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Abstract

We solve an open problem concerning syntactic complexity: We prove that
the cardinality of the syntactic semigroup of a suffix-free language with n left
quotients (that is, with state complexity n) is at most (n− 1)n−2 + n− 2 for
n > 6. Since this bound is known to be reachable, this settles the problem.
We also reduce the alphabet of the witness languages reaching this bound to
five letters instead of n+ 2, and show that it cannot be any smaller. Finally,
we prove that the transition semigroup of a minimal deterministic automaton
accepting a witness language is unique for each n.

Keywords: regular language, suffix-free, syntactic complexity, transition
semigroup, upper bound

1. Introduction

The syntactic complexity [8] of a regular language L is the size of its
syntactic semigroup [14]. This semigroup is isomorphic to the transition
semigroup of the quotient automaton D, a minimal deterministic finite au-
tomaton (DFA) accepting the language. The descriptional complexity of
syntactic monoids as a function of minimal DFA size for regular languages
was first considered systematically in [11, 13].

The number n of states of D is the state complexity of the language [16],
and it is the same as the quotient complexity [3] (number of left quotients)
of the language. The syntactic complexity of a class of regular languages is
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the maximal syntactic complexity of languages in that class expressed as a
function of the quotient complexity n.

If w = uxv for some u, v, x ∈ Σ∗, then u is a prefix of w, v is a suffix of w
and x is a factor of w. Prefixes and suffixes of w are also factors of w. A lan-
guage L is prefix-free (respectively, suffix-free, factor-free) if w, u ∈ L and u is
a prefix (respectively, suffix, factor) of w, then u = w. A language is bifix-free
if it is both prefix- and suffix-free. These languages play an important role
in coding theory, have applications in such areas as cryptography, data com-
pression, and information transmission, and have been studied extensively;
see [2] for example. In particular, suffix-free languages (with the exception
of {ε}, where ε is the empty word) are suffix codes. Moreover, suffix-free
languages are special cases of suffix-convex languages, where a language is
suffix-convex if it satisfies the condition that, if a word w and its suffix u are
in the language, then so is every suffix of w that has u as a suffix [1, 15]. We
are interested only in regular suffix-free languages.

The syntactic complexity of prefix-free languages was proved to be nn−2

in [4]. The syntactic complexities of suffix-, bifix-, and factor-free languages
were also studied in [4], and the following lower bounds were established
(n− 1)n−2 + n− 2, (n− 1)n−3 + (n− 2)n−3 + (n− 3)2n−3, and (n− 1)n−3 +
(n− 3)2n−3 + 1, respectively. It was conjectured that these bounds are also
upper bounds; we prove the conjecture for suffix-free languages in this paper.
Moreover, we reduce the alphabet size of the witness language reaching the
upper bound for suffix-free languages to five letters instead of n+2, and prove
that five is the minimal size. As well, we show that the transition semigroup
of a minimal DFA accepting a witness language is unique for each n.

A much abbreviated version of these results appeared in [7].

2. Preliminaries

2.1. Languages, automata and transformations

Let Σ be a finite, non-empty alphabet and let L ⊆ Σ∗ be a language. The
left quotient or simply quotient of a language L by a word w ∈ Σ∗ is denoted
by L.w and defined by L.w = {x | wx ∈ L}. A language is regular if and
only if it has a finite number of quotients. We denote the set of quotients by
K = {K0, . . . , Kn−1}, where K0 = L = L.ε by convention. Each quotient Ki

can be represented also as L.wi, where wi ∈ Σ∗ is such that L.wi = Ki. The
notation Ki.w points out that each word w ∈ Σ∗ performs an action on the
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set K of quotients (states of the quotient DFA), and leads a quotient (state)
Ki to quotient (state) Ki.w.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. We extend δ to a function δ : Q × Σ∗ → Q

as usual.
The quotient DFA of a regular language L with n quotients is defined by

D = (K,Σ, δD, K0, FD), where δD(Ki, w) = Kj if and only if Ki.w = Kj, and
FD = {Ki | ε ∈ Ki}. To simplify the notation, without loss of generality
we use the set Q = {0, . . . , n − 1} of subscripts of quotients as the set of
states of D; then D is denoted by D = (Q,Σ, δ, 0, F ), where δ(i, w) = j

if δD(Ki, w) = Kj , and F is the set of subscripts of quotients in FD. The
quotient corresponding to q ∈ Q is then Kq = {w | δD(Kq, w) ∈ FD}. The
quotient K0 = L is the initial quotient. A quotient is final if it contains ε.
A state q is empty (or a sink state or dead state) if its quotient Kq is empty.

The quotient DFA of L is a minimal DFA of L. The number of states in
the quotient DFA of L (the quotient complexity of L) is therefore equal to
the state complexity of L.

In any DFA, each letter a ∈ Σ induces a transformation of the set Q of n
states. Let TQ be the set of all nn transformations of Q; then TQ is a monoid
under composition. The image of q ∈ Q under transformation t is denoted
by qt. If s, t are transformations of Q, their composition is denoted s ◦ t and
defined by q(s ◦ t) = (qs)t; the ◦ is usually omitted. The in-degree of a state
q in a transformation t is the cardinality of the set {p | pt = q}.

The identity transformation 1 maps each element to itself. For k > 2, a
transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Q is a k-
cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. A k-cycle is denoted
by (q0, q1, . . . , qk−1). If a transformation t of Q is a k-cycle of some P ⊆ Q,
we say that t has a k-cycle. A transformation has a cycle if it has a k-cycle
for some k > 2. A 2-cycle (q0, q1) is called a transposition. A transformation
is unitary if it changes only one state p to a state q 6= p; it is denoted by
(p → q). A transformation is constant if it maps all states to a single state
q; it is denoted by (Q → q).

The binary relation ωt on Q × Q is defined as follows: For any i, j ∈ Q,
iωt j if and only if itk = jtℓ for some k, ℓ > 0. This is an equivalence relation,
and each equivalence class is called an orbit [9] of t. For any i ∈ Q, the orbit
of t containing i is denoted by ωt(i). An orbit contains either exactly one
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cycle and no fixed points or exactly one fixed point and no cycles. The set
of all orbits of t is a partition of Q.

If w ∈ Σ∗ induces a transformation t, we denote this by w : t. A trans-
formation mapping i to qi for i = 0, . . . , n − 1 is sometimes denoted by
[q0, . . . , qn−1]. By a slight abuse of notation we sometimes represent the
transformation t induced by w by w itself, and write qw instead of qt.

The transition semigroup of a DFA D = (Q,Σ, δ, 0, F ) is the semigroup
of transformations of Q generated by the transformations induced by the
letters of Σ. Since the transition semigroup of a minimal DFA of a language
L is isomorphic to the syntactic semigroup of L [14], syntactic complexity is
equal to the cardinality of the transition semigroup.

2.2. Suffix-free languages

For any transformation t, consider the sequence (0, 0t, 0t2, . . . ); we call it
the 0-path of t. Since Q is finite, there exist i, j such that 0, 0t, . . . , 0ti, 0ti+1,

. . . , 0tj−1 are distinct but 0tj = 0ti. The integer j − i is the period of t and
if j − i = 1, t is initially aperiodic.

Let Q = {0, . . . , n − 1}, and let QM = {1, . . . , n − 2} (the set of middle
states). Let Dn = (Q,Σ, δ, 0, F ) be a minimal DFA accepting a language L,
and let T (n) be its transition semigroup. The following observations are well
known [4, 10]:

Lemma 1. If L is a suffix-free language, then

1. There exists w ∈ Σ∗ such that L.w = ∅; hence Dn has an empty state,
which is state n− 1 by convention.

2. For w, x ∈ Σ+, if L.w 6= ∅, then L.w 6= L.xw.

3. If L.w 6= ∅, then L.w = L implies w = ε.

4. For any t ∈ T (n), the 0-path of t in Dn is aperiodic and ends in n− 1.

Remark 1. If n = 1, the only suffix-free language is the empty language ∅
and its syntactic complexity is equal to 1. If n > 2 and Σ = {a}, the language
L = {an−2} is the only suffix-free language of quotient complexity n, and its
syntactic complexity is equal to n− 1.

Assume now that |Σ| > 2. If n = 2, the language L = ε is the only suffix-
free language, and its syntactic complexity is equal to 1. If n = 3, the upper
bound on syntactic complexity of suffix-free languages is 3, and the language
L = ab∗ over Σ = {a, b} meets this bound [4]. �
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2.3. Suffix-free semigroups

Since the cases where 2 6 n 6 3 were easily resolved, we assume now that
n > 4. Also, without loss of generality, we assume that Q = {0, . . . , n−1}. A
transformation of Q is suffix-free if it can belong to the transition semigroup
of a minimal DFA accepting a suffix-free language.

The following set of all suffix-free transformations was defined in [4]: For
n > 2 let

Bsf(n) = {t ∈ TQ | 0 6∈ Qt, (n− 1)t = n− 1, and for all j > 1,

0tj = n− 1 or 0tj 6= qtj ∀q, 0 < q < n− 1}.

An (unordered) pair {p, q} of distinct states in QM is colliding (or p

collides with q) in T (n) if there is a transformation t ∈ T (n) such that 0t = p

and rt = q for some r ∈ QM . A pair of states is focused by a transformation
u of Q if u maps both states of the pair to a single state r ∈ QM . We then say
that the pair {p, q} is focused by u to state r, or simply that the pair (p, q)
is focused, if there is no danger of confusion. If L is a suffix-free language,
then from Lemma 1 (2) it follows that if {p, q} is colliding in T (n), there is
no transformation t′ ∈ T (n) that focuses {p, q}. So colliding states can be
mapped to a single state by a transformation in T (n) only if that state is the
empty state n− 1.

Suppose D is a minimal DFA accepting a non-empty suffix-free language
L. It was shown in [4] that he transition semigroup of such a DFA is contained
in Bsf(n). Each transformation in Bsf(n) satisfies three conditions. First, no
transformation t induced by a word y can map any state q to 0, because then
we would have some words x and z such that 0x = q, qy = 0, z ∈ L and
xyz ∈ L. Second, since D must have an empty state n − 1, that state must
be mapped to itself by every transformation. Third, since state 0tj collides
with qtj for all j > 1 if 0tj 6= n− 1, these two states cannot be focused.

Since the set Bsf(n) is not a semigroup, we look for largest semigroups
contained in Bsf(n). Two such semigroups were introduced in [4].

The first semigroup is defined as follows: For n > 4, let

T65(n) = {t ∈ Bsf(n) | for all p, q ∈ Q where p 6= q,

we have pt = qt = n− 1 or pt 6= qt}.

It was shown in [6] that for n > 4, semigroup T65(n) is generated by the
following set of transformations of Q:
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• a : (0 → n− 1)(1, . . . , n− 2),

• b : (0 → n− 1)(1, 2),

• for 1 6 p 6 n− 2, cp : (p → n− 1)(0 → p).

Proposition 1 ([6, Proposition 3]). For n > 4, T65(n) is the unique maximal
semigroup of a minimal DFA D of a suffix-free language in which every two
states from QM are colliding.

Proof. Observe that every two states p, q ∈ QM , p 6= q, are colliding, because
there is a transformation t ∈ T65(n) with 0t = p and qt = q. Then for
each p, q ∈ Q \ {n − 1}, there is no transformation t with pt = qt 6= n − 1,
for this would violate suffix-freeness. By definition, T65(n) has all other
transformations that are possible for a suffix-free language, and hence is
unique.

The second semigroup from [4] was defined as follows: For n > 4, let

T>6(n) = {t ∈ Bsf(n) | 0t = n− 1 or qt = n− 1 ∀ q, 1 6 q 6 n− 2}.

The transition semigroup T>6(n) has cardinality (n − 1)n−2 + n − 2,
which is a lower bound on the complexity of suffix-free languages established
in [4] using a witness DFA with an alphabet with n + 2 letters. Our first
contribution is to simplify the witness of [4] with the transition semigroup
T>6(n) by using an alphabet with only five letters, as stated in Definition 1.
The transitions induced by inputs a, b, c, and e are the same as in [4]. The
structure of Wn is illustrated in Fig. 1 for n = 5.

Definition 1 (Suffix-Free Witness). For n > 4, we define the DFA Wn =
(Q,ΣW , δW , 0, {1}), where Q = {0, . . . , n − 1}, ΣW = {a, b, c, d, e}, and δW
is defined by the transformations a : (0 → n − 1)(1, . . . , n − 2), b : (0 →
n−1)(1, 2), c : (0 → n−1)(n−2 → 1), d : ({0, 1} → n−1), and e : (Q\{0} →
n−1)(0 → 1). For n = 4, a and b coincide, and we can use ΣW = {b, c, d, e}.

We claim that no pair of states from Q is colliding in T>6(n). If 0t = p 6∈
{0, n− 1}, then t is not the identity but must be induced by a word of the
form ew for some w ∈ Σ∗. Such a word maps every r 6∈ {0, n− 1} to n− 1.
Hence q = rt = n− 1, and p and q do not collide.
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Figure 1: DFA W5.

Proposition 2. For n > 4 the DFA Wn of Definition 1 is minimal, suffix-
free, and its transition semigroup is T>6(n) with cardinality (n−1)n−2+n−2.
In particular, T>6(n) contains (a) all (n−1)n−2 transformations that send 0
and n−1 to n−1 and map QM to Q\{0}, and (b) all n−2 transformations
that send 0 to a state in QM and map all the other states to n− 1.

Proof. Wn accepts a suffix-free language, since each accepted string is of the
form ew with w ∈ {a, b, c, d}. For minimality, n− 1 is the only empty state,
e is accepted only from 0, and all states in QM are distinguished by a string
in a∗.

Note that T>6(n) contains only transformations of type (a) and (b) and it
contains all such transformations. The transformations induced by a, b, and
c restricted to QM generate all transformations of the middle n − 2 states.
Together with d, they generate all transformations of Q that send 0 to n−1,
fix n− 1, and send a state in QM to Q \ {0}. Also, for 0 6 i 6 n− 3, words
eai send 0 to some p 6∈ {0, n−1} and map all the other states to n−1. Hence
the transition semigroup of Wn is T>6(n) and the proposition holds.

Proposition 3. For n > 4, T>6(n) is the unique maximal semigroup of
a minimal DFA D of a suffix-free language in which no two states from
{1, . . . , n− 2} are colliding.

Proof. Since 0t = n− 1 or qt = n− 1 for all q ∈ Q \ {0}, no two states are
colliding. By Proposition 2 all such transformations are in T>6(n).

If n = 4 and n = 5, the tight upper bounds on the size of suffix-free
transition semigroups are 13, and 73, respectively [4], and these bounds are
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met by T65(n). It was shown in [4] that there is a suffix-free witness DFA with
n states and an alphabet of size n+2 that meets the bound (n−1)n−2 +n−2
for n > 4, and the transition semigroup of this DFA is T>6(n). For n = 4
and n = 5, these bounds are 11 and 67, and hence are smaller than the sizes
of T65(4) and T65(5). However, for n > 6, (n− 1)n−2 + n− 2 is the largest
known lower bound, and it is met by T>6(n). The remainder of this paper
is devoted to proving that (n− 1)n−2 + n− 2 is also an upper bound.

3. Upper bound for suffix-free languages

Our main result shows that the lower bound (n − 1)n−2 + n − 2 on the
syntactic complexity of suffix-free languages is also an upper bound for n > 7.

Theorem 1 (Suffix-Free Languages). For n > 6 the syntactic complexity of
the class of suffix-free languages with n quotients is (n− 1)n−2 + n− 2.

Proof. The case n = 6 has been proved in [4]; hence assume that n > 7.
In [4] and in Proposition 2 it was shown that (n − 1)n−2 + n − 2 is a lower
bound for n > 7; hence it remains to prove that it is also an upper bound,
and we do this here.

Our approach is as follows: Consider a minimal DFA Dn = (Q,Σ, δ, 0, F ),
where Q = {0, . . . , n−1}, of an arbitrary suffix-free language with n quotients
and let T (n) be the transition semigroup of Dn. We also deal with the
witness DFA Wn = (Q,ΣW , δW , 0, {1}) of Definition 1 that has the same
state set as Dn and whose transition semigroup is T>6(n). We will show that
there is an injective mapping ϕ : T (n) → T>6(n), and this will prove that
|T (n)| 6 |T>6(n)|.

A note about terminology may be helpful to the reader. The semigroups
T (n) and T>6(n) share the set Q. When we say that a pair of states from Q

is colliding we mean that it is colliding in T (n); there is no room for confusion
because no pair of states is colliding in T>6(n). Since we are dealing with
suffix-free languages, a transformation that focuses a colliding pair cannot
belong to T (n).

We have the cases shown below, and also summarized on page 32 in
Fig. 13.

Case 1: t ∈ T>6(n).
Let ϕ(t) = t; so ϕ is injective.

Case 2: t 6∈ T>6(n), and t has a cycle.
In this case and in all the following ten cases let p = 0t. By Proposition 2(a),
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T>6(n) contains all transformations that map 0 to n−1, so since t 6∈ T>6(n)
we always have p 6= n− 1.

By Lemma 1 (4) we have the chain

0
t
→ p

t
→ pt

t
→ · · ·

t
→ ptk

t
→ n− 1,

where k > 0. Observe that pairs {pti, ptj} for 0 6 i < j 6 k are colliding,
since transformation ti+1 maps 0 to pti and ptj−i−1 to ptj . Also, p collides
with any state from a cycle of t and any fixed point of t other than n− 1.

Let r be minimal among the states that appear in cycles of t, that is,

r = min{q ∈ Q | q is in a cycle of t}.

Let s be the transformation illustrated in Fig. 2 and defined by

0s = n− 1, ps = r, (pti)s = pti−1 for 1 6 i 6 k,

qs = qt for the other states q ∈ Q.

t :

0 p . . . ptk n− 1

r′

r

. . .

s :

0 p . . . ptk n− 1

r′

r

. . .

Figure 2: Case 2 in the proof of Theorem 1.
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By Proposition 2, ϕ(t) = s is in T>6(n), since it maps 0 to n − 1, fixes
n− 1, and does not map any states to 0. Note that the sets of cyclic states
in both t and s are the same. Let r′ be the state from the cycle of t such
that r′t = r; then transformation s has the following properties:

(a) Since p collides with any state in a cycle of t, {p, r′} is a colliding pair
focused by s to state r in the cycle. Moreover, if q′ is a state in a cycle
of s, and {q, q′} is colliding and focused by s to a state in a cycle, then
that state must be r (the minimal state in the cycles of s), q must be
p, and q′ must be r′.

Proof: This follows from the definition of s. Since s differs from t

only in the mapping of states pti and 0, any colliding pair focused by s

contains pti for some i, 0 6 i 6 k. Only p is mapped to r, which is in
a cycle of t, and r′ is the only state in that cycle that is mapped to r.

(b ) For each i with 1 6 i < k, there is precisely one state q colliding with
pti−1 and mapped by s to pti, and that state is q = pti+1.

Proof: Clearly q = pti+1 satisfies this condition. Suppose that q 6=
pti+1. Since pti+1 is the only state mapped to pti by s and not by t, it
follows that qt = qs = pti. So q and pti−1 are focused to pti by t; since
they collide, this is a contradiction.

(c) Every focused colliding pair consists of states from the orbit of p.

This follows from the fact that all the states except 0 that are mapped
by s differently than by t belong to the orbit of p.

(d) s has a cycle.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1.

We will show that s chosen as above corresponds to a unique t satisfying
the conditions of this case, and we will define the inverse mapping ϕ−1 for
the transformations s. From (a) there is the unique colliding pair focused to
a state in a cycle. Moreover, one of its states, say p, is not in this cycle and
another one, say r′, is in this cycle. It follows that 0t = p. Since there is no
state q 6= 0 such that qt = p, the only state mapped to p by s is pt. From (b)
for i = 1, . . . , k − 1 state pti+1 is uniquely determined. Finally, for i = k

there is no state colliding with ptk−1 and mapped to ptk; so ptk+1 = n − 1.
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Since the other transitions in s are defined exactly as in t, this procedure
defines the inverse function ϕ−1 for the transformations of this case, and so
ϕ is injective when restricted to these transformations.

Case 3: t does not fit in any of the previous cases, and pt 6= n− 1.
Let s be the transformation illustrated in Fig. 3 and defined by

0s = n− 1, ps = p, (pti)s = pti−1 for 1 6 i 6 k,

qs = qt for the other states q ∈ Q.

t :

0 p . . . ptk n− 1

s :

0 p . . . ptk n− 1

Figure 3: Case 3 in the proof of Theorem 1.

Observe that s has the following properties:

(a) {p, pt} is the only colliding pair focused by s to a fixed point. Moreover
the fixed point is contained in the pair, and has in-degree 2.

Proof: This follows from the definition of s, since any colliding pair
focused by s contains pti (0 6 i 6 k), and only pt is mapped to p,
which is a fixed point in s. Also, no state except 0 can be mapped to
p by t because this would violate suffix-freeness; so only p and pt are
mapped by s to p, and p has in-degree 2 in s.

(b) For each i with 1 6 i < k, there is precisely one state q colliding with
pti−1 and mapped to pti, and that state is q = pti+1.

Proof: This follows exactly like Property (b) from Case 2.

(c) Every colliding pair focused by s consists of states from the orbit of p.

Proof: This follows exactly like Property (c) from Case 2.
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(d) s does not have a cycle, but has a fixed point in QM with in-degree at
least 2, and that fixed point is p.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. Here s does not have a cycle in contrast with the transformations of
Case 2.

As before, s uniquely defines the transformation t from which it is ob-
tained: From (a) there is the unique colliding pair {p, pt} focused to the fixed
point p in s. Thus 0t = p. Then, as in Case 2, for i = 1, . . . , k − 1 state
pti+1 is uniquely defined, and ptk = n − 1. Since the other transitions in s

are defined exactly as in t, this procedure yields the inverse function ϕ−1 for
this case.

Case 4: t does not fit in any of the previous cases, and there is a fixed
point r ∈ QM with in-degree > 2.
Let s be the transformation illustrated in Fig. 4 and defined by

0s = n− 1, ps = r,

qs = qt for the other states q ∈ Q.

t :

0 p n− 1

r

s :

0 p n− 1

r

Figure 4: Case 4 in the proof of Theorem 1.

Observe that s has the following properties:
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(a) {p, r} is the only colliding pair focused by s to a fixed point, where
the fixed point is contained in the pair. Moreover the fixed point has
in-degree at least 3 in s.

Proof: Since s differs from t only by the mapping of states 0 and p, it
follows that all focused colliding pairs contain p. Since p is mapped to
r, the second state in the pair must be the fixed point r. Since r has
in-degree at least 2 in t, and s additionally maps p to r, r has in-degree
at least 3.

(b) s does not have a cycle, but has a fixed point 6= n − 1 with in-degree
> 3, which is r.

From (a) we have s 6∈ T (n), and so s is different from the transformations
of Case 1. Here s does not have a cycle in contrast with the transformations
of Case 2. Also from (a) we know that the fixed point in the distinguished
colliding pair has in-degree > 3, whereas in Case 3 it has in-degree 2.

From (a) we see that the colliding pair {p, r}, in which r is a fixed point
in s and p is not a fixed point in s, is uniquely defined. Hence 0t = p and
pt = n− 1, and t is again uniquely defined from s.

Case 5: t does not fit in any of the previous cases, and there is a state
r with in-degree > 1 that is not a fixed point and satisfies rt 6= n− 1.

Since in t there are no fixed points from QM with in-degree at least 2,
and there are no cycles, it follows that r belongs to the orbit of n− 1. Hence
we can choose r such that rt 6= n− 1 and rt2 = n− 1.

Let s be the transformation illustrated in Fig. 5 and defined by

0s = n− 1, ps = rt,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:

(a) All colliding pairs that are focused by s contain p, and the second state
from such a pair has in-degree > 1 in s.

Proof: This follows since s differs from t only in the mapping of 0 and
p.

(b) The smallest i with psi = n− 1 is 2.

(c) s has neither a cycle nor a fixed point with in-degree > 2 other than
n− 1.

13



t :

0 p n− 1

r rt

s :

0 p n− 1

r rt

Figure 5: Case 5 in the proof of Theorem 1.

Note that p and r collide. Since {p, r} is focused to rt, we have s 6∈ T (n)
and so s is different from the transformations of Case 1. Here s does not
have a cycle in contrast with the transformations of Case 2. Also s does not
have a fixed point in QM with in-degree at least 2, and so is different from
the transformations of Cases 3 and 4.

From (a) all focused colliding pairs contain p. If there are two or more
such pairs, p is the only state in their intersection. If there is only one such
pair, then it must be {p, r}, and p is uniquely determined, since it has in-
degree 0 and r has in-degree at least 1. Hence 0t = p and pt = n − 1, and
again t is uniquely defined from s.

Case 6: t does not fit in any of the previous cases, and there is a state
r ∈ QM with in-degree at least 2.
Clearly r 6= p, since the in-degree of p is 1. Also rt = n − 1, as otherwise t

would fit in Case 5.
Let R = {r′ ∈ Q | r′t = r}; then |R| > 2. We consider the following two

sub-cases. If p < r, let q1 be the smallest state in R and let q2 be the second
smallest state; so q1 < q2. If p > r, let q1 be the second smallest state in R,
and let q2 be the smallest state; so q2 < q1.

Let s be the transformation illustrated in Fig. 6 and defined by

0s = n− 1, ps = q1, rs = q1, q1s = q2, q2s = n− 1,
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qs = qt for the other states q ∈ Q.

t :

0 p n− 1

q1

q2

r

s :

0 p n− 1

q1

q2

r

Figure 6: Case 6 in the proof of Theorem 1.

Observe that s has the following properties:

(a) There is only one colliding pair focused by s, namely {p, r} mapped to
q1.

Proof: Clearly p and r collide. Note that no state can be mapped by
t to q1 or q2, since this would satisfy Case 5. Because q1 is the only
state mapped by s to q2, it does not belong to a focused colliding pair.
Also 0 and q2 are mapped to n− 1. Since the other states are mapped
exactly as in t, it follows that s does not focus any other colliding pairs.

(b) The smallest i with psi = n− 1 is 3.

(c) s has neither a cycle nor a fixed point 6= n− 1 with in-degree > 2.

This follows since t does not have a cycle, and the states 0, p, r, q1, q2
that are mapped differently by s are in the orbit of n− 1.
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Since s focuses the colliding pair {p, r}, s is different from the transfor-
mations of Case 1. Also s has neither a cycle nor a fixed point from QM with
in-degree at least 2 and so is different from the transformations of Cases 2, 3
and 4. In Case 5, transformation s2 maps a colliding pair to n− 1, and here
s2 maps the unique colliding pair to q2 6= n− 1. Thus, s is different from the
transformations of Case 5.

From (a) we have the unique colliding pair {p, r} focused to q1. Then
q1 < q1s = q2 means that p < r, and so p is distinguished from r. Similarly,
q1 > q2 means that p > r. Thus 0t = p, pt = n − 1, q1t = r, q2t = r, and
rt = n− 1, and t is again uniquely defined from s.

Case 7: t does not fit in any of the previous cases, and there are two
states q1, q2 ∈ QM that are not fixed points and satisfy q1t 6= n − 1 and
q2t 6= n− 1.
Since this is not Case 5 we may assume that q1t

2 = n− 1 and q2t
2 = n− 1.

Let r1 = q1t and r2 = q2t; clearly p 6= r1 and p 6= r2. The in-degree in t

of both q1 and q2 is 0; otherwise t would fit in Case 5.
We consider the following two sub-cases. If p < r1, then (i) let s be the

transformation illustrated in Fig. 7 and defined by

0s = n− 1, ps = q1, r1s = q1, q1s = n− 1,
qs = qt for the other states q ∈ Q.

If p > r1 then (ii) let s be the transformation also illustrated in Fig. 7 and
defined by

0s = n− 1, ps = q1, r1s = q1, q1s = q2,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:

(a) There is only one colliding pair focused by s, namely the pair {p, r1}
mapped to q1. Both states from the pair have in-degree 0 in s.

Proof: Clearly p and r1 collide. In (i) no state is mapped by s to q2,
and 0 and q1 are mapped to n− 1. In (ii) q1 is the only state mapped
to q2 and 0 is mapped to n− 1. The other states are mapped exactly
as in t. It follows that s does not focus any other colliding pairs.

(b) The smallest i with psi = n− 1 is 2 in (i), and is 4 in (ii).
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t :

0 p n− 1

q1

q2

r1

r2

s :

0 p n− 1

q1

q2

r1

r2

(i)

(ii)

Figure 7: Case 7 in the proof of Theorem 1.

(c) s has neither a cycle nor a fixed point with in-degree > 2 other than
n− 1.

Since s focuses the colliding pair {p, r}, it is different from the transfor-
mations of Case 1. Also s has neither a cycle nor a fixed point with in-degree
> 2 other than n−1, and so is different from the transformations of Cases 2,
3 and 4. Here the states from the colliding pair have in-degree 0, in contrast
to the transformations of Case 5 (Property (a) of Case 5). Now, observe that
the smallest i with psi = n− 1 is 2 or 4, while in Case 6 it is 3 (Property (b)
of Case 6).

From (a) we have the unique colliding pair {p, r1} focused to q1. If ps2 =
n− 1, then p < r1 (i), and so p is distinguished from r1. If ps2 6= n− 1 then
ps2 = q2, and p > r1 (ii). Thus 0t = p, pt = n− 1, r1t = n− 1, and q1t = r1.
Thus t is uniquely defined from s.

Case 8: t does not fit in any of the previous cases, and it has two fixed
points r1 and r2 in Q with in-degree 1; assume that r1 < r2.

Let s be the transformation illustrated in Fig. 8 and defined by

0s = n− 1, ps = r2, r1s = r2, r2s = r1,
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qs = qt for the other states q ∈ Q.

t :

0 p n− 1

r1 r2

s :

0 p n− 1

r1 r2

Figure 8: Case 8 in the proof of Theorem 1.

Observe that s has the following properties:

(a) {p, r1} is the only colliding pair that is focused by s. The state to which
the pair is focused lies on a cycle of length 2 and is not the minimal
state in the cycle.

Proof: This follows from the fact that r1, r2, and p are the only states
in their orbit, only p and r1 are mapped to a single state, and s differs
from t only by the mapping of 0 and of these three states.

(b) s has a unique 2-cycle.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. The transformations of Case 2 contain a cycle, but (Property (a) of
Case 2) the only colliding pair focused by them to a state lying on a cycle is
mapped to the minimal state in cycles, in contrast to s from this case. Also,
s has a cycle, and so differs from the transformations of Cases 3–7.

Again, s uniquely defines t: The orbit with the focused colliding pair
contains precisely p, r1, and r2, and they are distinguished since r1 < r2, and
r1 and r2 lie on a cycle whereas p does not.
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Case 9: t does not fit in any of the previous cases, and there is a state
q ∈ QM that is not a fixed point and satisfies qt 6= n − 1 and p < qt, and
there is a fixed point f ∈ QM with in-degree 1.

Let r = qt; then rt = n − 1 because otherwise this would fit in Case 5.
Here q is the only state from QM that is not a fixed point and is not mapped
to n − 1, as otherwise t would fit in Case 7. Similarly, f is the only fixed
point 6= n− 1, as otherwise t would fit in either Case 4 or Case 8.

Let s be the transformation illustrated in Fig. 9 and defined by

0s = n− 1, ps = r, rs = q, qs = p, fs = r,

qs = qt for the other states q ∈ Q.

t :

0 p n− 1

q r f

s :

0 p n− 1

q r f

Figure 9: Case 9 in the proof of Theorem 1.

Observe that s has the following properties:

(a) {p, f} is the only colliding pair that is focused by s, and the state to
which it is focused lies on a cycle of length 3 and is not the minimal
state in the cycle.

(b) s has a unique 3-cycle.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. The transformations of Case 2 contain a cycle, but (Property (a) of

19



Case 2) the only colliding pair focused by them to a state lying on a cycle is
focused to the minimal state appearing in a cycle, in contrast to s from this
case. Since s has a cycle, it is different from the transformations of Cases 3–7.
Also, s has a unique 3-cycle in contrast with the transformations of Case 8,
which have a unique 2-cycle (Property (b) of Case 8).

Again, s uniquely defines t: The orbit with the focused colliding pair
contains precisely p, q, r and f , and they are uniquely determined since f is
not in the 3-cycle and is mapped to r.

Case 10: t does not fit in any of the previous cases, and there is a state
q ∈ QM that is not a fixed point and satisfies qt 6= n − 1, and a fixed point
f ∈ QM .
Let r = qt; then rt = n− 1 since this is not Case 5. Now, in contrast to the
previous case, we have p > r.

Let s be the transformation illustrated in Fig. 10 and defined by

0s = n− 1, ps = q, rs = q, qs = n− 1,
qs = qt for the other states q ∈ Q.

t :

0 p n− 1

q r f

s :

0 p n− 1

q r f

Figure 10: Case 10 in the proof of Theorem 1.

Observe that s has the following properties:

(a) {p, r} is the only colliding pair that is focused by s.
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(b) s does not have cycles, and each state ∈ Q\{p, r, f} is mapped to n−1.

(c) s has the fixed point f 6= n− 1.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. Since the transformations of Cases 2, 8, and 9 contain cycles, they
are different from s. Here the unique focused colliding pair is not mapped
to a fixed point, in contrast with the transformations of Cases 3 and 4.
Since both states from the pair have in-degree 0 in s, s is different from
the transformations of Case 5. For a distinction with Case 6, observe that
the smallest i such that psi = n − 1 is 2, in contrast with 3 (Property (b)
of Case 6). For a distinction with Case 7, observe that besides the focused
colliding states p and r, there is no state q′ that is not a fixed point in s and
satisfies q′s 6= n − 1, whereas in the transformations of Case 7 q2 is such a
state.

Again, s uniquely defines t: Here {p, r} is the only focused colliding pair,
and p is distinguished as the larger state.

Case 11: t does not fit in any of the previous cases, and there is a state
q ∈ QM that is not a fixed point and satisfies qt 6= n− 1.
As shown in Case 9, q is the only state from Q \ {0} that is not mapped to
n− 1, and also t has no fixed points other than n− 1, as otherwise it would
fit in one of the previous cases. Hence, all states from Q \ {0, q} are mapped
to n− 1. Let r = qt.

Here we use the assumption that n > 7. So in Q \ {0, p, q, r, n − 1} we
have at least 2 states, say r1 and r2, that are mapped to n− 1.

We consider the following two sub-cases:
Sub-case (i): p < r.
Let s be the transformation illustrated in Fig. 11 and defined by

0s = n− 1, ps = q, rs = q, qs = n− 1,
qs = qt for the other states q ∈ Q.

Sub-case (ii): p > r.
Let s be the transformation also illustrated in Fig. 11 and defined by

0s = n− 1, ps = q, rs = q, qs = n− 1, r1s = r2, r2s = r1,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:
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t :

0 p n− 1

q r r1 r2

s :

0 p n− 1

q r r1 r2

(i) (i)

(ii)

(ii)

Figure 11: Case 11 in the proof of Theorem 1.

(a) {p, r} is the only colliding pair that is focused by s, and it is focused to
state q with qs = n− 1.

(b) s does not have any fixed points other than n− 1, and in (i) s does not
have any cycles, whereas in (ii) s has a cycle but no colliding pair from
the orbit of the cycle is focused.

From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. The transformations of Cases 2, 8, and 9 contain cycles whose orbits
contain a focused colliding pair. Here s in (i) does not have a cycle, and in (ii)
has a 2-cycle but the unique colliding pair is not in its orbit. Also, s does not
have a fixed point from QM , in contrast with the transformations of Cases 3,
4, and 10. Since both states from the colliding pair have in-degree 0, s is
different from the transformations of Case 5. Since the smallest i such that
psi = n− 1 is 2, s is different from the transformations of Case 6, where the
smallest such i is 3 (Property (b) of Case 6). For a distinction with Case 7,
observe that besides the colliding states p and r, there is no state q′ that is
not a fixed point and satisfies q′s 6= n− 1, whereas in the transformation of
Case 7 q2 is such a state.
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Again, s uniquely defines t: Here {p, r} is the only focused colliding pair,
and if we have a 2-cycle, then p is distinguished as the smaller state; otherwise
p is the larger one from the pair.

Case 12: t does not fit in any of the previous cases.
Here t must contain exactly one fixed point f ∈ QM , and every state from
QM \ {f} is mapped to n − 1. If all states from QM would be mapped to
n−1, then by Proposition 2, t would be in T>6(n) and so would fit in Case 1.

Because n > 7, in Q \ {0, p, f, n− 1} we have at least 2 states, say r1 and
r2, that are mapped to n− 1.

Let s be the transformation illustrated in Fig. 12 and defined by

0s = n− 1, ps = f, r1s = r2, r2s = r1,

qs = qt for the other states q ∈ Q.

t :

0 p n− 1

f r1 r2 . . .

s :

0 p n− 1

f r1 r2 . . .

Figure 12: Case 12 in the proof of Theorem 1.

Observe that s has the following properties:

(a) {p, f} is the only colliding pair that is focused by s, and it is focused to
the fixed point f .

(b) s has a 2-cycle, but no colliding pair from the orbit of the cycle is focused.
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From (a), s 6∈ T (n) and so s is different from the transformations of
Case 1. Here s has a cycle but the colliding pair is not from the orbit of the
cycle, in contrast to Case 2. The transformations of Cases 3–10 do not have
a cycle whose orbit has no focused colliding pairs. The transformations of
Case 11 have such a cycle, but the orbit with the focused colliding pair is the
orbit of fixed point n− 1, and here it is the orbit of f 6= n− 1.

Again, s uniquely defines t: Here {p, f} is the only focused colliding pair,
and p is distinguished from f as it is not a fixed point. Hence we can define
0t = p, pt = n− 1, r1t = n− 1, and r2t = n− 1.

4. Uniqueness of maximal witness

Our third contribution is a proof that the transition semigroup T (n) of
a minimal DFA Dn = (Q,Σ, δ, 0, F ) of a suffix-free language with syntactic
complexity (n− 1)n−2 + n− 2 is unique.

Lemma 2. If n > 4 and Dn has no colliding pairs of states, then T (n) is a
subsemigroup of T>6(n) and |T (n)| 6 (n− 1)n−2 + n− 2.

Proof. Consider an arbitrary transformation t ∈ T (n) and let p = 0t. If
p = n − 1, then any state other than 0 and n − 1 can possibly be mapped
by t to any one of the n− 1 states other than 0 (0 is not possible in view of
Lemma 1); hence there are at most (n− 1)n−2 such transformations. All of
these transformations are in T>6(n) by Proposition 2.

If p 6= n − 1, then qt = n − 1 for any q 6= 0, because there are no
colliding pairs. Thus t = (Q \ {0} → n − 1)(0 → p), and all of n − 2 such
transformations are in T>6(n) by Proposition 2. It follows that T (n) is a
subsemigroup of T>6(n) and has size at most (n− 1)n−2 + n− 2.

Lemma 3. If n > 7 and Dn has at least one colliding pair of states, then
|T (n)| < (n− 1)n−2 + n− 2.

Proof. Let ϕ be the injective function from the proof of Theorem 1 and
assume that there is a colliding pair {p, r}. Let r1, r2 and r3 be three distinct
states from Q \ {0, p, r, n− 1}; there are at least 3 such states since n > 7.
Let s be the following transformation:

0s = n− 1, ps = r, rs = r, r1s = r2, r2s = r3, r3s = r1,

qs = qt for the other states q ∈ Q.
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We can show that s is not defined in any case in the proof of Theorem 1.
Note that s focuses the colliding pair {p, r}, and so it cannot be present in
T (n); hence it is not defined in Case 1. We can follow the proof of injectivity
of the transformations in Case 12 of Theorem 1, and show that s is different
from all the transformations of Cases 2–11. For a distinction from the trans-
formations of Case 12, observe that they each have a 2-cycle, and here s has
a 3-cycle.

Thus s 6∈ ϕ(T (n)), but s ∈ T>6(n), and so ϕ(T (n)) ( T>6(n). Since ϕ is
injective, it follows that |T (n)| < |T>6(n)| = (n− 1)n−2 + n− 2.

Corollary 1. For n > 7, the maximal transition semigroups of minimal
DFAs (Q,Σ, δ, 0, F ) of suffix-free languages are unique.

Finally, we show that Σ cannot have fewer than five letters.

Theorem 2. If n > 7, Dn = (Q,Σ, δ, 0, F ) is a minimal DFA of a suffix-free
language, and |Σ| < 5, then |T (n)| < (n− 1)n−2 + n− 2.

Proof. DFA Dn has the initial state 0, and an empty state, say n− 1. Recall
that QM is the set of the remaining n− 2 middle states. From Lemma 1 no
transformation can map any state in Q to 0, and every transformation fixes
n− 1.

Suppose the upper bound (n − 1)n−2 + n − 2 is reached by T (n). From
Proposition 2 and Corollary 1 all transformations of QM must be present, and
it is well known that three generators are necessary to achieve this. Let the
letters a, b, and c correspond to these three generators, ta, tb and tc. If 0ta 6=
n− 1, then ta must be a transformation of type (b) from Proposition 2, and
so qta = n−1 for any q ∈ M . So ta cannot be a generator of a transformation
of QM . Hence we must have 0ta = n− 1, and also 0tb = 0tc = n− 1.

So far, the states in QM are not reachable from 0; hence there must be
a letter, say e, such that 0te = p is in QM . This must be a transformation
of type (b) from Proposition 2, and all the states of QM must be mapped to
n− 1 by te.

Finally, to reach the upper bound we must be able to map any proper
subset of QM to n − 1. The letter e will not do, since it maps all states of
QM to n− 1. Hence we require a fifth letter, say d.

4.1. Uniqueness of small semigroups
Here we consider maximal transition semigroups of DFAs having six or

fewer states and accepting suffix-free languages. Recall that every trans-
formation in a transition semigroup of a minimal DFA that has set Q of
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cardinality n, initial state 0, and accepts a suffix-free language, must be a
subset of Bsf(n).

There is only one transformation in Bsf(2), and three in Bsf(3). Since
Bsf(2) and Bsf(3) are semigroups, the maximal semigroups for n = 2 and
n = 3 have 1 and 3 elements, respectively, and are unique. From [4] it is
known that T65(n) = T>6(n) = Bsf(n) if n ∈ {2, 3}.

From [4] it is also known that T65(n) is largest for n ∈ {4, 5} and that
T>6(n) is largest for n = 6. We now prove that T65(4), T65(5), and T>6(6)
are the unique largest semigroups for those values of n.

We say that transformations t and t′ in Bsf(n) conflict if, whenever t and
t′ belong to the transition semigroup of a DFA D, then one of the following
conditions holds:

1. The language accepted by D is not suffix-free.

2. Every two states from QM are colliding.

3. Every two states from QM are focused.

Lemma 4. In a largest transition semigroup Xn of a minimal DFA Dn =
(Q,Σ, δ, 0, F ) of a suffix-free language there are no conflicting pairs of trans-
formations, unless Xn = T65(n) or Xn = T>6(n).

Proof. Obviously, there are no conflicting pair of transformations because of
(1). If a pair of transformations conflicts because of (2), then from Propo-
sition 1 a largest transition semigroup must be T65(n). If a pair of trans-
formations conflicts because of (3), then no pair of states is colliding, since
it is focused; from Proposition 3 a largest transition semigroup must be
T>6(n).

A transformation t of Q is called semiconstant if it maps a non-empty
subset S ⊆ Q to a single state q ∈ Q, and fixes Q \ S. We denote it by
(S → q).

Lemma 5. In the transition semigroup of a minimal DFA Dn = (Q,Σ, δ, 0, F )
of a suffix-free language L all semiconstant transformations t = (S → q) are
such that 0 ∈ S and q = n − 1. Moreover, every such transformation is
present if the transition semigroup is maximal.

Proof. If 0 6∈ S, then 0t = 0; this implies that t is not in Bsf(n), contradicting
our assumption that L is suffix-free.
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If 0 ∈ S and q 6= n − 1, then 0t = q and q is a fixed point in QM .
Since q is non-empty, it accepts some word x; then tx and ttx are both in L

contradicting that L is suffix-free.
Thus we must have 0 ∈ S and q = n− 1. We now argue that every such

transformation t must be present in a maximal semigroup by showing that t
can always be added if not present. Suppose that the addition of a letter a

that induces t results in a DFA that does not accept a suffix-free language.
Then there must be two words v and uv in the language, such that either u

or v contains a; let u and v be such that uv is a shortest such word. Suppose
v = v1av2; since t maps some states to n − 1 and fixes all the others and v

is accepted, a must map δ(0, v1) to itself, and hence can be removed, leaving
v′ = v1v2 in L. Similarly, if u = u1au2 we can remove a, obtaining u′ = u1u2.
Then u′v′ and v′ are in L, and u′v′ is shorter than uv—a contradiction.

Theorem 3. For n = 6, the maximal transition semigroup of minimal
DFAs Dn = (Q,Σ, δ, 0, F ) of suffix-free languages is T>6(6) and it is unique.
For n ∈ {4, 5}, the maximal transition semigroup of minimal DFAs Dn =
(Q,Σ, δ, 0, F ) of suffix-free languages is T65(n) and it is unique.

Proof. We have verified this with the help of computation. We used the
idea of conflicting pairs of transformations from [4, Theorem 20], and we
enumerated non-isomorphic DFAs using the approach of [12]. For n = 6 there
are |Bsf(6)| = 1169 transformations that can be present in the transition
semigroup of a DFA of a suffix-free language; so it is not possible to check
all maximal subsets of Bsf(6) in a naive way. Our method is as follows.

By a semiautomaton we mean a triple (Q,Σ, δ), where Q, Σ, and δ are
defined as in a DFA. Say that a semiautomaton D′ = (Q,Σ′, δ′) is an ex-
tension of a semiautomaton D = (Q,Σ, δ) if it can be obtained from D by
adding letters, that is, if Σ ⊂ Σ′ and δ′ ⊂ δ. The same concept can be
extended to DFAs. We start from the set A1 of all non-isomorphic unary
semiautomata with n-states. Given a set Ai of semiautomata over an i-ary
alphabet, using [12] we generate all of their non-isomorphic extensions Ai+1

over an (i + 1)-ary alphabet. To reduce the number of generated semiau-
tomata and make the whole computation possible, we check for every semi-
automaton whether there may exist an extension of it such that after adding
initial and final states, the extension accepts a suffix-free language and its
transition semigroup is a largest one but different from T>6 (if n = 6) and
T65 (if n 6 5). Also, we check whether the transition semigroup of the semi-
automaton is irreducibly generated by the transitions of the letters, that is,
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all these transitions are required to generate the semigroup. Note that if a
DFA D has a transition semigroup whose generating set can be reduced, then
there exists a DFA D′ over a smaller alphabet that has the same semigroup;
moreover, D′ recognizes a suffix-free language if and only if D does.

For every generated semiautomaton we test all selections of the initial
state and the empty state, relabel them to 0 and n−1, and check the resulting
DFAs. If all the DFAs are rejected, then we skip the semiautomaton. First,
we check if the DFA accepts a suffix-free language (see [5] for testing). Then,
we compute a rough bound on the maximal size of the transition semigroups
that are different from T>6 and T65 of extensions of the DFA. If this is
smaller than the syntactic complexity, we reject the DFA. Extending the
idea from [4, Theorem 20], we compute the bound in the following way:

1. We compute the transition semigroup Xn of the DFA.

2. For every transformation from t ∈ Bsf \Xn we check whether adding t

as a generator results in a DFA that accepts a suffix-free language, and
neither all pairs of states are colliding nor all are focused. Otherwise,
by Lemma 4 we can omit it. Let Yn be the set of allowed transforma-
tions. Note that |Xn| + |Yn| gives a rough bound for the size of the
maximal transition semigroups.

3. We compute a matching M in the graph of conflicts of transformations
induced by Yn: Two transformations t, t′ ∈ Yn can be matched if they
conflict. We compute it by a simple greedy algorithm in O(|Yn|

2) time.

4. We finally use |Xn| + |Yn| − |M | as the bound.

Finally, by Lemma 5 we remove semiconstant transformations from the
set A1 of transformations that is used to generate non-isomorphic semiau-
tomata. Then we always add all allowed semicontant transformations to Xn

in step (1).
Using this method, for n = 6 we had to verify semiautomata only up to

9 letters, and the computation took a few minutes.

5. Conclusions

We have shown that the upper bound on the syntactic complexity of
suffix-free languages is (n− 1)n−2 +n− 2 for n > 6. Since it was known that
this is also a lower bound, our result settles the problem. Moreover, we have
proved that an alphabet of at least five letters is necessary to reach the upper
bound, and that the maximal transition semigroups are unique for every n.
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Appendix: List of the cases in the proof of Theorem 1

Every t ∈ T (n) fits in the first case whose conditions are met by t.

Case 1: t ∈ T>6(n), that is, 0t = p = n− 1 or QM t = {n− 1}.
Case 2: t has a cycle.
Case 3: (0t)t = pt 6= n− 1.
Case 4: There is a fixed point r ∈ QM with in-degree > 2.
Case 5: There is a state r with in-degree > 1 such that rt 6∈ {r, n− 1}.
Case 6: There is a state r ∈ QM with in-degree > 2.
Case 7: There are two states q1, q2 ∈ QM that satisfy q1t 6∈ {q1, n− 1} and
q2t 6∈ {q2, n− 1}.
Case 8: There are two fixed points r1 and r2 in QM with in-degree 1.
Case 9: There is a state q ∈ QM that satisfies qt 6∈ {q, n − 1} and p < qt,
and a fixed point f ∈ QM .
Case 10: There is a state q ∈ QM that satisfies qt 6∈ {q, n− 1}, and a fixed
point f ∈ QM .
Case 11: There is a state q ∈ QM that satisfies qt 6∈ {q, n− 1}.
Case 12: t is any other transformation.
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Case 1: s = t. Case 2:

0 p . . . ptk n-1

r′

r

. . .

Case 3:

0 p . . . ptk n-1

Case 4:

0 p n-1

r

Case 5:

0 p n-1

r rt

Case 6:

0 p n-1

q1

q2

r

Case 7:

0 p n-1

q1

q2

r1

r2

(i)

(ii)

Case 8:

0 p n-1

r1 r2

Case 9:

0 p n-1

q r f Case 10:

0 p n-1

q r f

Case 11:

0 p n-1

q r r1 r2

(i) (i)

(ii)

(ii) Case 12:

0 p n-1

f r1 r2 . . .

Figure 13: Map of the cases from the proof of Theorem 1. The transitions of t are
represented by solid lines, and the transitions of s by dashed red lines.
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