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Abstract

The asynchronous automaton associated with a Boolean network f : {0, 1}n →
{0, 1}n is considered in many applications. It is the finite deterministic au-
tomaton with set of states {0, 1}n, alphabet {1, . . . , n}, where the action of
letter i on a state x consists in either switching the ith component if fi(x) 6= xi
or doing nothing otherwise. This action is extended to words in the natural
way. We then say that a word w fixes f if, for all states x, the result of the
action of w on x is a fixed point of f . In this paper, we ask for the existence of
fixing words, and their minimal length. Firstly, our main results concern the
minimal length of words that fix monotone networks. We prove that, for n
sufficiently large, there exists a monotone network f with n components such
that any word fixing f has length Ω(n2). For this first result we prove, using
Baranyai’s theorem, a property about shortest supersequences that could be
of independent interest: there exists a set of permutations of {1, . . . , n} of
size 2o(n) such that any sequence containing all these permutations as subse-
quences is of length Ω(n2). Conversely, we construct a word of length O(n3)
that fixes all monotone networks with n components. Secondly, we refine and
extend our results to different classes of fixable networks, including networks
with an acyclic interaction graph, increasing networks, conjunctive networks,
monotone networks whose interaction graphs are contained in a given graph,
and balanced networks.
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1. Introduction

A Boolean network (network for short) is a finite dynamical system
usually defined by a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

Boolean networks have many applications. In particular, since the sem-
inal papers of McCulloch and Pitts [1], Hopfield [2], Kauffman [3, 4] and
Thomas [5, 6], they are omnipresent in the modeling of neural and gene
networks (see [7, 8] for reviews). They are also essential tools in computer
science, for the network coding problem in information theory [9, 10] and
memoryless computation [11, 12, 13].

The “network” terminology comes from the fact that the interaction
graph of f is often considered as the main parameter of f : it is the directed
graph with vertex set [n] := {1, . . . , n} and an edge from j to i if fi depends
on xj, that is, if there exist x, y ∈ {0, 1}n that only differ in the component
j such that fi(x) 6= fi(y). An illustration is given in Figure 1(a-b).

From a dynamical point of view, the successive iterations of f describe
the so called synchronous dynamics : if xt is the state of the system at time
t, then xt+1 = f(xt) is the state of the system at the next time. Hence,
all components are updated in parallel at each time step. However, when
Boolean networks are used as models of natural systems, such as gene net-
works, synchronicity can be an issue. This led researchers to consider the
(fully) asynchronous dynamics, where one component is updated at each time
step (see e.g. [14, 6, 15, 16] for Boolean networks, and [17, 18, 19] for the
closely related model of cellular automata). In our setting, given an infinite
sequence i1, i2 . . . of elements in [n], called updating strategy, and an initial
state x0, the resulting asynchronous dynamics is given by the recurrence
xt+1 = f it+1(xt), where, for each component i ∈ [n] and state x ∈ {0, 1}n,

f i(x) := (x1, . . . , fi(x), . . . , xn).

Functions f 1, . . . , fn define, in a natural way, a deterministic finite au-
tomaton called asynchronous automaton of f : the set of states is {0, 1}n,
the alphabet is [n] and f i(x) is the result of the action of a letter i on a
state x; see Figure 1(c) for an illustration. This action is extended to words
on the alphabet [n] in the natural way: the result of the action of a word
w = i1i2 . . . ik on a state x is inductively defined by fw(x) := f i2...ik(f i1(x))
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x f(x)
000 000
001 000
010 001
011 001
100 010
101 000
110 010
111 100

f1(x) = x1 ∧ x2 ∧ x3

f2(x) = x1 ∧ ¬x3

f3(x) = x2 ∧ ¬x1.
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Figure 1: (a) A network f given under two different forms (a table and logical formulas).
(b) The interaction graph of f . (c) The asynchronous automaton of f .

or, equivalently, fw(x) := (f ik ◦ f ik−1 ◦ · · · ◦ f i1). Hence, given an updating
strategy i1, i2 . . . and an initial state x0, the state of the system at time t in
the resulting asynchronous dynamics is xt = f i1i2...it(x0).

In this paper, we introduce and study the following concepts.

Definition 1. A fixed point of f is any state x such that f(x) = x. A
word w over the alphabet [n] fixes f if fw(x) is a fixed point of f for every
state x. If w fixes f then w is a fixing word for f . If f admits a fixing
word then f is fixable. If f is fixable then the fixing length of f , denoted
λ(f), is the length of a shortest word fixing f .

Hence, w fixes f if w sends any state to a fixed point of f . This corre-
sponds to the situation where the start state of the asynchronous automaton
of f is undetermined, and the accepting states are exactly the fixed points of
f . As such, there is an obvious connection between fixing word and synchro-
nizing words : if f has a unique fixed point, then w is a synchronizing word
for the asynchronous automaton of f if and only if w fixes f . For instance,
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the network in Figure 1 is fixed by w = 1231. Hence it is fixable, and since
it has a unique fixed point, its asynchronous automaton is synchronizing.

It is easy to check that f is fixable if and only if, for every state x, there is
a word w such that fw(x) is a fixed point. We may then think that fixability
is a rather strong property. However it is not. Indeed, Bollobás, Gotsman
and Shamir [20] showed that, considering the uniform distribution on the set
of n-component networks, the probability for f to be fixable when f has at
least one fixed point tends to 1 as n → ∞. Thus almost all networks with
a fixed point are fixable. In turn, this shows that, for n large, a positive
fraction of all n-component networks are fixable.

Theorem 1 (Bollobás, Gotsman and Shamir [20]). Let φ(n) be the number
of fixable n-component networks. We have

lim
n→∞

φ(n)

2n2n
= 1− 1

e
.

Thus the family of fixable networks is huge, and it makes sense to study
it. In this paper, we focus on the fixing length of fixable networks, intro-
duced above. For instance, we have seen that w = 1231 fixes the network
in Figure 1, thus this network has fixing length at most 4, and it is easy
to see that no word of length three fixes this network. Thus it has fixing
length exactly 4. It is easy to construct a fixable n-component network f
such that λ(f) is exponential in n, as follows. Let x1, . . . , x2n be a Gray code
ordering of {0, 1}n, i.e. xk and xk+1 only differ by one component, say ik,
for 1 ≤ k < 2n. Then let f(xk) := xk+1 for 1 ≤ k < 2n and f(x2n) := x2n .
It is clear that i1, . . . , i2n−1 is the unique shortest word fixing f , and thus
λ(f) = 2n − 1.

We are then interested in networks f which can be fixed in polynomial
time, i.e. λ(f) is bounded by a polynomial in n. More strongly, we extend
our concepts to entire families F of n-component networks. We say that F
is fixable if there is a word w such that w fixes f for all f ∈ F , which is
clearly equivalent to: all the members of F are fixable. The fixing length
λ(F) is defined naturally as the length of a shortest word fixing F . We are
then interested in families F which can be fixed in polynomial time. We will
identify several such families, and for each, we will derive an upper bound on
λ(F) and a lower bound on the maximum λ(f) for f ∈ F . Up to our knowl-
edge, the only result of this kind was given in [21], where it is shown that
the word 12 . . . n repeated n(3n− 1) times fixes any n-component symmetric
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threshold network with weights in {−1, 0, 1}. This family of threshold net-
works has thus a cubic fixing length. We could also mention somewhat less
connected works concerning the minimal, maximal and average convergence
time toward fixed points in the asynchronous setting for some specific fixable
networks [22, 23, 24, 25, 17].

Our main results concern the family of monotone networks. We say that
f is monotone if x ≤ y implies f(x) ≤ f(y) for all states x, y, where x ≤ y
means xi ≤ yi for all i ∈ [n]. The fact that monotone networks are fixable
is not obvious and proved in [23]. Our first main result shows that some
monotone networks have a quadratic fixing length.

Theorem 2. For every positive integer n, there exists an n-component mono-
tone network with fixing length Ω(n2).

For the proof, we establish, using Baranyai’s theorem, the following prop-
erty about shortest supersequences that could be of independent interest
(permutations of [n] are regarded as ordered arrangements, and any sequence
obtained by deleting some elements in a sequence s is a subsequence of s).

Theorem 3. For every positive integer n, there exists a set of permutations
of [n] of size 2o(n) such that any sequence containing all these permutations
as subsequences is of length Ω(n2).

Theorem 2 trivially shows that the fixing length of the family of n-
component monotone networks is at least quadratic, but we have not been
able to obtain a super-quadratic lower-bound for this fixing length. Our
second main result is that, conversely, the fixing length of the family of n-
component monotone networks is at most cubic.

Theorem 4. For every positive integer n, there is a word of length O(n3)
that fixes every n-component monotone network.

Our last main result refines the previous one using the interaction graph.
The transversal number of a directed graph is the minimum number of
vertices to delete to make the directed graph acyclic.

Theorem 5. Let G be an n-vertex directed graph with transversal number
τ . There is a word of length O(τ 2n) that fixes every n-component monotone
network with an interaction graph isomorphic to a subgraph of G.
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Note that Theorem 4 trivially shows that the fixing length of a given
monotone network is at most cubic, and we have not been able to obtain
a sub-cubic upper-bound for this fixing length. However, Theorem 5 shows
that, for bounded transversal number, the fixing length of a given monotone
network is only linear. Note also that one obtains Theorem 4 from Theorem 5
when G is the complete directed graph on n vertices (with n2 edges).

The paper is organized as follows. In Section 2, we give some basic
definitions and notations. We also introduce two families of networks, the
acyclic and increasing networks, and show that the fixing length of these two
families is asymptotically n2. For that, we use results concerning n-complete
words. The technics introduced are then used, in Section 3, to analyse the
fixing length of monotone networks. Quantitative versions of Theorems 2, 3
and 4 are proved there. Section 4 gives some refinements and extensions. We
first study the fixing length of conjunctive networks, which are particular
monotone networks. Then, we prove a quantitative version of Theorem 5
and we study the fixing length of the family of balanced networks, which
generalize monotone networks. Finally, a conclusion and some perspectives
are given in Section 5.

2. Preliminaries

2.1. Basic definition and notations

Let w = w1 . . . wp be a word. The length p of w is denoted |w|. If
S = {i1, i2, . . . iq} ⊆ [p] with i1 < i2 < · · · < iq, then we shall sometimes
use the notation wS = wi1wi2 . . . wiq ; if S = ∅, then wS := ε, where ε is the
empty word. Any such wS is a subsequence of w. Moreover, for any integers
a, b ∈ [p] we set [a, b] = {a, a+1, . . . , b} and hence w[a,b] := wa, . . . , wb if a ≤ b
and w[a,b] := ε if a > b. Any such w[a,b] is a factor of w. For any word w and
any k ≥ 1, the word k · w is obtained by repeating w exactly k times; 0 · w
is the empty word. For all i ∈ [n], we denote as ei the i-th unit vector, i.e.
ei = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in position i. Given x, y ∈ {0, 1}n, x+ y
is applied componentwise and computed modulo two. For instance, x and
x+ ei only differ in the ith position. The state containing only 1s is denoted
1, and the state containing only 0s is denoted 0. We equip {0, 1}n with the
partial order ≤ defined as follows: for all x, y ∈ {0, 1}n, x ≤ y if and only
if xi ≤ yi for all i ∈ [n]. The Hamming weight of x, denote wH(x), is the
number of 1s in x. Let f be an n-component network. We set f ε := id and,
for any integer i and x ∈ {0, 1}n, we define f i(x) as in the introduction if

6



i ∈ [n], and f i(x) := x if i 6∈ [n]. This extends the action of letters in [n] to
letters in N, and by extension, this also defines the action of a word over the
alphabet N.

Graphs are always directed and may contain loops (edges from a vertex to
itself). Paths and cycles are always directed and without repeated vertices.
Given a graph G with vertex set V (such a graph is a graph on V ) and I ⊆ V ,
we denote by G[I] the subgraph of G induced by I, and G \ I = G[V \ I].
We refer the reader to the authoritative book on graphs by Bang-Jensen and
Gutin [26] for some basic concepts, notation and terminology.

We now recall from the introduction the definition of monotone networks.

Definition 2 (Monotone networks). An n-component network f is mono-
tone if,

∀x, y ∈ {0, 1}n, x ≤ y ⇒ f(x) ≤ f(y).

The family of n-component monotone networks is denoted FM(n).

The fixing length of FM(n) is denoted λM(n). More generally, if FX(n) is
any family of n-component fixable networks, then λX(n) is the fixing length
of FX(n). If G is a graph on [n], then F (G) denotes the set of n-component
networks f such that the interaction graph of f is a subgraph of G. Then,
FX(G) := FX(n) ∩ F (G) and λX(G) is the fixing length of FX(G).

2.2. Acyclic networks

Our first results concern acyclic networks.

Definition 3 (Acyclic networks). An n-component network f is acyclic if
its interaction graph is acyclic. The family of n-component acyclic networks
is denoted FA(n).

An important property of acyclic networks is that they have a unique
fixed point [27] and that they have an acyclic asynchronous graph [28] (the
asynchronous graph of an n-component network f is the graph on {0, 1}n
with an edge from x to y f i(x) = y 6= x for some i ∈ [n]). This obviously
implies that FA(n) is fixable. We show here that the fixing length of acyclic
networks are rather easy to understand. The techniques used will be useful
later, for analyzing the fixing length of monotone networks.

Lemma 1. Let G be an acyclic graph on [n] and f ∈ F (G). If a word w con-
tains, as subsequence, a topological sort of G, then w fixes f . Furthermore,
λ(f) = n.
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Proof. Let y be the unique fixed point of f . Let u = i1i2 . . . in be topological
sort of G, and let w = w1w2 . . . wp be any word containing u as subsequence.
Hence, there is a increasing sequence of indices j1j2 . . . jn such that u =
wj1wj2 . . . wjn . Let x0 be any initial state, and for all q ∈ [p], let xq be
obtained from xq−1 by updating wq, that is, xq := fwq(xq−1). Equivalently,
xq := fw[1,q](x0). Let us prove, by induction on k ∈ [n], that xqik = yik for all
jk ≤ q ≤ p. Since i1 is a source of the interaction graph, fi1 is a constant.
Thus fi1(x

q) = fi1(y) = yi1 for all q ∈ [p], and since wj1 = i1, we deduce
that xqi1 = yi1 for all j1 ≤ q ≤ p. Let 1 < k ≤ n. Since fik only depends
on components il with 1 ≤ l < k, and since, by induction, xqil = yil for
all 1 ≤ l < k and jk−1 ≤ q ≤ p, we have fik(x

q) = fik(y) = yik for all
jk−1 ≤ q ≤ p. Since wjk = ik we deduce that xqik = yik for all jk ≤ q ≤ p,
completing the induction step. Hence, fw(x0) = xq = y for any initial state
x0, thus w fixes f .

We deduce that, in particular, any topological sort u of G fixes f , thus
λ(f) ≤ n. Conversely, if a word w fixes f , then fw(¬y) = y, and hence at
least n asynchronous updates are required, that is, the length of w is at least
n. Thus λ(f) = n.

The converse of the previous proposition is false in general (for instance
if f is the 3-component network defined by f1(x) = 0, f2(x) = x1 and
f3(x) = x1 ∧ x2, then 132 fixes f while 123 is the unique topological sort of
the interaction graph of f) but it holds for conjunctive networks, which are
specific monotone networks.

Definition 4 (Conjunctive networks). An n-component network f is con-
junctive if, for all i ∈ [n], there exists Ji ⊆ [n] such that,

∀x ∈ {0, 1}n, fi(x) =
∧
j∈Ji

xj, (1)

and fi(x) = 1 is Ji is empty. The family of n-component conjunctive net-
works is denoted FC(n). Let G be a graph on [n]. The conjunctive net-
work on G is the unique conjunctive network whose interaction graph is G.
Namely, it is the n-component network f such that (1) holds for all i ∈ [n]
when Ji is the set of in-neighbors of i in G.

Lemma 2. Let G be an acyclic graph on [n] and let f be the conjunctive
network on G. A word w fixes f if and only if it contains, as subsequence, a
topological sort of G.
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Proof. According to Lemma 1, it is sufficient to prove that if w = w1w2 . . . wp
fixes f then w contains, as subsequence, a topological sort of G. Let x0 := 0
and xq = fwq(xq−1) for all q ∈ [p]. Since w fixes f and since 1 is the unique
fixed point of f , we have fw(x0) = xp = 1. Thus for each i ∈ [n], there exists
ti such that xtii = 1 and xqi = 0 for all 0 ≤ q < ti. We have, obviously, wti = i.
Let i1i2 . . . in be the enumeration of the vertices of G such that ti1ti2 . . . tin
is increasing. In this way i1i2 . . . in is a subsequence of w, and it follows the
topological order. Indeed, suppose that G has an edge from ik to il. Since

fil(x
til−1) = x

til
il

= 1, we have x
til−1

ik
= 1, and thus tik < til , that is, ik is

before il in the enumeration.

As an immediate application we get the following characterization.

Proposition 1. Let G be an acyclic graph on [n]. A word w fixes F (G) if
and only if it contains, as subsequence, a topological sort of G.

To go further, we need the following concepts.

Definition 5 (Complete word). A word w is complete for a finite set S (or
S-complete) if it contains, as subsequence, all the permutations of S. An n-
complete word is a [n]-complete word. The length of a shortest n-complete
word is denoted λ(n).

Interestingly, λ(n) is unknown. Let w1, . . . , wn be n permutations of
[n] (not necessarily distinct). Then the concatenation w1w2 . . . wn clearly
contains all the permutations of [n]. Thus λ(n) ≤ n2. Conversely, if w
contains all the permutations of n, then

(|w|
n

)
is at least n! and we deduce that

|w| ≥ n2/e2 (this simple counting argument will be reused later). This shows
that the magnitude of λ(n) is quadratic. We have however the following
tighter bounds.

Theorem 6. We have λ(n) ∼ n2. More precisely:

λ(n) ≤ n2 − 2n+ 4 for all n ≥ 1 [29]

λ(n) ≤ n2 − 2n+ 3 for all n ≥ 10 [30]

λ(n) ≤
⌈
n2 − 7

3
n+ 19

3

⌉
for all n ≥ 7 [31]

λ(n) ≥ n2 − Cεn7/4+ε [32]

where ε > 0 and Cε is a positive constant that only depends on ε.
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We also need another family of networks.

Definition 6 (Path networks). An n-component network f is a path net-
work if its interaction graph if a path. The family of n-component path
networks is denoted FP (n).

Note that path networks are both acyclic and conjunctive. Note also
that an n-component network f is a path network if and only if there is a
permutation i1i2 . . . in of [n] such that fi1(x) = 1 and fik(x) = xik−1

for all
1 < k ≤ n and x ∈ {0, 1}n. There is thus a natural bijection between the
permutations of [n] and FP (n). We show below that the family FP (n) has a
quadratic fixing length.

Lemma 3. A word w fixes FP (n) if and only if it is n-complete. Hence
λP (n) = λ(n).

Proof. By Lemma 1, any n-complete word fixes FA(n) and thus FP (n) in par-
ticular. Conversely, suppose that w fixes FP (n). Since each permutation of n
is the unique topological sort of the interaction graph of exactly one network
in FP (n), by Lemma 2, w contains, as subsequence, the n! permutations of
n. Thus w is n-complete.

As an immediate consequence, we get the following proposition.

Proposition 2. A word w fixes FA(n) if and only if it is n-complete. Hence
λA(n) = λ(n).

Remark 1. By Lemma 3 and Proposition 2, it is as hard to fix FP (n) as to fix
FA(n): these two families have the same quadratic fixing length, while FP (n)
is much smaller than FA(n) (the former has n! members while the latter
has 2Θ(2n) members). We shall use this to our advantage when designing a
monotone network with quadratic fixing length in Section 3.1.

2.3. Increasing networks

Definition 7 (Increasing networks). An n-component network f is increas-
ing if,

∀x ∈ {0, 1}n, x ≤ f(x).

The family of n-component increasing networks is denoted FI(n).
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We prove below that, as for path networks and acyclic networks, the fixing
length of increasing networks is λ(n). Increasing networks are thus relatively
easy to fix collectively. We shall use this fact when constructing a cubic word
fixing all monotone networks in Section 3.2.

Lemma 4. Let f be an n-component network and x ∈ {0, 1}n. If fu(x) ≤
fuv(x) for any words u and v, then fw(x) is a fixed point of f for any word w
containing all the permutations of {i : xi = 0}. Similarly, if fu(x) ≥ fuv(x)
for any words u and v, then fw(x) is a fixed point of f for any word w
containing all the permutations of {i : xi = 1}.

Proof. Suppose that fu(x) ≤ fuv(x) for any words u and v, and that w =
w1w2 . . . wp be S-complete, with S := {i : xi = 0}. Let x0 := x and xq :=
fwq(xq−1) for all q ∈ [p]. By hypothesis, x0 ≤ x1 ≤ · · · ≤ xq. Suppose for
the sake of contradiction that xp = fw(x) is not a fixed point, i.e. there is
j such that fj(x

p) > xpj . Let t1, . . . , tm ∈ [p] be the set of positions such
that xtk−1 < xtk , and let ik := wtk for all k ∈ [m]. Clearly, j 6= ik for every
k ∈ [m]. Setting t0 := 0, we have xtk−1 = xtk−1, thus f ik(xq) = f ik(xtk−1) =
xtk > xtk−1 = xq for all tk−1 ≤ q < tk. We deduce that ik does not appear in
w[tk−1,tk−1] or, equivalently, tk is the first position of ik in w[tk−1,p]. Similarly,
we have xtm = xp, thus fj(x

q) = fj(x
p) > xpj = xqj for all tm ≤ q ≤ p and we

deduce that j does not appear in w[tm,p]. Since w is S-complete, the sequence
i1i2 . . . imj appears in w, say at positions ws1ws2 . . . wsmwsm+1 . Since tk is the
first position of ik in w[tk−1,p], we have sk ≥ tk for all k ∈ [m]. In particular,
sm ≥ tm, thus j appears in w[tm,p] which is the desired contradiction. If
fu(x) ≥ fuv(x) for any words u and v the proof is similar.

Proposition 3. A word w fixes FI(n) if and only if it is n-complete. Hence
λI(n) = λ(n).

Proof. If w is n-complete, then w fixes f by Lemma 4. Conversely, suppose
that w fixes all n-component increasing networks and let i1i2 . . . in be any
permutation of [n]. Let y0 := 0 and yk := yk−1 + eik for all k ∈ [n]. Then
y0y1 . . . yn is a chain from 0 to 1 in the hypercube Qn. Let f be the n-
component increasing network defined by

f(x) :=

{
yk+1 if x = yk and 1 ≤ k < n,

x otherwise.
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Then 1 is the unique fixed point of f reachable from 0 in the asynchronous
graph, and it is easy to check that fw(0) = 1 if and only if i1i2 . . . in is a
subsequence of w. Thus w is n-complete.

On the other hand, some increasing networks have quadratic fixing length.
The proof requires the machinery developed for monotone networks, and as
such we delay its proof until Section 3.1.

Theorem 7. For any ε > 0 and n sufficiently large, there exists f ∈ FI(n)
such that

λ(f) ≥
(

1

e
− ε
)
n2.

Remark 2. A simple exercise shows that the number of increasing networks
is doubly exponential: |FI(n)| = 2n2n−1

. It is then remarkable that, while some
increasing networks have quadratic fixing length, all the increasing networks
can be fixed together in quadratic time still.

Remark 3. The dual f̃ of a network f is defined as f̃(x) = f(x+ 1) + 1. It
is easily checked that a word fixes f if and only if it fixes f̃ . Since a network
is increasing if and only if its dual is decreasing, i.e. x ≥ f(x) for all x, the
above results also holds for decreasing networks.

3. Monotone networks

3.1. A monotone network with quadratic fixing length

The aim of this section is to exhibit a monotone network with quadratic
fixing length. As we saw in Section 2.2, the family of path networks FP (n) has
quadratic fixing length. Therefore, our strategy is to “pack” many of these
path networks in the same network f . As an illustration of this strategy, we
first describe a monotone network with fixing length of order (n/ log n)2.

Let n = m+ r where m! ≤
(
r
r/2

)
, and let us write FP (m) = {h1, . . . , hm!}.

There is then a surjection φ : X → [m!] where X is the set of states in {0, 1}r
with Hamming weight r/2. The n-component network f then views the r
last components as controls, that decide, through φ, which network in FP (m)
to choose on the first m components. More precisely, by identifying {0, 1}n
with {0, 1}m × {0, 1}r, we define f as follows:

f(x, y) :=


(1, y) if wH(y) > r/2,

(hφ(y)(x), y) if wH(y) = r/2,

(0, y) if wH(y) < r/2.
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The first and third cases are there to guarantee that f is indeed monotone.
Since any network in FP (m) can appear, a word fixing f must fix FP (m).
Thus a word fixing f is m-complete, and hence has length Ω(m2). Choosing
m = Ω(n/ log n) then yields Ω(n2/ log2 n).

The network above reached a fixing length of Ω(m2) because it packed
all possible networks in FP (m). However, it did not reach quadratic fixing
length because m had to be o(n) in order to embed all m! networks of FP (m)
in X. Thus, we show below that only a subexponential subset of FP (m) is
required to guarantee Ω(m2). This is equivalent to prove that there exists
a subexponential set of permutations of [m] such that any word containing
these permutations as subsequences is of length Ω(m2). In that case, we can
use m = (1− o(1))n, and hence reach a fixing length of Ω(n2).

The main tool is Baranyai’s theorem, see [33].

Theorem 8 (Baranyai). If a divides n, then there exists a collection of
(
n
a

)
a
n

partitions of [n] into n
a

sets of size a such that each a-subset of [n] appears
in exactly one partition.

Lemma 5. Let a and b be positive integers, and n = ab. There exists a
set of a!

(
n
a

)
≤ na permutations of [n] such any word containing all these

permutations as subsequences is of length at least(
n−

2b
a

) n(n− a)

e
.

Proof. According to Baranyai’s theorem, there exists a collection of r :=
b−1
(
n
a

)
partitions of [n] into b sets of size a, such that each a-subset of [n]

appears in exactly one partition. Let A0, . . . , Ar−1 be these partitions. For
each 0 ≤ i < r, we set

Ai = {Ai0, . . . , Aib−1}.

Then, for all 0 ≤ i < r and 0 ≤ j, k < b we set Si,jk := Aij+k and

Si,j := Si,j0 Si,j1 . . . Si,jb−1 = Aij+0A
i
j+1 . . . A

i
j+b−1

where addition is modulo b. So, the Si,j form a set of
(
n
a

)
ordered partitions

of [n] in b sets of size a. The interesting point is that, for all fixed i and fixed
`, the sequence Si,0` S

i,1
` . . . Si,b−1

` is a permutation of Ai (namely Si,`). Since
each a-subset of [n] appears in exactly one Ai, we deduce that, for any fixed
`, the set of Si,j` is exactly the set of a-subsets of [n].
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Given an a-subset X of [n] and a permutation σ of [a], we set σ(X) =
iσ(1)iσ(2) . . . iσ(a), where i1, i2, . . . , ia is an enumeration of the elements of X in
the increasing order. Let σ0, . . . , σa!−1 be an enumeration of the permutations
of [a]. For all 0 ≤ i < r, 0 ≤ j < b, 0 ≤ k < a!, we set

πi,j,k := σk(Si,j0 ) . . . σk(Si,jb−1).

The πi,j,k form a collection of a!
(
n
a

)
permutations of [n]. The interesting

property is that, for ` fixed, the set of σk(Si,j` ) is exactly the set of words in
[n]a without repetition, simply because, for ` fixed, the set of Si,j` is exactly
the set of a-subsets of [n], as mentioned above. In particular, for ` fixed, the
σk(Si,j` ) are pairwise distinct.

Let w = w1w2 . . . wp be a shortest word containing all the permutations
πi,j,k as subsequences. We know that |w| ≤ λ(n) ≤ n2. Let

γi,j,k := γi,j,k0 γi,j,k1 . . . γi,j,kb

be the profile of πi,j,k, defined recursively as follows: γi,j,k0 := 0 and, for all
0 ≤ ` < b, γi,j,k`+1 is the smallest integer such that σk(Si,j` ) is a subsequence of
the factor

w[γi,j,k` +1,γi,j,k`+1 ].

Since γi,j,k0 = 0 and 1 ≤ γi,j,k` ≤ n2 for all 1 ≤ ` ≤ b, there are at most n2b

possible profiles. Thus there exist at least

s ≥
a!
(
n
a

)
n2b

permutations πi,j,k with the same profile. Let πi1,j1,k1 , . . . , πis,js,ks be these
permutations, and let γ = (γ0, γ1, . . . , γb) be their profile. For all 0 ≤ ` < b,
let

w` := w[γ`+1,γ`+1].

By construction, w` contains, as subsequences, each of σk1(Si1,j1` ), . . . , σks(Sis,js` ).
Since these s elements of [n]a are pairwise distinct (because, for fixed `, all
the σk(Si,j` ) are pairwise distinct), this means that w` contains at least s
distinct subsequences of length a, and thus(

|w`|
a

)
≥ s.

14



We deduce
|w`|a

a!
≥
(
|w`|
a

)
≥ s ≥

a!
(
n
a

)
n2b

≥ (n− a)a

n2b

and thus

|w`|a ≥ a!
(n− a)a

n2b
≥
(a
e

)a (n− a)a

n2b
≥
[
a(n− a)

en
2b
a

]a
.

Consequently,

|w| ≥
∑

0≤`<b

|w`| ≥ b · a(n− a)

en
2b
a

=
(
n−

2b
a

) n(n− a)

e
.

We are now in position to prove that there is a subexponential set of
permutations that requires a quadratic length to be represented in a super-
sequence. This is a quantitative version of Theorem 3 stated in the intro-
duction.

Theorem 9. For any ε > 0 and n sufficiently large, there is a set of at most

nn
1
2+ε

permutations of [n] such that any word containing all these permuta-
tions as subsequences is of length at least (1

e
− ε)n2.

Proof. Let ε > 0 be arbitrarily small. Let n be a positive integer, a :=
bn 1

2
+εc, b := bn 1

2
−εc and m := ab. By the preceding lemma, there exist

s := a!
(
m
a

)
≤ ma ≤ nn

1
2+ε

permutations π1, . . . , πs of [m] such that if w is
any word containing all the πi as subsequences then

|w| ≥
(
m−

2b
a

) m(m− a)

e
≥
(
n−

2b
a

) m(m− a)

e
.

First, n−2ba−1 → 1 as n → ∞. Second, since m = n + o(n), we have
m(m− a) = n2 − o(n2). From these two observations we deduce that if n is
at least some constant n0 that only depends on ε then

|w| ≥ (1− ε)n
2

e
≥ (

1

e
− ε)n2.

For each i ∈ [`], let π̃i be a permutation of [n] that contains πi as a subse-
quence. Then any word w̃ containing all the π̃i also contains all the πi, so
that |w̃| ≥ (1

e
− ε)n2 if n ≥ n0.
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Implementing the “packing” strategy described above, we obtain a mono-
tone network with quadratic fixing length. This is a quantitative version of
Theorem 2 stated in the introduction.

Theorem 10. For any ε > 0 and n sufficiently large, there exists f ∈ FM(n)
such that

λ(f) ≥
(

1

e
− ε
)
n2.

Proof. Let ε > 0, let n be a positive integer, and let m be the largest integer
such that

mm
1
2+δ

≤
(
n−m
bn−m

2
c

)
, (2)

with δ = ε/2. Then m = (1− o(1))n and thus if n is large enough, then

m2 > n2(1− δ)

and, according to Theorem 9, there exists a collection π1, . . . , πp of p ≤ mm
1
2+δ

permutations of [m] such that any word containing all these permutations as
subsequences is of length at least (1

e
− δ)m2. Let us regard these p permu-

tations as m-vertex paths, and let h1, . . . , hp be the corresponding path net-
works. In other words, writing πk = πk1π

k
2 . . . π

k
n, we have, for all x ∈ {0, 1}m,

hkπk1
(x) = 1 and hkπkl

(x) = xπkl−1
for all 1 < l ≤ m.

According to Lemma 2, if a word w fixes all the networks hk then it contains
all the permutations πk as subsequences, and thus |w| ≥ (1

e
− δ)m2.

Let r := n−m. Then according to (2) there is a surjection φ from the set
of states in {0, 1}r with Hamming weight b r

2
c to [p]. By identifying {0, 1}n

with {0, 1}m×{0, 1}r, we then define the n-component network f as follows:

f(x, y) =


(1, y) if wH(y) > br/2c,
(hφ(y)(x), y) if wH(y) = br/2c,
(0, y) if wH(y) < br/2c.

Let us check that f is monotone. Suppose (x, y) ≤ (x′, y′). If wH(y) <
wH(y′) we easily check that f(x, y) ≤ f(x′, y′). Otherwise, we have y = y′

and thus φ(y) = φ(y′) = k for some k ∈ [p], and, since hk is monotone, we
obtain f(x, y) = (hk(x), y) ≤ (hk(x′), y′) = f(x′, y′).
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Let w be any shortest word fixing f . Then it is clear that fixes hk for all
k ∈ [p]. Thus

|w| ≥ (
1

e
− δ)m2 > (

1

e
− δ)(1− δ)n2 >

(
1

e
− ε
)
n2.

A similar argument works for increasing networks as well.

Proof of Theorem 7. We use the same setup as the proof of Theorem 10,
excepted that the m-component networks hk and the n-component network
f are defined as follows. Let k ∈ [p]. We set yk,0 := 0 and yk,l := yk,l−1 + eπkl
for all l ∈ [m]. We then define the m-component increasing network hk by

hk(x) :=

{
yk,l+1 if x = yk,l and 1 ≤ l < m,

x otherwise.

Then, as already said in the proof of Proposition 3, a word fixes hk if and
only if it contains πk as subsequence. Thus if a word w fixes all the networks
hk then it contains all the permutations πk as subsequences, and thus |w| ≥
(1
e
− δ)m2.
Next, we define the n-component network f as follows:

f(x, y) =


(1, y) if wH(y) > br/2c,
(hφ(y)(x), y) if wH(y) = br/2c,
(1, y) if wH(y) < br/2c.

We easily check that f is increasing and that w fixes f if and only if it fixes
hk for all k ∈ [p]. We then deduce as above that any word fixing f is of
length at least

(
1
e
− ε
)
n2.

3.2. Cubic word fixing all monotone networks

What about the fixing length λM(n) of the whole family FM(n) of n-
component monotone networks? We have shown that some members have
quadratic fixing length, namely (1

e
− ε)n2, and thus, obviously, λM(n) ≥

(1
e
− ε)n2. But we can say something slightly better: we have shown that

the family of path networks FP (n) has fixing length λ(n), and since FP (n) ⊆
FM(n) we obtain:

λM(n) ≥ λ(n).
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We have no better lower-bound. Maybe the family of n-component conjunc-
tive networks whose interactions graphs are disjoint union of cycles has fixing
length greater than λ(n) (this family can be equivalently defined as the set
of monotone isometries of the hypercube Qn).

Concerning upper-bounds, we show below that λM(n) is at most cubic,
and this is the best upper-bound we have on the maximum fixing length of
a member of FM(n). For that we construct inductively a word W n of cubic
length that fixes FM(n).

Definition 8 (Fixing word for monotone networks). Let W 1 := 1 and, for
n ≥ 1, let

W n+1 := W n, n+ 1, ωn,

where ωn is a shortest n-complete word (of length λ(n)).

Example 1.

W 2 = 1, 2, 1

W 3 = 121, 3, 121

W 4 = 1213121, 4, 1213121

W 5 = 121312141213121, 5, 123412314213.

Theorem 11. The word W n fixes FM(n) for every n ≥ 1. Therefore,

λM(n) ≤ n+
n−1∑
i=1

λ(i) ≤ n3

3
− 3n2

2
+

37n

6
.

This is a quantitative version of Theorem 4 stated in the introduction.
The main idea is that, once the components 1 to n − 1 have been fixed, a
monotone network behaves just like an increasing (or decreasing) network.
Therefore, the network can be fixed in quadratic time from that point.

Lemma 6. Let f be an n-component monotone network. If x ≤ f(x) then
fu(x) ≤ fuv(x) for any words u and v. Similarly, if x ≥ f(x) then fu(x) ≥
fuv(x) for any words u and v.

Proof. Suppose that x ≤ f(x) and let i ∈ [n]. Then x ≤ f i(x) so f ii (x) =
fi(x) ≤ fi(f

i(x)) and f ij(x) = xj ≤ fj(x) ≤ fj(f
i(x)) for all j 6= i. Thus

x ≤ f(x) implies f i(x) ≤ f(f i(x)) for every i ∈ [n]. We deduce that, for any
word w = w1w2 . . . wk, x ≤ fw1(x) ≤ fw1w2(x) ≤ · · · ≤ fw1w2...wk(x), and this
clearly implies the lemma.
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Proof of Theorem 11. The proof is by induction on n. This is clear for n = 1,
so suppose it holds for n− 1. Fix an initial state x ∈ {0, 1}n and, for every
z ∈ {0, 1}n, let z−n := (z1, . . . , zn−1) and h(z−n) := f(z−n, xn)−n. Then h is
a monotone network with n − 1 components. Let y := fW

n−1
(x). Since the

letter n does not appear in W n−1, we have y−n = hW
n−1

(x−n) and thus, by
induction hypothesis, y−n is a fixed point of h. Hence,

f(y) = f(y−n, yn) = (h(y−n), fn(y)) = (y−n, fn(y)).

We deduce that either y is a fixed point of f , and in that case y = fn,ω
n−1

(y) =
fW

n
(x) so we are done, or f(y) = y + en. Suppose that f(y) = y + en with

yn = 0, and remark that f(y) = fn(y). Setting y′ := f(y) we have y ≤ y′,
thus y′ ≤ f(y′), and since y′n = 1, we deduce that ωn−1 contains all the
permutations of {i : y′i = 0}. Hence, according to Lemma 6 and Lemma 4,

fω
n−1

(y′) = fω
n−1

(fn(y)) = fn,ω
n−1

(y) = fW
n

(x)

is a fixed point of f . If f(y) = y + en with yn = 1 the proof is similar.

4. Refinements and extensions

4.1. Conjunctive networks

We now determine the maximum fixing length over all n-component con-
junctive networks. Clearly the maximum is equal to one if n = 1 and to two
if n = 2. To settle the case n ≥ 3 and characterize the extremal networks,
we need additional definitions. Let Cn denote the n-vertex cycle (there is an
edge from i to i + 1 for all 1 ≤ i < n, and an edge from n to 1). We denote
by C◦n the graph obtained from Cn by adding an edge (i, i) for all i ∈ [n];
these additional edges are called loops. A strong component in a graph G
is initial if there is no edge from a vertex outside the component to a vertex
inside the component.

Theorem 12. For all n ≥ 3 and f ∈ FC(n),

λ(f) ≤ 2n− 2,

with equality if and only if the interaction graph of f is isomorphic to C◦n.
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Proof. Suppose that n ≥ 2. Let G be a graph on [n], and let f be the
conjunctive network on G. A spanning in-tree S in G rooted at i is a
spanning connected subgraph of G such that all vertices j 6= i have out-
degree one in S, and i has out-degree zero in S. A spanning out-tree is
defined similarly. It is clear that if G is strong, then for any vertex i there
exists a spanning in-tree of G rooted at i (and similarly for out-trees). A
vertex l with in-degree zero in a spanning in-tree S is referred to as a leaf of
S. We denote the maximum number of leaves of a spanning in-tree of G as
φ(G).

We first prove the theorem when G is strong. In that case, f has exactly
two fixed points: 0 and 1.

Claim 1. If G is strong, then λ(f) ≤ 2n− φ(G)− 1.

Proof of Claim 1. Let S be a spanning in-tree of G with φ := φ(G) leaves.
Let i1i2 . . . in be a topological sort of S. The root of S is thus in, and its
leaves are i1 . . . iφ. Let T be a spanning out-tree with the same root as S.
Let j1j2 . . . jn be a topological sort of T , so that its root is j1 = in. We
claim that the word w := iφ+1 . . . inj2 . . . jn of length 2n− φ− 1 fixes f . Let
u := iφ+1 . . . in and x ∈ {0, 1}n. We set xφ := x and xk := f ik(xk−1) for
φ < k ≤ n. We claim that if xnin = 1, then fu(x) = xn = 1. For otherwise,
suppose xnin = 1 and xnik = 0 for some φ ≤ k < n. Let ir1ir2 . . . irp be the
path from ik = ir1 to irp = in in S. This path follows the topological order,
that is, r1 < r2 < · · · < rp. Clearly, for all 1 ≤ q < p we have

xnirq = 0 ⇒ x
rq
irq

= 0 ⇒ x
rq+1−1
irq

= 0 ⇒ x
rq+1

irq+1
= 0 ⇒ xnirq+1

= 0.

Since xnik = 0 we deduce that xnin = 0, which is the desired contradiction.
Hence, if xnin = 1 then fu(x) = 1 and thus fw(x) = 1. Otherwise xnin = 0

and it is easily shown by induction on 2 ≤ k ≤ n that f j2...jkjk
(xn) = 0, thus

f j2...jn(xn) = fw(x) = 0.

We say that G is a cycle with loops if G is isomorphic to a graph
obtained from Cn by adding some loops.

Claim 2. If G is strong and not a cycle with loops, then φ(G) ≥ 2 and hence
λ(f) ≤ 2n− 3.

Proof of Claim 2. Since adding loops to a graph maintains the value of φ,
without loss, suppose that G has no loops. Since G is strong but not a cycle,
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there exists a vertex i in G with in-degree d ≥ 2. We can then construct
a spanning in-tree rooted at i with at least d leaves as follows. For all
0 ≤ k < n, let Uk be the set of vertices j such that dG(j, i) = k (i.e. k is
the minimum length of a path from j to i in G). Then U0 only contains i,
U1 is the set of in-neighbors of i, and U0 ∪ U1 ∪ · · · ∪ Un−1 = [n]. For any
j ∈ Uk with 1 ≤ k < n, let j′ be any out-neighbor of j in Uk−1. Then the
edges (j, j′) for all j 6= i form a spanning in-tree rooted at i with at least
|U1| = d ≥ 2 leaves.

Suppose that G is a cycle with loops, and let L be the set of vertices
with a loop. Given l, l′ ∈ L, we say that l′ is the successor of l if none of the
internal vertices on the path from l to l′ belong to L. The maximum distance
in G from a vertex in L to its successor is denoted as d(G). By convention,
we let d(G) := n if |L| = 0 or |L| = 1.

Claim 3. If G is a cycle with loops, then λ(f) ≤ 2n− d(G)− 1. Therefore,
if G is not isomorphic to C◦n, then λ(f) ≤ 2n− 3.

Proof of Claim 3. Without loss, we assume that G is obtained from Cn by
adding some loops. Let us first settle the case where |L| ≤ 1. If L is empty,
then it is easy to see that 1, 2, . . . , n − 1 fixes f . If L is a singleton we
may assume, without loss, that n is the only vertex with a loop, and then
the same strategy works: 1, 2, . . . , n − 1 fixes f . Henceforth, we assume
|L| ≥ 2. Without loss, suppose that n and d := d(G) both belong to L and
that d is the successor of n. Then we claim that the word w := d + 1, d +
2, . . . , n, 1, . . . , d, d + 1, . . . , n − 1 fixes f . Let x ∈ {0, 1}n. Firstly, suppose
xl = 0 for some l ∈ L; we note that d ≤ l ≤ n. First of all, the value of xl
will remain zero: fd+1,...,l

l (x) = 0. Afterwards, the 0 will propagate through
the cycle: fd+1,...,l,...,l−1(x) = 0. Secondly, if xl = 1 for all l ∈ L, then it is
easy to show that fw(x) = 1.

The two previous claims show that if G is strong then λ(f) ≤ 2n − 2,
with a strict inequality when G is not isomorphic to C◦n. The lower bound
below thus settles the strong case.

Claim 4. If G is isomorphic to C◦n then λ(f) ≥ 2n− 2.

Proof of Claim 4. For all 1 ≤ i ≤ n and 0 ≤ k < n, we denote by ik the
vertex at distance k from i in G, and we denote by xi,k the state such that
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xi,kj = 0 if and only if the distance between i and j is at most k. Thus
xi,0 = 1 + ei and xi,n−1 = 0. Furthermore, for all 0 ≤ k < n− 1,

f(xi,k) = xi,k + eik+1
= xi,k+1.

We deduce that if w = w1w2 . . . wp fixes f , then fw(xi,0) = 0 and, necessarily,
i1i2 . . . in−1 is a subsequence of w for all i. Let i be the last index to appear
in w, then i = wq for some q ≥ n; then the word i1i2 . . . in−1 begins in
position q of w and does not end before position q + n− 2 ≥ 2n− 2. Hence
λ(f) ≥ 2n− 2.

It remains to settle the non-strong case. We first establish an upper-
bound on λ(f) that depends on the decomposition ofG in strong components.
Let ψ1(G) be the number of initial strong components containing a single
vertex without a loop, let ψ2(G) be the number of initial strong components
containing a single vertex with a loop, let ψ3(G) be the number of initial
strong components with at least two vertices, and let ψ4(G) be the number
of non-initial strong components.

Claim 5. λ(f) ≤ 2n− ψ1(G)− 2ψ2(G)− 2ψ3(G)− ψ4(G).

Proof of Claim 5. Let I1, . . . , Ik denote the strong components of G in the
topological order, and let nl := |Il|. We then consider a word wl that fixes
the conjunctive network on G[Il].

1. If Il is an initial strong component containing a single vertex i without
a loop, then wl := i; wl has length 2nl − 1.

2. If Il is an initial strong component containing a single vertex with a
loop, then wl is the empty word; wl has length 2nl − 2.

3. If Il is an initial strong component with at least two vertices we con-
sider two cases. If G[Il] is not a cycle with loops, then wl is the word
described in the proof of Claim 1. If G[Il] is a cycle with loops, then
wl is the word described in the proof of Claim 3. In both cases, wl has
length at most 2nl − 2.

4. Otherwise, Il is a non-initial strong component. Let S be a spanning
in-tree of G[Il] and let i1i2 . . . in be a topological sort of S. The root
of S is thus in. Let T be a spanning out-tree with the same root,
and let j1j2 . . . jn be a topological sort of T , so that j1 = in. Then
wl := i1 . . . inj2 . . . jn; wl has length 2nl − 1.
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Then, by induction on l, it is easily proved that fw
1w2...wl fixes the conjunctive

network on the subgraph of G induced by I1 ∪ I2 ∪ · · · ∪ Il. Thus w :=
w1w2 . . . wk fixes f and has length at most 2n− 2ψ2(G)− 2ψ3(G)−ψ1(G)−
ψ4(G).

We can finally prove that λ(f) ≤ 2n− 3 if G is not strong.

Claim 6. If G is not strong and n ≥ 3, then λ(f) ≤ 2n− 3.

Proof of Claim 6. Suppose first that ψ4(G) = 0 (then G is the disjoint union
of strong graphs). If ψ2(G) + ψ3(G) ≥ 2 then λ(f) ≤ 2n− 4, and if ψ2(G) +
ψ3(G) = 1 then ψ1(G) ≥ 1, since G is not strong, and thus λ(f) ≤ n − 3.
Finally, if ψ2(G) + ψ3(G) = 0 then ψ1(G) ≥ 3 since n ≥ 3, and thus λ(f) ≤
n − 3. Suppose now that ψ4(G) ≥ 1. If ψ1(G) ≥ 2 or ψ2(G) ≥ 1 or
ψ3(G) ≥ 1 or ψ4(G) ≥ 2 then λ(f) ≤ 2n − 3. So assume that ψ1(G) =
ψ4(G) = 1 and ψ2(G) = ψ3(G) = 0. This means that G is connected, has
a unique initial strong component containing a single vertex without a loop,
and has a unique non-initial strong component, with at least two vertices,
since n ≥ 3. Suppose, without loss, that n is the vertex of the initial strong
component, and let x ∈ {0, 1}n. Since fn is the empty conjunction, we
have fn(x) = 1. Let h be the conjunctive network on the (strong) graph
H obtained from G by removing vertex n. Then for any word u we have
fn,u(x) = (hu(x1, . . . , xn−1), 1). Thus, let u be the word of length at most
2(n−1)−2 fixing h from the proof of Claim 1 (if H is not a cycle with loops)
or Claim 3 (otherwise). Then w = n, u is a word of length at most 2n − 3
fixing f .

This completes the proof of the theorem.

Remark 4. We can strengthen the upper bound for specific graphs. In par-
ticular, if G is undirected and connected, then there are lower bounds on the
maximum number of leaves of a spanning tree for G (see [34] for instance).

4.2. Monotone networks with a given interaction graph

We now refine Theorem 11 for FM(G), the family of monotone networks
whose interaction graph is contained in a graph G. Recall that the transver-
sal number of G is the minimum size of a subset I of vertices in G such
that G \ I is acyclic. The main result is that, for fixed transversal number,
the fixing length of FM(G) is linear in the number of vertices. The statement
needs additional definitions.
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Definition 9 ((i, α)-complete words). For i ≥ 0 and α ≥ 0, a word on
[α+i] is (i, α)-complete if it contains, as subsequences, all the permutations
j1, . . . , jα+i of [α + i] such that, for all 1 ≤ ` < α + i, if j`, j`+1 ∈ [α] then
j` < j`+1. We denote by λ(i, α) the length of a shortest (i, α)-complete word.

Thus λ(0, α) = α. Furthermore, for i > 0, we have λ(i, α) ≤ λ(α + i),
with equality if and only if α ∈ {0, 1}. In a graph G, a 1-feedback vertex
set is a set of vertices I such that all the cycles of G \ I are loops (i.e. cycles
of length one). The 1-transversal number of G is the minimum size of
a 1-feedback vertex set. Clearly, if G is an n-vertex graph with transversal
number τ and 1-transversal number τ1, then τ1 ≤ τ and τ1 < n.

The following is a quantitative version of Theorem 5 stated in the intro-
duction.

Theorem 13. Let G be a graph on [n] with 1-transversal number τ1. We
have

λM(G) ≤ n+

τ1∑
i=1

λ(i− 1, n− τ1) ≤
(
τ 2

1

2
+

3τ1

2
+ 1

)
n.

Remark 5. Let Kn be the complete directed graph on [n] (with n2 edges).
Since the 1-transversal number of Kn is n− 1, we have the following, which
proves that Theorem 13 indeed contains Theorem 11:

λM(n) = λM(Kn) ≤ n+
n−1∑
i=1

λ(i− 1, 1) = n+
n−1∑
i=1

λ(i).

Proof of Theorem 13. Let G be a graph on [n] with 1-transversal number τ1

and let α = n − τ1. Let ]α, n] = {α + 1, . . . , n}. Without loss, we assume
that ]α, n] is a 1-feedback vertex set. We also assume that 12 . . . α is the
topological order of G[{1, . . . , α}]; this order exists, since all the cycles of
G[{1, . . . , α}] have length one.

For all 1 ≤ i ≤ n, let Ri be the set of vertices reachable from i in
G[{1, . . . , i}]. Thus Ri = {i} if i ≤ α, and Ri ⊆ [i] otherwise. Let Pi be
the set of enumerations j1j2 . . . jk of Ri \ {i} such that, for all 1 ≤ ` < k,
if j`, j`+1 ∈ [α] then j` < j`+1. Let ωi be a shortest word containing, as
subsequences, all the enumerations contained in Pi. Let wi := i, ωi and

W := w1, . . . , wn.
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If i ∈ [α], then Ri = {i}, thus ωi = ε. Furthermore, if i ∈]α, n], then
Ri ⊆ [i] and we deduce that |ωi| ≤ λ(i− α− 1, α). Thus

|W | ≤ n+

τ1∑
i=1

λ(i− 1, n− τ1).

Let us now prove that W fixes FM(G). For all i ∈ [n], let

W i := w1, . . . , wi and Gi := G[{1, . . . , i}].

We prove, by induction on i, that W i fixes FM(Gi). This is obvious for i = 1.
Assume that i ≥ 2. Let f ∈ FM(Gi) and x ∈ {0, 1}i. We write x = (x−i, xi)
and set

f ′(x−i) := f(x−i, xi)−i.

In this way, f ′ ∈ FM(Gi−1). Let

y := fW
i

(x).

Since y−i = f ′W
i−1

(x−i), by induction hypothesis, y−i is a fixed point
of f ′. We deduce that either y is a fixed point of f , and in that case

fW
i

(x) = fw
i

(fW
i−1

(x)) = fw
i

(y) = y

is a fixed point of f , and we are done, or f(y) = y + ei.
So it remains to suppose that f(y) = y + ei and to prove that fw

i
(y) is

a fixed point. We consider the case where y ≤ f(y), the other case being
similar. Let

y0 := y and yk := fw
i
1w

i
2...w

i
k(y)

for all 1 ≤ k ≤ p, with p = |wi|. According to Lemma 6 we have

y0 ≤ y1 ≤ · · · ≤ yk ≤ f(yk).

Let us prove that yp = fw
i
(y) is a fixed point of f . Let j1j2 . . . jd be the

ordered sequence of coordinates that turned from 0 to 1 during the sequence
y0, y1, . . . , yp. In this way, d is the Hamming distance between y0 and yp,
and j1 = i = wi1. Furthermore,

f j1j2...jd(y) = yp.
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Suppose, for the sake of contradiction, that fj(y
p) 6= ypj for some 1 ≤ j ≤

i. Since yp ≤ f(yp), we must have

ypj < fj(y
p).

Thus ykj = 0 for all 0 ≤ k ≤ p. Hence, j does not appear in the sequence
j1j2 . . . jd. Let

jd+1 := j,

and let us prove that
{j1, . . . , jd, jd+1} ⊆ Ri. (3)

Since j1 = i we have j1 ∈ Ri. We now prove jk ∈ Ri with k 6= 1. Let yq be
the smallest index 0 ≤ q ≤ p such that yqjk < fjk(y

q). Since k 6= 1, jk 6= i,
and since f(y) = y + ei, we deduce that q > 1. Then, by the choice of q, we
have yq−1

jk
= fjk(y

q−1) and thus yq−1
jk

= yqjk . Hence, fjk(y
q−1) < fjk(y

q). Thus
G has an edge from wq−1 to jk, since wq−1 is the unique component that
differs between yq−1 and yq. Clearly, wq−1 = j` for some 1 ≤ ` < k. Thus,
we have proved that for all jk with 1 < k ≤ d + 1, there exists 1 ≤ ` < k
such that j`jk is an edge of G. We deduce that all the jk with 1 < k ≤ d+ 1
are reachable from j1 = i. This proves (3).

Furthermore, for all 1 ≤ ` ≤ d, if j`, j`+1 ∈ [α] and j` > j`+1, then

f j1j2...j`j`+1...jd+1(y) ≤ f j1j2...j`+1j`...jd+1(y)

since G has no edge from j` to j`+1. Thus, by applying such switches several
times, we can reorder the sequence j1j2 . . . jd+1 into a sequence s1s2 . . . sd+1

such that
f s1s2...sdsd+1(y) ≥ f j1j2...jdjd+1(y)

and such that, for all 1 ≤ ` ≤ d, if s`, s`+1 ∈ [α] then s` < s`+1. In this way,
s1 = j1 = i, and s2, . . . , sd+1 is in Pi. Hence, by definition, s2 . . . sd+1 is a
subsequence of ωi, and thus s1s2 . . . sd+1 is a subsequence of wi. Therefore,

ypj = ypjd+1
= fω

i

jd+1
(y) ≥ f

s1s2...sdsd+1

jd+1
(y) ≥ f

j1j2...jdjd+1

jd+1
(y) = fjd+1

(yp) = fj(x
p),

a contradiction. Thus W i fixes f , and thus the whole family FM(Gi).

Therefore, W fixes FM(G) and it remains to prove that |W | ≤ (
τ21
2

+ 3τ1
2

+
1)n. This follows from the proposition below and an easy computation.

Proposition 4. For all i ≥ 0 and α ≥ 0 we have λ(i, α) ≤ i2 + iα + α.
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Proof. Let β := α + i and consider the word w := i · (12 . . . β), 12 . . . α,
resulting from the concatenation of i copies of 12 . . . β and the addition of
the suffix 12 . . . α. Let u = j1j2 . . . jβ be a permutation of [β] such that,
for all 1 ≤ ` < β, if j`, j`+1 ∈ [α] then j` < j`+1. We will prove that w is
(i, α)-complete and, for that, it is sufficient to prove that u is contained in
w. Let jk1 . . . jki be the longuest subsequence of u with letters in [β] \ [α].
Then,

j1 . . . jk1 is a subsequence of (1 . . . β) = w1 . . . wβ
jk1+1 . . . jk2 is a subsequence of (1 . . . β) = wβ+1 . . . w2β,

...
jki−1+1 . . . jki is a subsequence of (1 . . . β) = w(i−1)β+1 . . . wiβ, and
jki+1 . . . jβ is a subsequence of (1 . . . α) = wiβ+1 . . . wiβ+α.

Thus u is a subsequence of w. Since |w| = i2 + iα + α, this proves the
proposition.

4.3. Balanced networks

We now consider a family of networks (namely, balanced networks) which
is more general than monotone networks. Those are defined by their signed
interaction graph, hence we review basic definitions and properties of signed
graphs first.

A signed graph is a couple (G, σ) where G is a graph, and σ : E →
{−1, 0, 1} is an edge labelling function, that gives a (positive, negative or
null) sign to each edge of G. The sign of a cycle in (G, σ) is the product of
the signs of its edges, and (G, σ) is balanced if all the cycles are positive.
The signed interaction graph of an n-component network f is the signed
graph (G, σ) where G is the interaction graph of f and where σ is defined
for each edge of G from j to i as follows:

σ(ji) :=


1 if fi(x) ≤ fi(x+ ej) for all x ∈ {0, 1}n with xj = 0,
−1 if fi(x) ≥ fi(x+ ej) for all x ∈ {0, 1}n with xj = 0,

0 otherwise.

Definition 10 (Balanced networks). An network is balanced if its signed
interaction graph is balanced. The family of n-component balanced networks
is denoted FB(n).
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Clearly, a network is monotone if and only if all the edges of its signed
interaction graph are positive. Thus every monotone network is balanced.
Conversely, a balanced network can be “decomposed” into monotone net-
works by considering the decomposition of its interaction graph into strong
components, as formally described below.

Given z ∈ {0, 1}n, the z-switch of f is the n-component network f ′

defined by
f ′(x) = f(x+ z) + z

for all x ∈ {0, 1}n. For instance, the 1-switch of f is the dual of f . If f ′ is
the z-switch of f , then f and f ′ have the same interaction graph G, but their
signed interaction graph (G, σ) and (G, σ′) may differ, since σ′(ji) = σ(ji)
for all edge ji with zj = zi but σ′(ji) = −σ(ji) for all edge ji with zj 6= zi.
Clearly, if f ′ is the z-switch of f , then f is the z-switch of f ′, and we then
say that f and f ′ are switch-equivalent.

Proposition 5 ([23]). Let f be a network with a strong interaction graph.
Then f is balanced if and only if f is switch-equivalent to a monotone net-
work.

The proposition above have immediate consequences on the existence of
short words fixing the family of balanced networks. Clearly, if f and f ′ are
switch-equivalent, then any word fixing f fixes f ′ as well. Therefore, let
W n be a word fixing FM(n) and consider n ·W n (the word W n repeated n
times). Let f ∈ FB(n) and denote the strong components of its interaction
graph as I1, . . . , Ik (k ≤ n). Since f restricted to each strong component is
switch-equivalent to a monotone network, W n fixes each strong component
individually, and thus l ·W n fixes the first l strong components. In particular,
n ·W n fixes f . Thus, by Theorem 11, there exists (for sufficiently large n) a
word of length at most n4/3 fixing FB(n).

The following theorem refines (and gives a formal proof of) the result
above. More precisely, let n = 3q + r with 0 ≤ r < 3, let s be the word
s := 12 . . . n and let W n be any word fixing FM(n) of minimal length. Then
define the word

W̃ n := q · (ssW n), r · s
of length q(2n+ λM(n)) + rn.

Theorem 14. The word W̃ n fixes FB(n) for every n ≥ 1. Therefore,

λM(n) ≤ λB(n) ≤ n

3
λM(n) + n2.
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Proof. Let n = 3q + r, with 0 ≤ r < 3, and let Xn be a word fixing FM(n).
We prove, more generally, that X̃n := (q · (ssXn), r · s) fixes FB(n). Let
f ∈ FB(n) and let G be the interaction graph of f .

The main idea of the proof is that each factor w := ssXn of X̃n fixes
at least three new vertices of G. Therefore, q · w fixes at least 3q = n − r
vertices, and finally r · s fixes the last r vertices if need be.

We formally proceed by induction on n. If n = 1 then s = 1 fixes f , and
if n = 2, it is easy to check that ss = 1212 fixes f . So we assume that n ≥ 3.
We say that a prefix u of W̃ n fixes a set of vertices I ⊆ [n] if, for any other
prefix v longer than u, we have fui (x) = f vi (x) for all i ∈ I. We consider
three cases, and in each case, we select a subset I of vertices of size at least
three fixed by w.

1. G has an initial strong component I with at least three vertices. Then
let I be this initial strong component, and let g be the restriction of f
on I. Since g is switch-equivalent to a monotone network, Xn fixes g,
and thus w fixes I.

2. G has an initial strong component with two vertices, say I1 = {i, j}
with i < j. Again, let g be the restriction of f on I1. The occurrences
of i and j in ss = 12 . . . n12 . . . , n are ijij, in that order; this contains
iji, which fixes g. Therefore, ss fixes I1. Suppose, without loss, that
i = n − 1 and j = n, and let h be the (n − 2)-component network
defined by

h(y) := (f1(y, z)), . . . , fn−2(y, z)) with z := (f ssn−1(x), f ssn (x))

for all y ∈ {0, 1}n−2. Then h is balanced and, by a reasoning similar to
the first case, Xn fixes an initial strong component I2 of the interaction
graph of h. Thus, w fixes I := I1 ∪ I2.

3. All the initial strong components of G have one vertex each. Note that
s fixes all the initial strong components. Therefore, if there are three
initial strong components {i1}, {i2}, {i3}, then s fixes I := {i1, i2, i3}
and we are done. If there are two initial strong components {i1}, {i2}
then s fixes I1 := {i1, i2} and again Xn fixes a non-empty subset I2 of
vertices, as shown in the second case. Thus w fixes I := I1 ∪ I2. There
is only one case left: I1 = {i1} is the only initial strong component. We
then consider an initial strong component I2 of G \ I1. If |I2| ≥ 2, then
s fixes I1 and Xn fixes I2. Thus w fixes I := I1∪ I2 and we are done. If
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I2 = {i2}, then ss fixes I1 ∪ I2, and again Xn fixes a non-empty subset
of vertices I3. Thus w fixes I := I1 ∪ I2 ∪ I3 and we are done.

Thus, in any case, there exists a subset I of three vertices fixed by w.
Suppose, without loss, that I = {n− 2, n− 1, n}. Then, let h be the (n− 3)-
component network defined by

h(y) := (f1(y, z)), . . . , fn−3(y, z)) with z := (fwn−2(x), fwn−1(x), fwn (x))

for all y ∈ {0, 1}n−3. Then h is balanced, and thus, by induction, X̃n−3 fixes
h. Consequently, w fixes I, and then X̃n−3 fixes [n]\ I. Since X̃n = w, X̃n−3,
we deduce that X̃n fixes f .

5. Conclusion

In this paper, we have considered the asynchronous automaton associated
with a Boolean network and used it to introduce the family of fixable networks
(which is huge by Theorem 1). We have then introduced the fixing length
λ(f) of a fixable network f and the fixing length λ(F) of a family F of
fixable networks. We have then identified several families with polynomial
fixing lengths, using properties concerning complete words. Our results are
summarised in Table 1. A dash means that we did not find any nontrivial
result for the given entry.

Our main results concern the family FM(n) of n-component monotone
networks. In particular, we have proved that the fixing length of FM(n) is
at most cubic and that the maximum fixing length of network in FM(n) is
at least quadratic. The main open question raised by these results is the
following: is there an asymptotic gap between the fixing length of FM(n) and
the maximum fixing length of network in FM(n)? A positive answer is not
obvious since, for instance, for the family FI(n) of n-component increasing
networks, which is doubly exponential in n, we have proved the following:
both the fixing length of FI(n) and the maximum fixing length of network
in FI(n) are quadratic.

There are some connections between fixability and synchronization, since
a network with a unique fixed point is fixable if and only if its asynchronous
automaton is synchronizing. It would be interesting to study synchronization
in Boolean networks more specifically. In particular, it would be interesting
to study the famous Černý conjecture, stated in the general framework of de-
terministic finite automata, in the specific setting of Boolean networks, that
is, for the class of asynchronous automata associated with Boolean networks.
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Networks F maxf∈F λ(f) λ(F)

Acyclic FA(n) = n = λ(n) ∼ n2

Path FP (n) = n = λ(n) ∼ n2

Increasing FI(n) ≥ (1
e
− ε)n2 = λ(n) ∼ n2

Monotone FM(n) ≥ (1
e
− ε)n2 ≤ 1

3
n3

Conjunctive FC(n) = 2n− 2 –

G-monotone FM(G) – ≤ 2τ 2n+ n

Balanced FB(n) – ≤ 1
9
n4

Table 1: Summary of results
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