
Mutual Visibility by Luminous Robots

Without Collisions

G.A. Di Lunaa, P. Flocchinib, S. Gan Chaudhuric, F. Polonid, N. Santoroe,
G. Vigliettab

aDipartimento di Ingegneria Informatica, Automatica e Gestionale, Università degli
Studi di Roma “La Sapienza”, Italy

bSchool of Electrical Engineering and Computer Science, University of Ottawa, Canada
cDepartment of Information Technology, Jadavpur University, Kolkata, India

dDipartimento di Informatica, Università di Pisa, Italy
eSchool of Computer Science, Carleton University, Ottawa, Canada

Abstract

Consider a finite set of identical computational entities that can move freely in the Eu-
clidean plane operating in Look-Compute-Move cycles. Let p(t) denote the location of
entity p at time t; entity p can see entity q at time t if at that time no other entity lies
on the line segment p(t)q(t). We consider the basic problem called Mutual Visibility: start-
ing from arbitrary distinct locations, within finite time the entities must reach, without
collisions, a configuration where they all see each other. This problem must be solved by
each entity autonomously executing the same algorithm. We study this problem in the
luminous robots model; in this generalization of the standard model of oblivious robots,
each entity, called robot, has an externally visible persistent light that can assume colors
from a fixed set of size c. The case where the number of colors is less than 2 (i.e., c 6 1)
corresponds to the classical model without lights: indeed, having lights of one possible
color is equivalent to having no lights at all.

The extensive literature on computability in such a model, mostly for c 6 1 and
recently for c > 1, has never considered the problem of Mutual Visibility because it has
always assumed that three collinear robots are mutually visible.

In this paper we remove this assumption, and investigate under what conditions lumi-
nous robots can solve Mutual Visibility without collisions, and at what cost, in terms of the
number of colors used by the robots. We establish a spectrum of results, depending on the
power of the adversary (i.e., the scheduler controlling the robots’ actions), on the number
c of colors, and on the a-priori knowledge the robots have about the system. Among such

Email addresses: diluna@dis.uniroma1.it (G.A. Di Luna),
flocchin@site.uottawa.ca (P. Flocchini), srutiganc@it.jusl.ac.in (S. Gan
Chaudhuri), fpoloni@di.unipi.it (F. Poloni), santoro@scs.carleton.ca
(N. Santoro), viglietta@gmail.com (G. Viglietta)

October 11, 2018

ar
X

iv
:1

50
3.

04
34

7v
2

 [
cs

.D
C

]
 1

 J
ul

 2
01

5

results, we prove that Mutual Visibility can always be solved without collisions in SSynch
with c = 2 colors and in ASynch with c = 3 colors. If an adversary can interrupt and
stop a robot before it reaches its computed destination, Mutual Visibility is still solvable
without collisions in SSynch with c = 3 colors, and, if the robots agree on the direction
of one axis, also in ASynch. All the results are obtained constructively by means of novel
protocols.

As a byproduct of our solutions, we provide the first obstructed-visibility solutions

to two classical problems for oblivious robots: collision-less convergence to a point (also

called near-gathering) and circle formation.

1. Introduction

1.1. Computational Framework

Consider a distributed system composed of a team of mobile computa-
tional entities, called robots, moving and operating in the Euclidean plane
R2, initially each at a distinct point. Each robot can move freely in the
plane, and operates in Look-Compute-Move cycles. During a cycle, a robot
determines the position (in its own coordinate system) of the other robots
(Look); it executes a protocol (which is deterministic and it is the same for all
robots) to determine a destination point (Compute); and moves towards the
computed destination (Move). After each cycle, a robot may be inactive for
an arbitrary but finite amount of time. The robots are anonymous, without a
central control, and oblivious (i.e., at the beginning of a cycle, a robot has no
memory of any observation or computation performed in its previous cycles).
What is computable by such entities has been the object of extensive research
within distributed computing; e.g., see [2, 7, 8, 14, 21, 25, 27, 29, 34, 35, 37];
for a recent review see [23].

Vision and mobility provide the robots with stigmergy, enabling the robots
to communicate and coordinate their actions by moving and sensing their
relative positions; they are otherwise assumed to lack any means of explicit
direct communication. This restriction could enable deployment in extremely
harsh environments where communication is impossible or can be jammed.
Nevertheless, in many other situations it is possible to assume the availability
of some sort of direct communication. The theoretical interest is obviously
for weak communication capabilities.

A model employing a weak explicit communication mechanism is that of
robots with lights, or luminous robots, initially suggested by Peleg [33]. In
this model, each robot is provided with a local externally-visible light, which

2

can assume colors from a fixed set. The robots explicitly communicate with
each other using these lights. The lights are persistent (i.e., the color is not
erased at the end of a cycle), but otherwise the robots are oblivious [12, 13,
21, 26, 33, 36]. Notice that a light with only one possible color is the same
as no light; hence the luminous robots model generalizes the classical one.

Both in the classical model and in that with lights, depending on the
assumptions on the activation schedule and the duration of the cycles, dif-
ferent settings are identified. In the synchronous setting, the robots operate
in rounds, and all the robots that are activated in a round perform their
cycle in perfect synchrony. In this case, the system is fully synchronous (or
FSynch) if all robots are activated at all rounds, and it is semi-synchronous
(or SSynch) otherwise. In the asynchronous setting (or ASynch), there is
no common notion of time, and no assumption is made on the timing and
duration of each computation and movement, other than that it is finite.
(For the SSynch and ASynch models there are bland fairness assumptions
that prevent robots from remaining inactive forever, which are discussed in
Section 2.1).

The choice of when a robot is activated (in SSynch) and the duration
of an activity within a cycle (in ASynch) is made under the control of
an adversary, or scheduler. Similarly, the choices of the initial location of
each robot and of its private coordinate system are made under adversarial
conditions.

A crucial distinction is whether or not the adversary has also the power
to stop a moving robot before it reaches its destination. If so, the moves
are said to be non-rigid. The only constraint is that, if interrupted before
reaching its destination, the robot moves at least a minimum distance δ > 0
(otherwise, the adversary would be able to prevent robots from reaching any
destination, in any amount of cycles). If the adversary does not have such a
power, the moves are said to be rigid. The model with rigid moves is referred
to as Rigid, and the other one is called Non-Rigid.

In the rest of the paper, with abuse of terminology, we will often refer to
FSynch, SSynch, or ASynch robots or schedulers (as opposed to systems),
and to Rigid or Non-Rigid robots or schedulers (as opposed to models).

1.2. Obstructed Visibility

The classical model and the more recent model of robots with lights share
a common assumption: that three or more collinear robots are mutually
visible. It can be easily argued against such an assumption, and for the

3

importance of investigating computability when visibility is obstructed by
the presence of other robots: that is, if two robots r and s are located at r(t)
and s(t) at time t, they can see each other if and only if no other robot lies
on the segment r(t)s(t) at that time.

Very little is known on computing with obstructed visibility. In fact, the
few studies on obstructed visibility have been carried out in other models:
the model of robots in the one-dimensional space R [9]; and the so-called fat
robots model, where robots are not geometric points but occupy unit disks,
and collisions are allowed and can be used as an explicit computational tool
(e.g., [1, 5, 11]). In our model, collisions can create unbreakable symmetries:
since robots are oblivious and anonymous and execute the same protocol, if
r(t) = s(t) (a collision), then the activation adversary can force r(t′) = s(t′)
for all t′ > t if the two robots do not have lights or their lights have the
same color. Thus, unless this is the intended outcome, collision avoidance is
always a requirement for all algorithms in the model considered here.

In this paper we focus on luminous robots in the presence of obstructed
visibility, and investigate computing in such a setting. Clearly, obstructed
visibility increases the difficulty of solving problems without the use of addi-
tional assumptions. For example, with unobstructed visibility, every active
robot can determine the total number n of robots at each activity cycle.
With obstructed visibility, unless a robot has a-priori knowledge of n and
this knowledge is persistently stored, the robot might be unable to decide if
it sees all the robots; hence it might be unable to determine the value n.

The main problem we investigate, called Mutual Visibility, is perhaps the
most basic in a situation of obstructed visibility: starting from arbitrary
distinct positions in the plane, within finite time the robots must reach a
configuration in which they are in distinct locations, they can all see each
other, and they no longer move. This problem is clearly at the basis of
any subsequent task requiring complete visibility. Notice that this problem
does not exist under unobstructed visibility, and has never been investigated
before.

Among the configurations that achieve mutual visibility, a special class
is that where all robots are in a strictly convex position; within that class,
of particular interest are those where the robots are on the perimeter of a
circle, possibly equally spaced. The problems of forming such configura-
tions (respectively called Convex Formation and Circle Formation) have been
extensively studied both directly (e.g., [15, 17, 18, 24]) and as part of the
more general Pattern Formation problem (e.g., [25, 27, 34, 35, 37]). Unfortu-

4

nately, none of these investigations consider obstructed visibility, and those
algorithms do not work in the setting considered here.

Note that a requirement of the Mutual Visibility problem is that robots
stop moving after they have reached a configuration in which they all see
each other. To this end, we will grant robots the ability to perform a special
operation called termination, after which they can no longer be activated by
the scheduler. The termination operation is especially useful in practice when
the robots have to perform several tasks in succession. Of course, even if this
operation is not directly available, it can still be simulated via the addition of
an extra color, which can be used by a robot to indicate (to the other robots,
as well as to itself) that it has terminated. Moreover, if the termination
operation is removed from the algorithms presented in this paper (and some
straightforward adjustments are made, which do not require extra colors),
then a weaker form of the Mutual Visibility problem is solved, in which the
robots get to permanently see each other, but they never stop moving. That
is, all obstructions are permanently removed, but the termination condition
is not met. In some cases, removing the termination operation will even allow
us to successfully apply our algorithms to different problems, such as Circle
Formation and Near Gathering, as discussed in Section 6.

1.3. Main Contributions

In this paper we investigate under what conditions luminous robots can
solve Mutual Visibility and at what cost (i.e., with how many colors). We
establish a spectrum of results, depending on the power of the adversary, on
the number c of colors, and on the a-priori knowledge the robots have about
the systems.

We first consider the case when the adversary can choose the activa-
tion schedule (in SSynch) and the duration of each robot’s operations (in
ASynch), but cannot interrupt the movements of the robots; that is, move-
ments are rigid. In this case, we show the following.

Theorem 1.1. Mutual Visibility is solvable without collisions by Rigid robots

(a) with no colors in SSynch, if the robots know their number, n;

(b) with 2 colors in SSynch, always;

(c) with 3 colors in ASynch, always.

5

We then consider the case when the adversary has also the power to
interrupt the movements of the robots; that is, movements are non-rigid.
The only restriction is that there exists a constant absolute length δ > 0 such
that, even if a robot’s move is interrupted before it reaches the destination,
it travels at least a length δ towards it (otherwise it many never be able to
reach any destination). In the case of non-rigid movements, we prove the
following.

Theorem 1.2. Mutual Visibility is solvable without collisions by Non-Rigid
robots

(a) with no colors in SSynch, if the robots know δ and their number, n;

(b) with 2 colors in SSynch, if the robots know δ;

(c) with 3 colors in SSynch, always;

(d) with 3 colors in ASynch, if the robots agree on the direction of one
coordinate axis.

All these results are established constructively. We present and analyze
two protocols, Algorithm 1 (Shrink) and Algorithm 2 (Contain), whose goal is
to allow the robots to position themselves at the vertices of a convex polygon,
solving Convex Formation, and thus Mutual Visibility. These two algorithms
are based on different strategies, and are tailored for different situations.
Protocol Shrink uses two colors and requires rigid movements, while protocol
Contain uses more colors but operates also with non-rigid movements. We
prove their correctness for SSynch robots (Sections 3 and 4). We then
show how, directly or with simple expansions and modifications of these two
algorithms, all the claimed results follow (Sections 5 and 6). Finally, we
propose some open problems (Section 7).

Let us point out that, to prove the correctness of Shrink, we solve a
seemingly unrelated problem, Communicating Vessels, which is interesting in
its own right.

As a byproduct of our solutions, we provide the first obstructed-visibility
solution to a classical problem for oblivious robots: collision-less convergence
to a point (Near-Gathering) (see [23, 32]), Indeed, if the robots continue to
follow algorithm Shrink once they reach full visibility, the convex hull of
their positions converges to a point, and the robots approach it without
colliding, thus solving Near-Gathering (Section 6.3). This algorithm has an

6

interesting fault-tolerance property: if a single robot is faulty and becomes
unable to move, the robots will still solve Near-Gathering, converging to the
faulty robot’s location (Section 6.6).

Additionally, both protocols can be modified so that the robots can po-
sition themselves on the perimeter of a circle, thus providing an obstructed-
visibility solution to the classical problem of Circle Formation. The problem
can be solved with 2 colors in Rigid SSynch, with 3 colors in Non-Rigid
SSynch, and with 4 colors in Rigid ASynch, and Non-Rigid ASynch
with agreement on one axis (Section 6.2).

2. Model and Definitions

2.1. Modeling Robots

We mostly follow the terminology and definitions of the standard model
of oblivious mobile robots (e.g., see [23]).

ByR = {r1, r2, · · · , rn} we denote a set of oblivious mobile computational
entities, called robots, operating in the Euclidean plane, and initially placed at
distinct points. Each robot is provided with its own local coordinate system
centered in itself, and its own notion of unit distance and handedness. We
denote by r(t) ∈ R2 the position occupied by robot r ∈ R at time t; these
positions are expressed here in a global coordinate system, which is used for
description purposes, but is unknown to the robots. Two robots r and s are
said to collide at time t if r(t) = s(t). A robot r can see another robot s
(equivalently, s is visible to r) at time t if and only if no other robot lies in
the segment r(t)s(t) at that time.

The robots are luminous: each robot r has a persistent state variable,
called light, which may assume any value in a finite set C of colors. The color
of r at time t can be seen by all robots that can see r at that time.

The robots are autonomous (i.e., without any external control), anony-
mous (i.e., without internal identifiers), indistinguishable (i.e., without ex-
ternal markings), without any direct means of communication, other than
their lights. At any time, robots can be performing a variety of operations,
but initially (i.e., at time t = 0) they are all still and idle.

When activated, a robot performs a Look-Compute-Move sequence of
operations: it first obtains a snapshot of the positions, expressed in its local
coordinate system, of all visible robots, along with their respective colors
(Look phase); using the last obtained snapshot as an input, the robot executes
a deterministic algorithm, which is the same for all robots, to compute a

7

destination point x ∈ R2 (expressed in its local coordinate system) and a
color c ∈ C, and it sets its light to c (Compute phase); finally, it moves
towards x (Move phase). It then starts a new cycle, whenever the scheduler
(which is an abstract entity controlling to some extent the behavior of the
robots) decides to activate it again.

In the Compute phase, a robot may also decide to terminate its execution.
When a robot has terminated, it remains still forever, and its light remains
the same color that it was at the moment of termination.

The robots are oblivious in the sense that, when a robot transitions from
one cycle to the next, all its local memory, except for the light, is reset. In
other words, a robot has no memory of past computations and snapshots,
except for the light.

With regards to the activation and timing of the robots, there are two
basic settings: semi-synchronous (SSynch) and asynchronous (ASynch).
In SSynch, the time is discrete; at each time instant t ∈ N (called a round
or a turn) a subset of the robots is activated by the scheduler and performs
a whole Look-Compute-Move cycle atomically and instantly. At any given
round, any subset of robots may be activated, from the empty set to all of
R. In particular, if all robots are activated at every round, the setting is
called fully synchronous (FSynch). There is a bland fairness constraint on
the choices that the scheduler can make: every robot must be activated in-
finitely many times (unless it terminates). In ASynch, there is no common
notion of time: each robot executes its cycles independently, the Look op-
eration is instantaneous, but the Compute and Move operation can take an
unpredictable (but finite) amount of time, unknown to the robot. In a Move
phase there are no constraints on the speed of a robot, as long as it always
moves directly towards its destination point at non-negative speed.

The scheduler that controls the activations (in SSynch) and the dura-
tions of the operations (in ASynch) can be thought of as an adversary,
whose purpose is to prevent the robots from doing their task. Other than
acting as a scheduler, the adversary also determines the initial position of
the robots and their local coordinate systems; in particular, the coordinate
system of a robot might not be preserved over time and might be modified
by the adversary between one cycle and the next. In the simplest model, the
robots do not necessarily agree on the orientation of the coordinate axes, on
the unit distance, and on the clockwise direction (i.e., the handedness of the
system). However, in Section 5.2, we will discuss the special model in which
all the robots agree on the direction of one axis, and the adversary is unable

8

to change it.
The adversary might or might not have the power to interrupt the move-

ment of a robot before it reaches its destination in the Move operation. If it
does, the system is said to be Non-Rigid. The only constraint on the ad-
versary is that there exists a constant δ > 0 such that, if interrupted before
reaching its destination, a robot moves at least a distance δ. The value of δ is
decided by the scheduler once and for all, and typically it is not known by the
robots, which therefore cannot use it in their computations (we will discuss
the scenario in which the robots know the value of δ in Section 6.4). Notice
that, without this constraint, the adversary would be able to prevent a robot
from reaching any given destination in a finite number of turns. If move-
ments are not under the control of the adversary, and every robot reaches its
destination at every turn, the system is said to be Rigid.

2.2. Mutual Visibility and Related Problems

The Mutual Visibility problem requires n robots to form a configuration in
which they occupy n distinct locations, and no three of them are collinear.
Subsequently, the robots have to terminate. A protocol P is a solution of
Mutual Visibility if it allows the robots to solve Mutual Visibility starting from
any initial configuration in which their positions are all distinct, and regard-
less of the decisions of the adversary (including the activation schedule, the
local coordinate systems of the robots, and the value of δ).

Let us stress that, since robots are oblivious and anonymous and execute
the same protocol, if r(t) = s(t) (a collision), then the adversary can force
r(t′) = s(t′) for all t′ > t if the two robots do not have lights or their lights
have the same color. Hence the two robots will never again occupy distinct
locations, and will no longer be able to solve Mutual Visibility. Thus, collision
avoidance of robots with the same color is a requirement for any solution
protocol.

Among the configurations that solve the Mutual Visibility problem, a spe-
cial class is that in which all robots are in a strictly convex position. Within
this class, of particular interest are the configurations in which the robots
lie on the perimeter of a circle. Among these, there are the notable con-
figurations in which the robots occupy the vertices of a regular n-gon. The
problems of forming such configurations are called Convex Formation, Circle
Formation, and Uniform Circle Formation, respectively.

9

2.3. Geometric Notions and Observations

A finite set of points S ⊂ R2 is said to be convex if all the points of S lie
on the perimeter of the convex hull of S. If a point p of a convex set S lies
in the relative interior of an edge of the convex hull of S, then p is said to
be a degenerate vertex of the convex hull. If none of the points of a convex
set S is a degenerate vertex of the convex hull, then S is said to be a strictly
convex set. On the other hand, we will say that a polygon is degenerate if its
area is zero. These two notions of degeneracy are used in different contexts
(one refers to vertices, the other refers to whole polygons), hence they can
hardly be confused.

Let H(t) denote the convex hull of {r1(t), r2(t), · · · , rn(t)} at time t. The
robots lying on its boundary are called external robots at time t, while the
ones lying in its interior are the internal robots at time t.

Observe that a robot may not know where the convex hull’s vertices are
located, because its view may be obstructed by other robots. However, it
can easily determine whether it is an external or an internal robot. In fact,
a robot r is external at time t if and only if there is a half-plane bounded by
a straight line through r(t) whose interior contains no robots at time t. In
other words, r is external if and only if it lies on the boundary of the convex
hull of the robots that it can currently see. Note also that the neighbors of
an external robot on its visible convex hull are indeed its neighbors on the
actual convex hull. If, in addition, r lies at a non-degenerate vertex of the
(visible) convex hull, it is said to be a vertex robot.

Moreover, a robot is able to tell if H is a line segment, i.e., if all the
robots are collinear. In particular, if a robot can see only one other robot,
it understands that it is an endpoint robot. Conversely, non-endpoint robots
can always see more than one other robot.

The points of R2 are treated like vectors, and as such they can be added,
subtracted, multiplied by scalars, etc. The dot product between vectors a
and b will be indicated by the expression a • b.

3. Solving Mutual Visibility for Rigid SSynch Robots

In this section we consider the Mutual Visibility problem in the Rigid
SSynch setting. We present and analyze a protocol, Algorithm 1 (Shrink),
and we prove it solves Mutual Visibility in such a setting using only two colors.

10

3.1. Description of Algorithm 1

The main idea of Algorithm 1 is to make only the external robots move,
so as to shrink the convex hull. When a former internal robot becomes
external, it starts moving as well. Eventually, all the robots reach a strictly
convex configuration, and at this point they all see each other and they can
terminate.

If an active robot ri, located at p, realizes that it is not a vertex robot,
it does not move. Otherwise, it locates its clockwise and counterclockwise
neighbors (in its own coordinate system) on the convex hull’s boundary, say
located at a and b, which are necessarily visible. Then, ri attempts to move
somewhere in the triangle 4pab, in such a way to shrink the convex hull, and
possibly make one more robot become a vertex robot. To avoid collisions
with other robots that may be moving at the same time, ri’s movements
are restricted to a smaller triangle, shaded in gray in Figure 1. Moreover,
to avoid becoming a non-vertex robot, ri does not cross any line parallel
to ab that passes through another robot, and it carefully positions itself on
the closest of such lines, as shown in Figure 1(a). In particular, if no such
line intersects the gray area, ri makes a default move, and it moves halfway
toward the midpoint of the segment ab, as indicated in Figure 1(b).

In order to recognize that the Mutual Visibility problem has been solved,
and to correctly terminate, the robots carry visible lights of two possible
colors: namely, C = {Off ,Vertex}. All robots’ lights are initially set to Off.
If an active robot realizes that it is a vertex of the convex hull, it sets its
light to the other value, Vertex. Hence, when a robot sees only robots whose
lights are set to Vertex, it knows it can see all the robots in the swarm, and
hence it terminates.

The above rules are sufficient to solve the Mutual Visibility problem in
most cases, but there are some exceptions. It is easy to see that there are
configurations in which Mutual Visibility is never solved until an internal robot
moves, regardless of the algorithm employed. For instance, suppose that the
configuration is centrally symmetric, with one robot lying at the center. Let
the local coordinate systems of any two symmetric robots be oriented sym-
metrically and have the same unit distance, and assume that the scheduler
chooses to activate all robots at every turn. Then, every two symmetric
robots have symmetric views, and therefore they move symmetrically. If the
central robot—which is an internal robot—never moves, then the configura-
tion remains centrally symmetric, and the central robot always obstructs all

11

Algorithm 1: Shrink. Solving the Mutual Visibility problem for Rigid
SSynch robots with 2-colored lights

Input: V : set of robots visible to me (myself included) whose
positions are expressed in a coordinate system centered at my
location.

1 r∗ ←− myself
2 P ←− {r.position | r ∈ V}
3 H ←− convex hull of P
4 if |V| = 3 and H is a line segment then
5 Move orthogonally to H by any positive amount

6 else
7 if r∗.position is a vertex of H then
8 r∗.light ←− Vertex
9 if ∀r ∈ V , r.light = Vertex then Terminate else if |V| > 2

then
10 a←− position of my ccw neighbor on the boundary of H
11 b←− position of my cw neighbor on the boundary of H
12 u←− a/2
13 γ ←− 1/2
14 foreach r ∈ V \ {r∗} do
15 Let α, β be such that r.position = α · a+ β · b
16 if α + β < γ then
17 u←− r.position
18 γ ←− α + β

19 else if α + β = γ and r.position is closer to b than u
then u←− r.position

20 v ←− γ · b
21 Move to (u+ v)/2

22 else if ∀r ∈ V \ {r∗}, r.light = Vertex and r∗.position lies in the
interior of H then Move to the midpoint of any edge of H

12

p

a b

u
v

c

(a) Making c become a vertex robot, without moving past it

p

a b

vu

(b) Default move

Figure 1: Move of an external robot, in two different cases (robots’ locations are indicated
by small circles)

pairs of symmetric robots. Hence Mutual Visibility is never solved, no matter
what algorithm is executed.

It turns out that our rules can be fixed in a simple way to resolve also
this special case: whenever an internal robot sees only robots whose lights
are set to Vertex (except its own light), it moves to the midpoint of any edge
of the convex hull.

Finally, the configurations in which all the robots are collinear need spe-
cial handling. In this case it is impossible to solve Mutual Visibility unless
some robots leave the current convex hull. Suppose that a robot r realizes
that all robots lie on a line, and that it is not an endpoint (i.e., r can see
only two other robots, which are collinear with it). Then, r moves by any
positive amount, orthogonally to the line formed by the other two visible
robots. When this is done, the previous rules apply.

13

3.2. Correctness of Algorithm 1

3.2.1. Invariants

In the following we discuss some basic invariants, which will serve to prove
the correctness of Algorithm 1.

Suppose that, for some t ∈ N, H(t) is not a line segment: the situation is
illustrated in Figure 2. If a vertex robot is activated, it is bound to remain in
the corresponding gray triangle, called movement region of the robot. More
precisely, the movement region consists of the interior of the gray triangle,
plus the vertex where the robot currently is, plus the interior of the edge that
is opposite to the robot. Hence all movement regions are disjoint. Moreover,
if there is only one internal robot and it sees only robots whose light is set
to Vertex, it moves to the midpoint of an edge of H(t), which does not lie in
any movement region. It follows that, no matter which robots are activated
at time t, they will not collide at time t+ 1. Also, H(t+ 1) ⊆ H(t).

Figure 2: Combined motion of all vertex robots

Recall that a robot r ∈ R is a vertex robot if an only if it lies at the vertex
of a reflex angle whose interior does not contain any robots. Now, referring
to Figure 1, it is clear that a vertex robot will remain a vertex robot after
a move. Additionally, if no new vertex robots are acquired between time t
and t + 1, then the ordering of the vertex robots around the convex hull is
preserved from time t to time t + 1. This easily follows from the fact that
every robot remains in its own movement region (cf. Figure 2).

14

3.2.2. Convergence

We seek to prove that Algorithm 1 makes every robot eventually become
a vertex robot. As it will be apparent in the proof of Theorem 3.1, the
crux of the problem is the situation in which only default moves are made
(cf. Figure 1(b)). We first prove that, if all robots perform only default
moves, then they all converge to the same point (see Lemma 3.3 below).

Since we are assuming that only the vertex robots move, and that their
movements depend only on the positions of other visible vertex robots, we
may as well assume that all robots are vertex robots, and that their indices
follow their order around the convex hull. Indeed, by the invariants observed
in Section 3.2.1, all robots will remain vertex robots throughout the execu-
tion, and their ordering around the convex hull will remain the same. So, let
ri−1, ri, ri+1 be three vertex robots, which appear on the boundary of H(t)
consecutively in this order. Let ri perform a default move at time t. Then,
the new position of ri is a convex combination of the current positions of
these three robots, and precisely

ri(t+ 1) =
ri−1(t)

4
+
ri(t)

2
+
ri+1(t)

4
. (1)

In general, as different sets of vertex robots are activated in several rounds,
and nothing but default moves are made, the new location of each robot
is always a convex combination of the original positions of all the robots,
obtained by applying (1) to the set of active robots, at every round. In
formulas,

ri(t0 + t) =
n∑

j=1

αi,j,t · rj(t0),

with αi,j,t > 0 and
∑n

j=1 αi,j,t = 1, assuming that the robots start making
only default moves at time t0. Let I = {1, 2, · · · , n}. We fix j ∈ I, and we
let wi,t = αi,j,t − αi−1,j,t, where indices are taken modulo n. We claim that

lim
t→∞

w1,t = lim
t→∞

w2,t = · · · = lim
t→∞

wn,t = 0. (2)

If such a claim is true (for all j ∈ I), it implies that the robots get arbitrarily
close to each other, as t grows. This, paired with the fact that H(t0+t+1) ⊆
H(t0 + t) for every t, as observed in Section 3.2.1, allows us to conclude that
the robots converge to the same limit point.

A proof of this statement can be obtained using the theory of convergence
of asynchronous algorithms in the book [3]. Indeed, the update rule (1)

15

corresponds to performing time stepping on a Markov chain with circulant
transition matrix

P =

1/2 1/4 1/4
1/4 1/2 1/4

1/4 1/2
. . .

. 1/4
1/4 1/4 1/2

 .

It is proven in a statement on [3, page 435] that the time-stepping iteration
converges even when performed asynchronously, under a model that gener-
alizes our SSynch.

Nevertheless, we give here an alternative self-contained proof. First we
reformulate the problem in the following terms.

Communicating Vessels. Suppose that n vessels containing water are ar-
ranged in a circle, and there is a pipe between each pair of adjacent vessels,
regulated by a valve. At every second, some of the valves are opened and
others are closed, in such a way that each of the n valves stays open for in-
finitely many seconds, in total. If a valve between two adjacent vessels stays
open between seconds t and t+1, then 1/4 of the surplus of water, measured
at second t, flows from the fuller vessel to the emptier one. Our claim is that
the amount of water converges to the same limit in all vessels, no matter
how the valves are opened and closed. We call this problem Communicating
Vessels.

In this formulation, the amount of water in the i-th vessel at time t ∈
N would be our previous wi,t. However, here we somewhat abstract from
the Mutual Visibility problem, and we consider a slightly more general initial
configuration, in which the wi,0’s are arbitrary real numbers.

This problem is a special case of a diffusion model on a simple circular
graph. To solve it, we shall introduce a quadratic energy functional ‖wt‖2,
and prove that it is decreasing. The use of such an energy functional in
this class of problems is well known in the literature (see for instance [10]),
but the fact that the iteration is performed semi-synchronously on each node
separately is less standard, so we need to do a little more work.

We set vi,t = 1 if the valve between the i-th and the (i+1)-th vessel is open
between time t and t+1 (indices are taken modulo n), and vi,t = 0 otherwise.

16

It is easy to verify that activating robot ri at time t in our previous discussion
corresponds to setting vi,t = 1 in the Communicating Vessels formulation.

Let us denote by wt the vector whose i-th entry is wi,t, and let qi,t =
wi+1,t − wi,t. We first prove an inequality on the Euclidean norms of the
vectors wt. Note that the inequality holds regardless of what assumptions
are made on the opening pattern of the valves.

Lemma 3.1. For every t ∈ N,

‖wt‖2 − ‖wt+1‖2 >
1

4

n∑
i=1

vi,t · q2i,t. (3)

Proof. For brevity, let a = wi−1,t, b = wi,t, c = wi+1,t; hence, qi−1,t = b − a
and qi,t = c− b.

Suppose first that vi−1,t = vi,t = 1, i.e., both valves connecting the i-th
vessel with its neighbors are open. Then, wi,t+1 = (a+ 2b+ c)/4. We have

w2
i−1,t
4

+
w2

i,t

2
+
w2

i+1,t

4
− w2

i,t+1 >
q2i−1,t

8
+
q2i,t
8
, (4)

which can be obtained by dropping the term (a− c)2/16 from the algebraic
identity

a2

4
+
b2

2
+
c2

4
− (a+ 2b+ c)2

16
=

(a− b)2
8

+
(b− c)2

8
+

(a− c)2
16

.

Now, suppose instead that vi−1,t = 1 and vi,t = 0. Then we have wi,t+1 =
(a+ 3b)/4, and

w2
i−1,t
4

+
3w2

i,t

4
− w2

i,t+1 =
3q2i−1,t

16
>
q2i−1,t

8
, (5)

where the first equality comes from the identity

a2

4
+

3b2

4
− (a+ 3b)2

16
=

3(a− b)2
16

.

If vi−1,t = 0 and vi,t = 1, an analogous argument gives

3w2
i,t

4
+
w2

i+1,t

4
− w2

i,t+1 >
q2i,t
8
. (6)

17

Finally, if vi−1,t = vi,t = 0, wi,t+1 = wi,t, and trivially

w2
i,t − w2

i,t+1 = 0. (7)

We sum for each i ∈ I the relevant inequality among (4), (5), (6), (7),
depending on the value of vi−1,t and vi,t. Each of the terms q2i,t/8 appears
twice if and only if vi,t = 1, and the coefficients of the terms in w2

i,t sum to 1
for every i, hence we get (3).

From the previous lemma, it immediately follows that the sequence (‖wt‖)t>0

is non-increasing. Since it is also bounded below by 0, it converges to a limit,
which we call `. Let Mt = maxi∈I{wi,t} and mt = mini∈I{wi,t}. Observe that
each entry of wt+1 is a convex combination of entries of wt, hence (Mt)t>0 is
non-increasing and (mt)t>0 is non-decreasing. Therefore they both converge,
and we let M = limt→∞Mt and m = limt→∞mt.

Corollary 3.1.

m 6 `√
n
6M.

Proof. For every t ∈ N, we have

nM2
t >

n∑
i=1

w2
i,t = ‖wt‖2 > `2,

which proves the second inequality. As for the first inequality, for every ε > 0
and large-enough t, we have nm2

t 6 ‖wt‖2 6 `2 + ε.

For the next lemma, we let Vi = {t ∈ N | vi,t = 1}.

Lemma 3.2. Suppose that |Vi| =∞ for at least n−1 distinct values of i ∈ I.
Then,

M = m =
`√
n
.

Proof. Due to Corollary 3.1, it is enough to prove that M − m = 0. By
contradiction, assume M −m > 0, and let δ = (M −m)/(n + 1) > 0. We
have

lim
t→∞

(
‖wt‖2 − ‖wt+1‖2

)
= `2 − `2 = 0,

18

hence there exists T ∈ N such that ‖wt‖2 − ‖wt+1‖2 < δ2/4 for every t > T .
By Lemma 3.1,

q2i,t
4

6 ‖wt‖2 − ‖wt+1‖2 <
δ2

4

for every t > T and every i such that vi,t = 1. This implies |qi,t| < δ, that is,
a necessary condition for the valve between the i-th and the (i+ 1)-th vessel
to be open at time t > T is that |wi+1,t − wi,t| < δ. Consider now the n + 1
open intervals

(m,m+ δ), (m+ δ,m+ 2δ), · · · , (m+ nδ,M),

each of width δ. Since MT > M and mT 6 m, there are wi,T ’s above and
below all these intervals. Moreover, by the pigeonhole principle, at least one
of the intervals contains no wi,T ’s, for any i ∈ I. In other words, we can find
a partition I1∪ I2 = I, with I1 and I2 both non-empty, and a threshold value
λ such that wi,T 6 λ for every i ∈ I1, and wi,T > λ + δ for every i ∈ I2.
Hence, at time T , only valves between entries of wt whose indices belong to
the same Ik can be open. It is now easy to prove by induction on t > T the
following facts:

• maxi∈I1{wi,t} 6 λ,

• mini∈I2{wi,t} > λ+ δ,

• vi,t = 0 whenever i and i + 1 belong to two different classes of the
partition.

Since I1 and I2 are non-empty, there must be at least two distinct indices
i′ ∈ I1 and i′′ ∈ I2 such that i′ + 1 ∈ I2 and i′′ + 1 ∈ I1 (where indices are
taken modulo n). It follows that the i′-th and i′′-th valve are never open for
t > T , and this contradicts the hypothesis that |Vi| < ∞ for at most one
choice of i ∈ I.

This solves the Communicating Vessels problem.

Corollary 3.2. Under the hypotheses of Lemma 3.2, for every i ∈ I,

lim
t→∞

wi,t =
`√
n

=

∑n
j=1wj,0

n
.

19

Proof. By Lemma 3.2, since mt 6 wi,t 6 Mt, all the limits coincide. More-
over, the sum of the wi,t’s does not depend on t; hence their average, taken
at any time, must be equal to the joint limit.

Let us return to the Mutual Visibility problem, to prove our final lemma.

Lemma 3.3. If, at every round, each robot makes a default move (cf. Fig-
ure 1(b)) or stays still, all external robots have their lights set to Vertex, and
no new robots become vertex robots or terminate, then all robots’ locations
converge to the same limit point.

Proof. As discussed at the beginning of Section 3.2.2, this is implied by (2).
Recall that wi,0 = αi,j,0−αi−1,j,0, and hence

∑n
i=1wi,0 = 0. Then, (2) follows

immediately from Corollary 3.2.

We are now ready to prove our main theorem.

Theorem 3.1. Algorithm 1 solves Mutual Visibility for Rigid SSynch robots
with 2-colored lights.

Proof. If the initial convex hull is a line segment, it becomes a non-degenerate
polygon as soon as one or more of the non-vertex robots are activated. It is
also easy to observe (cf. Figure 2) that, from this configuration, the convex
hull may never become a line segment. So the invariants discussed in Sec-
tion 3.2.1 apply, possibly after a few initial rounds: no two robots will ever
collide, and a vertex robot will never become a non-vertex robot.

Assume by contradiction that the execution never terminates. Note that
a robot terminates if and only if all robots terminate. Indeed, if there are
any non-vertex robots (whose lights are still set to Off), then each vertex
robot can see at least one of them. Hence we are assuming that all robots
execute the algorithm forever.

At some point, the set of vertex robots reaches a maximumM⊆ R, and
as soon as all of these robots have been activated, they permanently set their
lights to Vertex. Let T ∈ N be a time at which all the robots in M have
their lights set to Vertex. Suppose that there are external robots that are not
vertex robots after time T , and let r be one such robot that is adjacent to
a vertex robot r′. Then, after r′ is activated and moves, r becomes a vertex
robot as well, contradicting the maximality ofM. Hence the external robots
are exactly the robots in M, and no other robot may become external after
time T .

20

If there is only one internal robot at time t > T , it becomes external as
soon as it is activated, due to line 23 of the algorithm, which is impossible, as
argued in the previous paragraph. Therefore there are at least two internal
robots at every time t > T . On the other hand, if a vertex robot makes a
non-default move at any time t > T , a new robot becomes external at time
t + 1. Indeed, referring to Figure 1(a), the line uv passes through p(t + 1)
and c(t+ 1), and no robot lies above this line at time t+ 1. Hence c becomes
a new external robot, which again is impossible.

As a consequence, only default moves are made after time T . Moreover,
no robot becomes external or becomes a vertex robot after time T , and no
robot ever terminates. Therefore Lemma 3.3 applies, and the robots converge
to the same limit point. But since there are at least two internal robots, this
means that at least one of them has to move, implying that it becomes a
vertex robot at some point (by the above assumptions, only vertex robots
can move), a contradiction.

Hence the execution terminates, meaning that at some point one of the
robots sees only vertex robots. This implies that there are no non-vertex
robots, hence the configuration is strictly convex, all robots can see each
other, and they all terminate without moving as soon as they are activated,
thus solving the Mutual Visibility problem.

4. Solving Mutual Visibility for Non-Rigid SSynch Robots

Here we give a protocol, Algorithm 2 (Contain), for the Mutual Visibility
problem that works for Non-Rigid robots and the SSynch scheduler. Re-
call that, in the Non-Rigid model, the robots make unreliable moves, that
is, the scheduler can stop them before they reach their destination point, but
not before they have moved by at least a constant δ > 0. Since these robots
are weaker than the ones considered in Section 3, they will require lights of
three possible colors, as opposed to two.

Our goal is also to design an algorithm that can be applied to robots in
the Rigid ASynch model, as well as the Non-Rigid SSynch one. This
model will be discussed in Section 5.1. In order to do this, we introduce
a couple of extra technical subtleties into Algorithm 2, which are irrelevant
here, but will turn out to be necessary in Section 5.1.

21

4.1. Description of Algorithm 2

Algorithm 2 consists of three phases, to be executed in succession: a
segment breaking phase, an interior depletion phase, and a vertex adjustments
phase. The first phase deals with the special configuration in which the
robots are all collinear, and makes them not collinear. If the robots are not
initially collinear, this phase is skipped. In the second phase, the internal
robots move toward the boundary of the convex hull, thus forming a convex
configuration, perhaps with some degenerate vertices. In the third phase
the robots (which are now all external) make small movements to finally
reach a strictly convex configuration. Three colors are used by the robots:
C = {Off ,External ,Adjusting}. Initially, all robots’ lights are set to Off.

For added clarity, in the algorithm the line numbers of instructions be-
longing logically to different phases are typeset in different colors, according
to the following table.

Segment breaking red
Interior depletion green

Vertex adjustments blue

Recall that we denote by H(t) the convex hull of the positions of all the
robots at time t ∈ N. In this section we also denote by H′(t) the convex
hull of the positions of the internal robots at time t ∈ N. Note that the
“global” notions of H and H′ may differ from the ones computed by the
robots executing Algorithm 2, because a robot may be unable to see the
positions of all the other robots in the swarm. In the following discussion,
when referring to H and H′, we will typically mean the “global” ones, unless
we explicitly state otherwise.

We first describe the interior depletion phase, starting from a non-collinear
initial configuration. To begin with, all the robots’ lights are set to Off.
As soon as an external robot is activated, it sets its own light to External
(lines 34, 35) and does not move as long as it can still see robots whose light
is Off (lines 26, 27). Note that a robot r that occupies a vertex of H′ even-
tually becomes aware of it, by looking at the convex hull of the visible robots
whose lights are Off. These may not all be internal robots, because perhaps
not all external robots have been activated yet, but eventually r gets to see
a good-enough approximation of a “neighborhood” of H′, and it realizes it
occupies one of its vertices.

22

Algorithm 2: Contain. Solving the Mutual Visibility problem for Non-
Rigid SSynch robots and Rigid ASynch robots with 3-colored lights

Input: V : set of robots visible to me (myself included) whose
positions are expressed in a coordinate system centered at my
location.

1 1 1 r∗ ←− myself
2 2 2 P ←− {r.position | r ∈ V}
3 3 3 H ←− convex hull of P
4 4 4 ∂H ←− boundary of H

5 if |V| = 1 then Terminate
6 else if |V| = 2 then
7 if r∗.light = Adjusting then
8 r∗.light ←− External
9 Terminate

10 else
11 r∗.light ←− Adjusting
12 Move orthogonally to H by the length of H

13 else if H is a line segment then
14 if ∀r ∈ V \ {r∗}, r.light = External then
15 r∗.light ←− Adjusting
16 Move orthogonally to H by any positive amount

23

Algorithm 2: Contain (continued).

17 17 else if r∗.position ∈ ∂H then
18 18 a←− my ccw-neighboring robot on ∂H
19 19 b←− my cw-neighboring robot on ∂H
20 20 if r∗.light = Adjusting then
21 21 if ∀r ∈ V , r.light 6= Off
22 22 or ∃r ∈ V , r.light = External then
23 23 r∗.light ←− External
24 24 if a.light 6= Off and b.light 6= Off
25 25 and (H \ ∂H) ∩ P = ∅ then Terminate

26 else if r∗.position is a non-degenerate vertex of H
27 and ∀r ∈ V , r.light = External then
28 r∗.light ←− Adjusting
29 Move to (a.position + b.position)/4

30 30 30 else
31 31 31 W ←− {r ∈ V | r.light = Adjusting}
32 32 32 if (|V| = 3 and the internal angle of H at r∗.position is acute)
33 33 33 or (|W| > 1 and r∗.position is a non-degenerate vertex of H)
34 34 34 or W = ∅ then
35 35 35 r∗.light ←− External

24

Algorithm 2: Contain (continued).

36 else if ∀r ∈ V , r.light 6= Adjusting then
37 P ′ ←− {r.position | r ∈ V ∧ r.light = Off }
38 H′ ←− convex hull of P ′
39 ∂H′ ←− boundary of H′
40 if |P ′| = 1 then
41 Move to a closest midpoint of a connected component of ∂H\P
42 else if |P ′| = 2 then
43 `←− line containing H′
44 A ←− right angle with axis of symmetry ` such that

A ∩H′ = {r∗.position}
45 Move to any point of (A ∩ ∂H) \ P
46 else if r∗.position is a non-degenerate vertex of H′ then
47 A ←− internal angle of H′ whose vertex is r∗.position
48 α←− measure of A
49 `←− axis of symmetry of A
50 if α 6 π/2 then α′ ←− α
51 else α′ ←− π − α
52 A′ ←− angle of measure α′ with axis of symmetry ` such that

A′ ∩H′ = {r∗.position}
53 E ←− {p ∈ ∂H | ∃a, b ∈ P \ A, p ∈ ab}
54 if (A′ ∩ E) \ P 6= ∅ then Move to any point of (A′ ∩ E) \ P

25

So, when a robot understands that it lies on a vertex of H′, it moves
toward the boundary of H, part of which is also identifiable by r. We distin-
guish three cases.

1. If r realizes it is the only internal robot, it moves toward the midpoint
of an edge of the convex hull (line 41). To avoid bouncing back and
forth at different turns, it always chooses the closest of such midpoints.

2. If r realizes that H′ is a line segment and it occupies one endpoint of
it, it moves like in Figure 3(a). That is, it moves to the boundary of H,
while remaining within a right angle oriented away from H′ (lines 43–
45).

′H

H

(a) Case with collinear internal robots

p
q

′H
H

(b) General case

Figure 3: Interior depletion phase

26

3. Finally, if r “believes” that H′ is a non-degenerate polygon and that
it lies on one of its vertices, it moves as in Figure 3(b) (lines 47–54).
Remember that r may believe so even if H′ is actually degenerate,
because some external robots may still be Off. However, r gets an
approximation of H′, which we call H′r, and it knows it lies on a vertex
of H′r, implying that it also lies on a vertex of the “real” H′. Now, if
the internal angle of H′r at r(t) is acute, r moves as the robot in p in
Figure 3(b): it moves to the boundary of H while remaining between
the extensions of its two incident edges of H′r. Otherwise, if the angle
is not acute, r moves as the robot in q in Figure 3(b): it moves to
the boundary of H while staying between the two perpendiculars to its
incident edges of H′r. Moreover, r actually performs the move only if it
is sure that its destination point lies on the boundary of the “real” H.
For this reason, it has to check if the destination point computed as
described above lies on a completely-visible edge of the observed convex
hull whose endpoints are both set to External (line 53). For instance,
in Figure 4, the robot in p cannot move to the gray area even if the
robots in a and b are set to External, because the robot in q prevents
the one in p from seeing the whole edge ab. On the other hand, the
robot in q can move to its own gray area, provided that a and b are set
to External. Indeed, the robot in q can see all of ab, and it is therefore
sure that it is an edge of the “real” convex hull.

p

q

′H

H

a

b

Figure 4: The robot in p cannot move even if a and b are set to External, because q may
be hiding some other external robots, and ab may not be an edge of the convex hull

27

Now to the vertex adjustments phase. When a robot lies at a vertex of H
and it sees only robots whose light is set to External, it makes the “default
move” of Figure 1(b), where a and b are the locations of its two neighbors on
H (line 29). Moreover, while doing so it also sets its light to the third value,
Adjusting, as a “self-reminder” (line 28). So, when it is activated again, it
knows it has already adjusted its position, and it terminates, after reverting
its light to External (lines 20–25). This way we make sure that each vertex
robot adjusts its position exactly once, and we ensure termination. When the
adjustment is done, the robots at a and b are guaranteed to occupy vertices of
H, instead of lying in the middle of an edge. So, each external robot becomes
a vertex robot at some point, then it adjusts its position while remaining a
vertex, possibly making its adjacent robots become vertices as well, and it
terminates. When all robots have terminated, the configuration is strictly
convex, and therefore Mutual Visibility is solved.

Finally, the segment breaking phase deals with the special case in which
all robots are initially collinear. Let robots r and s be the two endpoints ofH:
as soon as one of them is activated (possibly both), it sets its light to Adjust-
ing, moves orthogonally to H, and then waits (lines 11, 12). Meanwhile, the
other robots do not do anything until some conditions are met (lines 31–34).
If only r moves, s realizes it (line 32) and sets its own light to External (and
vice versa). If both r and s move together, some other robot realizes that
it is a non-degenerate vertex of the convex hull and that it can see both r
and s set to Adjusting (line 33): in this case, it sets itself to External. When
r or s sees some robots set to External, it finally sets itself to External, as
well (lines 22, 23). Additionally, it may terminate, provided that neither of
its neighboring robots on the convex hull’s boundary has still its light set to
Off (line 24) and that it recognizes no robots as internal (line 25). This is to
force r and s to make at least one default move in the unfortunate case that
a third external robot is found between them after their initial move, or gets
there during the interior depletion phase (refer to the complete discussion in
Section 4.2.3). After this is done, the execution transitions seamlessly into
one of the general cases.

If n 6 3 this is not sufficient. Suppose first that n = 3. Then, r and s
may move in such a way that the configuration remains centrally symmetric,
with the middle robot q obstructing r and s. However, after moving once, r
and s become External and terminate (lines 8, 9). Meanwhile q waits until
it sees both r and s set to External, and finally it moves orthogonally to H
(lines 13–16), thus solving Mutual Visibility also in this special case.

28

If n = 2, each robot moves once (lines 11, 12), and then it detects a
situation in which it can safely terminate (lines 6–9).

4.2. Correctness of Algorithm 2

4.2.1. Interior Depletion Phase

We first prove that no collisions occur during the interior depletion phase,
and then that the phase itself eventually terminates, with all the robots
becoming external. In this section we will assume that the robots are not
initially collinear. The collinear case will be discussed in Section 4.2.3, and
it will be shown that is seamlessly transitions into one of the other cases.

It is easy to observe that, during the interior depletion phase, all external
robots keep seeing (internal) robots whose lights are set to Off, and therefore
none of them moves. On the other hand, no internal robot moves outside of
the convex hull.

Observation 4.1. If there are internal robots at time t, no external robot
moves, and H(t) = H(t+ 1).

Lemma 4.1. If r and s are two internal robots at time t, then

(r(t+ 1)− r(t)) • (s(t)− r(t)) 6 0.

Proof. If r is not activated at time t, or it is activated but it does not move,
then the left-hand side is zero, and therefore the inequality holds. Suppose
now that r moves by a positive amount, so r(t + 1) − r(t) is not the null
vector. Let ` be the line through r(t) that is orthogonal to the segment
r(t)r(t + 1). By construction, r moves in such a way that r(t + 1) lies in
the open half-plane bounded by ` that does not contain H′(t) (note that
this holds a fortiori also if some external robots have not set their lights
to External yet, and therefore the H′ computed by r is larger than the real
one). Since s(t) ∈ H′(t), s(t) lies on ` or in the half-plane bounded by ` that
does not contain r(t + 1). This is equivalent to saying that the dot product
between r(t+ 1)− r(t) and s(t)− r(t) is not positive.

Lemma 4.2. As long as there are internal robots, no collisions occur.

Proof. If there are internal robots, every external robot sees robots whose
light is set to Off, and hence it does not move. By construction, the internal
robots avoid moving on top of external robots, and therefore there can be no
collision involving external robots.

29

Suppose by contradiction that two robots r and s that are internal at
time t collide for the first time at t+ 1, and therefore r(t+ 1) = s(t+ 1) = p.
By Lemma 4.1 applied to r and s, we have

(p− r(t)) • (s(t)− r(t)) 6 0. (8)

Applying Lemma 4.1 again with r and s inverted, we also have

(p− s(t)) • (r(t)− s(t)) 6 0. (9)

Adding 8 and 9 together and doing some algebraic manipulations, we obtain

(p− r(t)) • (s(t)− r(t)) + (p− s(t)) • (r(t)− s(t)) 6 0,

(s(t)− r(t)) • ((p− r(t))− (p− s(t))) 6 0,

(s(t)− r(t)) • (s(t)− r(t)) 6 0.

The latter is equivalent to ‖s(t)− r(t)‖ 6 0, implying that r(t) = s(t). This
contradicts the fact that r and s collide for the first time at t+ 1.

We still have to prove that the interior depletion phase terminates, that
is, eventually all robots become external. Due to Observation 4.1, when a
robot becomes external, it stops moving and remains external, at least as
long as there are other internal robots. Thus, if by contradiction this phase
does not terminate, the set of internal robots reaches a non-empty minimum,
and from that time on no new robot becomes external. After possibly some
more turns, say at time T ∈ N, all external robots have been activated and
have set their lights to External, and hence no robot changes its light any
more.

In the following lemmas, we will show that these assumptions on T yield
a contradiction. We will prove that, if H′(T) is a non-degenerate polygon,
then either its area or its diameter will grow unboundedly. Therefore, at
some point in time, H′ will not be a subset of H any more. (The analysis
when H′(T) is a degenerate polygon is easy, and it will be carried out in the
proof of Lemma 4.7.)

Recall that, due to line 50 of Algorithm 2, when a robot computes its
destination, it remains within the extensions of its incident edges of H′(t).
Hence, referring to Figure 5, it is easy to observe the following.

30

Observation 4.2. Let robots r and s lie at adjacent vertices of H′(t) at time
t > T , and let the area of H′(t) be positive. Then, r(t+ 1) and s(t+ 1) lie on
the same side of the line through r(t) and s(t) (or possibly on the line itself).

Lemma 4.3. If t > T and the area of H′(t) is positive, then H′(t) ⊆ H′(t+1).

Proof. Let R′ ⊂ R be the set of robots that lie at vertices of H′(t), at time
t > T . Let P be the polygon (illustrated in Figure 5 as a thick dashed
polygon) whose vertices are the locations at time t + 1 of the robots of R′,
taken in the same order as they appear around the boundary of H′. Note
that, since the robots are Non-Rigid and not all of them are necessarily
activated at time t, P is not necessarily a convex polygon.

Because the property stated in Observation 4.2 holds for all the edges of
H′(t) and P , we have that H′(t) ⊆ P . But, by definition of T , none of the
robots of R′ ever becomes external, and hence H′(t+ 1) is the convex hull of
P . We conclude that H′(t) ⊆ P ⊆ H′(t+ 1).

)t(r

)t(s

′H

Figure 5: Combined motion of internal robots (external robots are not shown)

Corollary 4.1. For t > T , the area of H′(t) and the diameter of H′(t) do
not decrease as t increases.

31

Proof. By Lemma 4.3, if T 6 t1 6 t2, then H′(t1) ⊆ H′(t2). Hence the
area of H′(t1) cannot be greater than the area of H′(t2), and the diameter of
H′(t1) cannot be greater than the diameter of H′(t2).

Corollary 4.2. If r is an internal robot at time t > T , and r(t) is not a
non-degenerate vertex of H′(t), then r is internal at any time t′ > t, and
r(t′) is not a non-degenerate vertex of H′(t′).

Proof. By Lemma 4.3, if t′ > t, then H′(t) ⊆ H′(t′). Moreover, according to
line 46 of Algorithm 2, an internal robot that does not lie at a degenerate
vertex of H′ does not move. It follows that, after time t, robot r will not
move, hence it will remain internal, and it will never lie at a non-degenerate
vertex of H′.

Recall that, due to line 53 of Algorithm 2, a robot on the perimeter of H′
is able to move only if it completely sees an entire edge of H. Next we prove
that, after time T , there exists at least one robot that is able to move.

Lemma 4.4. At any time after T , there is a robot that, if activated, makes
a non-null movement.

Proof. Suppose for a contradiction that no robot is able to move, and let p0
be a non-degenerate vertex of H′. If A is the internal angle of H′ at p0, we
let p′0 be the point at which the bisector of R2 \ A intersects the perimeter
of H, as Figure 6 shows.

′H

Ha

kp

1−kp

1p

0p

b1−k
′′p2−k

′′pk
′p0

′′p1−k
′p1

′p0
′p

Figure 6: The robots in p0, p1, · · · , pk−1 are unable to move; the one in pk is able to move

Let ab be an edge of H such that p′0 ∈ ab (note that p′0 may coincide
with either a or b). Since H and H′ are convex, either the segment ap′0 is

32

completely visible to p0, or the segment bp′0 is. Without loss of generality, let
ap′0 be completely visible to p0, i.e., ap′0 ⊂ R2 \ A. By definition of T , both
robots in a and b have their lights let to External. Also, note that p′0 lies
within A′, as computed by the robot in p0 executing line 52 of Algorithm 2.
Hence, by line 53, the robot in p0 can move, provided that b ∈ R2 \ A. But
by assumption no robot can move, and therefore there must be one robot
occupying a non-degenerate vertex of H′ neighboring p0, say p1, such that
the ray from p0 through p1 intersects the segment ab, say in p′′0.

Observe that p1 is strictly closer to the line ab than p0. By the convexity
of H′, the bisector of the explementary of the internal angle at p1 intersects
the segment ab, say in p′1. In fact, p′1 lies between p′0 and p′′0 (refer to Figure 6).
Also, p1 can see all the points in the segment ap′1. As we argued for p0 in the
previous paragraph, there must be another vertex p2 of H′, closer to the line
ab, that prevents p1 from seeing the entire segment ab.

Proceeding in this fashion, we obtain a sequence p0, p1, p2, p3, · · · of
vertices of H′, which get closer and closer to the line ab. Since these vertices
must be all distinct, and there are only finitely many robots in the swarm,
there must be one last element of the sequence, pk. It follows that pk can see
all of ab, and the corresponding angle bisector intersects ab as well, say in
p′k. This implies that the robot in pk can actually move to a neighborhood
of p′k, contradicting our assumption.

As a consequence of Corollary 4.2, no new robot becomes a non-degenerate
vertex of H′ after time T , but some robots may indeed cease to be non-
degenerate vertices of H′, and stop moving forever. Hence, at some time
T ′ > T , the set of robots that lie at non-degenerate vertices of H′ reaches a
minimum M ⊂ R. By Lemma 4.3, the area of H′ is positive at every time
t > T ′, and hence |M| > 3.

In the next lemma we prove two fundamental properties of H′ that hold
after time T ′.

Lemma 4.5. After time T ′, the following statements hold.

a. The cyclic order of the robots of M around H′ is preserved.

b. The length of the shortest edge of H′(t) does not decrease as t increases.

Proof. Similarly to Section 3, we call the gray regions in Figures 3 and 5 the
movement regions of the respective robots.

33

Let t > T ′, and consider the polygon P as defined in the proof of
Lemma 4.3. By our assumptions on M, P is a convex polygon, or else
some robot would cease to occupy a vertex of H′. Hence P = H′(t + 1)
and, by Lemma 4.3, H′(t) ⊆ H′(t + 1). Let r, s ∈ M occupy two adjacent
edges of H′ at time t, and let ` be the axis of the segment r(t)s(t). It follows
from Algorithm 2 that ` separates the movement regions of r and s at time
t (cf. Figure 5). This, paired with the fact that the movement region of a
robot of M at time t does not intersect the interior of H′, implies (a).

Now, to prove (b), it is sufficient to note that, with the previous para-
graph’s notation, the distance between the movement regions of r and s at
time t is precisely the distance between r(t) and s(t) (see Figure 5). There-
fore, the segment r(t+ 1)s(t+ 1) is not shorter than r(t)s(t), implying that
the length of the shortest edge of H′ cannot decrease.

We need one last geometric observation.

3
π<

v
a

b

Figure 7: The longest edge of triangle 4vab is not ab

Lemma 4.6. If the internal angle at vertex v of a convex polygon has measure
less than π/3, then the diameter of the polygon is the distance between v and
another vertex.

Proof. The diameter of a polygon is the longest distance between two of its
vertices. Suppose for a contradiction that vertices a and b have the maximum
distance, with a 6= v 6= b, as in Figure 7. Then, since the polygon is convex,
the angle ∠avb is containted in the internal angle at v, and therefore its

34

measure is less than π/3. Since the sum of the internal angles of a triangle
is π, it follows that either ∠bav > π/3 or ∠vba > π/3. By the law of sines,
in the first case vb is longer than ab, and in the second case va is longer than
ab. In both cases, ab is not the longest segment joining two vertices of the
polygon, which is a contradiction.

We are finally ready to prove the termination, and therefore the correct-
ness, of the interior depletion phase.

Lemma 4.7. If Algorithm 2 is executed from a non-collinear configuration,
after finitely many turns all robots become external, no robot’s light is set to
Adjusting, and no two robots collide.

Proof. The non-collision part has already been proven in Lemma 4.2, so we
need to prove that eventually all robots become external.

By assumption H has positive area, and we have to show that all robots
become external in finitely many turns. If there is just one internal robot,
it keeps moving somewhere within H, until it either becomes external, or
all external robots have been activated. When all external robots have their
lights set to External, if there is still a single internal robot, it keeps moving
toward the same edge of H, until it finally reaches it.

If there there are exactly two internal robots, they move as shown in
Figure 3(a). It is easy to see that, each time at least one of the two internal
robots moves (by at least δ > 0), their distance increases by more than δ/

√
2.

Therefore, after finitely many turns, at least one of the two internal robots
becomes external, and at most one internal robot remains.

Suppose now that there are at least three internal robots, but H′ has
null area, that is, all the internal robots are collinear. Then, according to
Algorithm 2, only the two endpoint robots of H′ are allowed to move, as
Figure 3(a) shows. If they move in such a way that the internal robots keep
remaining collinear, eventually one of them reaches the boundary of H, and
there is one less internal robot. Otherwise, they reach a situation in which
H′ has strictly positive area.

Therefore we may assume that H′ has positive area, and we suppose
for a contradiction that some internal robots never become external. By
the previous lemmas and observations, we know that at some time T ′ the
situation becomes “stable”. Specifically, H never changes, the set M of
robots that occupy non-degenerate vertices of H′ keeps remaining the same,
and these robots’ positions preserve their order around H′, by Lemma 4.5.a.

35

Also, the area and diameter of H′ do not decrease, by Corollary 4.1. Let a(t)
be the length of the shortest edge of H′(t). By Lemma 4.5.b, we know that
a(t) is a weakly increasing function of t > T ′.

Suppose that, at some time T ′′ > T ′, some robot r ∈ M that is able
to move is activated. By lines 53, 54 of Algorithm 2, the destination point
of r lies on the boundary of H. Hence, the adversary must stop r before it
reaches its destination, or it would become external. But this cannot happen
before r has moved by at least δ, implying that ‖r(T ′′+ 1)− r(T ′′)‖ > δ. We
distinguish two cases, based on the measure α of the internal angle of H′(T ′′)
corresponding to vertex r(T ′′). We will prove that, if α < π/3, then the
square of the diameter of H′(T ′′) increases by at least a constant; if α > π/3,
then the area of H′(T ′′) increases by at least a constant.

+ 1)′′T(r

)′′T(r

π3
2>

)′′T(s

′H

Figure 8: The square of the diameter of H′ increases by at least δ2

Suppose that α < π/3. Let D(t) the diameter of H′(t), and let s ∈ M
be such that D(T ′′) = ‖r(T ′′)− s(T ′′)‖. Due to line 50 of Algorithm 2, and
referring to Figure 8, it is easy to prove that

2

3
π < ∠s(T ′′)r(T ′′)r(T ′′ + 1) 6 π.

Hence

cos(∠s(T ′′)r(T ′′)r(T ′′ + 1)) < −1

2
.

36

Because H′(T ′′) ⊆ H′(T ′′ + 1), it follows that s(T ′′) ∈ H′(T ′′ + 1), and
D(T ′′ + 1) > ‖r(T ′′ + 1) − s(T ′′)‖. Therefore, by the law of cosines applied
to triangle 4s(T ′′)r(T ′′)r(T ′′ + 1),

D2(T ′′+ 1) > ‖r(T ′′+ 1)− s(T ′′)‖2 > D2(T ′′) + δ2 +D(T ′′) · δ > D2(T ′′) + δ2.

Hence, in this case, the square of the diameter of H′ increases by at least δ2.

+ 1)′′T(r

)′′T(s

π6
56

)′′T(q

)′′T(r

Figure 9: The area of H′ increases by at least a(T ′) · δ/8

Let α > π/3, and let q, s ∈M occupy the two vertices of H′(T ′′) adjacent
to vertex r(T ′′), in such a way that

∠q(T ′′)r(T ′′)r(T ′′ + 1) 6 ∠r(T ′′ + 1)r(T ′′)s(T ′′),

as Figure 9 shows. It follows that

π

2
6 ∠q(T ′′)r(T ′′)r(T ′′ + 1) 6 2π − α

2
6 5

6
π.

Then, recalling that H′(T ′′) ⊆ H′(T ′′ + 1), we have that the area of H′
increases at least by the area of the triangle 4q(T ′′)r(T ′′)r(T ′′ + 1), which
in turn is at least

1

2
· ‖q(T ′′)− r(T ′′)‖ · ‖r(T ′′ + 1)− r(T ′′)‖ · sin(∠q(T ′′)r(T ′′)r(T ′′ + 1))

> 1

2
· a(T ′′) · δ · sin(5π/6) > a(T ′) · δ/8.

37

Concluding, every time a robot of M moves, either the square of the
diameter of H′ increases by at least δ2, or the area of H′ increases by at least
a(T ′) · δ/8. But Lemma 4.4 states that there is always at least one robot of
M that is able to move, and therefore the robots will move infinitely many
times, due to the fairness of the SSynch scheduler. From Corollary 4.1, and
from the fact δ2 and a(T ′) · δ/8 are positive constants, it follows that either
the diameter or the area of H′ grows unboundedly. This contradicts the fact
that H′(t) ⊆ H(t), and that H(t) is independent of t.

4.2.2. Vertex Adjustments Phase

Due to Lemma 4.7, all robots become external at some point, and it
remains to show that they finally reach a strictly convex configuration and
correctly terminate. This turns out to be a significantly easier task.

Lemma 4.8. If Algorithm 2 is executed from a configuration in which all
robots are external and no robot’s light is set to Adjusting, then after finitely
many turns all robots have terminated, no two of them have collided, and the
configuration is strictly convex.

Proof. In the vertex adjustments phase, each robot eventually sets its own
light to External (if it has not already done so in the interior depletion phase).
Meanwhile, as soon as a vertex robot r sees only robots whose lights are set
to External, it sets its own light to Adjusting and makes a default move,
as in Figure 1(b). Recall that robots are Non-Rigid, hence a vertex robot
may be stopped before reaching its destination, but not before having moved
by at least δ > 0. When r is activated again, it sees itself in the Adjusting
state and, if it sees a robot set to Off, it necessarily also sees a robot set
to External. Indeed, after the default move, r can see all the robots in the
swarm. Note that, if a robot is set to Adjusting, neither of its two neighbors
on the perimeter of the convex hull can be Off. Hence, if r sees a robot set
to Off, and since it sees itself set to Adjusting, it must also see a robot set
to External. Therefore r sets its light back to External (lines 21–23), thus
allowing other robots to move. r also terminates because, as already noted,
its two neighbors cannot be Off (line 24) and, since r sees every robot in the
swarm and the configuration is convex, r does not see any internal robots
(line 25).

As observed in Section 3, where a similar procedure was used to reduce
the size of the convex hull while increasing the set of vertex robots, when a
robot occupying a vertex of the convex hull moves, it becomes a vertex of the

38

new convex hull. On the other hand, if a robot r lies in the interior of an edge
of the convex hull and one of its two neighbors s lies on a vertex, then, as soon
as s moves, r becomes a vertex of the new convex hull. Hence, eventually all
robots become vertices of the convex hull. After that, whenever a robot is
activated, it permanently sets its light to External and terminates. It follows
that eventually all robots terminate in a strictly convex configuration.

Moreover, by the observations already made in Section 3.2.1, and referring
to Figure 2, it is clear that no collisions can occur in this phase.

4.2.3. Segment Breaking Phase

From Lemmas 4.7 and 4.8, the correctness of Algorithm 2 immediately
follows, provided that the robots are not initially collinear. This case is
considered in the following.

Theorem 4.1. Algorithm 2 solves Mutual Visibility for Non-Rigid SSynch
robots with 3-colored lights.

Proof. Due to Lemmas 4.7 and 4.8, we only have to show that the case in
which the robots are initially collinear correctly evolves into one of the other
cases. If n 6 3, this is easy to verify through a case analysis, following the
algorithm’s description of Section 4.1.

So, let n > 4, and let robots r and s initially occupy the vertices of the line
segment H(0). Nothing happens until r or s is activated; then, at least one
of them becomes Adjusting and moves orthogonally to H. After r or s has
moved, some robots eventually become External (line 35). Indeed, if both r
and s move, then all other robots can see both of them. In particular, there is
at least one such robot occupying a non-degenerate vertex of the convex hull,
which sees two Adjusting robots, and therefore becomes External (line 33). If
only r moves (or vice versa), then s sees only three robots (including itself),
and its corresponding convex hull angle is acute, hence it becomes External
(line 32). In the latter case, only s is allowed to become External, while the
other robots wait, because their corresponding angles are not acute. When
a robot has become External, any robot that was Adjusting can see it, and
hence becomes External as well. If, in addition, neither of its two neighbors
is Off, it also terminates (note that an Adjusting robot must be located on
the convex hull’s boundary).

At this point the execution proceeds normally, except that there may
be one of two vertex robots that have already terminated, and we have to
show that this does not prevent the others from forming a strictly convex

39

configuration. Obviously the interior depletion phase causes no trouble and it
is carried out correctly, but the vertex adjustments phase might “get stuck”.
We will prove that this is not the case. Clearly, if at most one robot has
terminated, all robots except perhaps one are able to move in the vertex
adjustments phase, and therefore they all become non-degenerate vertices.
If r and s initially move in the same direction, they become neighboring
vertices, and all the other robots become consecutive external robots. It
is easy to see that in this case the external robots are still able to make
adjusting movements in cascade, and become non-degenerate vertices.

s
′r

′s

r

(a) s′ becomes internal

s

r

r

′s
′

(b) s′ becomes a degenerate vertex of the convex hull

s

′r

r

′s

(c) s′ becomes a non-degenerate vertex of the convex hull

Figure 10: Possible evolutions of a collinear configuration in which the endpoints move in
opposite directions

Finally, suppose that r and s initially move in opposite directions. Let r′

be the robot closest to r, and s′ the robot closest to s. Since n > 4, r′ 6= s′.

40

As already noted, at least one between r′ and s′ becomes a non-degenerate
vertex of the convex hull, say r′. On the other hand, depending on how much
r and s move, s′ may become internal, or a degenerate or non-degenerate
vertex of the convex hull. If s′ becomes internal, as in Figure 10(a), then
both r and s see an internal robot: indeed, after the move, r and s can see all
robots. Then, r and s become External but do not terminate (line 25), and
everything works as intended in the later phases. If s′ becomes a degenerate
vertex of the convex hull, as in Figure 10(b), then it is an Off neighbor
of both r and s, which once again become External but do not terminate
(line 24). Again, the execution transitions seamlessly into another phase. If
s′ becomes a non-degenerate vertex of the convex hull, as well as r′, then all
the robots between them become internal. Note that, in this case, r and s
may terminate (indeed, they may not be able to see each other, and hence
they may not realize that there are internal robots), but they do not lie
at adjacent vertices of H, due to the presence r′ and s′. After the interior
depletion phase, r′ and s′ are able to adjust, thus enabling all other external
robots to become non-degenerate vertices, in cascade.

5. Solving Mutual Visibility for ASynch Robots

In this section we briefly touch on the ASynch model. In the Rigid
case, we show that Algorithm 2 solves the Mutual Visibility problem. In the
Non-Rigid case, we show how to solve Mutual Visibility assuming that the
robots agree on the direction of one coordinate axis.

5.1. Rigid ASynch Robots

Algorithm 2 turns out to solve the Mutual Visibility problem for Rigid
ASynch robots, as well. For the interior depletion phase, the collision avoid-
ance proof gets slightly more complex, but termination is easier to prove. On
the other hand, the vertex adjustments phase and the segment breaking phase
work almost in the same way.

First we state an equivalent of Lemma 4.1. The only difference is that,
instead of a generic time t ∈ N, now we have to consider a specific time t ∈ R
at which a robot r performs a Look. Also, instead of considering the position
of r at time t + 1, we consider the destination point computed after such a
Look. After these changes, the proof of Lemma 4.1 works in the ASynch
case as well, and therefore we have the following.

41

Lemma 5.1. Let Rigid ASynch robots execute Algorithm 2, and let r and
s be two internal robots at time t ∈ R. If r executes a Look phase at time t,
and the next destination point of r is p, then

(p− r(t)) • (s(t)− r(t)) 6 0.

The previous lemma can be used to prove that no collisions occur during
the interior depletion phase.

Lemma 5.2. If Rigid ASynch robots execute Algorithm 2 from a non-
collinear configuration, no collisions occur as long as there are internal robots.

Proof. Suppose for a contradiction that the internal robot r performs a Look
at time t, then robot s performs a Look at time t′ > t, and they collide
at time t′′ > t′, in r(t′′) = s(t′′). We may further assume that this is the
first collision between the two robots, and therefore r(t) 6= s(t). Because the
model is Rigid and each internal robot’s destination point is on the convex
hull, it follows that each internal robot makes exactly one move and then
becomes external. Therefore, r(t), r(t′), r(t′′), and the destination point of r
are all collinear, and the same holds for s. Additionally, we have s(t) = s(t′)
(see Figure 11).

r)t()′t(s) =t(s

)′′t(s) =′′t(r

)′t(r

Figure 11: Two colliding internal robots

42

By Lemma 5.1 applied to s at time t′, and because s(t′′) lies between s(t′)
and the destination point of s, we have

(s(t′′)− s(t′)) • (r(t′)− s(t′)) 6 0.

On the other hand, ‖s(t′′)− s(t′)‖ > 0, implying that

(s(t′′)− s(t′)) • (s(t′)− s(t′′)) 6 0.

By adding the two inequalities together, we obtain

(s(t′′)− s(t′)) • (r(t′)− s(t′′)) 6 0.

Recall that s(t′′) = r(t′′) and that r(t′) lies between r(t) and r(t′′), and
therefore the last inequality implies

(s(t′′)− s(t′)) • (r(t)− r(t′)) 6 0,

hence
(s(t′′)− s(t′)) • (r(t)− s(t′) + s(t′)− r(t′)) 6 0,

and

(s(t′′)− s(t′)) • (r(t)− s(t′)) 6 (s(t′′)− s(t′)) • (r(t′)− s(t′)).

But we already know that the right-hand side is not positive, hence so is the
left-hand side:

(s(t′′)− s(t′)) • (r(t)− s(t′)) 6 0.

Now, by Lemma 5.1 applied to r at time t, and recalling that r(t′′) lies
between r(t) and the destination point of r, we have

(r(t′′)− r(t)) • (s(t)− r(t)) 6 0.

If we add together the last two inequalities and we recall that s(t′) = s(t),
we get

(r(t)− s(t)) • (r(t)− r(t′′) + s(t′′)− s(t′)) 6 0.

Because r(t′′) = s(t′′) and s(t′) = s(t), we finally obtain

(r(t)− s(t)) • (r(t)− s(t)) 6 0,

which is equivalent to ‖r(t)− s(t)‖ 6 0, implying that r(t) = s(t), a contra-
diction.

43

We can now prove that Algorithm 2 works also with Rigid ASynch
robots.

Theorem 5.1. Algorithm 2 solves Mutual Visibility for Rigid ASynch robots
with 3-colored lights.

Proof. In the interior depletion phase there can be no collisions, due to
Lemma 5.2. Also, whenever an internal robot moves, its destination lies
on the boundary of the “real” H (cf. line 53 of Algorithm 2). Since move-
ments are rigid, such a robot becomes external in a single move. Suppose for
a contradiction that the interior depletion phase does not terminate. Then,
at some point, the set of external robots reaches a maximum, all the external
robots are set to External, and no robot is moving (indeed, moving internal
robots are bound to become external). Hence, Lemma 4.4 can be applied. As
a consequence, there is some internal robot that is able to move, and which
will therefore reach the convex hull’s perimeter at the end of its next Move
phase, thus becoming external. This contradicts our assumptions. There-
fore, in finite time all robots become external, and the interior depletion
phase terminates.

When all robots are external, none of them moves unless it sees only
robots set to External (line 27). This means that, in the vertex adjustments
phase, a robot waits until it is sure that no robot is in the middle of a move
(note that this holds also for robots that it cannot see, because as soon as
one of them moves it becomes visible to all other robots). Indeed, a robot
sets itself to Adjusting right before starting to move and sets itself back to
External when it is done moving. Hence the robots synchronize themselves,
and we may pretend them to be SSynch, as opposed to ASynch. Then,
the proof proceeds exactly as in Lemma 4.8.

In the case in which the robots are initially collinear, the proof follows the
lines of Theorem 4.1, with a few differences. Indeed, despite being ASynch,
the robots manage to wait for each other and synchronize their actions. Sup-
pose that one endpoint robot r becomes Adjusting and starts moving to its
destination. Then, every robot is bound to wait for the other endpoint robot,
s, to take action. So, s could either become Adjusting as well and start mov-
ing (if it performed its Look before r started moving), or it could notice r and
become External. If r and s are both Adjusting and moving asynchronously,
some other robots eventually become External, but do not move yet. In par-
ticular, referring to Figure 12, at least robots r′ and s′ can become external in
this phase. Notice that, if r and s move asynchronously in opposite directions

44

s

′r ′s

r

(a) r and s move in the same direction

s

′r

′s

r

(b) r and s move in opposite directions

Figure 12: Evolutions of a collinear configuration in which both endpoints move

(Figure 12(b)), r′ and s′ may switch between being internal and being exter-
nal several times. However, as soon as they set their light to External, they
do not set it back to Off even if they become internal again. But r moves
exactly by r(0)r′(0), and s moves exactly by s(0)s′(0) (line 12), because the
model is Rigid. This movement length is chosen in such a way that both r′

and s′ eventually become vertex robots, as Figure 12(b) suggests. Therefore
the colors of r′ and s′ are eventually consistent, despite asynchrony. So, every
robot waits for both r and s to see some External robots and thus become
External themselves. Only then do other robots start moving (lines 26–29).
As a consequence, we may once again pretend that the robots in this phase
are SSynch, and the proof is completed as in Theorem 4.1.

45

5.2. Non-Rigid ASynch Robots with Agreement on One Axis
Unfortunately, for Non-Rigid ASynch robots, our correctness proof of

the interior depletion phase of Algorithm 2 fails. Indeed, to prove collision
avoidance, we used in a crucial way the fact that, if two internal robots are
moving at the same time, then at most one of them saw the other robot in the
middle of a movement. This is true under the Non-Rigid SSynch model
(obviously) and under the Rigid ASynch model (because each internal
robot becomes external after only one move), but not under the Non-Rigid
ASynch model. In this model, an internal robot r may perform different
moves in different directions before becoming external. For instance, if r’s
first movement is stopped by the adversary and, in the meantime, new robots
have become External or new robots have become visible, r may decide to
move in a significantly different direction the second time. This, paired with
the ability of the ASynch scheduler to hold a moving robot for an indefinitely
long time and then release it and let it complete its move, does cause collisions
in some (quite pathological) cases. On the other hand, however, the vertex
adjustments phase of Algorithm 2 works under all models; therefore we only
need to replace the interior depletion phase and the segment breaking phase.

With the additional assumption that all robots agree on one axis, there
is an easy way to fix the interior depletion phase, which is illustrated in
Figure 13. Say that the robots agree on the y axis, i.e., they agree on the
“North” direction, but they may disagree on “East” and “West”. Then, if an
internal robot sees that every robot that lies to the North is set to External
(i.e., if its own y coordinate is maximum among the internal robots), it is
eligible to move. If there is a row of several internal robots that are all
eligible to move (as in Figure 13), then only the two endpoints are allowed
to move, and the others wait. The left endpoint moves to the upper-left
quadrant, and the right endpoint moves to the upper-right quadrant, and
their destination points are on the convex hull, but not on locations already
occupied by external robots. To guarantee termination, we make each robot
move straight to the North toward the boundary of the convex hull of the
visible robots, unless there are external robots in the way. In this special
case, we make the robot move slightly sideways.

Also the protocol for the segment breaking phase needs some modifica-
tions: indeed, referring to Figure 12(b), in which r and s move in opposite
directions, it is no longer true that r′ and s′ will eventually be external robots
when r and s stop (recall that robots are Non-Rigid now). Unfortunately,
r′ and s′ may become temporarily external while r and s move, and thus they

46

Figure 13: Interior depletion with agreement on one axis

may (permanently) set themselves to External, which could lead to inconsis-
tent behaviors. Once again, we can fix the protocol if the robots agree on
the y axis: now, in the segment breaking phase, an endpoint robot moves ac-
cording to Algorithm 2 only if it has the maximum y coordinate. This makes
only one endpoint move in most cases, which eliminates the aforementioned
issue. Moreover, if both endpoints have the same y coordinate, they will
both move North, thus forming a configuration like the one in Figure 12(a),
which causes no trouble.

Theorem 5.2. The Mutual Visibility problem is solvable by Non-Rigid ASynch
robots carrying 3-colored lights, provided that they agree on one axis.

Proof. We show that the above algorithm is correct. In the interior deple-
tion phase, there can be no collisions, and each internal robot eventually
reaches the convex hull. Indeed, suppose that initially there is a unique in-
ternal robot r with largest y coordinate. As soon as enough external robots
have set themselves to External, r starts moving North, and no other robot
moves. Eventually r becomes external without colliding with any robot (note
that, even if r does not initially see the boundary of the convex hull, it will
eventually see it after finitely many moves).

If several internal robots have the largest y coordinate, as in Figure 13,
the argument is similar. At most two robots can move at the same time,
and they cannot collide because the difference of their x coordinates cannot

47

decrease. After enough cycles, either they have reached the convex hull, or
one of them has been “left behind” and is no longer eligible to move. Either
way, at least one internal robot eventually becomes external.

Once an internal robot has become external, the same argument repeats
for all other internal robots. Note that these “sub-phases” do not interfere
with each other, because a new robot becomes eligible to move only after the
previous eligible robots have stopped on the convex hull.

The moment the last internal robot becomes external, no robot is moving,
and therefore the whole swarm correctly transitions to the vertex adjustments
phase, which works exactly as described in Theorem 5.1 and Lemma 4.8.

If the robots are initially collinear, they correctly transition to a non-
collinear configuration, as in Theorem 5.1. Indeed, note that the two end-
point robots cannot move in opposite directions (as in Figure 12(b)), and
hence it does not matter if they are Rigid or Non-Rigid, since in this case
it is not harmful if they move by smaller amounts than those indicated by
Algorithm 2 (cf. Figure 12(a)). The same clearly holds if n = 3 and the
middle robot executes line 16.

6. Related Problems and Alternative Models

Here we discuss some applications of the previous Mutual Visibility algo-
rithms to other problems, and we also discuss different robot models.

6.1. Forming a Convex Configuration

As already observed, Algorithm 1 also solves the Convex Formation prob-
lem, where the robots have to terminate in a strictly convex position. More-
over, no robot ever crosses the perimeter of the initial convex hull unless, of
course, all the robots are initially collinear. This works for Rigid SSynch
robots carrying 2-colored lights.

For Non-Rigid SSynch robots carrying 3-colored lights, Algorithm 2
also solves the Convex Formation problem, but it has an additional property:
during the interior depletion phase, the convex hull of the robots remains
unaltered (unless all robots are collinear), and in the vertex adjustments
phase it shrinks a little, due to the small movements of the vertices. We can
actually make these movements as small as we want, by changing line 29 of
Algorithm 2 into

Move to (a.position + b.position) · ε

‖a.position + b.position‖ ,

48

where ε is an arbitrarily-chosen positive constant. Similarly, in lines 12 and 16
we can make the robot move orthogonally to H by ε or less. As a result,
we can guarantee that the robots will terminate in a (strictly convex) con-
figuration whose vertices are contained in an ε-wide band around the initial
convex hull’s perimeter.

Similar observations hold for the algorithms and models discussed in Sec-
tion 5.

6.2. Forming a Circle

As a followup to Algorithms 1 and 2, the robots can even solve the Cir-
cle Formation problem, in which they have to become concircular and then
terminate. Moreover, if they are Rigid SSynch (respectively, Non-Rigid
SSynch), they can do so with the same 2-colored (respectively, 3-colored)
lights that they used to solve Mutual Visibility.

First, it is necessary to slightly modify the termination condition of the
algorithms: in Algorithm 1, when a robot sees only robots set to Vertex, it
does not terminate, but it starts executing a circle formation phase. Simi-
larly, in Algorithm 2, we remove lines 23–25, thus preventing vertex robots
from reverting their color to External and terminating after they have ad-
justed their position. Instead, they wait until they only see robots set to
Adjusting. Accordingly, in lines 27 and 36 we remove the conditions that
prevent robots from moving if they see other robots set to Adjusting. Since
we are assuming that robots are SSynch, it is straightforward to see that
the correctness proof of Section 4 goes through even after these modifications
to the protocol, and that eventually all robots are set to Adjusting. At this
point, the circle formation phase starts.

Since all robots are set to Adjusting, each robot knows that all of them oc-
cupy non-degenerate vertices of the convex hull, and that there are no other
robots in the swarm. Hence the phase starts in a strictly convex configura-
tion, and all the robots see each other. In particular, the Smallest Enclosing
Circle (SEC) computed by each active robot is the same. In the circle for-
mation phase, the robots move toward the perimeter of the SEC in a precise
order, as illustrated in Figure 14. If a robot lies in p, which is not on the
SEC, and one of its neighbors lies in s, which is on the SEC, then the robot
in p moves along the extension of the edge of the convex hull that is incident
to p and not to s. If both neighbors of the robot lie on the SEC (as with the
robot in q in Figure 14), it chooses one of its two incident edges, and moves
along the extension of that edge.

49

p

s

q

Figure 14: Forming a circle

It is clear that the combined motion of the robots does not cause collisions
or obstructions, and that the SEC is always preserved. Indeed, any robot
that is already on the SEC remains still, and those that are inside the SEC
are allowed to move only within the SEC itself. Moreover, the direction in
which each robot moves is preserved until one of them reaches the SEC.
Hence, even if robots are Non-Rigid, after finitely many turns at least one
of them reaches the SEC, and therefore eventually they all reach the SEC.
At this point, they correctly terminate.

The same circle formation phase can also be used in conjunction with the
algorithms discussed in Section 5 for ASynch robots. The only difference
is that, instead of modifying the ASynch algorithms like we did with the
SSynch ones, we simply add an extra state, called Done, to synchronize
robots and make them transition correctly from the vertex adjustments phase
into the circle formation phase. That is, instead of terminating, a robot sets
itself to Done, and then waits until all other robots are set to Done, as well.
Only then does it proceed to executing the circle formation phase described
above. Of course, before the circle formation phase starts, if a robot sees
another robot set to Done, it treats its like an External robot. This works

50

with both Rigid and Non-Rigid ASynch robots carrying 4-colored lights.

6.3. Converging to a Point Without Colliding

A simple modification of Algorithm 1 solves the Near-Gathering problem,
which requires all the robots to converge to a point without colliding: it is
sufficient to remove lines 8, 9, and 23, that is, all the operations involving
colors, and the termination condition. Indeed, if there is only one internal
robot, either it will become external, or the other robots will converge to
its location. On the other hand, if all robots become external, the convex
hull will keep shrinking until its vertices converge to a point. This works for
Rigid SSynch robots, even without the use of colored lights.

However, if the robots carry 2-colored lights, they can also terminate when
they get close enough to one another. This is done by simply modifying the
termination condition of line 9:

if ∀r, s ∈ V , r.light = Vertex and ‖r.position−s.position‖ < ε then Terminate

where ε is any given positive constant.

6.4. Non-Rigid SSynch Robots with Knowledge of δ

Suppose that the robots are Non-Rigid SSynch, and as such they can
be stopped by the scheduler at each turn before they reach their destination
point, but not before they have moved by at least δ. Recall that in this
case they have an algorithm for Mutual Visibility that uses 3-colored lights,
described in Section 4. However, if the robots know the exact value of δ and
they can use it in their computations, they can solve Mutual Visibility even
with 2-colored lights, by executing a slightly modified version of Algorithm 1.

If all the robots are initially collinear, Algorithm 1 makes them reach
a non-collinear configuration, even if they are Non-Rigid. Subsequently,
the invariants discussed in Section 3.2.1 keep holding, and in particular the
convex hull of the robots never grows, and vertex robots never become non-
vertex robots. We have to show that a version of Lemma 3.1 can be obtained
for this model, as well. Referring to Figure 1, we can make the robot in p
move toward (a + b)/2 by a smaller amount, never passing internal robots,
and never colliding with them, unless they are closer than δ. If an internal
robot r is closer than δ and it stands between p and (a + b)/2, the robot in
p moves close enough to r, on the line parallel to ab, and it sets its light to
the correct value (note that it knows before moving whether it will end up

51

being a vertex robot or not). This “lateral move” cannot be stopped by the
scheduler, and it is guaranteed to create a new external robot, and eventually
increase by one the number of vertex robots.

On the other hand, if only “non-lateral moves” are made, the analysis in
Section 3.2.2 can be generalized, because Equation 1 takes the form

ri(t+ 1) =
µ

2
· ri−1(t) + µ · ri(t) +

µ

2
· ri+1(t),

where µ ∈ [µ0, 1/2], and µ0 is a constant. Indeed, if the convex hull of the
robots never grows, and its initial diameter is d, then each moving robot
is guaranteed to move by at least a fraction of µ0 = δ/d of its computed
movement vector. Therefore, all the lemmas in Section 3.2.2 can be reproved
by merely adjusting some coefficients in the formulas.

It remains to prove that, if only one internal robot is left, it eventually
reaches the boundary of the convex hull without colliding with other robots.
But since δ is known, we can make this robot stay still until it either becomes
external (due to other robots’ movements), or the diameter of the convex hull
becomes smaller than δ. As soon as it is guaranteed to make a reliable move,
it can reach the midpoint of an edge of the convex hull, and therefore become
external.

When all robots are external, they eventually reach a strictly convex
configuration and they correctly terminate, as detailed in the proof of The-
orem 3.1.

6.5. Trading Lights with the Knowledge of n

Suppose that the robots do not carry visible lights and have no internal
memory, but they share the knowledge of the total number of robots in the
swarm, n. If the robots are Rigid SSynch, it is possible to slightly modify
Algorithm 1 to solve Mutual Visibility in this model, as well.

Note that the information given by other robots’ visible lights is used only
when a robot has to terminate (line 9), or when it is the only internal robot
and it has to move to the perimeter of the convex hull (line 23). However,
both these situations can be recognized locally by counting the vertices of
the convex hull of the visible robots: if it has n non-degenerate vertices,
Mutual Visibility has been solved, and the executing robot can terminate. If
the convex hull has n−1 vertices and the executing robot is internal, it moves
to the boundary, as in line 23 of Algorithm 1.

52

The same techniques can be used to modify the algorithm of Section 6.4,
so that Non-Rigid SSynch robots with knowledge of δ and knowledge of
n can solve Mutual Visibility without the use of colored lights.

We are also able to optimize Algorithm 2 for robots with knowledge of n:
namely, we can achieve termination detection even if the robots do not use the
Adjusting color, as follows. When all robots are external and a vertex robot
makes a default move, it does not change its color, but remains External.
Then, when a vertex robot sees n robots, it terminates. Note that making
a default move allows a robot to see all other robots at its next activation,
and therefore each external robot makes at most one default move before
terminating. Moreover, when all robots are collinear, we apply this simple
protocol: if a robot is an endpoint of the convex hull, it moves orthogonally
to it (without changing color); otherwise it stays still. This way, as soon as
an endpoint is activated, the configuration becomes non-collinear. The only
exception to this rule is the case n = 3, in which the central robot has to
move orthogonally to the segment, while the other two robots stay still.

This technique allows Non-Rigid SSynch robots with knowledge of n
to solve Mutual Visibility with 2 colors as opposed to 3.

6.6. Fault Tolerance

Observe that Lemma 3.2 requires only n−1 valves to be opened infinitely
often, as opposed to n. This implies that, if Rigid SSynch robots execute
the modification of Algorithm 1 described in Section 6.3, they converge to
a point even if one robot is unable to move. Therefore, in the presence of
one faulty robot, Near-Gathering is still solvable, even without the use of
colored lights. (On the other hand, if two robots are faulty, Near-Gathering
is clearly unsolvable, because the two faulty robots cannot approach each
other.) Additionally, if n is known, Mutual Visibility and Convex Formation
are solved in the presence of a faulty robot, provided that it is located on the
boundary of the convex hull.

6.7. Sequential Scheduler

Suppose that the scheduler is sequential, i.e., it is SSynch and it activates
exactly one robot at each turn. In this very special model there is a simple
algorithm to solve Mutual Visibility with no termination detection, even with
no colored lights and no knowledge of n, and even if the robots are Non-
Rigid and two of them are faulty. (If three robots are faulty, Mutual Visibility
is clearly unsolvable.) When a robot is activated, it just moves by a small

53

amount, without crossing or landing on any line that passes through two
robots that it can currently see (including itself), as illustrated in Figure 15.
Clearly, when a robot moves as described, it becomes visible to all other
robots. Hence, when all robots (except possibly two of them) have moved at
least once, they can all see each other.

Figure 15: Solving Mutual Visibility under a sequential scheduler

This protocol solves Mutual Visibility with no termination detection, in
the sense that, after finitely many turns, the robots will keep seeing each
other. However they will never stop moving because they will never know if
their task is terminated or not. Indeed, termination detection is not achiev-
able under this set of assumptions and, to be able to obtain it, some other
assumptions are needed; for example, 2-colored lights or the knowledge of
n. With 2-colored lights, a robot can change its own color the first time it
moves, and terminate at the next activation. With knowledge of n, a robot
simply terminates when it sees n robots.

7. Concluding Remarks

In this paper we initiated the investigation of the computational capa-
bilities of a swarm of anonymous mobile robots with obstructed visibility:
in this model, which has never been considered in the literature, two robots
cannot see each other if a third robot lies between them. We focused on
the basic problem of Mutual Visibility, in which the robots, starting from an

54

arbitrary configuration, have to reach a configuration in which they all see
each other, and then terminate the execution. This task is clearly impossible
if the robots are completely oblivious, unable to communicate, and do not
have any additional information. Indeed, in this scenario a robot can never
distinguish between an initial configuration in which it cannot see some other
robots, and a configuration in which all robots are visible and it is safe to ter-
minate (recall that the termination operation cannot be undone).1 Therefore
we employed the extended model of luminous robots, in which each robot is
carrying a visible light that it can set to different colors. The goal is then
to minimize the number of colors required by the robots to solve the Mu-
tual Visibility problem under different settings and restrictions. Namely, we
considered SSynch and ASynch robots, and Rigid and Non-Rigid move-
ments. We also discussed how to reduce the number of used colors if some
information is given to the robots, such as the size of the swarm, n, or a min-
imum distance δ that a robot is guaranteed to cover in each movement. Our
main results are summarized in Theorems 1.1 and 1.2. We then touched on
more complex problems, and proposed solutions that use our Mutual Visibility
protocols as a preprocessing step. Notably, we gave the first algorithms for
the Near Gathering problem (with fault tolerance) and the Circle Formation
problem that work under the obstructed visibility model.

We proposed two main algorithms, and several modifications and adap-
tations to various models. Algorithm 1 (Shrink) uses 2 colors and makes the
convex hull of the robots shrink, ideally converging to a point. Algorithm 2
(Contain) uses 3 colors, and keeps the initial convex hull basically unaltered.
It is therefore suited for practical situations in which the robots have to sur-
round a large-enough area, as well as solving Mutual Visibility. Also, both
algorithms keep the robots within the initial convex hull (unless they are
initially collinear), which is useful in practice, for instance in the presence of
hazardous areas around the swarm.

Some interesting research problems remain unsolved. We would like to
reduce the number of colors used by our algorithms in the various models,
or to prove our algorithms optimal. Our solutions to Mutual Visibility in
some models use only 2 colors (or no lights at all if n is known), which is

1It is worth noting that, if robots are only required to remain still forever after they
have all become mutually visible (as opposed to terminating their execution), then this
argument is no longer valid. With such a notion of weak termination, there could exist an
algorithm for Mutual Visibility that uses no colored lights and no extra information.

55

clearly optimal. For other models, such as Non-Rigid SSynch and Rigid
ASynch, we used 3 colors, and our question is whether this can be improved.
We conjecture that Algorithm 1, which uses only 2 colors and has been de-
signed and proven correct for Rigid SSynch robots, can be applied with no
changes also to Non-Rigid SSynch robots (we could prove that 2 colors
are sufficient in this model under the assumption that the robots know δ). In
the Non-Rigid ASynch setting we were only able to solve Mutual Visibility
(with 3 colors) assuming that the robots agree on the direction of one coordi-
nate axis. We ask if this assumption can be dropped, perhaps if more colors
are used. Another question is whether Mutual Visibility can be solved deter-
ministically without using colored lights or extra information, and without
termination detection. That is, we allow the robots to move forever, but we
require them to remain mutually visible from a certain time on. We proposed
a simple solution that works under the sequential scheduler, and we ask if
this can be generalized to SSynch or even ASynch schedulers.

We emphasize that obstructed visibility represents a broad line of research
in the field of computation by mobile robots, and this paper explored just
a few directions. Several classical problems are worth studying under this
model, such as the general Pattern Formation problem, Flocking, Scattering,
with or without bounded visibility, etc.

Acknowledgements. This work has been supported in part by the Na-
tional Science and Engineering Research Council of Canada, under Discovery
Grants, and by Professor Flocchini’s University Research Chair.

References.

[1] C. Agathangelou, C. Georgiou, and M. Mavronicolas. A distributed algorithm
for gathering many fat mobile robots in the plane. In Proceedings of the 32nd
ACM Symposium on Principles of Distributed Computing (PODC), pages
250–259, 2013.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous
mobile robots. SIAM Journal on Computing, 36(1):56–82, 2006.

[3] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation: nu-
merical methods. Prentice Hall, 1989.

[4] Z. Bouzid, S. Dolev, M. Potop-Butucaru, and S. Tixeuil. Robocast: Asyn-
chronous communication in robot networks. In Proceedings of the 14th Inter-

56

national Conference on Principles of Distributed Systems (OPODIS), LNCS
6490, pages 16–31, 2010.

[5] K. Bolla, T. Kovacs, and G. Fazekas. Gathering of fat robots with limited
visibility and without global navigation. In Proceedings of the International
Symposium on Swarm and Evolutionary Computing, pages 30–38, 2012.

[6] I. Chatzigiannakis, M. Markou, and S. Nikoletseas. Distributed circle forma-
tion for anonymous oblivious robots. In Proceedings of the 3rd International
Workshop on Experimental and Efficient Algorithms (WEA), pages 159–174,
2004.

[7] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed comput-
ing for mobile robots: Gathering. SIAM Journal on Computing, 41(4):829–
879, 2012.

[8] R. Cohen and D. Peleg. Convergence properties of the gravitational al-
gorithms in asynchronous robots systems. SIAM Journal on Computing,
34:1516–1528, 2005.

[9] R. Cohen and D. Peleg. Local spreading algorithms for autonomous robot
systems. Theoretical Computer Science, 399(1,2):71–82, 2008.

[10] G. Cybenko. Dynamic load balancing for distributed memory multiproces-
sors. Journal of Parallel and Distributed Computing, 7:279–301, 1989.

[11] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few fat mobile robots in
the plane. Theoretical Computer Science, 410(6,7):48–499, 2009.

[12] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. The power
of lights: Synchronizing asynchronous robots using visible bits. In Proceed-
ings of the 32nd International Conference on Distributed Computing Systems
(ICDCS), pages 506–515, 2012.

[13] S. Das, P. Flocchini, G. Prencipe, and N. Santoro. Synchronized dancing of
oblivious chameleons. In Proceedings of the 7th International Conference on
Fun with Algorithms (FUN), pages 113–124, 2014.

[14] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Forming sequences
of geometric patterns with oblivious mobile robots. Distributed Computing,
28(2):131–145, 2015.

57

[15] S. Datta, A. Dutta, S. Gan Chaudhuri, and K. Mukhopadhyaya. Circle for-
mation by asynchronous fat robots. In Proceedings of the 9th International
Conference on Distributed Computing and Internet Technology (ICDCIT),
pages 195–207, 2013.

[16] X. Défago and A. Konagaya. Circle formation for oblivious anonymous mobile
robots with no common sense of orientation. In Proceedings of the 2nd ACM
International Workshop on Principles of Mobile Computing (POMC), pages
97–104, 2002.

[17] X. Défago and S. Souissi. Non-uniform circle formation algorithm for oblivious
mobile robots with convergence toward uniformity. Theoretical Computer
Science, 396(1,3):97–112, 2008.

[18] Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Circle formation of weak
mobile robots. ACM Transactions on Autonomous and Adaptive Systems,
3(4):16:1–16:20, 2008.

[19] Y. Dieudonné and F. Petit. Swing words to make circle formation quies-
cent. 14th Int. Colloquium on Structural Information and Communication
Complexity (SIROCCO), 166–179, 2007.

[20] Y. Dieudonné and F. Petit. Squaring the circle with weak mobile robots.
In Proceedings of 19th Int. Symposium on Algorithms and Computation
(ISAAC), 354–365, 2008.

[21] A. Efrima and D. Peleg. Distributed models and algorithms for mobile robot
systems. In Proceedings of the 33rd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM), pages 70–
87, 2007.

[22] P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment algorithms for
mobile sensors on a ring. Theoretical Computer Science, 402(1):67–80, 2008.

[23] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivi-
ous Mobile Robots. Morgan & Claypool, 2012.

[24] P. Flocchini, G. Prencipe, N. Santoro, and G. Viglietta. Distributed com-
puting by mobile robots: Solving the uniform circle formation problem. In
Proceedings of the 18th International Conference on Principles of Distributed
Systems (OPODIS), pages 217–232, 2014.

58

[25] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern
formation by asynchronous oblivious robots. Theoretical Computer Science,
407(1–3):412–447, 2008.

[26] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous
of two robots with constant memory. In Proceedings of the 20th Interna-
tional Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 189–200, 2013.

[27] N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamashita. Asynchronous pat-
tern formation by anonymous oblivious mobile robots. 26th Int. Symposium
on Distributed Computing (DISC), 312–325, 2012.

[28] V. Gervasi and G. Prencipe. Coordination without communication: The case
of the flocking problem. Discrete Applied Mathematics, 144(3):324–344, 2004.

[29] T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Defago, K. Wada, and
M. Yamashita. The gathering problem for two oblivious robots with unreliable
compasses. SIAM Journal on Computing, 41(1):26–46, 2012.

[30] B. Katreniak. Biangular circle formation by asynchronous mobile robots. In
Proceedings of the 12th International Colloquium on Structural Information
and Communication Complexity (SIROCCO), 185–199, 2005.

[31] T. Miyamae, S. Ichikawa, and F. Hara. Emergent approach to circle formation
by multiple autonomous modular robots. J. Robotics and Mechatr., 21(1):3–
11, 2009.

[32] L. Pagli, G. Prencipe, and G. Viglietta. Getting close without touching. In
the International Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 315–326, 2012.

[33] D. Peleg. Distributed coordination algorithms for mobile robot swarms: New
directions and challenges. In Proceedings of the 7th International Workshop
on Distributed Computing (IWDC), pages 1–12, 2005.

[34] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. Journal of Robotic Systems 13(3):127–139,
1996.

[35] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363,
1999.

59

[36] G. Viglietta. Rendezvous of two robots with visible bits. In Proceedings of
the Symposium on Algorithms and Experiments for Sensor Systems, Wireless
Networks and Distributed Robotics (ALGOSENSORS), pages 291–306, 2013.

[37] M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theoretical Computer Science, 411(26–
28):2433–2453, 2010.

60

