqueness regime of the infinite ∆-regular tree.

We first consider the “soft-constrained” case β0 > 0, where we will assume throughout that
∆ > 1/β0, so that for all β, γ satisfying (22) it holds that βγ > 0 and β < 1. We first recall basic
facts about the uniqueness regime of soft-contrained antiferromagnetic 2-spin systems on the infinite
∆-regular tree for ∆ ≥ 3. The reader is referred to, e.g., [14, Lemma 21] for more details.

We have already seen that non-uniqueness holds on the infinite ∆-regular tree when the system
of equations (15) has multiple positive solutions. We also saw that this corresponds to the case where
|h′(x∗)| > 1 where x∗ is the unique positive solution of x∗ = h(x∗) for a function h(x) defined shortly
before Equation (15). In [14, Lemma 21], it is shown that there exist values λ1 := λ1(β, γ,∆) and
λ2 := λ2(β, γ,∆) such that the condition |h′(x∗)| < 1 holds either when (i)

√
βγ > (∆− 2)/∆, or (ii)√

βγ ≤ (∆ − 2)/∆ and λ < λ1 or λ > λ2. Adapting the proof [14, Proof of Lemma 21, Item 7] it is
not hard to see that the condition |h′(x∗)| > 1 which we are interested in holds iff

√
βγ < (∆− 2)/∆

and λ ∈ (λ1, λ2), where λ1, λ2 are as in [14, Lemma 21, Item 7]. Thus, for β0 > 0, our goal is to show
that, for all sufficiently large ∆, for all β, γ satisfying (22) with ε = 1/∆, it holds that λ1 < 1 < λ2.

4Of course, other approaches may make it possible to directly construct “strictly antiferromagnetic” gadgets,
without relying on Lemma 22.
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To show the inequalities for λ1 and λ2, we next describe explicitly the values of λ1 and λ2. For
fixed β, γ > 0 and ∆ ≥ 3 with

√
βγ < (∆− 2)/∆, the values of λ1, λ2 can be obtained as follows (see

[14, Lemma 22]). To align with the setting in [14], we denote d := ∆−1. When
√
βγ < (d−1)/(d+1),

it is not hard to show that the equation

d(1 − βγ)x

(βx + 1)(x+ γ)
= 1, which is equivalent to βx2 +

(

(d+ 1)βγ − (d− 1)
)

x+ γ = 0, (23)

has two distinct positive solutions x1, x2. Without loss of generality, we may assume that x1 < x2.
For future use, we remark that

x1 =
(

(d− 1)− (d+ 1)βγ −
√

(

(d− 1)− (d+ 1)βγ
)2 − 4βγ

)

/2β

= 2γ/
(

(d− 1)− (d+ 1)βγ +

√

(

(d− 1)− (d+ 1)βγ
)2 − 4βγ

)

, (24)

where the latter expression follows by taking the conjugate expresion. We thus obtain the crude
bounds

x1 <
2γ

T
,

T

2β
< x2, where T := (d− 1)− (d+ 1)βγ. (25)

(The upper bound for x1 is obtained by ignoring the square root and the lower bound for x2 is obtained
from the upper bound for x1 and noticing, from (23), that x1x2 = γ/β.)

The values of λ1, λ2 in terms of x1, x2 are given by

λ1 = λ1(β, γ, d) := x1

(

x1 + γ

βx1 + 1

)d

, λ2 = λ2(β, γ, d) := x2

(

x2 + γ

βx2 + 1

)d

. (26)

For future use, note that (x1+γ)/(βx1+1) < x1+γ. Also, since β < 1 and γ > 0, (x2+γ)/(βx2+
1) > x2/(x2 + 1) > (x2 − 1)/x2. So, using also the bounds for x1 and x2 from (25), the expressions in
(26) yield the bounds

λ1 < x1(x1 + γ)d <
2γd+1

T
(1 + 2/T )d <

6

T
(1 + 2/T )d,

λ2 > x2(1 − 1/x2)
d >

T

2β
(1− 2β/T )d >

T

2
(1− 2/T )d,

(27)

where in the rightmost inequalities we used the bounds γd+1 ≤
(

1 + 1/(d + 1)
)d+1

< 3 for d ≥ 2
(since γ ≤ 1 + ε from (22)) and β < 1 (since β0 < 1 and we can use our initial assumption that d is
sufficiently large and hence ε in (22) small).

For β0 > 0 and β, γ satisfying (22), we have the bound (d + 1)βγ < (d + 2)β0 + 2, so for all
sufficiently large d (depending only on β0), it holds that T > d(1 − β0)/2. Hence, the bounds in (27)
yield that, for all sufficiently large d,

λ1 <
12

d(1 − β0)

(

1 +
4

d(1− β0)

)d

, λ2 >
d(1 − β0)

4

(

1− 4

d(1− β0)

)d

.

Since 1 > β0 > 0, we clearly obtain that for all sufficiently large d (depending only on β0), it holds
that λ1 < 1 < λ2, as wanted. This completes the proof of the lemma for the case β0 > 0.

We next consider the case β0 = 0. For γ > 0, the 2-spin system specified by β = 0, γ and λ = 1

is in the uniqueness regime of the infinite (d + 1)-regular tree iff 1 ≤ λc(γ, d) := γd+1dd

(d−1)d+1 (see, for

example, [14, Proof of Item 5 in Lemma 21]). Since λc(γ, d) is an increasing function of γ, it suffices
to show that λc(1 + ε, d) < 1 for all sufficiently large d ≥ 2. Note that (1 + ε)d+1 < 3 for all d ≥ 2

and, for d ≥ 10, we have dd

(d−1)d+1 ≤ 1/3. It follows that for all d ≥ 10, it holds that λc(1 + ε, d) < 1,

as needed.
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To complete the proof for the case β0 = 0, we need to argue that for all sufficiently large d, for
all (β, γ) ∈ (0, ε) × (0, 1 + ε) with ε = 1/(d + 1), the 2-spin system with parameters β, γ, λ = 1, is
in the non-uniqueness regime of the infinite (d + 1)-regular tree. For d ≥ 10 and this range of the
parameters β, γ we have that βγ > 0 and

√
βγ ≤ (d− 1)/(d+1). Thus it suffices to establish that for

all sufficiently large d it holds that λ1(β, γ, d) < 1 < λ2(β, γ, d), where λ1, λ2 are as in (26). In fact,
we can use the bounds in (27), so we only need to provide a lower bound on T since our derivation
previously was to account for the case β0 > 0. For this range of the parameters β, γ, we have that
(d+ 1)βγ < 2. It follows that T > d− 3. Thus, the bounds in (27) yield

λ1 <
6

d− 3

(

1 +
2

d− 3

)d

, λ2 >
d− 3

2

(

1− 2

d− 3

)d

,

so that λ1 < 1 < λ2 for all sufficiently large d. This concludes the proof of the lemma.

3.2 Proof of Lemma 18

Using Lemmas 17 and 22, we now give the proof of Lemma 18. The idea is to use Lemma 17 to
obtain a hypergraph that realises the conditional distribution with sufficient accuracy ε. The resulting
hypergraph can be used to simulate an antiferromagnetic 2-spin system which, by Lemma 22 and
Corollary 21, will be hard to approximate on ∆-regular graphs (for large ∆). The formal proof is as
follows.

Lemma 18. Let f : {0, 1}k → R+ be symmetric. Let H be a hypergraph, let V be admissible for H
and let x and y be vertices of H. For s1, s2 ∈ {0, 1}, define µs1s2 by

µs1s2 := µ
cond(V)
f ;H (σ(x) = s1, σ(y) = s2).

Suppose that all of the following hold:

µ00 + µ11 > 0, min{µ00, µ11} <
√
µ01µ10, max{µ00, µ11} ≤ √

µ01µ10. (28)

Then, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

Proof. Let H = (V,F). We start by applying Lemma 17 with S = {x, y}. For every ε′ > 0 and every
s1, s2 ∈ {0, 1}, the lemma shows that there is a hypergraph H ′ = (V ′,F ′) with V ⊆ V ′ and F ⊆ F ′

so that
∣

∣µf ;H′(σx = s1, σy = s2)− µ
cond(V)
f ;H (σx = s1, σy = s2)

∣

∣ ≤ ε′. (29)

For s1, s2 ∈ {0, 1}, let µ′
s1s2 = µf ;H′(σx = s1, σy = s2). Thus, (29) becomes

|µ′
s1s2 − µs1s2 | ≤ ε′. (30)

The conditions in (28) guarantee that µ01 and µ10 are positive, so by choosing ε′ sufficiently small,
we can also guarantee that µ′

01 and µ′
10 are positive.

Assume without loss of generality that µ00 ≤ µ11. (Otherwise, we will swap the role of the spins 0
and 1.) Let β0 = µ2

00/µ01µ10 and let γ0 = µ2
11/µ01µ10. By (28), 0 ≤ β0 < 1 and 0 < γ0 ≤ 1.

Next, we “symmetrise” the hypergraph H ′ to obtain a hypergraph H ′′ (an analogous argument
was used previously in the proof of Lemma 12). To do this, take two disjoint copies of H ′ which we
denote by H ′

1, H
′
2. For i = 1, 2, denote by xi, yi the images of the vertices x, y in H ′

i . Now identify
vertices x1 and y2 into a single vertex x, and similarly identify vertices x2 and y1 into a single vertex
y. Let H ′′ be the final hypergraph and let µ′′

s1s2 denote µf ;H′′(σ(x) = s1, σ(y) = s2). Then for all
s1, s2 ∈ {0, 1}, we have

µ′′
s1s2 =

µ′
s1s2µ

′
s2s1

∑

t1,t2∈{0,1} µ
′
t1t2µ

′
t2t1

.

Note that µ′′
01 = µ′′

10 > 0.
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Consider the 2-spin system with parameters β := µ′′
00/µ

′′
01, γ := µ′′

11/µ
′′
01, and λ = 1. Using the

definitions of β0 and γ0 and Equation (30) we find that for every ∆′ ≥ 3, and for every sufficiently
small ε′ > 0, we have

|β − β0| < 1/∆′ and |γ − γ0| < 1/∆′. (31)

By Lemma 22, there is a ∆′
0 ≥ 3 such that if ∆′ ≥ ∆′

0 then the spin system with parameters
β, γ, λ = 1 is in the non-uniqueness regime of the infinite ∆′-regular tree. Thus, by Corollary 21, there
is a c > 1 such that approximating Zβ,γ,1;G within a factor of cn is NP-hard on the class of ∆′-regular
n-vertex graphs G.

Let ∆′′ be the maximum degree of the hypergraph H ′′. We will show the lemma for all ∆ ≥ ∆′∆′′.
Let G = (V,E) be a ∆′-regular graph for which we want to compute Zβ,γ,1;G. We construct the

hypergraph H ′′′ by replacing each edge of G with a copy of the hypergraph H ′′ as follows. For each
edge (u, v) ∈ E, take a (distinct) copy Huv = (Vuv ,Fuv) of the hypergraph H ′′. Denote by xuv, yuv
the images of the vertices x, y in Huv. Now for each u ∈ V identify the vertices xuv1 , . . . , xuv∆′

into a
single vertex u, where v1, . . . , v∆′ denote the neighbors of u in G. It is clear that the hypergraph H ′′′

has maximum degree ∆.
Let V ′′′,F ′′′ denote the vertex and hyperedge sets of H ′′′, respectively. For σ : V → {0, 1}, let

Σ(σ) = {τ : V ′′′ → {0, 1} | τV = σ}. The total contribution to the partition function Zf ;H′′′ from
configurations in Σ(σ) is exactly

∏

(u,v)∈E(µ
′′
σ(u)σ(v)Zf ;H′′). Thus, we obtain

Zf ;H′′′ = (µ′′
01Zf ;H′′)

|E|
∑

σ:V→{0,1}

∏

(u,v)∈E

µ′′
σ(u)σ(v)

µ′′
01

= (µ′′
01Zf ;H′′)|E| Zβ,γ,1;G. (32)

Since µ′′
01Zf ;H′′ is an explicitly computable constant, it follows that an approximation to the partition

function Zf ;H′′′ within a factor of cn yields an approximation to Zβ,γ,1;G within a factor of cn. This
completes the proof since ∆′ and H ′′ are fixed, which guarantees that the number of vertices of H ′′′

is a constant multiple of the number of vertices of G.

4 Proof of Theorem 3

In this section, we give the proof of Theorem 3. Let k ≥ 2 and f : {0, 1}k → {0, 1} be a symmetric
Boolean function with f /∈ EASY(k). Our goal is to show that there exists ∆0 such that for all ∆ ≥ ∆0,
there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

The case k = 2 corresponds to approximating the partition function of unweighted 2-spin systems
in graphs. It is not hard to see that the only symmetric arity-2 Boolean functions with f /∈ EASY(k)
are the function which is 1 if at least one of x1 and x2 is 0 and the function which is 1 if at least one
of x1 and x2 is 1. The partition function in both of these cases corresponds to counting the number
of the independent sets, or equivalently to the 2-spin system with β = 0 and γ = 1 (and no external
field). For this model, it is well known that non-uniqueness holds in the infinite ∆-regular tree when
∆ ≥ 6, which in conjuction with Theorem 21 completes the proof of Theorem 3 in the special case
k = 2 (alternatively, one may use Lemma 22 to argue that non-uniqueness holds for all sufficiently
large ∆).

Thus, for the rest of the proof, we will assume that k ≥ 3. We may further assume that at least

one of w0, . . . , wk is 0 (otherwise f is the constant function f
(k)
one ) and at least one is 1 (otherwise f is

the constant function f
(k)
zero).

By Lemma 13, to prove Theorem 3 we may split the analysis into the following cases

1. f supports both pinning-to-0 and pinning-to-1.

2. f supports 2-equality (but neither pinning-to-0 nor pinning-to-1).

3. f supports pinning-to-0 or pinning-to-1 (but not both). (By swapping 0 and 1, it would be
identical to assume that f supports pinning-to-0 but not pinning-to-1.)
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In each case, the goal is to show that there exists ∆0 such that for all ∆ ≥ ∆0, there exists c > 1 such
that #Hyper2Spin(f,∆, c) is NP-hard.

For example, when f is the function corresponding to weak independent sets, f supports pinning-
to-0 but not pinning-to-1, so f is in Case 3. The same is true when f is the function corresponding
to strong independent sets. On the other hand, if f is the “not-all-equal” function, then it supports
2-equality, but neither pinning-to-0 nor pinning-to-1, so it is in Case 2.

Before delving into the proofs for each of this cases, we give a piece of terminology which will
simplify the exposition. The reader may wish to recall Definition 16. We will typically invoke Lemma 18
for a hypergraph H and an admissible collection of sets V = (V0, V1, V2, . . . , Vr). Rather than formally
defining V in each such application of Lemma 18, it will be convenient (and more instructive) to say,
e.g., pin vertices x1, x2 to 0 (instead of specifying V0 as V0 = {x1, x2}), pin vertices x3, x4 to 1 (instead
of specifying V1 as V1 = {x3, x4}), and force equality among x5, x6, x7 (instead of specifying V2 as
V2 = {x5, x6, x7}).

4.1 Case I

In this section, we assume that the function f supports both pinning-to-0 and pinning-to-1. In this
case, Lemma 18 will always be applied to the hypergraph with a single edge e := {x1, x2, . . . , xk}. For
explicitness and with a slight abuse of notation we will denote by e this hypergraph.

Case Ia Suppose first that exactly one of w0, . . . , wk is equal to 1, say wj = 1. We may assume

that j 6= 0 and j 6= k, otherwise f = f
(k)
allzero or f = f

(k)
allone, respectively. We will consider separately the

cases j = 1 and k > j ≥ 2.
Suppose first that k > j ≥ 2. Pin x1, . . . , xj−2 to 1 (if j = 2, no vertex is pinned to one), pin

xj+2, . . . , xk to 0 (if j + 2 > k, no vertex is pinned to zero) and set x := xj−1, y := xj (since j < k,
note that vertex xj+1 is “free”). We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ wj−2 + wj−1 = 0,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wj−1 + wj = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ wj + wj+1 = 1.

Also, by symmetry, µ
cond(V)
f ;e (σx = 0, σy = 1) = µ

cond(V)
f ;e (σx = 1, σy = 0). (We will use similar symme-

try arguments in the rest of this proof without pointing them out explicitly). So , from Lemma 18,
for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

Suppose next that j = 1. Pin x4, . . . , xk to 0 and set x := x1, y := x2 (since k ≥ 3, note that
vertex x3 is “free”). We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 + w1 = 1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ w1 + w2 = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ w2 + w3 = 0,

so, from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

Case Ib. Suppose next that at least two of w0, . . . , wk are equal to 1. Let i, j be two indices with
i < j such that wi = wj = 1 and wi+1 = . . . = wj−1 = 0. We will first prove that for any two such
indices, it holds that j = i+ 2 (otherwise, we will show that #Hyper2Spin(f,∆, c) is NP-hard). Since

f 6= f
(k)
EQ , we may assume that either i > 0 or j < k. Without loss of generality, we assume that j < k

(otherwise we may swap the spins 0 and 1).
1. If j > i + 2, we consider cases whether wj+1 = 0 or 1. If wj+1 = 0, pin x1, . . . , xj−2 to 1, pin

xj+2, . . . , xk to 0 and set x := xj−1, y := xj (since j < k, note that vertex xj+1 is “free”). We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ wj−2 + wj−1 = 0,
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µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wj−1 + wj = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ wj + wj+1 = 1,

so, from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard. If wj+1 = 1, pin x1, . . . , xj−1 to 1, pin xj+2, . . . , xk to 0 and set x := xj , y := xj+1. We
have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ wj−1 = 0,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wj = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ wj+1 = 1,

so, from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

2. Assume now that j = i + 1. Suppose there exists j′ such that wi = wi+1 = . . . = wj′ = 1 and
wj′+1 = 0. Pin x1, . . . , xj′−1 to 1, pin xj′+2, . . . , xk to 0 and set x := xj′ , y := xj′+1. We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ wj′−1 = 1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wj′ = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ wj′+1 = 0,

so, from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

If such a j′ does not exist, then it holds that wi = wi+1 = . . . = wk = 1, so there exists i′ > 0 such

that wi′ = . . . = wk = 1 and wi′−1 = 0 (otherwise f = f
(k)
one ). Pin xi′+2, . . . , xk to 0, pin x1, . . . , xi′−1

to 1 and set x := xi′ , y := xi′+1. We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ wi′−1 = 0,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wi′ = 1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ wi′+1 = 1,

so again from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c)
is NP-hard.

It follows that for every two indices with i < j such that wi = wj = 1 and wi+1 = . . . = wj−1 = 0,
it holds that j = i + 2. Let i′ be the minimum integer such that wi′ = 1. We have that w0 = w1 =
. . . = wi′−1 = 0. Let j′ be the maximum integer such that wi′ = wi′+2 = . . . = wi′+2j′ = 1. By
assumption, at least two wi’s are equal to 1, so we have that j′ ≥ 1. We also have that wi′+1 =
wi′+3 = . . . = wi′+2j′−1 = 0, wi′+2j′+1 = . . . = wk = 0.

We may assume that either i′ /∈ {0, 1} or i′ + 2j′ /∈ {k − 1, k} (otherwise either f = f
(k)
even or

f = f
(k)
odd). Let us assume first that i′ + 2j′ /∈ {k − 1, k}, i.e., i′ + 2j′ ≤ k − 2, so that wi′+2j′+2 = 0.

Pin x1, . . . , xi′ to 1, set x := xi′+1, y := xi′+2 and pin xi′+2j′+3, . . . , xk to 0. We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wi′+ℓ = 22j
′−1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wi′+1+ℓ = 22j
′−1,

µ
cond(V)
f ;e (σx = σy = 1) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wi′+2+ℓ = 22j
′−1 − 1,
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so from Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

The case i′ /∈ {0, 1} can be covered by an analogous argument, the only difference being that now
we pin x1, . . . , xi′−1 to 1, set x := xi′ , y := xi′+1 and pin xi′+2j′+1, . . . , xk to 0. Other than that, the
previous calculations may be easily modified to obtain

µ
cond(V)
f ;e (σx = σy = 0) ∝ 22j

′−1 − 1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ 22j

′−1,

µ
cond(V)
f ;e (σx = σy = 1) ∝ 22j

′−1,

yielding, by Lemma 18, that for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c)
is NP-hard. This concludes the proof in the case where f supports both pinning-to-0 and pinning-to-1.

4.2 Case II

In Case II we assume that k ≥ 3 and that f is a symmetric arity-k Boolean function that is not in
EASY(k). The function f supports 2-equality but does not support pinning-to-0 or pinning-to-1.

By Lemma 14 we conclude that f is self-dual, meaning that wℓ = wk−ℓ for all ℓ ∈ {0, . . . , k}.
By Lemma 10, we conclude that f supports t-equality for all t ≥ 2. Our goal is to show that for all
sufficiently large ∆, there exists c > 1 such that the approximation problem #Hyper2Spin(f,∆, c) is
NP-hard. We prove this by considering two cases, depending on whether w0 = 0 or w0 = 1. We will
use the following lemma in both cases.

Lemma 23. Let f be an arity-k symmetric Boolean formula that is self-dual. Let H be a hypergraph
with vertex set V and denote by Σ := {σ | σ : V → {0, 1}} the set of all {0, 1} assignments on V .
Let Q : Σ → Σ be the map which maps an assignment σ to its complement σ̄, i.e., σ̄ is defined by
σ̄v = 1− σv for all v ∈ V . Then for every Σ′ ⊆ Σ, it holds that µf ;H(Σ′) = µf ;H(Q(Σ′)).

Proof. For every σ ∈ Σ, self-duality gives that wf ;H(σ) = wf ;H(σ̄). Summing this equality over all
assignments σ in the subset Σ′ yields the result.

We will split the analysis into two cases – the case where w0 = 0 (Section 4.2.2) and the case where
w0 = 1 (Section 4.2.3). Before these two sections, we make a digression into Constraint Satistfaction
Problems (CSP). The digression will introduce and prove a lemma that we will need for the w0 = 0
case. In addition, it will provide some missing detail which we used in the Introduction to explain the
context of existing work.

4.2.1 A digression regarding Constraint Satisfaction Problems

Recall the CSP definitions from Section 1.1. Let CSP(Γ) be the problem of determining whether the
partition function ZΓ,I is non-zero, given an instance I of a CSP in which all constraints are from the
set Γ.

We will use the following CSP terminology. Let f be an arity-k Boolean function. For some
positive integer m, let g be a function g : {0, 1}m → {0, 1}. Suppose that x1, . . . , xm are m Boolean
k-tuples so for i ∈ {1, . . . ,m} we can write xi as a tuple xi = (xi,1, . . . , xi,k) in {0, 1}k. We will
let yg(x1, . . . , xm) = (y1, . . . , yk) be the Boolean k-tuple constructed from g and from x1, . . . , xm as
follows. For each j ∈ {1, . . . , k}, yj is obtained by applying g to x1,j , . . . , xm,j so yj = g(x1,j , . . . , xm,j).
The function g is said to be a polymorphism of f if, for any choice of m tuples x1, . . . , xm satisfying
f(x1) = · · · = f(xm) = 1, we also have f(yg(x1, . . . , xm)) = 1.

We will use the following algebraic formulation of Chen [6, Theorem 3.21] of Schaefer’s famous
dichotomy theorem [18].

Theorem 24. (Schaefer) Let Γ be a finite Boolean constraint language. The problem CSP(Γ) is
polynomial-tractable if one of the following six functions is a polymorphism of every function f ∈ Γ.
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1. g is the unary function g0 with g0(0) = g0(1) = 0.

2. g is the unary function g1 with g1(0) = g1(1) = 1.

3. g is the arity-2 Boolean function AND.

4. g is the arity-2 Boolean function OR.

5. g is the ternary majority function Maj defined by Maj(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

6. g is the ternary minority function Minority defined by Minority(a, b, c) = a⊕ b⊕ c.

Otherwise, CSP(Γ) is NP-complete.

We start by showing that the decision problem CSP({f}) is NP-hard when f is a non-trivial arity-k
symmetric Boolean formula that is self-dual and satisfies w0 = 0. In Section 4.2.2 we will use this fact
and the fact f supports equality to show that #Hyper2Spin(f,∆, c) is NP-hard.

Lemma 25. Suppose k > 2. Let f 6= f
(k)
zero, f

(k)
odd be an arity-k symmetric Boolean formula that is

self-dual and satisfies w0 = 0. Then CSP({f}) is NP-hard.

Proof. We will show that f does not satisfy any of the tractable cases in Schaefer’s dichotomy theorem

(Lemma 24). Since f is not f
(k)
zero, it is not identically zero. Thus, there is a j in the range 1 ≤ j ≤ ⌈k/2⌉

such that wj = 1. We will use this value j in the cases below.
Cases 1 and 2: We first show that g0 is not a polymorphism of f . To see this, let x1 be any k-
tuple with j ones so that f(x1) = 1. Applying the function g0 position-wise, we get yg0(x1, x2) =
(y1, . . . , yk) = (g0(x1,1), . . . , g0(x1,k)) = (0, . . . , 0). But since w0 = 0, f(0, . . . , 0) = 0, contrary to the
fact that f(y1, . . . , yk) would have to be 1 if g0 were a polymorphism of f . Similarly, applying g1
componentwise to x1 we get yg1(x1, x2) = (1, . . . , 1). Since wk = 0 (by self-duality), f(1, . . . , 1) = 0 so
g1 is not a polymorphism of f .
Cases 3 and 4: Instead of doing both cases, we first use self-duality to argue that if OR is a
polymorphism of f then so is AND. For this, suppose that OR is a polymorphism of f . Let x1 and x2

be two tuples with f(x1) = f(x2) = 1. For i ∈ {1, 2}, let ¬xi be the position-wise Boolean complement
of xi. By self-duality, f(¬x1) = f(¬x2) = 1 so f(yOR(¬x1,¬x2)) = 1. But yOR(¬x1,¬x2) is the
position-wise Boolean complement of yAND(x1, x2), so by self-duality, we also have f(yAND(x1, x2)) = 1,
establishing that AND is also a polymorphism of f . Thus, we can complete both cases by just showing
that AND is actually not a polymorphism of f .

Recall the value j ≤ ⌈k/2⌉ from above. We first deal with the simplest case where there is a
j ≤ k/2 with wj = 1. Consider two tuples x1 and x2, each with j ones, chosen so that there is
no position ℓ with x1,ℓ = x2,ℓ = 1. This is possible since j ≤ k/2. Then f(x1) = f(x2) = 1 but
yAND(x1, x2) = (0, . . . , 0). Now w0 = 0, so f(yAND(x1, x2)) = 0 and we have shown that AND is not a
polymorphism of f .

We now deal with the remaining case. We have j = ⌈k/2⌉ and wj = 1 and every ℓ 6= j has wℓ = 0.
In this case we can consider any distinct tuples x1 and x2 with exactly j ones. Then yAND(x1, x2) has
fewer than j ones so f(yAND(x1, x2)) = 0, so AND is not a polymorphism of f .
Case 5: Suppose that Maj is a polymorphism of f . We will derive a contradiction. In order to simplify
the tedious special cases arising from floors and ceilings we write k as k = 6r + 3a + b where r is a
non-negative integer, a ∈ {0, 1} and b ∈ {0, 1, 2}.

First, the fact that Maj is a polymorphism of f implies that for every ℓ ≤ 2r+ a, we have wℓ = 0.
To see this, let x1, x2 and x3 be three k-tuples, each with ℓ ones, such that there is no position
p with more than a single one amongst x1,p, x2,p and x3,p. This is possible since ℓ ≤ k/3. Then
yMaj(x1, x2, x3) = (0, . . . , 0). So if Maj is a polymorphism of f we must have that one of f(x1), f(x2)
and f(x3) is 0 (which means, by symmetry of f , that all of them are 0), so wℓ = 0.

Now consider any integer ℓ in the range 2r + a < ℓ ≤ 3r + a. Specifically, for an integer s in the
range 1 ≤ s ≤ r, let ℓ = s+2r+ a. Consider three k-tuples x1, x2 and x3, each with ℓ ones, such that
s positions have ones in all three tuples, s positions have ones in tuples x1 and x2, and the remaining
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positions have a one in exactly one tuple. Then yMaj(x1, x2, x3) has 2s ones. Since 2s ≤ 2r, we have
w2s = 0. So if Maj is a polymorphism we must have f(x1) = f(x2) = f(z3) = 0 so wℓ = 0.

So the only possible values of j where we could have wj = 1 satisfy j > 3r + a. By self-duality,
they also satisfy k− j > 3r+ a so 3r+ a+ 1 ≤ j < 3r+ 2a+ b. Since a+ 1 < 2a+ b, the pair (a, b) is
in the set {(0, 2), (1, 1), (1, 2)}. So the three possibilities are

• (a, b) = (0, 2) so k = 6r + 2 is even and the only j with wj = 1 satisfies 3r + 1 ≤ j < 3r + 2 so
j = 3r + 1 = k/2.

• (a, b) = (1, 1) so k = 6r+ 3+ 1 is even and the only j with wj = 1 satisfies 3r + 2 ≤ j < 3r+ 3
so j = 3r + 2 = k/2.

• (a, b) = (1, 2) so k = 6r+3+ 2 is odd and the only j with wj = 1 satisfy 3r+2 ≤ j < 3r+4 so
by self-duality, there exactly two values wj that are non-zero, and these are j = 3r+ 2 = ⌊k/2⌋
and j = 3r + 3 = ⌈k/2⌉.

There must be a j with wj 6= 0 since f is not the constant zero function. We show that in all
three cases Maj is not a polymorphism. We take the first two cases together, so suppose that k is even,
and that there is exactly one positive wj which is wk/2. Since k is even and greater than 2, it is at
least 4. Choose x1 with 1’s in positions 1, . . . , k/2 and x2 with 1’s in positions 2, . . . , k/2 + 1. Choose
x3 with 1’s in positions k/2+1, . . . , k− 1 and 1. Then yMaj(x1, x2, x3) has (k/2)+1 ones (in positions
1, . . . , k/2 + 1) so f(yMaj(x1, x2, x3)) = 0 and Maj is not a polymorphism.

The final case is similar. Suppose that k = 2t + 1 and that there are exactly two positive wj ’s
which are wt and wt+1. Choose x1 with 1’s in positions 1, . . . , t+ 1. Choose x2 with 1’s in positions
1, . . . , t and t+2. Choose x3 with 1’s in positions t+1, . . . , 2t+1. Then yMaj(x1, x2, x3) has t+2 ones
(in positions 1, . . . , t+ 2) so f(yMaj(x1, x2, x3)) = 0 and Maj is not a polymorphism.
Case 6: Suppose that Minority is a polymorphism of f . We will derive some consequences about the
wℓ values which will give us a contradiction.

First, there is no index ℓ such that wℓ = 1 and wℓ−2 = 0. Clearly this is not the case for ℓ = k
since wk = 0. Suppose for contradiction that it is true for some 2 ≤ ℓ < k. Construct tuples x1, x2

and x3 each with ℓ ones, such that the first ℓ − 2 positions have ones in all three tuples, and in each
of the next three positions there is exactly one zero. Any remaining positions are all zero. This is
possible since ℓ+ 1 ≤ k. Then yMinority(x1, x2, x3) has ℓ− 2 ones so if Minority is a polymorphism of f
then f(yMinority(x1, x2, x3)) = 1 so wℓ−2 = 1, contradicting the assumption.

Next, there is no odd index 3 ≤ j ≤ k/2 such that wj = 0 and wj−2 = 1. Suppose for contradiction
that this is true for some j = 2r + 1. Construct tuples x1, x2 and x3 as follows.

• The first r − 1 positions have ones in tuples x1 and x3.

• The next r − 1 positions have ones in tuples x2 and x3.

• The next r positions have ones in tuple x1 only.

• The next r positions have ones in tuple x2 only.

• The next position has a one in tuple x3 only.

• Any remaining positions are all zero.

Each tuple has 2r − 1 = j − 2 ones. The construction is possible since 2(r − 1) + 2r + 1 = 4r − 1 ≤
4r + 2 = 2j ≤ k. Then yMinority(x1, x2, x3) has 2r + 1 = j ones so and if Minority is a polymorphism
of f then f(yMinority(x1, x2, x3)) = 1 so wj = 1, contradicting the assumption.

The first fact rules out the possibility that there is an even index wℓ with wℓ = 1. This is ruled
out because w0 = 0 and we can derive a contradiction by considering the smallest even ℓ such that
wℓ = 1. This also tells us that k is even. This follows because there has to be some j with wj = 1 and
from the above, j has to be odd. But if k is odd then k − j is even, yet self-duality would imply that
wk−j = 1.

So since f is not the trivial all-zero function f
(k)
zero, there is some (odd) j ≤ k/2 with wj = 1. Take

j as large as possible. The first fact tells us that for all odd ℓ < j, wℓ = 1. The second fact tells us
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that for all odd ℓ between j and k/2, wℓ = 1. Thus, all odd ℓ have wℓ = 1. This implies that f = f
(k)
odd,

contrary to the statement of the lemma.

Before returning to our main proof, we present one more lemma that uses the language of polymor-
phisms, and we use this lemma to prove Observation 27, which supports our interpretation of existing
literature in the introduction to this paper.

Lemma 26. Suppose that k ≥ 3. Let f be a symmetric k-ary Boolean function that is not in EASY(k).
Then either the arity-2 Boolean function AND is not a polymorphism of f or the arity-2 Boolean
function OR is not a polymorphism of f (or both).

Proof. We break the analysis into two cases.

Case 1. There is an index j in the range 1 ≤ j ≤ k − 1 such that wj = 1 and wj+1 = 0:
Let x1 have ones in the first j positions (and only in those positions) and let x2 have ones in
positions 2, . . . , j + 1 (only). Then f(x1) = f(x2) = 1. But yOR(x1, x2)) has j + 1 ones so
f(yOR(x1, x2)) = 0 and OR is not a polymorphism of f .

Case 2. There is an index j in the range 0 ≤ j ≤ k − 2 such that wj = 0 and wj+1 = 1:
Let x1 have ones in the first j + 1 positions (and only in those positions) and let x2 have ones
in positions 2, . . . , j + 2 (only). Then f(x1) = f(x2) = 1. But yAND(x1, x2)) has j ones so
f(yAND(x1, x2)) = 0 and AND is not a polymorphism of f .

If neither Case 1 nor Case 2 applies then f must be one of the four functions f
(k)
zero, f

(k)
one , f

(k)
allzero and

f
(k)
allone defined by f

(k)
zero(x1, . . . , xk) = 0, f

(k)
one (x1, . . . , xk) = 1,

f
(k)
allzero(x1, . . . , xk) = 1{x1 = . . . = xk = 0},

and
f
(k)
allone(x1, . . . , xk) = 1{x1 = . . . = xk = 1}.

All four of these functions are in EASY(k).

Observation 27. Suppose that ∆ ≥ 6 and k ≥ 3 and that f is a symmetric k-ary Boolean function
that is not in EASY(k). Then there is no FPRAS for #CSP({f, δ0, δ1}) unless NP = RP.

Proof. Theorem 24 of [11] gives the result unless (i) f is affine (given by a linear equation over GF2),
or (ii) f is in a set of functions called IM-conj. All symmetric affine functions are in EASY(k). IM-conj
is the same as the class IM2 studied in [2, 8]. As described in these works, the Galois correspondence
between Post’s lattice and its dual shows that f is in IM2 if and only if it has both AND and OR as
polymorhisms. Thus, by Lemma 26 this case does not arise.

4.2.2 The case w0 = 0

We now return to our proof. By assumption, k ≥ 3 and f is a symmetric arity-k Boolean function that
is not in EASY(k). Since we are in Case II, the function f supports 2-equality but it does not support
pinning-to-0 or pinning-to-1. By Lemma 14, we know that f is self-dual. We are interested in the case
w0 = 0 and we know from Lemma 25 that a related decision CSP problem is NP-hard. We wish to use
the hardness of the CSP decision problem to show hardness of our bounded-degree counting problem.
We will use the fact that f supports equality to introduce degree bounds and also to move to the more
restricted hypergraph 2-spin model where repeated variables are not allowed. The following technical
lemma is inspired by techniques from [13].

Lemma 28. Suppose k > 2. Let f 6= f
(k)
zero, f

(k)
odd be an arity-k symmetric Boolean formula that is

self-dual and satisfies w0 = 0. Then there is a hypergraph H with Zf ;H > 0 which contains vertices x
and y such that for any configuration σ : V (H) → {0, 1} with wf ;H(σ) > 0, we have σ(x) = σ(y).
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Proof. We first prove that there exists a hypergraph H0 = (V0,F0) such that Zf ;H0
= 0. To see this,

consider the complete k-uniform hypergraph on 2k − 1 vertices, i.e., V0 = {1, . . . , 2k − 1} and F0 is
the set of all k-element subsets of V0. Consider an arbitrary assignment σ : V0 → {0, 1}. Under σ,
there exist k vertices which have the same spin, w.l.o.g. assume that these vertices are 1, . . . , k. Since
w0 = wk = 0 (note that wk = 0 by self-duality), it follows that the hyperedge {1, . . . , k} ∈ F0 is not
satisfied under σ. Since σ was arbitrary, this proves that Zf ;H0

= 0. By removing hyperedges of H0

successively, we obtain a hypergraph H ′ = (V ′,F ′) such that Zf ;H′ = 0 and for every e ∈ F ′, it holds

that Zf ;H′\e > 0. Since f is not the all-zero function f
(k)
zero, we can conclude that H ′ has at least one

hyperedge.
Choose e ∈ F ′ and let S ⊆ e be the set of vertices of e that have non-zero degree in H ′ \ e. By

the minimality of H ′, we have S 6= ∅. Let i = |S|. Denote the vertices in S by v1, . . . , vi and the
vertices in e \ S by vi+1, . . . , vk. Consider i new vertices u1, . . . , ui /∈ V ′ and for each t ∈ {0, . . . , i},
let et = {u1, . . . , ut, vt+1, . . . , vi} ∪ (e \ S). Further, consider the hypergraphs Ht = (Vt,Ft) where
Vt = V ′ ∪ {u1, . . . , ut} and Ft = (F ′ \ {e}) ∪ {et}. Note that e0 = e and ei has no vertices that
are in other hyperedges of H ′. By the minimality of H ′, we can conclude that Zf ;Hi

> 0. Let j
be the smallest integer such that Zf ;Hj

> 0. Then 1 ≤ j ≤ k. Also, for every σ : Vj → {0, 1}
with wf ;Hj

(σ) > 0, it must hold that σ(uj) 6= σ(vj) (otherwise, we would have wf ;Hj−1
(σ|Vj−1

) > 0,
contradicting the fact that Zf ;Hj−1

= 0).
Let H = (Vj ∪ {u′

j},Fj ∪ {e′j}), where e′j = {u1, . . . , uj−1, u
′
j, vj+1, . . . , vi} ∪ (e \ S). As above, we

conclude that Zf ;H > 0. Also, for every σ : Vj ∪ {u′
j} → {0, 1} with wf ;H(σ) > 0 it must hold that

σ(uj) 6= σ(vj) and σ(u′
j) 6= σ(vj), so σ(uj) = σ(u′

j). So the vertices x and y in the statement of the
lemma can be taken to be uj and u′

j.

We will now combine Lemmas 25 and 28 to conclude the following.

Lemma 29. Suppose k > 2. Let f 6= f
(k)
zero, f

(k)
odd be an arity-k symmetric Boolean formula that is

self-dual and satisfies w0 = 0. Then there is a ∆0 such that for every ∆ ≥ ∆0, there exists c > 1 such
that #Hyper2Spin(f,∆, c) is NP-hard.

Proof. From Lemma 28 we know there is a hypergraph H ′′ with Zf ;H′′ > 0 which has vertices x and
y such that for any configuration σ : V (H ′′) → {0, 1} with wf ;H′′ (σ) > 0, we have σ(x) = σ(y).
Let Z0 be the contribution to Zf ;H′′ from configurations with σ(x) = σ(y) = 0 and let Z1 be the
contribution to Zf ;H′′ from configurations with σ(x) = σ(y) = 1. By Lemma 23, we have Z0 = Z1

so, since Z0 + Z1 = Zf ;H′′ , which is positive, both Z0 and Z1 are positive. Let ∆′′ be the maximum
degree of H ′′ and let ∆0 = 2∆′′ + 1.

Let Γ = {f}. We know from Lemma 25 that it is NP-hard to determine whether ZΓ,I = 0 given a
CSP instance I.

Consider a CSP instance I with variable set V and constraint set S. We will show how to
(efficiently) construct a k-uniform hypergraph H ′ with degree at most ∆0 so that ZΓ,I = 0 if and
only if Zf ;H′ = 0. This will imply that determining whether Zf ;H′ = 0 is NP-hard given a k-uniform
hypergraph H ′ with degree at most ∆0. Hence, for every ∆ ≥ ∆0, #Hyper2Spin(f,∆, c) is also
NP-hard.

The construction is straightforward, apart from the notation. For each v ∈ V , let n(v) be the
number of times that variable v is used (taking all of the constraints in S together). Let V ′ = {(v, j) |
v ∈ V, 1 ≤ j ≤ n(v)}. Let S ′ be a set of constraints that is identical to S except that, for each v ∈ V
and 1 ≤ j ≤ n(v), the j’th use of vertex v is replaced with (v, j). Note that the constraints in S ′ use
each variable in V ′ exactly once. Thus, they can be viewed as hyperedges of a k-uniform hypergraph.

To build H ′ we will take the vertices in V ′ and the hyperedges in S ′ but we will add some additional
vertices and hyperedges. In particular, for each v ∈ V and j ∈ {1, . . . , n(v) − 1} we will take a new
copy H ′′

v,j of H ′′. We will identify the vertex x of H ′′
v,j with (v, j) and the vertex y of H ′′

v,j with
(v, j +1). This completes the construction of the hypergraph H ′. Note that the degree of each vertex
of H ′ is at most 2∆′′ + 1 = ∆0. Also, H

′ can be efficiently constructed given I.
Now, by the properties of H ′′, every configuration σ′ : V (H ′) → {0, 1} with wf ;H′(σ) > 0 has

σ((v, j)) = σ((v, j′)) for every v ∈ V and every 1 ≤ j, j′ ≤ n(v). Also, σ′ induces a configuration
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σ : V → {0, 1} by taking σ(v) = σ′(v, 1) = · · · = σ′(v, n(v)). Now note that

Zf ;H′ =
∑

σ:V →{0,1}





∏

(v1,...,vk,f)∈S

f(σ(v1), . . . , σ(vk))





(

∏

v∈V

Z
n(v)−1
σ(v)

)

.

This is identical to the partition function Zf ;I apart from the factors of Z0 and Z1, which are both
positive. We conclude that Zf ;H′ is positive if and only if Zf ;I is positive.

4.2.3 The case w0 = 1

We now consider the case where w0 = 1. We will use the following corollary of Lemma 18 (tailored to
the case where f is self-dual).

Corollary 30. Let f be an arity-k symmetric Boolean formula that is self-dual. Let H be a hypergraph,
let V be admissible for H (with V0 = V1 = ∅) and let x and y be vertices of H. Suppose that

0 < µ
cond(V)
f ;H (σx = σy = 0) < µ

cond(V)
f ;H (σx = 0, σy = 1). (33)

Then there is a ∆0 such that for every ∆ ≥ ∆0, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

Proof. For i, j ∈ {0, 1}, let µij = µ
cond(V)
f ;H (σx = i, σy = j). By Lemma 23, we have µ11 = µ00 and

µ01 = µ10. It follows that condition (28) is equivalent to condition (33), so the corollary follows by
applying Lemma 18.

We use Corollary 30 to show the following lemma.

Lemma 31. Let f : {0, 1}k → {0, 1} be a self-dual symmetric function. Let t1, t2 be integers such that
t1 ≥ 1, t2 ≥ 0, 2t1 + t2 ≤ k. Suppose that

0 < w0 + wt2 + w2t1 + w2t1+t2 < 2(wt1 + wt1+t2). (34)

Then there exists ∆0 such that for every ∆ ≥ ∆0, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.

Proof. We will apply Corollary 30. Let e = {x1, . . . , xk}. Let V force equality on the sets of vertices
{x1, . . . , xt1}, {xt1+1, . . . , x2t1}, {x2t1+1, . . . , x2t1+t2} and, whenever 2t1+t2 < k, on {x2t1+t2+1, . . . , xk}
(see Figure 6). Let t3 := k−2t1−t2 and set x := x1 and y := xt1+1. Note that the condition 2t1+t2 < k
is equivalent to t3 > 0. By the assumptions, we also have that t3 ≥ 0. Now define

Zex
00 = w0 + wt2 + w2t1 + w2t1+t2 ,

Zex
01 = 2(wt1 + wt1+t2).

First, suppose t2 > 0 and t3 > 0. In this case, we have (using self-duality in the first equality in
each line)

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 + wt2 + wt3 + wt2+t3 = w0 + wt2 + w2t1+t2 + w2t1 = Zex

00 ,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wt1 + wt1+t2 + wt1+t3 + wt1+t2+t3 = wt1 + wt1+t2 + wt1+t2 + wt1 = Zex

01 .

It is now immediate that inequality (34) is equivalent to condition (33) in Corollary 30, from which
the result follows.

The proofs for the remaining cases for the values of t2, t3 are completely analogous. If t2 > 0 and
t3 = 0 then w0 = w2t1+t2 and wt2 = w2t1 so we have

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 + wt2 = 1

2Z
ex
00 ,
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x1 xt1 xt1+1 x2t1 x2t1+1 x2t1+t2 x2t1+t2+1 xk
. . . . . . . . . . . .

e

t1 t1 t2 t3

= = = =

Figure 6: The hypergraph used in the proof of Lemma 31. The hypergraph has just one hyperedge e =
{x1, x2, . . . , xk}. We partition the hyperedge into sets of sizes t1, t1, t2, t3 and look at the conditional
distribution where the spins of the vertices in each set are equal.

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wt1 + wt1+t2 = 1

2Z
ex
01 .

If t2 = t3 = 0 then also wt2 = w0 and wt1+t2 = wt1 , so

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 = 1

4Z
ex
00 ,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wt1 = 1

4Z
ex
01 .

Finally, if t2 = 0 and t3 > 0 then

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 + wt3 = w0 + w2t1 = 1

2Z
ex
00 ,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ wt1 + wt1+t3 = 2wt1 = 1

2Z
ex
01 .

Thus, in each of the above cases, the result follows by Corollary 30.

We will also use the following inequality for binomial coefficients (which is slightly stronger than

the well-known log-concavity property
(

n
i−1

)(

n
i+1

)

≤
(

n
i

)2
).

Lemma 32. For all n ≥ i ≥ 2, it holds that

[

1 +

(

n

i

)][

1 +

(

n

i− 2

)]

≤
(

n

i− 1

)2

.

Equality holds iff n = 2, i = 2.

Proof. For i = 2 the inequality becomes n2 − n + 2 ≤ n2 which holds for all n ≥ 2 (equality only if
n = 2). The same argument applies for i = n. Thus, we may assume n − 1 ≥ i ≥ 3. For i = 3 the
inequality becomes

(

1 +
n(n− 1)(n− 2)

6

)

(n+ 1) ≤ n2(n− 1)2

4
⇔ n4 − 2n3 + 5n2 − 16n− 12 ≥ 0.

The latter can easily be verified that it holds strictly for all n ≥ 4. The same argument applies for
i = n− 1. Thus, we may assume n− 2 ≥ i ≥ 4.

For all such values of n, i, the inequality follows by summing

1 +

(

n

i

)

+

(

n

i− 2

)

<
1

i− 1

(

n

i

)(

n

i − 2

)

, (35)
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i

i− 1

(

n

i

)(

n

i− 2

)

<

(

n

i− 1

)2

. (36)

Inequality (36) is equivalent to n− i+1 < n− i+2 which is trivially true. To see (35), we first rewrite
it in the equivalent form

[(

n

i

)

− (i − 1)

] [(

n

i− 2

)

− (i − 1)

]

> i(i− 1),

which follows from the inequalities
(

n
i

)

≥ 2(i + 1) and
(

n
i−2

)

≥ 2(i − 1) (both are special cases of
(

n
j

)

≥ 2(j + 1) which holds for j ≥ 2 and n ≥ j + 2).

We can now do the proof for this case. Recall that k ≥ 3 and that f is a symmetric self-dual
arity-k Boolean function that is not in EASY(k). The function f supports 2-equality but does not
support pinning-to-0 or pinning-to-1. We are assuming that w0 = 1. Our goal is to show that for all
sufficiently large ∆, there exists c > 1 such that the approximation problem #Hyper2Spin(f,∆, c) is
NP-hard.

Let 0 < i ≤ k/2 be the smallest positive index with wi = 1. Clearly, we may assume that such an

index i exists (otherwise, by the self-duality of f , we have f = f
(k)
EQ ).

Claim 33. If there is a positive integer r with ri ≤ k and wri = 0 then, for all sufficiently large ∆,
there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

Proof. Let r be the smallest positive integer with ri ≤ k and wri = 0. Since wi = 1, we have r ≥ 2.
We next check that the conditions of Lemma 31 are satisfied with t1 = i and t2 = (r − 2)i. First, we
clearly have t1 ≥ 1, t2 ≥ 0, 2t1 + t2 = ri ≤ k. Moreover, the left-most inequality in (34) is true since
w0 = 1. Finally, the right-most inequality in (34) also holds, since

wt1 + wt1+t2 = wi + w(r−1)i = 2,

w0 + wt2 + w2t1 + w2t1+t2 = w0 + w(r−2)i + w2i + wri ≤ 3,

where we used that w(r−1)i = 1 and wri = 0 (by the choice of r). Applying Corollary 30 yields the
claim.

Claim 34. If there is a positive integer r < k that is not divisible by i and has wr = 1 then, for all
sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

Proof. Let r be the smallest positive integer that is less than k, is not divisible by i and has wr = 1.
By the choice of i, we have r > i. By self-duality, r is not in {k − i + 1, . . . , k − 1} so r ≤ k − i. We
next check that the conditions of Lemma 31 are satisfied with t1 = i and t2 = r − i. We clearly have
t1 ≥ 1, t2 > 0, 2t1 + t2 = r + i ≤ k. Moreover, the left-most inequality in (34) is true since w0 = 1.
Finally, the right-most inequality in (34) also holds, since

wt1 + wt1+t2 = wi + wr = 2,

w0 + wt2 + w2t1 + w2t1+t2 = w0 + wr−i + w2i + wr+i ≤ 3,

where we used that wr = 1 and wr−i = 0 (by the choice of r). Applying Corollary 30 yields the
claim.

The remaining cases that we have to deal with are now quite constrained, satisfying the following
properties.

• w0 = wk = 1. (We know that this is true because this is the case that we are dealing with in
the current section, Section 4.2.3).

• The positive integers ℓ ∈ {1, . . . , k− 1} with wℓ = 1 are precisely the multiples of i. This follows
from Claims 33 and 34.
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• k is a multiple of i. Suppose instead that k = mi+u for some non-negative integer m and some
integer u ∈ {1, . . . , i−1}. Then wmi = 1 since mi is either 0 (if m = 0) or it is a positive multiple
of i which is less than k. Now k −mi = u so by self-duality wu = 1. But this contradicts the
choice of i.

• i > 2. If i = 1 then f is the all-one function f = f
(k)
one . If i = 2 then k is even since it is a

multiple of i. Then f is the easy function f = f
(k)
even.

• 2i ≤ k. We know that k is a multiple of i, but if k is equal to i, then f is the equality function

f = f
(k)
EQ .

To finish the proof, we consider the hypergraph with a single edge e = {x1, . . . , xk}. Let x be
x2i−1 and let y be x2i. Let V force equality among the vertices in S = {x2i+1, . . . , xk}. Suppose first
that k > 2i (so that |S| ≥ 1). We will use ℓ to denote the number of spin-one vertices in x1, . . . , x2i−1.
Then, since the assignment to vertices in S can be either the 0 or 1 assignment, we get

µ
cond(V)
f ;e (σx = σy = 0) ∝

2i−2
∑

ℓ=0

(

2i− 2

ℓ

)

(wℓ + wℓ+k−2i),

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝

2i−2
∑

ℓ=0

(

2i− 2

ℓ

)

(wℓ+1 + wℓ+k−2i+1).

(37)

But in the range 0 ≤ ℓ ≤ 2i − 2, wℓ is only positive if ℓ ∈ {0, i}. Similarly, by self-duality
wℓ+k−2i = w2i−ℓ, which is only positive if ℓ ∈ {0, i}. Similarly, wℓ+1 is only positive if ℓ = i − 1 and
wℓ+k−2i+1 = w2i−ℓ−1 which is only positive if ℓ = i− 1. So, (37) becomes

µ
cond(V)
f ;e (σx = σy = 0) ∝ 2 + 2

(

2i− 2

i

)

,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ 2

(

2i− 2

i− 1

)

.

If k = 2i then we get the same equations (apart from a factor of 2, which makes no difference).
To finish the argument, we need only show that 1 +

(

2i−2
i

)

<
(

2i−2
i−1

)

, so that Corollary 30 yields
that for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard. To see
that 1 +

(

2i−2
i

)

<
(

2i−2
i−1

)

, let n = 2i− 2. Note that 2 < i < n. Then Lemma 32 gives

[

1 +

(

2i− 2

i

)][

1 +

(

2i− 2

i− 2

)]

<

(

2i− 2

i− 1

)2

.

The desired inequality follows after observing that
(

2i−2
i−2

)

=
(

2i−2
i

)

and simplifying.

4.3 Case III

Throughout this section, we will assume that f supports pinning-to-0 (the case that f supports pinning-
to-1 is analogous by swapping the spins 0 and 1). Our goal is to show that there exists ∆0 such that
for all ∆ ≥ ∆0, there exists c > 1 such that #Hyper2Spin(f,∆, c) is NP-hard.

We have the following analogue of Lemma 12 (tailored to the case where f supports pinning-to-0).

Lemma 35. Assume that f supports pinning-to-0. Let H = (V,F) and let V0 ⊆ V be admissible for

the hypergraph H, i.e., µf ;H(σV0
= 0) > 0. With V = (V0), recall that µ

cond(V)
f ;H (·) = µf ;H(· | σV0

= 0).

1. If there exists a vertex v in H such that µ
cond(V)
f ;H (σv = 1) > µ

cond(V)
f ;H (σv = 0), then f supports

pinning-to-1.

2. If there exists a subset S of V such that µ
cond(V)
f ;H (σS = 1) = µ

cond(V)
f ;H (σS = 0) = 1/2, then f

supports equality.
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Proof. For Item 1, choose ε in the range 0 < ε < |µcond(V)
f ;H (σv = 1) − µ

cond(V)
f ;H (σv = 0)|/2. By

Lemma 17, there exists a hypergraph H ′ with vertex set V ′ ⊇ V , such that for s ∈ {0, 1}, it holds that

|µf ;H′(σv = s)− µ
cond(V)
f ;H (σv = s) ≤ ε.

It follows that µf ;H′ (σv = 1) > µf ;H′(σv = 0), so by Lemma 12, f supports pinning-to-1.
For Item 2, for ε > 0, apply Lemma 17 to conclude that there exists a hypergraph H ′ which

ε-realises |S|-equality. By Lemma 10, we obtain that f supports equality.

We remark here that, as in the analysis for Case I in Section 4.1, rather than formally defining V0,
in each of the subcases which we consider, we will typically say, e.g., pin vertices x1, x2 to 0 instead
of specifying V0 as V0 = {x1, x2}. Also, unless otherwise stated, we will have V = (V0).

Our first application of Lemma 35 is to show that if w0 = 0, then f also supports pinning-to-1. So
assume that w0 = 0. Let i be the smallest index such that wi 6= 0 (if such an index does not exist, then

f = f
(k)
zero), so that 1 ≤ i ≤ k − 1 (if i = k then f = f

(k)
allone). Let e = {x1, x2, . . . , xk}, pin xi+1, . . . , xk

to 0 and set x := x1.

µ
cond(V)
f ;e (σx = 0) ∝

i−1
∑

ℓ=0

(

i− 1

ℓ

)

wℓ = 0, µ
cond(V)
f ;e (σx = 1) ∝

i−1
∑

ℓ=0

(

i− 1

ℓ

)

wℓ+1 = wi = 1.

Thus, if w0 6= 1, by Lemma 35, we obtain that f also supports pinning-to-1, in which case we fall back
in Case I.

Thus for the rest of the proof in this section we will assume that w0 = 1 (otherwise, as we showed
above, we fall back in Case I, where f supports both pinning-to-0 and pinning-to-1). Let i > 0 be the

minimum index i such that wi = 1 (we may assume that such an index exists, otherwise f = f
(k)
allzero).

We consider the cases i = 1 and i ≥ 2 separately.

4.3.1 The case i ≥ 2

The setting of this section is w0 = wi = 1 and w1 = . . . = wi−1 = 0 (and f supports pinning-to-0).

We may assume that k > i (otherwise f = f
(k)
EQ ).

Lemma 36. If k > i ≥ 2, then the function f supports equality.

Proof. We show that f supports i-equality, so by Lemma 10, we obtain that f supports equality.
Let e = {x1, . . . , xk} and pin vertices xi+1, . . . , xk to 0. Denote S := {x1, . . . , xi}. We have

µ
cond(V)
f ;H (σS = 0) ∝ w0 = 1, µ

cond(V)
f ;H (σS = 1) ∝ wi = 1, µ

cond(V)
f ;H (¬σeq

S ) ∝ 0.

It follows that µ
cond(V)
f ;H (σx = 0) = µ

cond(V)
f ;H (σx = 1) = 1/2, so the result follows from Lemma 35.

Case IIIa There exists j > i such that wj = 1.
Let j be the minimum such index. We have the following lemma.

Lemma 37. If j 6= 2i, the function f supports also pinning-to-1.

Proof. Suppose first that j < 2i. Let e = {x1, . . . , xk}, pin xj+1, . . . , xk to zero and set x := x1. We
have:

µ
cond(V)
f ;e (σx = 0) ∝

j−1
∑

ℓ=0

(

j − 1

ℓ

)

wℓ = w0 +

(

j − 1

i

)

wi = 1 +

(

j − 1

i

)

,

µ
cond(V)
f ;e (σx = 1) ∝

j−1
∑

ℓ=0

(

j − 1

ℓ

)

wℓ+1 =

(

j − 1

i− 1

)

wi + wj = 1 +

(

j − 1

i− 1

)

.
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From 2i > j, we have i − 1 ≥ (j − 1)/2, so that µ
cond(V)
f ;e (σx = 1) > µ

cond(V)
f ;e (σx = 0), so Lemma 35

yields that f also supports pinning-to-1.
We next consider the more difficult case j > 2i. Let H be the hypergraph with vertex set

{x1, . . . , xk} ∪ {yi+1, . . . , yk} ∪ {zi+1, . . . , zk}
and hyperedges {eX , eY , eZ} with

eX = {x1, . . . , xj , . . . , xk}, eY = {x1, .., xi, yi+1, . . . , yj, . . . , yk},
eZ = {xi+1, . . . , x2i, zi+1, . . . , zj , . . . , zk}.

We will pin to zero the vertices in V0 := {xj+1, . . . , xk} ∪ {yj+1, . . . , yk} ∪ {zj+1, . . . , zk} (thus, in
the conditional distribution, each of the hyperedges eX , eY , eZ has j vertices). Also, we will force
equality among the sets V2 := {x1, x2, ..., x2i}, V3 := {x2i+1, . . . , xj}, V4 := {yi+1, . . . , yj} and V5 :=
{zi+1, . . . , zj}. Let x := x1.

Consider µ
cond(V)
f ;H (·) = µf ;H(· | σV0

= 1, σeq
V2
, σeq

V3
, σeq

V4
, σeq

V5
). We will show that

µ
cond(V)
f ;H (σx = 1) > µ

cond(V)
f ;H (σx = 0), (38)

so the result will follow by Lemma 35. To see (38), assume first that σx = 0. In the conditional

distribution µ
cond(V)
f ;H (·), it then holds that σV2

= 0. From j > 2i, there is only one way to satisfy
eY , eZ by setting σV4

= σV5
= 0. Further, there are at most two ways to satisfy eX (by setting σV3

to
be 0 and possibly 1, if wj−2i = 1). Thus, the total weight of configurations with σx = 0 is at most
two. On the other hand, if σx = 1 and hence σV2

= 1, from wj = 1, there is at least one way to satisfy
to eX (by setting σV3

= 1). Further, from wi = wj = 1, there are two ways to satisfy each of eY , eZ
(any combination of {σV4

, σV5
} ∈ {0,1} works). Thus, the total weight of configurations with σx = 1

is at least 4. We thus obtain that µ
cond(V)
f ;H (σx = 1) > µ

cond(V)
f ;H (σx = 0), as wanted.

This concludes the proof.

By Lemma 37, we may thus assume that j = 2i (otherwise we fall back into Case I, since f
supports both pinning-to-0 and pinning-to-1). That is, we have w0 = wi = w2i and for j ≤ 2i with
j 6= 0, i, 2i, it holds that wj = 0.

If i > 2, by pinning k− 2i variables to 0, we (approximately) get a non-trivial self-dual constraint
with arity 2i (since w0 = wi = w2i = 1) and hence the proof may be completed analogously to Case
II. In particular, let e = {x1, . . . , xk} and pin x2i+1, . . . , xk to 0. Denote x := x2i−1, y := x2i. Note
that if σ is such that σx = σy = 0, σ has non-zero weight iff exactly 0 or i vertices from x1, . . . , x2i−2

have spin 1 under σ. Similarly, if σ is such that σx = σy = 1, σ has non-zero weight iff exactly i − 2
or 2i− 2 vertices from x1, . . . , x2i−2 have spin 1 under σ. On the other hand, if σ is such that σx = 0
and σy = 1 (or vice versa), σ has non-zero weight iff exactly i− 1 vertices from x1, . . . , x2i−2 have spin

1. It follows that for {s1, s2} ∈ {0, 1}, we have µ
cond(V)
f ;e (σx = s1, σy = s2) ∝ Zs1s2 where

Z00 =

(

2i− 2

0

)

+

(

2i− 2

i

)

, Z11 =

(

2i− 2

i− 2

)

+

(

2i− 2

2i− 2

)

, Z01 = Z10 =

(

2i− 2

i− 1

)

.

Note that Z00 = Z11 and Z00Z11 < Z01Z10 by Lemma 32 (since i > 2), which gives that Z00 = Z11 <
Z01 = Z10. Lemma 18 thus implies that, for all sufficiently large ∆, there exists c > 1 such that
#Hyper2Spin(f,∆, c) is NP-hard.

Thus, it remains to consider the case i = 2, i.e., w0 = w2 = w4 = 1 and w1 = w3 = 0. Let j′ be
the largest integer such that w0 = w2 = . . . = w2j′ = 1 and w1 = . . . = w2j′−1 = 0. We may assume

that 2j′ < k, otherwise f = f
(k)
even.

Assume first w2j′+1 = 1. Let e = {x1, x2, . . . , xk}, pin x2j′+2, . . . , xk to 0 and set x := x1. We
have:

µ
cond(V)
f ;e (σx = 0) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wℓ = 22j
′−1, µ

cond(V)
f ;e (σx = 1) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wℓ+1 = 22j
′−1 + 1.
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By Lemma 35, we obtain that f also supports pinning-to-1, in which case we fall back in Case I.
Thus, we may assume that w2j′+1 = 0. We may further assume that 2j′ + 1 < k, otherwise

f = f
(k)
even. By the choice of j′, it follows that w2j′+2 = 0. As before, let e = {x1, x2, . . . , xk}, pin

x2j′+3, . . . , xk to 0, set x := x1, y := x2. We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wℓ = 22j
′−1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wℓ+1 = 22j
′−1,

µ
cond(V)
f ;e (σx = σy = 1) ∝

2j′
∑

ℓ=0

(

2j′

ℓ

)

wℓ+2 = 22j
′−1 − 1.

Once again, we obtain from Lemma 18 that for all sufficiently large ∆, there exists c > 1 such that
#Hyper2Spin(f,∆, c) is NP-hard.

Case IIIb There does not exist j > i such that wj = 1. Then we have w0 = wi = 1 and wj = 0

for all j 6= 0, i (recall also that i ≥ 2). We may assume that i < k, otherwise f = f
(k)
EQ . We consider

separately the cases i = 2 and i > 2.
Consider first the case i > 2. Let e = {x1, x2, . . . , xk}, pin xi+2, . . . , xk to zero, force equality

between x3, . . . , xi+1 and set x := x1, y := x2. We have:

µ
cond(V)
f ;e (σx = 0, σy = 0) ∝ w0 + wi−1 = 1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ w1 + wi = 1,

µ
cond(V)
f ;e (σx = 1, σy = 1) ∝ w2 + wi+1 = 0.

From Lemma 18, we obtain that for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c)
is NP-hard.

Finally, we consider the case i = 2. We may assume that k ≥ 4, otherwise f = f
(3)
even. Let

e = {x1, x2, . . . , xk}, pin x5, . . . , xk to zero and set x := x1, y := x2 (note that x3, x4 are “free”). We
have:

µ
cond(V)
f ;e (σx = 0, σy = 0) ∝

(

2

0

)

w0 +

(

2

2

)

w2 = 2,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝

(

2

1

)

w2 = 2,

µ
cond(V)
f ;e (σx = 1, σy = 1) ∝

(

2

0

)

w2 = 1.

From Lemma 18, we obtain that for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c)
is NP-hard.

4.3.2 The case i = 1

In this case, we begin with the assumption that w0 = w1 = 1 (and f supports pinning-to-0).
Let j be the minimum index ℓ > 1 such that wℓ = 1. Let e = {x1, x2, . . . , xk}. If j ≥ 3 or such a

j does not exist, pin x3, . . . , xk to 0, and set x := x1, y := x2. We have:

µ
cond(V)
f ;e (σx = σy = 0) ∝ w0 = 1,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝ w1 = 1,
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µ
cond(V)
f ;e (σx = σy = 1) ∝ w2 = 0.

It follows by Lemma 18 that for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c)
is NP-hard.

If j = 2, let j′ be the first index j′ > j such that wj′ = 0. We may assume that j′ exists otherwise

f = f
(k)
one . We have j′ ≥ 3. Let e = {x1, x2, . . . , xk}. Pin xj′+1, . . . , xk to 0, set x := x1, y := x2. We

have:

µ
cond(V)
f ;e (σx = σy = 0) ∝

j′−2
∑

ℓ=0

(

j′ − 2

ℓ

)

wℓ = 2j
′−2,

µ
cond(V)
f ;e (σx = 0, σy = 1) ∝

j′−2
∑

ℓ=0

(

j′ − 2

ℓ

)

wℓ+1 = 2j
′−2,

µ
cond(V)
f ;e (σx = σy = 1) ∝

j′−2
∑

ℓ=0

(

j′ − 2

ℓ

)

wℓ+2 = 2j
′−2 − 1.

From Lemma 18, for all sufficiently large ∆, there exists c > 1 such that #Hyper2Spin(f,∆, c) is
NP-hard.
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