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Abstract

Infinite games where several players seek to coordinate under imperfect infor-
mation are deemed to be undecidable, unless the information is hierarchically
ordered among the players.

We identify a class of games for which joint winning strategies can be con-
structed effectively without restricting the direction of information flow. In-
stead, our condition requires that the players attain common knowledge about
the actual state of the game over and over again along every play.

We show that it is decidable whether a given game satisfies the condition,
and prove tight complexity bounds for the strategy synthesis problem under
ω-regular winning conditions given by deterministic parity automata.
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1. Introduction

Automated synthesis of systems that are correct by construction is a per-
sistent ambition of computational engineering. One major challenge consists
in controlling components that have only partial information about the global
system state. Building on automata and game-theoretic foundations, significant
progress has been made towards synthesising finite-state components that inter-
act with an uncontrollable environment either individually, or in coordination
with other controllable components — provided the information they have about
the global system is distributed hierarchically [1, 2]. For the general case, how-
ever, it was shown that the problem of coordinating two or more components
of a distributed system with non-terminating executions is undecidable [3, 4].

The distributed synthesis problem can be formulated alternatively in terms
of games between n players (the components) that move along the edges of a
finite graph (the state-transitions of the global system) with imperfect infor-
mation about the current position and the moves of the other players. The
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outcome of a play is a possibly infinite path (system execution) determined by
the joint actions of the players and moves of Nature (the uncontrollable envi-
ronment). The players have a common winning condition: to form a path that
corresponds to a correct execution with respect to the system specification, no
matter how Nature moves. Winning conditions may be specified by finite-state
automata, temporal logics, or in the canonical form of parity conditions. Thus,
distributed synthesis under partial information corresponds to the problem of
constructing a winning profile of finite-state strategies in a coordination game
with imperfect information. This problem was shown to be undecidable by
Peterson and Reif [5], already for the basic setting of two players with a reach-
ability condition; infinitary winning conditions, which lead to higher degrees of
undecidability, have been studied by Janin [6].

As in the case of distributed systems, decidable classes of coordination games
rely on restrictions of the information flow according to an order among the
players [7, 8, 9]. In their survey article on the complexity of multiplayer games,
Azhar, Peterson, and Reif conclude that “[i]n general, multiplayer games of
incomplete information can be undecidable, unless the information is hierarchi-
cally arranged”[7, p. 991].

The undecidability arguments cited above share a basic scenario: two players
become uncertain about the current state of the game, due to moves of Nature.
The structure of the game requires them to take into account not only their first-
order uncertainty about the actual state, but also the higher-order uncertainty
of one player about the knowledge of the other. Finally, the players can win only
by attaining common knowledge about a property of the actual history, which
requires them to maintain knowledge hierarchies of increasing height, as the play
proceeds. The scenario is set up so that the uncertainty never vanishes and the
knowledge hierarchies grow unboundedly, which leads to undecidability [10].

One systematic approach to characterising undecidable classes of problems
that involve multiple players with imperfect information is the information fork
criterion formulated by Finkbeiner and Schewe [11]. The criterion applies to
the distributed synthesis problem in the basic setting of Pnueli and Rosner [3],
for fixed architectures with synchronous communication channels. Intuitively,
an architecture has an information fork if it allows for two players to reach a
situation in which neither one can infer the observation received by the other
player from his own observation. Under this condition, distributed architectures
may allow the knowledge of players to diverge over an unbounded number of
rounds for particular specifications. Conversely, all architectures that do not
contain an information fork admit an information ordering among the players
and are therefore decidable.

When applied to games, however, the information fork criterion yields only
a coarse classification for decidability, as the parametrisation over architectures
has no natural correspondent in terms of game graphs. Indeed, the set of game
instances obtained by modelling a given family of distributed systems may be
solvable, in spite of possible information forks in the underlying architecture.
This can occur, for instance, if the information flow affected by the fork is
inessential to the players, or if the divergence between the knowledge of players
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vanishes after few rounds.
In this article, we identify a new condition for the decidability of coordina-

tion games with imperfect information that does not rely on the hierarchical
arrangement of information. Similar to the information fork approach, our fo-
cus is on situations in which the knowledge of players diverges. We use the
term knowledge gap to describe an interval of rounds at which the players do
not attain common knowledge about the actual state. Essentially, our condition
requests that all knowledge gaps of a game are finite, or in other words, that
the players attain common knowledge of the actual game state infinitely often,
along every play. In this case we say that the game allows for recurring common
knowledge of the state.

Questions about common knowledge in infinite runs are typically hard. In
their study of the model checking complexity of epistemic temporal logics [12],
van der Meyden and Shilov point out that already the problem of determining
whether the players attain common knowledge about an atomic property is
undecidable, even for synchronous models as we consider here. Indeed, it turns
out that it is undecidable whether the players attain common knowledge of the
state at any history within a given part of the game graph (Proposition 4.3).

Surprisingly, the situation improves when we look at the recurring formula-
tion relevant for our characterisation: We are able to show that the question of
whether the common-knowledge property holds infinitely often, on every play
in a game is decidable with low complexity. This has several favourable conse-
quences for solving infinite coordination games with imperfect information.

Our results are summarised as follows:

(1) The question of whether a game for n players with imperfect informa-
tion satisfies the condition of recurring common knowledge of the state is
decidable in NLogSpace.

(2) If a coordination game for n players with imperfect information satis-
fies the condition of recurring common knowledge of the state, then the
problem of whether a joint winning strategy exists is decidable, and it is
NExpTime-complete.

(3) If there exists a joint winning strategy in a game with recurring com-
mon knowledge of the state, then there also exists a profile of finite-state
strategies of exponential size, which can be synthesised in 2ExpTime.

The conclusions rely on three key arguments. Firstly, we show that under
recurring common knowledge of the state, the intervals where the current state
of the game is not common knowledge are bounded uniformly. This implies
that the perfect-information tracking of such a game is finite, which yields de-
cidability of the strategy synthesis problem as a consequence of a metatheorem
from [13]. Secondly, we characterise recurring common knowledge in terms of re-
curring mutual knowledge. This allows us to establish tight complexity bounds.
Finally, we prove that the problem of solving imperfect-information games with
recurring common knowledge of the state can be reduced to solving parity games
with perfect information, at a relatively low cost in terms of complexity.
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2. Basic notions

2.1. Coordination games with imperfect information

Our game model is close to that of concurrent games [14]. There are n
players 1, . . . , n and a distinguished agent called Nature. The grand coalition
is the set {1, . . . , n} of all players. We refer to a list of elements x = (xi)1≤i≤n,
one for each player, as a profile.

For each player i, we fix a set Ai of actions and a set Bi of observations,
finite unless stated otherwise. The action space A consists of all action profiles.
A game graph G = (V,E, (βi)1≤i≤n) consists of a finite set V of nodes called
states, an edge relation E ⊆ V ×A×V representing simultaneous moves labelled
by action profiles, and a profile of observation functions βi : V → Bi that label
every state with an observation, for each player. We assume that for every
state v and every action profile a there is an outgoing move (v, a, v′) ∈ E. For
convenience, we will include special sink states from which any outgoing move
is a self loop.

Plays start at an initial state v0 ∈ V known to all players and proceed in
rounds where each player i chooses an action ai ∈ Ai, then Nature chooses a
successor state v′ reachable via a move (v, a, v′) ∈ E, and each player i receives
the observation βi(v′). Notice that the players are not informed about the action
chosen by other players, nor about the state chosen by Nature.

Formally, a play is an infinite sequence π = v0, a1, v1, a2, v2, . . . alternating
between positions and action profiles with (v`, a`+1, v`+1) ∈ E, for all ` ≥ 0.
A history is a prefix π = v0, a1, v1, . . . , a`, v` of a play; we refer to ` as the length
of the history. For convenience, we omit commas in the sequence notation and
write plays and histories as words π = v0 a1v1 a2v2 . . . . Whenever we refer to a
finite prefix ρ of a play or history π, we mean a history ρ ∈ V (AV )∗ such that
π = ρτ for some τ in (AV )∗ or (AV )ω; further, we call π a prolongation and τ
a continuation of ρ.

The observation function is extended from states to histories and plays by
setting βi(π) := βi(v0) ai1β

i(v1) . . . We say that two histories π, π′ are indis-
tinguishable to Player i, and write π ∼i π′, if βi(π) = βi(π′). This is an
equivalence relation, and its classes are called the information sets of Player i.
A game (graph) with perfect information is one where all information sets are
singletons. In general, we do not assume that this is the case, so we speak about
games with imperfect information.

When viewed as a distributed system in the taxonomy of Halpern and
Vardi [15], our game model belongs to the class of synchronous systems with
perfect recall. This is implicit in our definition of observation functions: the
players are able to distinguish between histories of different length (synchronic-
ity), and if two histories are indistinguishable for a player i at round `, then so
are they at any previous round r < ` (perfect recall).

A strategy for Player i is a mapping si : V (AV )∗ → Ai from histories to
actions such that si(π) = si(π′), for any pair π ∼i π′ of indistinguishable
histories. We denote the set of all strategies of Player i by Si and the set of all
strategy profiles by S. A history or play π = v0 a1v1 . . . follows the strategy
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si ∈ Si if ai`+1 = si(v0 a1v1 . . . a`v`), for every ` ≥ 0. For the grand coalition,
the play π follows a strategy profile s ∈ S if it follows all strategies si. The set
of possible outcomes of a strategy profile s is the set of plays that follow s.

A general winning condition over a game graph G is a set W ⊆ (VA)ω of
plays. A coordination game G = (G,W ) is described by a game graph and
a winning condition. We say that a play π on G is winning in G if π ∈ W .
A strategy profile s is winning in G, if all its possible outcomes are so. In this
case, we refer to s as a joint winning strategy.

With a view to effective algorithms for synthesising strategies, we focus on
finitely presented games where the winning condition is described by a colouring
function γ : V → C with a finite range of colours, and an ω-regular set W ⊆ Cω
given, e.g., by finite-state automaton. Then, a play v0 a1v1 . . . is winning if
γ(v0)γ(v1) · · · ∈ W . We generally assume that the colouring is observable to
each player i, that is, βi(v) 6= βi(v′) whenever γ(v) 6= γ(v′). Given such a
game, the distributed synthesis problem consists of two tasks: (1) to decide
whether there exists a joint winning strategy, and (2) to construct a winning
profile of finite-state strategies, if any exist. These are strategies implemented by
automata that input observations and output actions. For more background on
finite-state strategy synthesis we refer to the expository article of Thomas [16].

For lower bounds, we refer to simple safety conditions which require the
players to avoid an observable sink 	. The technical results on upper bounds
are formulated in terms of parity winning conditions represented by a coloring
function γ : V → N that maps every state to a number called priority : A play
is winning if the least priority seen infinitely often along a play is even. Parity
conditions provide a canonical form for observable ω-regular winning conditions,
in the sense that each game with a regular condition can be reduced to one with
a parity condition such that the solution of the synthesis problem is preserved.
The reduction for the perfect-information setting described by Thomas in the
handbook chapter [17] generalises to imperfect-information games with observ-
able winning conditions, as pointed out in [13].

2.2. Domino tiling problems

As a tool for proving lower complexity bounds, we use domino tiling prob-
lems, which allow a more transparent representation of combinatorial problems
than encoding machine models. Our exposition follows the notation of Börger,
Grädel, and Gurevich [18].

A domino system D = (D,EH , EV ) is described by a finite set D of dominoes
together with horizontal and vertical compatibility relations EH , EV ⊆ D ×D.
The generic domino tiling problem is to determine, for a given systemD, whether
copies of the dominoes can be arranged to cover a region Z ⊆ Z× Z, such that
any two vertically or horizontally adjacent dominoes are compatible. Here we
consider finite rectangular regions Z(`,m) := {0, . . . , `+ 1} × {0, . . . ,m} where
the first and the last column, and the bottom row are distinguished as border
areas to be tiled with special dominoes # and �. The concrete question is
whether there exists a tiling τ : Z(`,m)→ D that assigns to every point in the
region a domino, subject to the border constraints:
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- τ(x, 0) = �, for all x = 1, . . . , `, and

- τ(0, y) = τ(`+ 1, y) = #, for all y = 0, . . . ,m,

and the compatibility constraints, for all x ≤ ` and y < m:

- if τ(x, y) = d and τ(x+ 1, y) = d′ then (d, d′) ∈ EH , and

- if τ(x, y) = d and τ(x, y + 1) = d′ then (d, d′) ∈ EV .

In addition, we may specify constraints on the frontier of the tiling, that is, the
sequence τ(1,m), τ(2,m), . . . , τ(`,m) of dominoes in the top row. To ensure that
border dominoes do not appear at the interior of a correct tiling and to avoid
the trivial tiling, we generally assume that EV ⊆ D × (D \ {#,�}) ∪ {(#,#)}
and (�,�) 6∈ EH .

We use three variants of the domino problem. Firstly, the Corridor Tiling
problem takes as input a domino system D together with a frontier constraint
w ∈ D` and asks whether there exists a height m such that the region Z(`,m)
allows a tiling τ that additionally satisfies:

- τ(i,m) = wi, for all i = 1, . . . , `.

Secondly, the Corridor Universality problem takes as input a domino
system D together with a subset of dominoes Σ ⊆ D and asks whether for all
frontier constraints w ∈ Σ` of arbitrary length ` > 0, there exists a height m
such that the region Z(`,m) allows a corridor tiling.

The basic variant of corridor tiling is a well-known PSpace-complete prob-
lem [19]. One way to explain the complexity of both variants is via the corre-
spondence between context-sensitive languages and domino systems, established
by Latteux and Simplot [20, 21]. The frontier language of a domino system D is
the set L(D) of words w ∈ D∗ such that (D, w) yields a positive instance of the
Corridor Tiling problem. We refer to standard notions on context sensitive
languages as found, for instance, in the handbook [22, Chapter 3].

Theorem 2.1 ([20, 21]). For every context-sensitive language L ⊆ Σ∗ given
as a linear bounded automaton, one can construct in polynomial time a domino
system D over a set of dominoes D ⊇ Σ, such that L(D) ∩ Σ∗ = L.

Via this correspondence, the membership problem for context-sensitive lan-
guage, which is PSpace-complete, reduces to Corridor Tiling and the univer-
sality problem for context-sensitive languages, which is undecidable, reduces to
Corridor Universality. Converse reductions from domino tiling to context-
sensitive language problems can also be done in polynomial time, by translating
domino systems into linear-bounded automata.
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Theorem 2.2 ([19], [20, 21]).

(i) Corridor Tiling is PSpace-complete.

(ii) Corridor Universality is undecidable.

Finally, the Exp-Square Tiling problem takes as input a domino system
together with a number ` ∈ N in binary encoding, and asks whether the region
Z(`, `) allows a correct tiling. The problem was first studied by Fürer [23].

Theorem 2.3 ([23]). Exp-Square Tiling is NExpTime-complete.

2.3. Common knowledge

We use the notion of knowledge in the sense of having information. That
Player i knows proposition ϕ at history π should mean that, from the structure
of the game graph and the sequence βi(π) of observations she received, it can
be inferred that ϕ holds. Specifically, we are interested in propositions about
play histories. To formalise knowledge and uncertainty, we rely on the standard
semantic model introduced by Aumann [24] and follow the treatment of Os-
borne and Rubinstein [25, Chapter 5]. For an extensive account of distributed
knowledge in computational systems, we refer the reader to the book of Fagin,
Halpern, Moses, and Vardi [26, Chapters 10, 11] and, as a standard reference
on common knowledge, to the handbook chapter of Geanakoplos [27]. The en-
lightening article of [28] addresses foundational issues about the formalisation
of common-knowledge.

Let us fix a game graphG and denote by Ω the set of histories. The possibility
correspondence P i : Ω→ P(Ω) associates to each history π its information set:

P i(π) := {π′ ∈ Ω | π′ ∼i π}, for every player i.

Thus, at history π, Player i knows that the actual history is in P i(π), but he
may be uncertain which one it is. The sets P i(π) form a partition of Ω. Observe
that each information set P i(π) consists of histories of the same length as π,
hence it is finite.

An event is a subset F ⊆ Ω. We say that F occurs at history π if π ∈ F .
The knowledge operator Ki : P(Ω)→ P(Ω) associates to every event F the set
of histories at which Player i knows that F occurs:

Ki(F ) := {π ∈ Ω | P i(π) ⊆ F}, for every player i.

Note that Ki(F ) is itself an event. If π ∈ Ki(F ), then (the occurrence of) F
is private knowledge of Player i at π: For any π′ ∼i π, it holds that π′ ∈ F .
If, moreover, π ∈ Ki(F ), for all players i, we say that F is mutual knowledge
among the players at π. In this case, every player knows that F occurs, although
one player may be uncertain about whether another player knows it.

An event F ⊆ Ω is common knowledge at π if for every sequence of histories
π1, . . . , πk and players i1, . . . , ik such that π ∼i1 π1 ∼i2 · · · ∼ik πk, it is the case
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that πk ∈ F . In other words, π belongs to the image of F under every iteration
Ki1(Ki2(. . .Kik(F ) . . . )) of knowledge operators.

We will use an alternative characterisation in terms of shared information.
An event F is self-evident if it is mutual knowledge among the players at every
history in F , that is, if F ⊆ Ki(F ) for all players i. As the converse inclu-
sion Ki(F ) ⊆ F always holds, this amounts to saying that F is a simultaneous
fixed point of the player’s knowledge operators. Self-evident sets allow an in-
terpretation of common knowledge that coincides with the iterated-knowledge
interpretation, if the situation model is sufficiently simple (see Barwise [28], for
a thorough analysis), particularly if the sample space Ω is finite. Although in
our setting Ω is infinite, for histories π of length `, only the finite space Ω` of
histories of the same length matters: An event F ⊆ Ω is mutual or common
knowledge at π if, and only if, this holds for the event F ∩ Ω`. Therefore, the
argument for the finite setting given, for instance, in the handbook chapter of
Geanakoplos [27, Section 6], justifies the following characterisation.

Theorem 2.4 ([24]). An event C ⊆ Ω is common knowledge at history π, if
and only if, there exists a self-evident event F ⊆ C with π ∈ F .

3. Uncertainty and coordination

Under perfect information, coordination games are trivial to solve, by con-
sidering the two-player zero-sum game where the observations and the actions
of the grand coalition are attributed to the first player and the role of Nature is
played by the second player. Then, any winning strategy of the first player can
be viewed as a joint winning strategy and vice versa. Intuitively, players of the
coalition can act as one because each player knows the actual history when he
chooses an action. Unlike the case considered in [29], where players choose their
strategy independently, in the setting of distributed strategies there is no risk
of discoordination due to strategic uncertainty: The joint strategy is centrally
planned, it is common knowledge among the players.

Under imperfect information, the problem is more complex, because players
may not know where they are in the game. Strategies need to adjust to the
uncertainty around the current history, which is induced by moves of Nature.
The prescribed actions should be suitable in any contingency of the unobserv-
able state of nature. In the interaction between a single player and Nature (or,
equivalently, between two players with strictly conflicting interests), the knowl-
edge relevant to this task is of first order: it regards only the set of possible
contingencies, that is, the information set.

Yet, in games among several players, whether an action of one player is
suitable or not at a particular history may depend on whether another player
chooses a matching action at the same history. He, the one player, should thus
be certain that she, the other player, would play the matching action, according
to her commonly known strategy, which, however, responds to the observations
she received on her own side. In other words, to avoid discoordination, he needs
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×|× ×|×

. . . +

(out, out)

(a) first-order

•|•

|•| •|•

×|× ×|×

+. . .

(out, out)

(b) second order

Figure 1: Lacking knowledge to coordinate

to know about what she knows about the current history. In contrast to the one-
player or the two-player conflict case, here it is relevant to consider higher-order
knowledge, i.e., knowledge about the knowledge of other players.

The role of knowledge is particularly obvious in coordination games where
the actions of players must agree at every history. Formally, we call a consensus
game a coordination game with a set of actions that is common to all players,
and where every move (v, a, w) ∈ E in which two players i 6= j disagree on their
actions ai 6= aj leads to a special sink state 	 from which no play is winning.
A necessary condition for a strategy profile s to be winning in a consensus game
is that, for every history π that follows s, all components prescribe the same
action, that is, si(π) = sj(π), for all players i, j. When speaking about a
winning strategies in such a game, we may therefore identify any strategy si of
an individual player with the profile s of strategies where all components are
equal to si, without loss of generality.

Figures 1 and 2 show examples of consensus games for two players, Player
1 (he) and 2 (she), with actions in and out ; unlabelled arcs represent moves
where both players choose in. The observations •, ◦, and × are indicated in
split states: he sees the left side, she the right side. Apart from the unsafe sink 	
that also collects the moves along any unrepresented action profiles, there is a
safe sink ⊕, from which all plays are winning; the sinks are observable to both
players. The dots on the bottom stand for an arbitrary continuation. For each
of these games, we consider the situation where the actual history corresponds
to the rightmost path, marked by thicker arrows leading to the out state where
playing (out , out) would lead to an immediate win. Along the examples, we will
discuss the question of whether the information that players have at the marked
history allows them to infer with certainty that (out , out) is a safe action.

In Figure 1(a), at the marked history, Player 2 knows about being in the
out state which requires the action (out , out) to win. However, Player 1 cannot
distinguish the current history from the one along the left path (•|•)(◦|◦)(×|×),
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where playing out would be losing. So it occurs that at the current state
(out , out) is the right joint move, but Player 1 lacks first-order knowledge about
it, whereas Player 2 has the relevant first-order knowledge, but not the second-
order knowledge to ascertain that Player 1 will play out . At best, the players
could coordinate on (in, in), based on their common knowledge that this leads
to continuing the game, and not straight to the 	 sink.

In Figure 1(b), both players know that they are in the out state. Neverthe-
less, Player 2 is uncertain about whether Player 1 knows it, because according to
her observation, the current history may be (•|•)(◦|•)(×|×), in which case, just
as in Figure 1(a), Player 1 would consider the history (•|•)(◦|◦)(×|×) possible,
and thus not play out . So both players have first-order knowledge about being
at the out state, Player 1 even has the second-order knowledge that Player 2
knows it, and still they cannot coordinate with certainty, because Player 2 does
not know that Player 1 knows it. Moreover, in Figure 2(a), both players know
that the play is at the out state and each of them knows that they both know
it. But Player 1 regards it as possible that Player 2 observed • • ◦×, again rais-
ing the uncertainty of Figure 1(b). Here, the reason why the players cannot
coordinate is that Player 1 does not know that Player 2 knows that Player 1
knows about being in a out state.

The argument can be lifted to arbitrary levels of the knowledge hierarchy.
This is illustrated in Figure 2(b), where the loop around the observation (•|•)
may be unravelled n times to obtain an instance where coordination on the
winning action fails in spite of the players having mutual knowledge of order n
about being in a state where this action is safe.

Indeed, the examples embody the coordinated attack problem, a parable that
illustrates the intricacy of coordination via unreliable communication. The story
features two generals camped with their armies on two hills surrounding a forti-
fication that they plan to attack. As either one alone would lose the battle, they
need to agree on attacking simultaneously. However, they can only communi-
cate by sending messengers, which may be captured on the way. The challenge
is to attain common knowledge about being in a state where the attack can
occur after a finite history of message exchanges, given that whenever a general
receives a message, he is uncertain of whether the sender knows that he received
it. Proofs that this cannot be achieved have been given for different settings,
e.g., by Gray [30], and Halpern and Moses [31], in the distributed-systems lit-
erature, and by Rubinstein [32] in game theory. In our setting, it is Nature
that induces nondeterministically a possible loss of one message between the
two generals who would attack if, and only if, they had common knowledge
of being in the out-state. The analyses put forward the paradigm that that if
common knowledge is not attainable, then coordination is impossible in spite of
an arbitrarily high level of mutual knowledge.

As our examples suggest, already in the simple case of consensus games with
a safety condition (avoid the 	-sink), coordination games with imperfect infor-
mation are sensitive to common knowledge, and thus vulnerable to problems
caused by its inapproximability through finite levels of mutual knowledge. Still,
one may argue that the problem of synthesising a joint winning strategy does
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||| |•

×|× ×|×

. . . +

(out, out)

(a) third order

•|•

•|•

|•

||

×|××|×

. . . +

n times

(out, out)

(b) arbitrary order n

Figure 2: Coordinated attack

not invoke the reasoning process of individual players. In the end, strategies
only rely on first-order knowledge. Nevertheless, we will show in the remainder
of this article that the problem of attaining common knowledge about certain
events — namely, the game state at the actual history — is relevant for solving
coordination games, in the following sense.

(i) There exists a family of games that admit a solution if, and only if, the
players attain common knowledge about the state at a particular history.

(ii) Every game of infinite duration where common knowledge of the actual
state is attained infinitely often along every play can be solved effectively.

4. Common knowledge of the state

Let G be a game graph, and let Ω be the set of histories in G. For a
history π, we denote by Ter(π) ⊆ Ω the set of all histories that end at the same
state as π. We say that the players attain common knowledge of the state (cks)
at history π, if Ter(π) is common knowledge at π.

To develop familiarity with the notion, we first show that attaining cks at
a particular history in a game graph is equivalent to having a joint winning
strategy in an associated coordination game, more precisely, a consensus game.
For simplicity, we detail the case where Nature controls all moves in the original
game graph, i.e., the players have only one, trivial action; the general case
requires only notational changes.

Given a game G, let π be a history that starts at the initial state v0 and ends
at some state z ∈ V . We construct a consensus game Gπ on the the disjoint union
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of G and (the unravelling of) π as follows. The players are the same as in G,
and they have a common set {in, out} of actions. The state set of Gπ consists
of copies of the states in G and a fresh state τ̂ for every history τ in π— note
that the copy of the initial state v0 ∈ V0 is distinct from the initial history v̂0.
For each state copy, the observations get inherited from the corresponding state
in G, and for each history from its last state. Likewise, the moves from G and
along π get inherited with the action label in for all players (in consensus). The
initial-history state v̂0 is designated as the initial state of Gπ, and we add in
moves from v̂0 to every successor of v0 in G. There is an unsafe sink 	 and
a safe sink ⊕; the winning condition requires to avoid 	. Finally, we add out
moves (in consensus) to the safe sink ⊕ from the copy of state z in G and from
the state π̂ corresponding to the history π. Moves with any other action profile
lead to the unsafe sink 	, namely any action profile that is not in consensus,
the action out from any state other than z or π̂, and the action in from π̂.

Proposition 4.1. For a game graph G and a history π, the players have a joint
winning strategy in the game Gπ if, and only if, they attain common knowledge
of the state at π in G.

Proof. To see that winning in Gπ implies attaining cks at π, suppose that there
exists a joint winning strategy s in Gπ. Since this is a consensus game, we
may assume that all components of s are equal and can identify the profile s
and its component strategies. Now, let C be the set of histories ρ in G that
follow s and are assigned s(ρ) = out . We argue that C satisfies the conditions
of Theorem 2.4 to witness that the players attain cks at π:

• C is a self-evident event, for each player i: for every history ρ ∈ C, any
indistinguishable history ρ′ ∼i ρ follows s and is assigned the same action
s(ρ′) = s(ρ) = out , which means ρ′ ∈ C.

• π ∈ C: the action in is losing at π̂, and since no winning strategy can
avoid π̂, we must have s(π̂) = out . As π and its copy ending at π̂ are
indistinguishable to all players, it follows that s(π) = out .

• C ⊆ Ter(π): the action out is losing at all states except for z and π̂. As
we assumed that s is a winning strategy, all histories in C must end at z.

For the converse, assume that, at the history π in G, the players attain
common knowledge of Ter(π). We define a function s that associates to any
history ρ in G the action s(ρ) := out if ρ has the same length as π and Ter(π)
is common knowledge at ρ, and otherwise s(ρ) := in.

First, let us verify that s is a valid strategy on the game graph G, for each
player i. Notice that, if an event is common knowledge at a history ρ, then it is
also common knowledge at every indistinguishable history ρ′ ∼i ρ (each history
that is accessible from ρ′ via a sequence of pairwise indistinguishable histories is
also accessible from ρ via the same sequence preceded by ρ ∼i ρ′). In particular,
whenever s(ρ) = out , for a history ρ, that is, when the event Ter(π) is common
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knowledge at ρ, it is also common knowledge at every history ρ′ ∼i ρ, hence
s(ρ′) = out . Consequently s(ρ) = s(ρ′) for every pair ρ ∼i ρ′.

Now, we extend the strategy s on G to the graph of Gπ in the only consistent
way, by assigning to every history that ends at a state ρ̂ corresponding to a
history ρ in π, the action s(ρ) prescribed in G. We argue that s is a winning
strategy in the consensus game Gπ: The unsafe sink 	 can only be reached by
taking a wrong move in one of the following two situations: either choosing in at
state π̂, or choosing out at a state different from z and π̂. The former situation
is excluded, as s(π̂) = s(π) = out holds by definition of s. The latter situation
cannot occur either: On the one hand, at all histories ρ in G with s(ρ) = out ,
the players attain common knowledge of Ter(π), so in particular, ρ ∈ Ter(π)
(by definition of the knowledge operator, players can only know an event if it
actually occurs). On the other hand, among the histories along the copy of π,
only the one ending at π̂ has the same length as π, which is necessary to be
asigned out . In conclusion, all plays that follow s are winning in Gπ.

The argument illustrates that the need for (common) knowledge about the
actual game state is a source of computational complexity in coordination games
with imperfect information. In general, there may be further sources. One class
of games, where the issue is exactly whether the players attain common knowl-
edge about reaching a certain state set, are consensus acceptors investigated
in [33]. Essentially, these are consensus games with a simple safety condition
(avoid the sink 	) where the players have only one nontrivial decision in every
play. Which decision to take thus depends on the common knowledge of the
players about the actual state. The games Gπ from Proposition 4.1 as well as
those represented in Figures 1 of the previous section are examples of consensus
acceptor games. The complexity analysis for consensus acceptors in [33] sheds
light on the problem of attaining common knowledge of the state in an arbitrary
game graph. For completeness, we reproduce the part of the analysis relevant
for our setting.

Proposition 4.2. Given a game graph and a history π, the problem of deciding
whether the players attain common knowledge of the state at π is PSpace-
complete.

Proof. For membership, consider the procedure that takes a game graph and a
history π as input, and iterates the following loop: guess nondeterministically
a player i and a history ρ ∼i π; accept if π and ρ end at different states,
otherwise repeat with ρ as the new value of π. 1 As any two indistinguishable
histories have the same length, the procedure requires only linear space. It
accepts if, and only if, there exists a sequence i1, . . . , ik of players and histories
ρ1 ∼i1 ρ2 ∼i2 · · · ∼ik ρk with π = ρ1 and ρk 6∈ Ter(π), that is, if Ter(π) is not

1We adopt the convention that machines reject by looping; Hopcroft and Ullman [34]
showed that lower space bounds above NLogSpace do not change when dropping the halting
assumption.
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common knowledge at π. Hence, we have a nondeterministic PSpace procedure
for deciding the complement problem which asks whether the players do not have
cks common knowledge of the state at the given history. Since nondeterministic
and deterministic PSpace are equal, it follows that the original problem can
be solved in PSpace. Even more, the argument shows that for any game there
exists a linear-bounded automaton that recognises the set of histories at which
the players attain cks.

To prove hardness, we describe a reduction from (the complement of) the
Corridor Tiling problem. Given a domino system D = (D,EV , EH) with a
frontier constraint w ∈ D` we construct, in polynomial time, a game graph G
for two players and a history π, such that the players attain cks at π if, and
only if, the domino-problem instance (D, w) is negative, i.e., there does not exist
a height m ∈ N such that the rectangle Z(`,m) can be tiled with w in the top
row.

The two players in G have one trivial action and their observations cor-
respond to the dominoes in D. The set of states consists of singleton states
d ∈ D \{#}, pair states (d, b) ∈ EV , an initial state v0, and two sinks ⊕ and 	.
At each singleton state d, both players receive the same observation d, whereas
at each pair state (d, b), the first player observes d and the second player b;
at the initial state and the two sinks, both players receive the observation #
corresponding to the vertical border domino.

The singleton states are connected by moves d→ d′ for every (d, d′) in EH ,
and the pair states by moves (d, b) → (d′, b′) whenever (d, d′) and (b, b′) are
in EH . From the initial state v0, there are moves to all singleton states d with
(#, d) in EH , and all pair states (d, b) with (#, d) and (#, b) in EH . Conversely,
the sink ⊕ is reachable from all singleton states d with (d,#) in EH , and from
all pair states (d, b) with (d,#) and (b,#) in EH ; the sink 	 is reachable only
from the singleton bottom-domino state �. Clearly, the game graph G can be
constructed from D in linear time.

Note that any sequence x = d1, d2, . . . , d` ∈ D` that forms a horizontally
consistent row (omitting the borders) in a corridor tiling corresponds to a history
πx = v0d1d2 . . . d`⊕ in the game graph. For the special case of the bottom
row bot with d1 = d2 = · · · = d` = �, apart of πbot , we also have the history
π̂bot = v0d1d2 . . . d`	. On the other hand, every history in G that ends at a sink
corresponds either to one consistent row, in case Nature chooses a singleton state
in the first move, or to two rows, in case Nature chooses a pair state. Moreover,
a row x = d1, d2, . . . , d` can appear below a row y = b1, b2, . . . , b` in a correct
tiling if, and only if, there exists a history ρ in G such that πx ∼1 ρ ∼2 πy,
namely ρ = v0 (d1, b1) (d2, b2) . . . (d`, b`)⊕.

Now, we claim that the players attain cks at the history πw corresponding
to the frontier constraint w ∈ D` if, and only if, there exists no corridor tiling for
the instance (D, w). According to our observation, if there exists a correct tiling
of the corridor, then there exists a sequence of rows corresponding to histories
π1, . . . , πm, and a sequence of witnessing histories ρ1, . . . , ρm−1 such that

πw = π1 ∼1 ρ1 ∼2 π2 · · · ∼1 ρm−1 ∼2 πm = πbot .
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However, the history πbot is indistinguishable from π̂bot , for both players. As
these two histories end at different states, it follows that Ter(πw) is not common
knowledge at πw. Conversely, if Ter(πw) is not common knowledge at πw, then
there exists a sequence of pairwise indistinguishable histories that leads from πw
to π̂bot , from which we can extract a correct corridor tiling.

Corridor Tiling is PSpace-hard, according to Theorem 2.2. Thus, the
reduction shows that the problem of deciding whether the players attain cks at
a given history is Co -PSpace hard, and since PSpace is closed under comple-
ment, it is hard for PSpace.

The above argument can be extended to prove that it is undecidable whether
the players can ever attain cks along a given set of plays in a game. We say
that a history π is within a subset S ⊆ V of states if all states that occur in π
belong to S.

Proposition 4.3. It is undecidable whether, for a given game graph with a
designated subset S ⊆ V of states, there exists a nontrivial history within S at
which the players attain common knowledge of the state.

Proof. We proceed by reduction from Corridor Universality: Given a
domino system D with a designated subset Σ ⊆ D, we construct a game graph G
with a subset S of states such that the players attain cks at some nontrivial
history π within S if, and only if, there exists a frontier constraint w ∈ Σ` that
does not allow a corridor tiling with D; actually, the sequence of observations
along π will yield such a constraint.

The construction of G is as in the proof of Proposition 4.2 except that we
take two disjoint copies of the game graph associated to D and identify the
two copies of the initial state v0, and those of the sinks 	, ⊕, respectively. In
this way, no player knows the actual state of any history that does not reach
a sink. The set S consists of the initial state, the two sinks, and the states
corresponding to singleton dominoes in Σ (from both copies).

Now, every nontrivial history π that ends at a sink corresponds either to a
single row or to a pair of horizontally consistent rows, depending on whether π
proceeds through singletons or pair states. This holds by the same argument
as in the proof of Proposition 4.2. Likewise, it follows that the two players do
not attain cks at a history π if, and only if, the row corresponding to π, or
either one of the two rows, appears in the frontier of some correct corridor tiling
with D. For histories within S, when π is of the form #w# for some (nonempty)
word w ∈ Σ∗, this means that the players do not attain cks if, and only if, there
exists a correct corridor tiling with w in the frontier.

In conclusion, there exists a history within S at which the players attain
cks in G if, and only if, the Corridor Universality instance (D,Σ) at the
outset is negative — an undecidable problem, by Theorem 2.2.

The results of Latteux and Simplot stated in Theorem 2.1 describe a cor-
respondence between context-sensitive languages and domino systems. Via our
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construction for proving the lower bounds in Propositions 4.2 and 4.3, this cor-
respondence is extended to game graphs, as detailed in [33] for the more general
case of consensus acceptor games. For our setting, it implies that any context-
sensitive language L ⊆ Σ∗ can be translated into a game graph G such that a
word w belongs to L if, and only if, the players do not attain cks at a particular
history πw inG which yields w as an observation to both players. Conversely, the
nondeterministic linear-space procedure witnessing the upper bound in Propo-
sitions 4.2 shows that the set of histories at which the players do not attain cks
is recognisable by a nondeterministic linear-bounded automaton, and it is hence
context-sensitive. Thus, we can formulate the following corollary which implies,
in particular, that common knowledge of the state is not a finite-state property
in arbitrary games, i.e., the set of histories at which the players attain cks is
not regular.

Corollary 4.4 ([33]). (i) In any game, the set of histories at which the play-
ers attain cks forms a context-sensitive language.

(ii) For every context-sensitive language L ⊆ Σ∗, we can construct a game
in which an observation history belongs to L if, and only if, the players
attain cks at the history.

5. Recurring common knowledge

Let us now turn to the use of common knowledge in infinite plays. We say
that a play π allows for recurring common knowledge of the state (ω-cks) if
there are infinitely many histories in π at which the players attain cks. Likewise,
we say that a game graph G, or a game over G, allows for ω-cks if this is true
for every play in G.

A knowledge gap in a play π is an interval J`, tK with t ≥ ` > 0, such that
the players do not attain cks in π at any round in J`, tK. The length of the gap
is t− `+ 1. Hence, a play allows for ω-cks if the length of every knowledge gap
in it is finite. The gap size (for cks) of a play π is the least upper bound on
the length of knowledge gaps in π. Likewise, the gap size of a game (graph) is
the least upper bound on the gap size of its plays.

Intuitively, the uncertainty of players about the game state progresses along
knowledge gaps, and it vanishes at every history at which cks is attained. If we
reindex the histories of a game G by forgetting any prefix history at which the
players attain cks, the knowledge of players about the game state is preserved.
Concretely, for the case of private knowledge, let π, π′ be two histories at which
the players attain cks, and let v be the state at which they end. Then, for any
two continuations τ , τ ′ and every player i, we have πτ ∼i π′τ ′ if, and only if,
vτ ∼i vτ ′ in the game G with v as initial state. The preservation for the case of
common knowledge follows immediately; we formulate it for further reference.

Lemma 5.1. For a game G, let π be a history at which the players attain cks,
and let v be its last state. Then, the players attain cks at a prolongation history
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πτ in G if, and only if, they attain cks at history vτ in the game G with initial
state v.

Notice that for a play in an arbitrary game, the length of knowledge gaps may
be unbounded, even if the play allows for ω-cks; its gap size is then infinite.
Nevertheless, we show that, if a game allows for ω-cks, then there exists a
uniform, finite bound on the length of the knowledge gaps in its plays.

Proposition 5.2. If a game graph allows for recurring common knowledge of
the state, then its gap size is finite.

Proof. Let G be a game graph that allows for ω-cks. Without loss of generality,
we assume that all states are reachable from the initial state v0.

For each state v ∈ V , we construct a tree Tv that may be understood as the
unravelling of G from v, up to common knowledge. The nodes of Tv correspond
to the histories in G, v that have no strict, nontrivial prefix at which the players
attain cks. The edges are labelled with action profiles and correspond to moves
in G: for any history ρ in the domain of Tv at which the players do not attain
cks, or for ρ = v, we have an edge (ρ, a, ρaw) whenever (u, a, w) ∈ E, for the
last state u of ρ. The leaves of Tv thus correspond to the histories in G, v at
which the players attain cks for the first time (not counting the initial history).
Finally, we associate to every history the observations of its last state.

Notice that each of the constructed trees has finite branching and all its
paths are finite, according to our assumption that all plays allow for ω-cks.
Hence by König’s lemma, every tree in the collection (Tv)v∈V is finite. We
claim that the maximal height of a tree in this collection is an upper bound for
the length of knowledge gaps in the plays of G, v0.

To show this, we construct a game graph Gck over the disjoint union of all
unravelling trees Tv, where we identify every leaf history with the root of the
tree associated to its last state. Formally, in each tree Tv, we replace every
edge (ρ, a, π), where π is a leaf history ending at w, with an edge (ρ, a, w)
leading to the root of the tree Tw. This induces a natural bijection h between
histories of G, v0 and Gck, v0, which is also a bisimulation — clearly, the two
game graphs have the same infinite unravelling. The bijection h preserves
cks: By the reindexing argument of Lemma 5.1, the players attain cks at
a history π in G, v0, if, and only if, they attain cks at the image h(π) in
Gck, v0. As a consequence it follows that, on the one hand, every history in
Gck, v0 at which the players attain cks ends at the root of some tree Tv, and
on the other hand, for every knowledge gap, i.e., every sequence of consecutive
histories π1, π2, . . . , πt in G, v0 at which the players do not attain cks, the image
h(π1), h(π2), . . . , h(πt) describes a sequence of consecutive histories in Gck that
never visit the root of any tree Tv. Hence, the length t of such a sequence is
bounded by the maximal length of a path in any of the trees (Tv)v∈V . This
concludes the proof.

The insight that games with recurring common knowledge of the state have
finitely bounded knowledge gaps allows us to conclude that these games are
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decidable via a generic argument which, however, does not yield meaningful
complexity bounds.

Theorem 5.3. For games that allow for recurring common knowledge of the
state, with observable ω-regular winning conditions,

(i) it is decidable whether there exists a joint winning strategy, and

(ii) if it is the case, there also exists a finite-state winning strategy, which can
be constructed effectively.

Proof. The argument relies on the tracking construction from [13] that reduces
the problem of solving coordination games with imperfect information for n
players against Nature to that of solving a zero-sum game for two players with
perfect information. The construction proceeds via an unravelling process that
generates epistemic models of the player’s information along the rounds of a
play, and thus encapsulates their uncertainty.

This process described as “epistemic unfolding” in the paper [13, Section 3]
is outlined as follows. An epistemic model for a game graph G with the usual
notation, is a Kripke structure K = (K, (Qv)v∈V , (∼i)1≤i≤n) over a set K of
histories of the same length in in G, equipped with predicates Qv designating
the histories that end in state v ∈ V and with the players’ indistinguishability
relations ∼i. The construction keeps track of how the knowledge of players
about the actual history is updated during a round, by generating for each
epistemic model K a set of new models, one for each assignment of an action
profile ak to each history k ∈ K such that the action assigned to any player i
is compatible with his knowledge, i.e. for all k, k′ ∈ K with k ∼i k′, we have
aik = aik′ . The update of a model K with such an action assignment (ak)k∈K
leads to a new, possibly disconnected epistemic model K′ over the universe

K ′ = {kakw | k ∈ K ∩Qv and (v, ak, w) ∈ E},

with predicates Qw designating the histories kakw ∈ K ′, and with kakw ∼i
k′akw

′ whenever k ∼i k′ in K and w ∼i w′ in G. By taking the connected
components of this updated model under the coarsening ∼:=

⋃n
i=1∼i, we ob-

tain the set of epistemic successor models of K in the unfolding. The tracking
construction starts from the trivial model that consists only of the initial state
of the game G. By successively applying the update, it unfolds a tree labelled
with epistemic models, which corresponds to a two-player game G′ of perfect
information where the strategies of one player translate into joint strategies of
the grand coalition in G and vice versa, such that a strategy in G′ is winning if
and only if the corresponding joint strategy in G is so [13, Theorem 5].

The construction can be exploited algorithmically if the perfect-information
tracking of a game can be folded back into a finite game. A homomorphism from
an epistemic model K to K′ is a function f : K → K ′ that preserves the state
predicates and the indistinguishability relations, that is, Qv(k)⇒ Qv(f(k)) and
k ∼i k′ ⇒ f(k) ∼i f(k′). The main result of [13] shows that, whenever two
nodes of the unfolded tree carry homomorphically equivalent labels, they can
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be identified without changing the (winning or losing) status of the game [13,
Theorem 9]. This holds for all imperfect-information games with ω-regular
winning conditions that are observable. Consequently, the strategy synthesis
problem is decidable for a class of such games, whenever the unravelling process
of any game in the class is guaranteed to generate only finitely many epistemic
models, up to homomorphic equivalence.

Let us now consider the tracking of a coordination game G with observable
ω-regular winning condition that allows for ω-cks. We claim that every his-
tory π where the players attain cks corresponds to an epistemic model that
is homomorphically equivalent to one with a single element labelled with the
(commonly known) state at which the history π ends. This is because, by our
hypothesis of cks, in the ∼-connected component of any epistemic model con-
taining π, all histories end at the same state. On the other hand, when updating
an epistemic model K, there are only finitely many successor models and each
of them can be at most exponentially larger than K, for any fixed action space.
Accordingly, the number of updating rounds in which the models can grow is
bounded by the gap size of G, which is finite, according to Proposition 5.2.

Therefore, every game with ω-cks has a finite tracking quotient under ho-
momorphic equivalence. By [13, Theorems 9 and 11], this implies that the
winner determination problem is decidable for such games, and finite-state win-
ning strategies can be effectively synthesised whenever the players have a joint
winning strategy.

6. Characterisation via mutual knowledge

Proposition 4.3 leaves little hope for deciding whether a game allows for
ω-cks by checking that the property holds within parts of the game graphs or
on individual plays. In general, histories at which the players do not attain
cks may be connected to arbitrarily long chains of indistinguishable histories
that end at the same state, before reaching one with a different end state to
witness the lack of cks. Fortunately, there is a way around this obstacle. It
turns out that in any game that allows for ω-cks we can find, for each play π,
an associated play π′ that aligns witnesses for all the histories in π that lack
cks; in particular, whenever the players lack common knowledge of the state
at some round in π, there is one player that lacks first-order knowledge of the
state in π′. This will allow us to characterise games with recurring common
knowledge of the state as those where mutual knowledge of the state is attained
over and over again, along every play.

We say that the players attain mutual knowledge of the state (mks) at a
history π in a game if Ter(π) is mutual knowledge at π, that is, if all indistin-
guishable histories ρ ∼i π end at the same state as π, for all players i. A play π
allows for recurring mutual knowledge of the state (ω-mks) if the players attain
mks at infinitely many histories along π, and a game (graph) G allows for ω-mks
if all plays in G do.

The link between common and mutual knowledge is made by the notion of
connected ambiguous histories. We say that two histories, or plays, π and π′
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are connected if there exists a sequence of histories or plays π1, . . . , πk and a
sequence of players i1, . . . , ik+1 such that

π ∼i1 π1 ∼i2 · · · ∼ik πk ∼ik+1 π′.

In the special case when two histories π and π′ end at the same state v and are
connected via a sequence of histories that also end at v, we say that π and π′ are
twins. Clearly, the relations of connectedness and twins are equivalences between
histories. Moreover, if two histories π and ρ that end at the same state v are
connected or twins, then for every move (v, a, v′) ∈ E the prolongation histories
πav′ and ρav′ are in the same relation.

A history π is ambiguous if the players do not attain mks at π, that is, if
there exists an indistinguishable history ρ ∼i π, for some player i, which ends
at a different state. In this case, we refer to ρ is an ambiguity witness for π and
we say that ρ, π is an ambiguous pair. Notice that the players do not attain cks
at a history π if, and only if, there exists an ambiguous twin of π.

Our goal is to show that every play in which the players do not attain
recurring common knowledge of the state is witnessed by one where they do not
attain recurring mutual knowledge of the state. Towards this, we first prove
that if the players never attain cks in a play, there exists a witnessing play in
which all histories are ambiguous.

Lemma 6.1. For any game, if there exists a play π along which the players
never attain common knowledge of the state (except for the initial state), then
there also exists a play π′ along which they never attain mutual knowledge of
the state. Moreover, the plays π and π′ are connected.

Proof. For an arbitrary game G and a play π = v0 a1v1 . . . , we consider the
set Tπ of all histories τ in G such that every nontrivial prefix history of τ is
ambiguous and connected to the history of the same length in π. As the set Tπ
is closed under prefix histories, we can view it as a finitely branching tree. We
wish to show that if the players do not attain cks along π, then every history
in π is connected to some history in Tπ, and therefore Tπ contains an infinite
play in G along which the players never attain mks.

We prove a stronger property, for every history π` of lenght ` ≥ 1 in π: If
the players do not attain cks along π` (except for the trivial history), then for
every ambiguous pair τ ∼i ρ connected to π` there exists a pair τ ′ ∼i ρ′, such
that

(i) τ ′ ∈ Tπ is a twin of τ , and

(ii) ρ′ ends at the same state as ρ.

For the base case with ` = 1, if the players do not attain cks at the history
π1 := v0 a1v1, then there exist ambiguous histories connected to π1, and they
all belong to Tπ, because the only preceding history is trivial. Hence, for any
ambiguous pair τ ∼i ρ, already τ ′ = τ and ρ′ = ρ witness the statement.
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For the induction step, suppose the statement holds for ` ≥ 1 and assume
that the players do not attain cks up to (and including) the history π`+1 of
length ` + 1. In particular, this means that there exist ambiguous histories
connected to π`+1; among these, let us pick an ambiguous pair τav ∼i ρcw,
with v 6= w. Due to perfect recall, we have τ ∼i ρ.

We distinguish two cases. (1) If τ and ρ end at different states v′ 6= w′, by
induction hypothesis, there exists a twin τ ′ ∈ Tπ of τ and a history ρ′ ∼i τ ′
that ends at w′. On the one hand τ ′av is a twin of τav. On the other hand, by
definition of the observation function, τ ′av ∼i ρ′cw. Since τ ′ ∈ Tπ and v 6= w,
this also implies τ ′av ∈ Tπ. (2) Otherwise, suppose τ and ρ end at the same
state. As the histories are connected to π`, the players do not attain cks at τ .
Hence, there exists an ambiguous twin τ ′ of τ , and by induction hypothesis,
we can choose τ ′ ∈ Tπ. On the one hand, τ ′av is a twin of τav. On the other
hand, as τ ′ and ρ end at the same state, so τ ′cw is a valid history in G, and we
have τ ′av ∼i τ ′cw. Again, since τ ′ ∈ Tπ, and v 6= w it follows τ ′av ∈ Tπ. This
completes the induction argument.

In conclusion, for a play π in which the players do not attain cks at any
round, there exist histories in Tπ that are connected to arbitrarily long histories
of π. As the tree Tπ is finitely branching, it follows from König’s Lemma that
it has an infinite path π′. By construction, each nontrivial prefix of π′ is an
ambiguous history, and it is connected to the history of π of the same length.
Hence, π′ describes a play connected to π along which the players never attain
mutual knowledge of the state.

We are now ready to formulate our characterisation result that will be in-
strumental for the algorithmics of games with ω-cks.

Theorem 6.2. A game allows for recurring common knowledge of the state if,
and only if, it allows for recurring mutual knowledge of the state.

Proof. The only if direction is trivial: common knowledge of an event implies
mutual knowledge.

For the converse, let us consider a game G that does not allow for ω-cks.
Then, there exists a play π in which the players attain cks at some round `,
but not at any later history. Accordingly, in the game G, v starting from the
(commonly known) state v that is reached in round ` of π, there exists a play
along which the player never attain cks, except for the initial state. Then, by
Lemma 6.1, there exists a play π′ in G, v along which the players never attain
mutual knowledge of the state. Furthermore, in the play that follows π for the
first ` rounds and, upon reaching v, proceeds like π′, the players do not attain
mks at the infinitely many histories from round ` onwards. Hence, the game G
does not allow for ω-mks, which concludes the proof.

Before turning to algorithmic questions, let us state the following corollary
of arguments from the proofs of Lemma 6.1 and Theorem 6.2, which will be
useful for bounding the gap size of games in Section 7.
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Corollary 6.3. For any game G, if the players do not attain common knowledge
of the state in a play π along a sequence of rounds ` + 1, . . . , ` + t, then there
exists a play π′ in G that is connected to π and on which the players do not
attain mutual knowledge of the state along the rounds `+ 1, . . . , `+ t.

Proof. Let G be a game graph and let π be a play with the stated property, for
some `, t > 0. We assume, without loss of generality, that the players attain cks
at round ` in π. For the game G, v starting at the state v reached in this round,
we consider the suffix τ of π from round ` onwards, and construct the tree Tτ of
hereditarily ambiguous histories connected to τ , as in the proof of Lemma 6.1.
The induction argument from the proof then shows that the history of length t
in τ is connected to some ambiguous history τ ′ ∈ Tτ . The histories of τ ′ from
round 1 to t are ambiguous and each of them is connected to the history of
the same length in τ . Hence, the play π′ that follows π for the first ` rounds,
then proceeds like τ ′ for t rounds, and then again follows π satisfies the required
properties: π′ is connected to π and the players do not attain mks along the
rounds `+ 1, . . . , `+ t.

7. Recognising recurring mutual and common knowledge

An automaton for recognising the plays that allow for ω-mks could easily be
designed using the powerset construction described by Reif [35] for solving one-
player games with imperfect information. This would yield a PSpace-procedure
for deciding whether a game allows for ω-mks and thus for ω-cks. To obtain a
sharper complexity bound, we will show that ambiguity witnesses along a play
can be represented efficiently, by a tree of very low width, which allows to reduce
the complexity to NLogSpace.

Let us fix an arbitrary game graph G. A fork tree for a play π is a prefix-
closed set T of histories that contains, for every level ` ≥ 0,

(i) the history π` of π in round `, and

(ii) at most one history ρ` 6= π` with ρ` ∼i π`, for some player i.

A fork tree T is complete, if it additionally satisfies, for every level `:

(iii) if π` is ambiguous, then T contains an ambiguity witness ρ` of π`.

We can view fork trees as induced subtrees in the unravelling of G that contain π
as a central branch and have width at most two, that is, at most two elements
on each level. For convenience, we let ρ` refer to π` whenever T contains only π`
at level `. In case π` and ρ` end at different states, we say that the level ` is a
doubleton, else it is a singleton.

If we consider an arbitrary family of ambiguity witnesses to the histories of
a play, the subtree induced in the game unravelling can have unbounded width.
Nevertheless, the following lemma states that every play π admits a complete
family of witnesses ρ`, one for each of its ambiguous histories π`, that forms a
fork tree.
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Lemma 7.1. For every play in an arbitrary game there exists a complete fork
tree.

Proof. It is convenient to extend the notion of ambiguity witness to knowledge
gaps in histories. For a history π and an interval J`, tK, we say that a history π′

is an ambiguity witness along the gap J`, tK if π and π′ have length at least t,
and π′r is an ambiguity witness for πr, for every round ` ≤ r ≤ t. Likewise, for
a play π, we say that a play π′ is an ambiguity witness from round ` onwards if
π′r is an ambiguity witness for πr for every r ≥ `.

Now, consider an arbitrary game G and a play π. By induction on the
number of rounds `, we construct a finite or infinite sequence of trees T` that
satisfy the fork-tree conditions (i) and (ii) for the first ` levels, and, in addition,
the following strengthening of the completeness condition (iii) for the last level `:

(iii)∗ If, for some t ≥ `, there exists a history in G that is an ambiguity witness
for π along the gap J`, tK, then there also exists a prolongation history
of ρ` that is such a witness.

In particular, this implies that whenever the history π` is ambiguous, the level `
in T` is a doubleton.

Each tree T`+1 is finite and extends its predecessor T` by one level, except
if the sequence ends at some stage ` + 1, in which case T`+1 extends T` with
the (infinite) prolongation of π` to π and with a prolongation play ρ of either π`
or ρ` that is an ambiguity witness for π from round ` onwards.

For the base case, we take the tree T0 consisting only of the initial history v0.
For the induction step, suppose that a tree T` with ` levels satisfying the condi-
tions (i), (ii), and (iii)∗ has been constructed. To extend it to T`+1, we look at
the set R of histories τ that prolong either π` or ρ`, and are ambiguity witnesses
for π along the gap J`+ 1, tK up to the length t of τ . Now we distinguish three
cases. (1) If R is empty, we set ρ`+1 := π`+1, that is, `+ 1 is a singleton level.
(2) If R is nonempty, but finite, we pick a history τ ∈ R of maximal length,
and add ρ`+1 := τ`+1 together with π`+1 as a new level to T`. (3) Finally, if
R is infinite, there exists an infinite play τ in G such that all its histories from
round ` onwards are in R. This follows from König’s Lemma, since the histories
in R form an infinite tree that is finitely branching (indeed, a subtree of the
unravelling of G). In this case, we add the histories πr and ρr := τr, for all
levels r > ` and terminate the sequence with this infinite tree T`+1.

In any case, ρ`+1 is a history in G and is indistinguishable from π`+1 which
is also contained on level ` + 1. Condition (iii)* holds trivially in case (3), we
shall verify that it is also maintained in case (1) and (2).

For case (1) assume, towards a contradiction, that R is empty and there
exists a history π′ of length ` + 1 that is an ambiguity witness for π`+1. If π′`
ends at the same state as π`, then the last action-state pair (a′`+1v

′
`+1) of π′ yields

a prolongation τ = π`a
′
`+1v

′
`+1 that should be included in R, a contradiction.

Else, if π′` ends at a different state than π`, by perfect recall, π′` is an ambiguity
witness for π` along the gap J`, ` + 1K, which, by induction hypothesis, implies
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that there also exists such a witness that prolongs ρ` and is thus contained in R,
again in contradiction to our assumption that R = ∅.

For case (2), consider a history π′ of length t > ` that is an ambiguity witness
for π along the gap J`+ 1, tK. We claim that there also exists a prolongation of
ρ`+1 with this property. There are two situations to distinguish: If π′` reaches
the same state as π`, then the history π′′ that follows π until round ` and
then continues like π′ belongs to R, and is at most as long as the witness τ
chosen to construct ρ`+1. Hence, τ prolongs ρ`+1 and is an ambiguity witness
for π along the gap J` + 1, tK. Otherwise, if π′` reaches a different state than
π`, then, by perfect recall, we have π′` ∼i π`, for some player i, and hence π′ is
already an ambiguity witness for π along the gap J`, tK. By induction hypothesis,
there exists an ambiguity witness π′′ for π along the gap J`, tK that prolongs ρ`.
Hence, π′′ ∈ R and, as the history τ ∈ R chosen to construct ρ`+1 is of maximal
length, τ prolongs ρ`+1 and is also an ambiguity witness for π along the gap
[`+ 1, t].

Clearly, each tree T` constructed along the induction satisfies the conditions
of a complete fork tree and agrees with its successor T`+1, up to level `. In
conclusion, the sequence converges and the infinite tree T obtained at the limit
is a complete fork tree for π.

Fork trees for a fixed play π can be represented by ω-words. We say that
a word τ ∈ V (AV )ω is a fork sequence for a play π if it starts with τ0 = v0
and there exists a fork tree T for π such that τ` is the last action-state pair
of ρ` in T , for every ` > 0. In the following we construct, for any arbitrary
game, an ω-word automaton that takes as input an (infinite) play π in G and
guesses in every run a fork sequence for π. The automaton is equipped with a
co-Büchi acceptance condition: a run is accepting if it visits only finitely many
non-accepting states. For background on the automaton model, we refer to the
survey [36, Chapter 1].

Proposition 7.2. For any game with m states, the set of plays that do not allow
for recurring mutual knowledge of the state is recognisable by a nondetermistic
co-Büchi automaton with m2 states.

Proof. Let us fix an arbitrary game graph G. We construct an ω-word automa-
ton A with co-Büchi acceptance condition that recognises the set of histories π
in G, for which there exists a fork tree with only finitely many singleton levels.
To witness this, the automaton guesses non-deterministically a fork sequence τ
for π and accepts if the states at τ` and π` are different, for all but finitely many
rounds `.

The states of the automaton are pairs of game states from V : the first
component keeps track of the input play, the second one is used for guessing
the fork sequence τ . The transition function ensures that the two components
evolve according to the moves available in the game graph and that the current
input symbol yields the same observation as the second component to some
player i.
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Concretely, the co-Büchi automaton A is defined over the input alphabet
A×V on the state set V ×V with initial state (v0, v0) and transitions from state
(u, u′) on input (a, v) to state (v, v′) whenever (u, a, v) ∈ E and βi(v′) = βi(v),
for some player i, and either (u′, a′, v′) ∈ E or (u, a′, v′) ∈ E, for some action
a′ ∈ A with a′i = ai for this player. The set of final states is Q\{(v, v) | v ∈ V };
the automaton accepts an infinite input word if all states that occur infinitely
often in a run are final.

We claim that an input word π ∈ V (AV )ω is accepted by A if, and only if, π
corresponds to a play in G, and the players never attain mutual knowledge of
the state along π, from some round onwards.

For the if direction, consider a play π along which the players never attain
mutual knowledge of the state from some round onwards. By Lemma 7.1, there
exists a complete fork tree T for π, in which all but finitely many levels are
doubletons. Let τ be the fork sequence associated to T . Then, the sequence
((π`, τ`))`<ω describes a run of A on input π in which non-final states (v, v)
occur only at the finitely many positions ` corresponding to singleton levels
in T , thus witnessing that π is accepted.

For the converse, inputs that do not correspond to histories in G are rejected,
by construction of A. Furthermore, if an input word π corresponds to a play
with infinitely many histories π` at which the players attain mutual knowledge
of the state, then every run of the automaton visits a non-final state whenever
such an input prefix π` is read. As this occurs infinitely often, the input π is
rejected.

Theorem 7.3. The problem of whether a game graph allows for recurring
common knowledge, or equivalently, recurring mutual knowledge of the state
is NLogSpace-complete.

Proof. According to the Characterisation Theorem 6.2, a game graph G allows
for recurring common knowledge of the state if, and only if, it allows for recurring
mutual knowledge of the state. Our problem thus reduces to checking whether
the language recognised by the co-Büchi automaton A constructed for G in
Proposition 7.2 is non-empty. It is well known that the non-emptiness test for
co-Büchi automata is in NLogSpace (see, for instance, Vardi and Wolper [37]).

Concretely, a nondeterministic procedure can guess a run of A that leads to
a cycle included in the set of final states. This requires only pointers to three
states of the automaton: two for the current transition and one for storing a
state to verify that a cycle is formed. As each state of the automaton is formed
by two states of the game, the overall space requirement is logarithmic in the
size of the game graph G. Accordingly, the problem of determining whether a
game graph allows for common knowledge of state is in NLogSpace.

Hardness for NLogSpace follows via a straightforward reduction from di-
rected graph acyclicity, shown to be NLogSpace-hard by Jones in [38]: Given
a directed graph G, we construct a game graph G′ for one player by taking two
disjoint copies of G and assigning all non-terminal nodes with the same obser-
vation; each terminal node is assigned with a distinct observation and equipped
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with a self-loop. Finally, we add a fresh initial state to G′, with moves to all
other states. Clearly, the game graph G′ can be constructed using logarithmic
space, and the player has recurring (mutual, common) knowledge of the state
in G′ if, and only if, the directed graph G is acyclic.

This shows that the problem of determining whether a game graph allows
for common knowledge of the state, or equivalently, for mutual knowledge of
the state, is NLogSpace-complete.

Theorem 7.4. The gap size of any game with m states that allows for recurring
common knowledge of the state is bounded by m2.

Proof. Consider a game G with m states that allows for ω-cks. Towards a
contradiction, suppose that in G there exists a play with gap size greater than
m2, that is, the players do not attain cks along a sequence of consecutive rounds
r, . . . , r +m2, for some r. Due to Corollary 6.3, there also exists a play π in G
such that the players do not attain mks in π along these rounds. Let T be a
complete fork tree for π, according to Lemma 7.1, and let τ be the associated
fork sequence.

As G allows for ω-mks, the automaton A constructed in Proposition 7.2
recognises the empty language, in particular it rejects the run on π described by
(π, τ). But A has at most m2 states, so there must be a cycle in the transition
graph that is visited by this run, say from position ` ≥ r to t ≤ r+m2. Along the
interval J`, tK, the players do not attain mks in π, therefore the corresponding
levels in the fork tree T are doubletons, and the states on the cycle visited in
the run (π, τ) from position ` to t are final.

Consider now the sequences π′, and τ ′ that follow π and τ , respectively, until
position t and then loop from ` to t forever. Then, the pair (π′, τ ′) describes
a run in A that eventually cycles through final states, hence, the input π′ is
accepted. But this means that π′ is a play in G that does not allow for ω-mks,
in contradiction to our assumption that all plays in G allow for ω-cks.

We observe that the quadratic bound on the gap size is tight. Consider, for
instance, the game graph Gm for one player with two observations, black and
white, depicted in Figure 3, for an arbitrary number m > 1. There is only one
bit of uncertainty induced by the choice of Nature at the initial state, where
it can either move up, into the cycle with m − 1 white states followed by a
black one, or down, to the path consisting of m white states with selfloops,
each followed by a black state, except for the last one which leads to the black
state on the cycle. Consider the play π where Nature moves into the cycle
(and stays there forever). Along π, every nontrivial history up to round m2 is
indistinguishable from the one where Nature moves initially down to the path
and loops on each white state precisely m − 1 times. For the first m2 rounds
in π, the player does therefore not know the current state, which means that the
gap size of the game is at least m2. On the other hand, notice that all histories
that are distinguishable from π are non-ambiguous, and that from round m2 +1
onwards, any history that is indistinguishable from π leads to the same state

26



• •

•

path of length 2m− 1

cycle of length m

Figure 3: A game graph with 3m states and gap size m2

as π itself. Accordingly the game graph Gm with 3m states allows for ω-cks
and its gap size is m2.

One consequence of Theorem 7.4 is that the knowledge hierarchy for any
game of size m that allows for ω-cks collapses to the level |B|m2

: By the Rein-
dexing Lemma 5.1, whenever two histories are connected, they are connected
via a sequence of histories that differ only on the last knowledge gap. As the
gap size is bounded by m2, there are at most |B|m2

different observation histo-
ries along a gap. Hence, the players attain common knowledge about an event
F ⊆ Ω at a history π if, and only if, they attain mks of order |B|m2

about F .
In particular, this holds for the event Ter(π).

For any game, an automaton that recognises the set of histories at which
the players attain mks of a fixed order can be constructed as in the proof
of Proposition 7.2. Accordingly, for any game that allows for ω-cks, the set
of histories at which the players attain cks is regular. This is in contrast
with the general situation of games that may not allow for ω-cks where, by
Corollary 4.4, the set of histories at which the players attain cks form arbitrary
context-sensitive sets.

8. Strategy synthesis

We are now ready to establish complexity bounds for the basic algorithmic
questions on games with recurring common knowledge of the state. Our analysis
focuses on the canonical case of parity condition. At the end of the section, we
explain how the results apply to observable ω-regular conditions.

Theorem 8.1. For games that allow for recurring common knowledge of the
state, with parity winning conditions,

(i) the problem of deciding whether there exists a joint winning strategy is
NExpTime-complete;

(ii) if joint winning strategies exist, there also exists a winning profile of finite-
state strategies of at most exponential size, which can be synthesised in
2-ExpTime.
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The lower bound for the decision problem (i) follows from NExpTime-
hardness of the corresponding problem for two-player reachability or safety
games of finite horizon. These are games where the underlying graph is acyclic
except for having self-loops at observable sinks — hence, the simplest examples
of games that allow for cks. The original proof, due to Azhar, Peterson, and
Reif [7, Section 5], is by reduction from the time-bounded halting problem via
a variant of QBF with dependency quantifiers.

For the sake of completeness, we outline a direct reduction from the Exp-
Square Tiling problem to synthesis problem for safety games with finite hori-
zon, similar to the one described by Bernstein, Zilberstein, and Immerman
in [39] for decentralised planning in partially observable Markov decision pro-
cesses of finite horizon.

Given a domino systemD and the logarithm ` of the square size, we construct
a two-player game with the following scenario: First, Nature sends to each
player i privately a pair (xi, yi) ∈ Z(2`, 2`) of coordinates in binary encoding
over ` bits, such that either

(i) (x2, y2) = (x1, y1), or

(ii) (x2, y2) = (x1 + 1, y1), or

(iii) (x2, y2) = (x1, y1 + 1).

Then, each player i produces a domino di. The play is winning if the produced
dominoes are consistent with the relative position of the recieved coordinates,
that is, if d1 = d2 in case (i) , (d1, d2) ∈ EH in case (ii), and (d1, d2) ∈ EV in
case (iii). This can be formulated either as an observable reachability or safety
condition: reach ⊕ or avoid 	. If a tiling of the exponential square exists,
then the strategy to produce the domino placed at the received coordinates
guarantees a joint win. Conversely, any winning strategy can be turned into a
correct tiling of the exponential square.

The game is of finite horizon: After ` + 1 rounds (` for observing the co-
ordinates and one for producing the domino), each play reaches either the safe
sink ⊕ or the unsafe sink 	, which are observable to both players. Hence, the
game trivially allows for ω-cks. The construction can be done in time O(`+|D|).

In summary, we have a linear-time reduction from Exp-Square Tiling, to
the problem of deciding whether there exists a joint winning strategy in a game
that allows for ω-cks. According to Theorem 2.2, this shows that our problem
is NExpTime-hard.

For the upper bound and the strategy-construction procedure, it would be
inconvenient to rely on the tracking construction used in the decidability proof of
Theorem 5.3, as the number of epistemic structures (over histories of quadratic
length that are relevant here) is already doubly exponential in the size of the
game graph. Instead, we introduce an auxiliary representation of the game
which retains the histories at which players attain cks and is only simply ex-
ponential in the size of the input game graph.
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8.1. The abridged game

For the proof in the reminder of the section, let us fix a coordination game
G = (G, γ) for n players over a game graph G that allows for ω-cks, with
a parity condition over a set of priorities C = {1, . . . , |C|} described by the
colouring function γ : V → C. Recall that a play is winning under the parity
condition if the least priority seen infinitely often along a play is even. The
assumption that the players can observe the the prioriy coloring is inessential
for parity conditions; it is only needed for ω-regular conditions that will be
discussed at the end of the section.

The abridged game Ĝ of G is a game with perfect information for one player
against Nature. Intuitively, Ĝ is obtained by contracting knowledge gaps and
recording only the most significant priority seen between two consecutive histo-
ries where the players attain cks.

Concretely, the states of the abridged game graph Ĝ are pairs (v, c) of states
v ∈ V and priorities c ∈ C; for convenience, we also include a sink 	. We shall
refer to the states of Ĝ as positions, to avoid confusion with the ones of G. The
initial position (v0, |C|) corresponds to the initial state of G labelled with the
least significant priority. The set of actions consists of all nonempty subsets
U ⊆ V ×C of positions. The player has perfect information, so the observation
function is the identity on V × C.

To define the moves, we look at the unravelling Gck up to common knowledge
of the game graph G, as constructed in the proof of Proposition 5.2. Recall that
Gck is built from a disjoint collection of trees (Tv)v∈V , which are then connected
by identifying all leaves with the corresponding roots. For every state v ∈ V
and any joint strategy t over the tree component Tv of Gck, we define the set
outcomev(t) of pairs (u, d) ∈ V ×C, for which there exists a history τ in Tv that
follows t, such that τ ends at u, and the most significant priority that occurs
along τ is d. Now, the set of available moves is defined as follows. For an action
U ⊆ V ×C there are moves from a position (v, c) to every position (u, d) ∈ U if
there exists a joint strategy t in Tv with outcomev(t) = U . Otherwise, the action
leads to the 	-sink. Notice that the moves depend only on the first component
of the position, that is, on the state and not on the priority.

At last, we define a parity condition on G, by assigning to every position
(v, c) ∈ V × C the priority c.

The plays of G and Ĝ are related via their summaries. Intuitively, this is
the sequence of states reached when the players attain cks in a play, together
with the most significant priority seen along the last knowledge gap. More
precisely, for a play π = v0 a1v1 . . . in G, we look at the subsequence of rounds
t0, t1, t2, . . . such that, for all ` ≥ 0, the players attain cks at round t` in π, but
not at any round t in between t` < t < t`+1. Next, we associate to each index
` > 0, the most significant colour that occurred in the gap between t` and t`+1,
setting c`+1 := min{γ(vt) : t` < t ≤ t`+1}. Now, the summary of π is the
sequence [π] := v0, (vt1 , c1), (vt2 , c2) . . . Notice that for every play π in G, the

summary [π] corresponds to a sequence of states in Ĝ, which is infinite, since
we assume that π allows for ω-cks.
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The notion of summary is defined analogously for histories, and it also applies
to plays π̂ in Ĝ. Indeed, [π̂] is obtained simply by dropping the actions in π̂. We

say that a play π in G matches a play π̂ in Ĝ if they have the same summary:
[π̂] = [π].

The winning or losing status is preserved among matching plays.

Lemma 8.2. If a play π of G matches a play π̂ of Ĝ, then π is winning if, and
only if, π̂ is winning.

Proof. Let c be the least priority that appears infinitely often in π. As each
knowledge gap in π is finite, c appears in infinitely many knowledge gaps in π,
hence it is recorded infinitely often in the summary [π]. Conversely, all priorities
that appear infinitely often in the summary [π], also appear infinitely often in π,
so c is minimal among them. In conclusion, the least priority appearing infinitely
often in the summaries [π] = [π̂] is the same as in the plays π and π̂.

8.2. Reduction to parity games with perfect information

To use results from the standard literature on parity games, it is convenient
to view the abridged game Ĝ formally as a turn-based game between two players,
Coordinator and Nature. In contrast to before, we shall hence regard Nature as
an actual player with proper positions, moves, and strategies.

Towards this, we view the game graph Ĝ as a bipartite graph, with one
partition V × C controlled by Coordinator, and a second one formed by the
nonempty subsets of V ×C, controlled by Nature. The initial position (v0, |C|)
is unchanged. Coordinator can move from every position (v, c) ∈ V × C to a
position U ⊆ V ×C, if U = outcomev(t) for some joint strategy t on Tv, whereas
Nature can move from every position U ⊆ V × C to any element (u, d) ∈ U .
The new positions from U ⊆ V × C receive the least significant priority |C|,
whereas position (v, c) ∈ V × C have priority c, as before.

A fundamental result about parity games is that they enjoy positional deter-
minacy. A strategy is positional if the choice prescribed at a history π depends
only on the last position in π. The following theorem was first proved by Emer-
son and Jutla [40], a comprehensive exposition can be found in the survey of
Zielonka in [41].

Theorem 8.3 ([40]). For every parity game with perfect information, one of
the two players has a positional winning strategy.

For our setting, positional determinacy means that in the abridged game Ĝ,
either Coordinator or Nature has a winning strategy defined on the set of po-
sitions. This yields witnesses of manageable size for determining which player
wins the abridged game.

In the following, we argue that positional strategies for the abridged game Ĝ
can be translated effectively into strategies on G, such that the resulting plays
match in the sense of Lemma 8.2.

Proposition 8.4. Let G be a game that allows for ω-cks, and let Ĝ be the
abridged game.
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(i) For every positional Coordinator strategy ŝ in Ĝ, we can effectively con-
struct a strategy profile s for the grand coalition in G such that, for every
play π that follows s, there exists a matching play π̂ that follows ŝ.

(ii) For every positional Nature strategy r̂ in Ĝ, and every strategy profile s for
the coalition in G, there exists a play π in G that follows s with a matching
play π̂ that follows r̂.

Proof. (i) Let ŝ : V × C → 2V×C be a positional strategy for Coordinator in

the abridged game Ĝ. We construct a strategy s for the unravelling Gck of G up
to common knowledge. As the two game graphs have the same unravelling, s is
also a strategy for G.

We can assume that the strategy ŝ prescribes for every state v ∈ V the
same choice at all positions (v, c) independently of the priority. This is without

loss of generality: Recall that all positions (v, c) in Ĝ have the same set of
successors U . If we add a fresh position zv, of least significant priority, from
which Coordinator can move to every position in U , and replace the outgoing
moves from each position (v, c) with a move to zv, the game remains essentially
unchanged. Whenever Coordinator has a winning strategy for the original game,
he has one for the modified game. Then, due to positional determinacy, he also
has a positional winning strategy and its choice at the new position zv can be
transferred as a uniform choice to all positions (v, c) in the original game, still
yielding a winning strategy.

To transfer the given strategy from Ĝ to Gck, we consider for each state
v ∈ V the tree component Tv of Gck separately. For an arbitrarily chosen
colour c, we look at the set U := ŝ(v, c) and pick a joint strategy tv on Tv
with outcomev(tv) = U . Now, for every history π that ends in Tv, we take the
suffix πv contained in Tv, that is, we forget the prefix history up to entering
the tree, and set s(π) = tv(πv). This is a valid strategy profile, due to the
reindexing argument for private knowledge undelying Lemma 5.1.

With s constructed this way, every play π in G that follows s has the same
summary [π] = v0 (v1, c1)(v2, c2) . . . as the play π̂ = v0 a1(v1, c1) a2(v2, c2) . . .

in Ĝ with actions a` = ŝ(v`, c`). Hence, π̂ follows ŝ and matches π, as required.

(ii) For the converse, let r̂ : 2V×C → V × C be a positional strategy for Nature

in Ĝ and let s be an arbitrary strategy for Coordinator in G. We construct a
pair of plays π in G, and π̂ in Ĝ with the desired properties.

The construction is by induction on the number of knowledge gaps in π: For
every `, we construct a history π` in G with ` knowledge gaps that follows s
and ends at some state v, where the players attain cks. At the same time, we
construct a matching history π̂` that follows r̂ and ends at a position (v, c) in Ĝ,
associated with the same state v.

For the base case, both histories π0 and π̂0 are set to v0. For the induction
step, suppose that the two histories π` and π̂` satisfy the hypothesis, and that
they end at state v and position (v, c), respectively. We construct a prolongation
π`+1 that follows s over the ` + 1st knowledge gap and matches a one-round
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prolongation π̂`+1 of π̂`. Towards this, we consider the strategy tv induced
by s in the set of histories π`Tv, that is, the prolongations of π` into the tree
component Tv of Gck. For U := outcomev(tv) and (u, d) := r̂(U), there exists
a history τ in Tv that ends at u and has d as most significant priority after the
initial state v. Now, we update π`+1 := π`τ and π̂`+1 := π̂`U(u, d). This way,
π`+1 follows s and the players attain cks, and π̂`+1 follows r̂. Moreover, the
two plays have the same summary, and π̂`+1 ends at a position corresponding
to the last state of π`+1.

For the infinite plays π and π̂ obtained at the limit, we have: π follows s
and matches π̂ which follows r̂, as required.

The correspondence between strategies in the abridged game and in the
original game allows us to draw the following conclusion.

Proposition 8.5. Let G be a coordination game that allows for recurring com-
mon knowledge of the state, with m states and a parity winning condition over
d priorities.

(i) The grand coalition has a joint winning strategy for G if, and only if,

Coordinator has a positional winning strategy for the abridged game Ĝ,
that is a perfect-information parity game with md + 2md positions and d
priorities.

(ii) If the grand coalition has a joint winning strategy in G, then there exists

a winning profile of finite-state strategies with 2O(m2 logm) states.

Proof. (i) If Coordinator has a positional winning strategy ŝ in Ĝ, then the
corresponding profile s according to Proposition 8.4(i) is winning in G, because
every play π that follows s has a matching play in G that follows ŝ and is hence
winning, which implies that π is also winning, by Lemma 8.2.

Conversely, assume that there exists a joint winning strategy s in G. By
Proposition 8.4(ii), for any arbitrary positional strategy r̂ of Nature, there exists
a play π̂ that follows r̂ and matches some play π in G which follows s and thus
wins. Hence, π̂ is also winning for Coordinator, by Lemma 8.2 which means
that r̂ in not winning for Nature. By positional determinacy, it follows that
Coordinator has a positional winning strategy in Ĝ.

The state space of the abridged game is V × C ∪ 2V×C , it has md + 2md

positions; the number d of priorities is as in G.

(ii) Let ŝ : V ×C → 2V×C be a winning strategy for Coordinator in the abridged

game Ĝ. As in the proof of Proposition 8.4(i), we assume, without loss of gen-
erality, that the strategy prescribes the same move U = ŝ(v, c), at all positions
corresponding to v, independently of the priority c; for each of the m states
v ∈ V , the move ŝ(v, c) is translated into an imperfect-information strategy tv
on the tree component Tv of Gck. We use these local strategies to construct a
joint winning strategy s for the grand coalition in G as follows.
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For each player i, the component strategy si is implemented by a reactive
procedure that maintains, along the infinite sequence of input observations,
a record (v, ρi) of the last state v about which the players attained common
knowledge and the observation history ρi along the subsequent knowledge gap.
Initially v is set to v0 and ρi to βi(v0). In each step, the procedure returns
the action ai := tiv(ρ), inputs the next observation bi, and repeats with ρiaibi

as a new value for ρi, unless this corresponds to a history in Gv at which
the players attain common knowledge of the current state v′. In that case,
the root v is replaced with v′ and the new value of ρi becomes bi = βi(v′).
Each local strategy tiv can be represented by a (tree shaped) automaton that
outputs actions in response to observation sequences along knowledge gaps —
of length at most m2, by Theorem 7.4. Since there are no more observations
than game states, mm2

automaton states are sufficent to store these responses,
as well as the set of histories at which the players attain cks. Globally, the
strategy si of each player i combines m local strategies tiv. Hence, we need at

most m ·mm2

= 2O(m2 logm) many states to represent each component of the
profile s by a strategy automaton.

8.3. Complexity

A nondeterministic procedure for deciding whether there exists a joint win-
ning strategy in a game G with ω-cks, according to Proposition 8.5, can guess
the abridged game Ĝ and determine whether Coordinator has a winning strat-
egy in the obtained parity game with perfect information. The complexity is
dominated by the verification of the transition relations between Coordinator
positions (v, c) and Nature positions U ⊆ V × C, which involves guessing a
witnessing strategy profile tv over the tree Tv such that outcomev(tv) = U . As
we pointed out in the proof of Proposition 8.5, for a game G of size m, such a
strategy tv can be represented by a collection of n trees of size 2O(m2 logm), one
for every player. Once the local strategy trees ti are guessed, the verification
that outcomev(t) = U is done in time linear in their size. Given the abridged
game, a winning strategy for Coordinator can be guessed and verified in non-
deterministic linear time with respect to the size md+ 2md of Ĝ where d is the
number of priorites. Overall, the procedure runs in NTime(2O(m2 logm)), that
is, nondeterministic exponential time.

With a deterministic procedure, the abridged game can be constructed by
exhaustive search over witnessing strategies over the component trees in Gck in

time 22
O(m2 log m)

. Once this is done, winning strategies for the obtained parity
game Ĝ can be constructed in time O(2md

2

) using the basic iterative algorithm
presented by Zielonka in [41]. This concludes the proof of Theorem 8.1.

8.4. Observable ω-regular conditions

In view of applying our results to the practice of automated verification
and design, we briefly outline a procedure for synthesing distributed winning
strategies in games with winning conditions expressed by standard specification
formalisms rather than by parity conditions.
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It is well known that every ω-regular language of infinite words can be recog-
nised by a deterministic automaton with parity acceptance condition [17]. Given
a game G = (G,W ) with an ω-regular winning condition W represented by a
deterministic automaton A over attributes (colours) of the game states, we con-
struct a parity game G′ on the game graph obtained as the synchronised product
of G with A and define a priority colouring that associates to every state of the
product graph G′ the priority of the automaton state in its second component.
Informally, this corresponds to running the automaton along the plays in G to
monitor the ω-regular winning condition over the (colouring of) game states by
a parity condition over the automaton states. Then, the synthesis problem for
the original game G reduces to the synthesis problem for the game G′ with a par-
ity condition. This transformation works as in the case of perfect-information
games detailed in [36, Chapter 2].

Now, let us assume that the game G at the outset allows for ω-cks and
that the winning condition W is expressed by an observable colouring. The
latter assumption implies that, at every history in the product game G′, the
current state of the automaton monitoring the winning condition is common
knowledge among the players. Since along every play in G the players attain cks
infinitely often, and there are only finitely many automaton states, it follows that
the players also attain common knowledge of the product state in G′ infinitely
often. Hence, the product game graph G′ allows for ω-cks. In conclusion, the
synthesis problem for games that allow for ω-cks and with observable ω-regular
conditions represented by deterministic automata can be solved with the same
generic complexity as games with parity conditions.

Corollary 8.6. For games that allow for recurring common knowledge of the
state, with observable ω-regular winning conditions represented by a determin-
istic parity automata,

(i) the problem of deciding whether there exists a joint winning strategy is
NExpTime-complete;

(ii) if joint winning strategies exist, there also exists a winning profile of finite-
state strategies of at most exponential size, which can be synthesised in
2-ExpTime.

To obtain precise upper bounds, we need to take into account that the prod-
uct construction increases the size of the game graph by a factor corresponding
to the size of the deterministic automaton. More generally, for winning condi-
tions specified in common verification formalisms, e.g., ω-regular expressions,
PDL, LTL, or nondeterministic automata, we can apply the standard techniques
for transforming the specification into deterministic parity automaton to estab-
lish the complexity of the synthesis problem for games with ω-cks.

9. Conclusion

We identified a new class of games with imperfect information for which the
distributed synthesis problem can be solved effectively: It is decidable whether
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distributed winning strategies exist and, if so, a profile of finite-state winning
strategies can be computed. Our procedure for solving the distributed synthesis
problem for infinite games with ω-cks under parity winning condition matches
the lower complexity bounds for solving the particular case of multi-player safety
games of finite horizon. Whether a game belongs to the class is decidable
efficiently.

Known decidable classes from the distributed-systems literature rely on de-
composing the global synthesis problem into separate instances, each involving
only one player and the environment (Nature), that can be solved by automata-
theoretic techniques for zero-sum games. The approach proved successful in
several cases where the dependencies between the behaviour of players are re-
stricted, typically by a hierarchical information order among them. Prominent
examples are weakly-ordered architectures [2] and doubly-flanked pipelines [42],
both subsumed by Coordination Logic [43], or, in the asynchronous setting, well-
connected architectures [44]. As the synthesis procedures rely on solving nested
instances for all players, these classes generally display nonelementary complex-
ity. A class of more moderate NExpTime complexity was recently proposed
by Chatterjee et al. [45]. Here, the winning conditions are restricted to ensure
an even higher degree of independence: Essentially, each player can achieve her
part of the global objective independently of the others.

Our approach is orthogonal to the idea of decomposing games into two-
player zero-sum instances. Instead of restricting the order of information or the
game objective, our decidability condition requires that players attain common
knowledge of the game state infinitely often along every play. Intuitively, this
allows to decompose the game tree into a sequence of time slices (the gaps)
that can be solved independently, rather than reducing it to parallel zero-sum
instances for each individual players. As a most simple case, our class subsumes
repeated safety games of finite horizon with imperfect information, where the
initial state (re-entered at each repetition) is observable. Since safety games
of finite horizon are already NExpTime hard to solve, this justifies the lower
bound for our solution procedure. Nevertheless, it is rewarding to see that the
synthesis problem for arbitrary games with ω-cks has a matching NExpTime
upper bound, in spite of covering much more general examples of games.

For instance, the class captures the interaction scenarios that proceed in
phases where imperfect information can arise and evolve in any form, provided
that at the outcome of each phase the participants synchronise in some state
that will become common knowledge among them. This may be guaranteed
explicitely, by restrictin to phase games on acyclic graphs with observable exit
states, or implicitely, by ensuring that the players attain cks due to the struc-
ture of game graph. We believe that designs of distributed systems tend to follow
such patterns naturally, as developers introduce breakpoints or synchronisation
barriers for monitoring their system. One challenge is to develop concrete com-
munication schemes for distributed systems that yield games with ω-cks. As an
application to decentralised control, it will be interesting to identify conditions
under which common knowledge of an event can be approximated by (a finite
degree of) mutual knowledge.
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Apart from direct applications, we hope that our contribution may help to
demystify the subject of imperfect information in multiplayer games haunted
by the discouraging complexity results for the general case. As pointed out by
Muscholl and Walukiewicz in their concise survey on distributed synthesis [46],
currently we have no evidence that the constructions causing undecidability in
general game models would arise in real-world systems, but we have no system-
atic justification for ruling them out either. We may paraphrase the insights
of the present article by concluding that, if imperfect information is admitted
only as a temporary perturbation of perfect information, then we can rule out
undecidable situations. It remains to investigate whether this intuition applies
to further relevant forms of perturbation in the information structure of games
as, for instance, communication delays or incomplete but perfect information.
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