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Abstract

We investigate data-enriched models, like Petri nets with data, where executability of a

transition is conditioned by a relation between data values involved. Decidability sta-

tus of various decision problems in such models may depend on the structure of data

domain. According to the WQO Dichotomy Conjecture, if a data domain is homoge-

neous then it either exhibits a well quasi-order (in which case decidability follows by

standard arguments), or essentially all the decision problems are undecidable for Petri

nets over that data domain.

We confirm the conjecture for data domains being 3-graphs (graphs with 2-colored

edges). On the technical level, this results is a significant step towards classification of

homogeneous 3-graphs, going beyond known classification results for homogeneous

structures.

Keywords: homogeneous structures, amalgamation property, well quasi orders, Petri

nets with data
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1. Introduction

In Petri nets with data, tokens carry values from some data domain, and executabil-

ity of transitions is conditioned by a relation between data values involved. One can

consider unordered data, like in [27], i.e., an infinite data domain with the equality as

the only relation; or ordered data, like in [23], i.e., an infinite densely totally ordered

data domain; or timed data, like in timed Petri nets [1] and timed-arc Petri nets [16].

In [21] an abstract setting of Petri nets with an arbitrary fixed data domain A has

been introduced, parametric in a relational structure A. The setting uniformly sub-

sumes unordered, ordered and timed data (represented by A = (N,=), A = (Q,≤) and

A = (Q,≤,+1), respectively).

Following [21], in order to enable finite presentation of Petri nets with data, and

in particular to consider such models as input to algorithms, we restrict to relational
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structures A that are homogeneous [25] and effective (the formal definitions are given

in Section 2). Certain standard decision problems (like the termination problem, the

boundedness problem, or the coverability problem, jointly called from now on standard

problems) are all decidable for Petri nets with ordered data [23] (and in consequence

also for Petri nets with unordered data), as the model fits into the framework of well-

structured transition systems of [11]. Most importantly, the structure A = (Q,≤) of or-

dered data admits well quasi-order (wqo) in the following sense: for anywqo X, the set

of finite induced substructures of (Q,≤) (i.e., finite total orders) labeled by elements of

X, ordered naturally by embedding, is a wqo (this is exactly Higman’s lemma). More-

over, essentially the same argument can be used for any other homogeneous effective

data domain which admits wqo (see [21] for details). On the other hand, for certain

homogeneous effective data domains A the standard problems become all undecidable.

In the quest for understanding the decidability borderline, the following hypothesis has

been formulated in [21]:

Conjecture 1 (WqoDichotomy Coinjecture [21]). For an effective homogeneous struc-

ture A, either A admits wqo (in which case the standard problems are decidable for

Petri nets with data A), or all the standard problems are undecidable for Petri nets with

data A.

According to [21], the conjecture could have been equivalently stated for another

data-enriched models, e.g., for finite automata with one register [2]. In this paper we

consider, for the sake of presentation, only Petri nets with data. Wqo Dichotomy Con-

jecture holds in special cases when data domains A are undirected or directed graphs,

due to the known classifications of homogeneous graphs [20, 6].

Contributions. We confirm the Wqo Dichotomy Conjecture for data domains A be-

ing strongly3 homogeneous 3-graphs (cf. Thm. 3 in Section 3). A 3-graph is a logical

structure with three irreflexive symmetric binary relations such that every pair of ele-

ments of A belongs to exactly one of the relations (essentially, a clique with 3-colored

edges).

Our main technical contribution is a complex analysis of possible shapes of strongly

homogeneous 3-graphs, constituting the heart of the proof (cf. Thm. 4 in Section 3): we

prove that a strongly homogeneous 3-graph either admits wqo (and thus its structure

is very simple) or it embeds arbitrarily long paths. We believe that this result, being

independent of a particular model of Petri nets for which the conjecture is formulated,

is a significant step towards full classification of homogeneous 3-graphs. The classifi-

cation of homogeneous structures is a well-known challenge in model theory, and has

been only solved in some cases by now: for undirected graphs [20], directed graphs

(the proof of Cherlin spans a book [6]), multi-partite graphs [17], and few others (the

survey [25] is an excellent overview of homogeneous structures). Although the full

classification of homogeneous 3-graphs was not our primary objective, we believe that

our analysis significantly improves our understanding of these structures and can be

helpful for classification.

3 Strong homogeneity is a mild strengthening of homogeneity.
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Our result does not fully settle the status of the Wqo Dichotomy Conjecture. Drop-

ping the (mild) strong homogeneity assumption, as well as extending the proof to arbi-

trarily many symmetric binary relations, is left for future work.

Related research. Net models similar to Petri nets with data have been continuously

proposed since the 80s, including, among the others, high-level Petri nets [13], colored

Petri nets [18], unordered and ordered data nets [23], ν-Petri nets [27], and constraint

multiset rewriting [5, 8, 9]. Petri nets with data can be also considered as a reinterpre-

tation of the classical definition of Petri nets in sets with atoms [3, 4], where one allows

for orbit-finite sets of places and transitions instead of just finite ones. The decidabil-

ity and complexity of standard problems for Petri nets over various data domains has

attracted a lot of attention recently, see for instance [15, 23, 24, 26, 27].

Wqos are important for their wide applicability in many areas. Studies of wqos

similar to ours, in case of graphs, have been conducted by Ding [10] and Cherlin [7];

their framework is different though, as they concentrate on subgraph ordering while we

investigate induced subgraph (or substructure) ordering.

Outline. We start by defining the model of Petri nets with data (in Section 2), for-

mulate our results (Theorems 3 and 4 in Section 3) and argue how Theorem 4 implies

Theorem 3 thus confirming the Wqo Dichotomy Conjecture (in Section 4). Then the

main technical part of the paper, spanning over Sections 5–8, is devoted exclusively to

the proof of Theorem 4. This part is independent of the model of Petri nets with data,

and conducts a complex and delicate analysis of consequences of the amalgamation

property for strongly homogeneous 3-graphs.

2. Petri nets with homogeneous data

In this section we provide all necessary preliminaries. Our setting follows [21] and

is parametric in the underlying logical structure A, which constitutes a data domain.

Here are some example data domains:

• Equality data domain: natural numbers with equality A= = (N,=). Note that any

other countably infinite set could be used instead of natural numbers, as the only

available relation is equality.

• Total order data domain: rational numbers with the standard order A≤ = (Q,≤).

Again, any other countably infinite dense total order without extremal elements

could be used instead.

• Nested equality data domain: A1 = (N2,=1,=) where =1 is equality on the first

component: (n,m) =1 (n′,m′) if n = n′ and m , m′. Essentially, A is an

equivalence relation with infinitely many infinite equivalence classes.

Note that two latter structures essentially extend the first one: in each case the equality

is either present explicitly, or is definable. From now on, we always assume a fixed

countably infinite relational structure A with equality over a finite vocabulary (signa-

ture) Σ.
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Figure 1: A Petri net with equality data, with places P = {p1, p2} and transitions T = {t1, t2}. In the shown

configuration, t2 can be fired: consume two tokens carrying 3, and put, e.g., token carrying 4 on p1 and

tokens carrying 4, 6 on p2.

Petri nets with data. Petri nets with data are exactly like classical place/transition

Petri nets, except that tokens carry data values and these data values must satisfy a

prescribed constraint when a transition is executed. Formally, a Petri net with data A

consists of two disjoint finite sets P (places) and T (transitions), the arcs A ⊆ P×T ∪

T×P, and two labelings:

• arcs are labelled by pairwise disjoint finite nonempty sets of variables;

• transitions are labelled by first-order formulas over the vocabulary Σ of A, such

that free variables of the formula labeling a transition t belong to the union of

labels of the arcs incident to t.

Example 1. For illustration consider a Petri net with equality data A=, with two places

p1, p2 and two transitions t1, t2 depicted on Fig. 1. Transition t1 outputs two tokens

with arbitrary but distinct data values onto place p1. Transition t2 inputs two tokens

with the same data value, say a, one from p1 and one from p2, and outputs 3 tokens:

two tokens with arbitrary but equal data values, say b, one onto p1 and the other onto

p2; and one token with a data value c , a onto p2. Note that the transition t2 does not

specify whether b = a, or b = c, or b , a, c, and therefore all three options are allowed.

Variables y1, y2 can be considered as input variables of t2, while variables z1, z2, z3 can

be considered as output ones; analogously, t1 has no input variables, and two output

ones x1, x2.

The formal semantics of Petri nets with data is given by translation to multiset

rewriting. Given a set X, finite or infinite, a finite multiset over X is a finite (possibly

empty) partial function from X to positive integers. In the sequel letM(X) stand for

the set of all finite multisets over X. A multiset rewriting system (P,T ) consists of a

set P together with a set of rewriting rules:

T ⊆ M(P) ×M(P).

Configurations C ∈ M(P) are finite multisets overP, and the step relation −→ between

configurations is defined as follows: for every (I,O) ∈ T and every M ∈ M(P), there

4



is the step (+ stands for multiset union)

M + I −→ M + O.

For instance, a classical Petri net induces a multiset rewriting system where P is the

set of places, and T is essentially the set of transitions, both P and T being finite.

Configurations correspond to markings.

A Petri net with data A induces a multiset rewriting system (P,T ), whereP = P×A

and thus is infinite. Configurations are finite multisets over P × A (cf. a configuration

depicted in Fig. 1). The rewriting rules T are defined as

T =
⋃

t∈T

Tt,

where the relation Tt ⊆ M(P) ×M(P) is defined as follows: Let φ denote the formula

labeling the transition t, and let Xi, Xo be the sets of input and output variables of t.

Every valuation vi : Xi → A gives rise to a multiset Mvi
over P, where Mvi

(p, a) is

the (positive) number of variables x labeling the arc (p, t) with vi(x) = a. Likewise for

valuations vo : Xo → A. Then let

Tt =
{

(Mvi
, Mvo

) | vi : Xi → A, vo : Xo → A, vi, vo � φ
}

.

Like P, the set of rewriting rules T is infinite in general.

As usual, for a net N and its configuration C, a run of (N,C) is a maximal, finite or

infinite, sequence of steps starting in C.

Remark 1. As for classical Petri nets, an essentially equivalent definition can be given

in terms of vector addition systems (such a variant has been used in [15] for equality

data). Petri nets with equality data are equivalent to (even if defined differently than)

unordered data Petri nets of [23], and Petri nets with total ordered data are equivalent

to ordered data Petri nets of [23].

Effective homogeneous structures. For two relational Σ-structures A and B we say

that A embeds in B, written A ✂ B, if A is isomorphic to an induced substructure

of B, i.e., to a structure obtained by restricting B to a subset of its domain. This is

witnessed by an injective function4 h : A → B, which we call embedding. We write

Age(A) = {A a finite structure | A✂ A } for the class of all finite structures that embed

into A, and call it the age of A.

Homogeneous structures are defined through their automorphisms: A is homoge-

neous if every isomorphism of two of its finite induced substructures extends to an au-

tomorphism of A. In the sequel we will also need an equivalent definition using amal-

gamation. An amalgamation instance consists of three structuresA,B1,B2 ∈ Age(A)

and two embeddings h1 : A → B1 and h2 : A → B2. A solution of such instance

is a structure C ∈ Age(A) and two embeddings g1 : B1 → C and g2 : B2 → C such

that g1 ◦ h1 = g2 ◦ h2 (we refer the reader to [12] for further details). Intuitively, C

4We deliberately do not distinguish a structure A from its domain set.
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represents ’gluing’ of B1 andB2 along the partial bijection h2 ◦ (h1
−1). In this paper we

will restrict ourselves to singleton amalgamation instances, where only one element of

B1 is outside of h1(A), and likewise for B2.

An example singleton amalgamation instance is shown on

the right, where the graph A consists of the single edge con-

necting two middle black nodes, B1 is the left triangle, and B2

the right one. The dashed line represents an edge that may (but

does not have to) appear in a solution. A is homogeneous if, and only if every amalga-

mation instance has a solution; in such case we say that Age(A) has the amalgamation

property. See [25] for further details.

A solution C necessarily satisfies g1(h1(A)) = g2(h2(A)) ⊆ g1(B1) ∩ g2(B2); a

solution is strong if g1(h1(A)) = g1(B1) ∩ g2(B2). Intuitively, this forbids additional

gluing of B1 and B2 not specified by the partial bijection h2 ◦ (h1
−1). If every amalga-

mation instance has a strong solution we call A strongly homogeneous. This is a mild

restriction, as homogeneous structures are typically strongly homogeneous.

The equality, nested equality, and total order data domains are strongly homoge-

neous structures. For instance, in the latter case finite induced substructures are just

finite total orders, which satisfy the strong amalgamation property. Many other natu-

ral classes of structures have the amalgamation property: finite graphs, finite directed

graphs, finite partial orders, finite tournaments, etc. Each of these classes is the age of

a strongly homogeneous relational structure, namely the universal graph (called also

random graph), the universal directed graph, the universal partial order, the universal

tournament, respectively. Examples of homogeneous structures abound [25].

Homogeneous structures admit quantifier elimination: every first-order formula is

equivalent to (i.e., defines the same set as) a quantifier-free one [25]. Thus it is safe to

assume that formulas labeling transitions are quantifier-free.

Admitting wqo. A well quasi-order (wqo) is a well-founded quasi-order with no in-

finite antichains. For instance, finite multisets M(P) over a finite set P, ordered by

multiset inclusion ⊑, are a wqo. Another example is the embedding quasi-order ✂ in

Age(A≤) (= all finite total orders) isomorphic to the ordering of natural numbers. Fi-

nally, the embedding quasi-order in Age(A) can be lifted from finite structures to finite

structures labeled by elements of some ordered set (X,≤): for two such labeled struc-

tures a : A → X and b : B → X we define a ✂X b if some embedding h : A → B

satisfies a(x) ≤ b(h(x)) for every x ∈ A. We say that A admits wqo when for every

wqo (X,≤), the lifted embedding order ✂X is a wqo too. For instance, A≤ admits wqo

by Higman’s lemma.

Note the natural correspondence between configurations of a Petri net with data A,

and structuresA ∈ Age(A) labeled by finite multisets over the set P of places:

M(P × A) ≡ {m : A→M(P) | A ∈ Age(A) } .

Thus the lifted embedding quasi-order ✂M(P) is a quasi-order on configurations.

Standard decision problems. A Petri net with data N can be finitely represented by

finite sets P, T, A and appropriate labelings with variables and formulas. Due to the

homogeneity of A, a configuration C can be represented (up to automorphism of A) by

a structure A ∈ Age(A) labeled byM(P). We can thus consider the classical decision
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problems that input Petri nets with data A, like the termination problem: does a given

(N,C) have only finite runs? The data domain is considered as a parameter, and hence

itself does not constitute part of input. Another classical problem is the place non-

emptiness problem (markability): given (N,C) and a place p of N, does (N,C) admit

a run that puts at least one token on place p? One can also define the appropriate

variants of the coverability problem (equivalent to the place non-emptiness problem),

the boundedness problem, the inevitability problem, etc. (see [21] for details). All the

decision problems mentioned above we jointly call standard problems.

A Σ-structure A is called effective if the following age problem for A is decidable:

given a finite Σ-structureA, decide whetherA✂A. If A admitswqo then application of

the framework of well-structured transition systems [11] to the lifted embedding order

✂M(P) yields:

Theorem 1 ([21]). If an effective homogeneous structure A admits wqo then all the

standard problems are decidable for Petri nets with data A.

For homogeneous undirected (and also directed) graphs, the Wqo Dichotomy Con-

jecture is easily shown by inspection of the classifications thereof [20, 6]. We state in

Theorem 2 a core fact underlying the dichotomy, for future use. A path is a finite graph

with nodes {v1, . . . , vn} whose only edges are pairs {vi, vi+1}. The nodes v1, vn are ends

of the path, and n is its length.

Theorem 2 (follows by [20, 6]). A homogeneous graph A either admits wqo, or A

contains arbitrarily long paths as induced subgraphs, or the complement of A contains

arbitrarily longh paths as induced subgraphs.

Theorem 2 implies the conjecture for graphs (the proof is in Section 4):

Corollary 1. A homogeneous graph A either admitswqo, or all standard problems are

undecidable for Petri nets with data A.

3. Results

A 3-graph G = (V,C1,C2,C3) consists of a set V and three irreflexive symmetric

binary relations C1,C2,C3 ⊆ V2 such that every pair of distinct elements of V belongs

to exactly one of the three relations. Any graph, including A= and A1, can be seen as a

3-graph. In the sequel we treat a 3-graph as a clique with 3-colored edges.

Example 2. We provide an example of a strongly homogeneous 3-graph. A 3-vertex

3-graph we call a triangle; here are three triangles, where colors red, green and blue

correspond to relations C1,C2 and C3, respectively:

The three triangles, treated as forbidden patterns, define an infinite homogeneous 3-

graph G as follows. Consider the class C of all finite 3-graphs that do not embed any

7



of the three triangles shown above. The class has the amalgamation property (cf. Ap-

pendix in [25]) – it is not difficult to see that every singleton amalgamation instance

A,B1,B2 can be solved using a green or red edge. If the common part A contains at

most one element this follows by inspection of forbidden triangles. Otherwise, sup-

posing towards contradiction that the instance disallows either red or green edge as a

solution, which means that the instance contains necessarily the following pattern:

with black representing some unknown color, we observe that any choice of color for

the black edge leads to a forbidden triangle, a contradiction. In consequence, there

is a homogenoeus 3-graph G with Age(G) = C (cf. [12]). One easily verifies that G

is strongly homogeneous; indeed, every singleton amalgamation instance that admits a

glueing solution admits also a solution where the green color is used instead of glueing,

simply because all the following triangles are not forbidden:

Our main result confirms the Wqo Dichotomy Conjecture for strongly homoge-

neous 3-graphs:

Theorem 3. A strongly homogeneous 3-graph G either admits wqo, or all standard

problems are undecidable for Petri nets with data G.

The core technical result of the paper is Theorem 4 below.

Theorem 4. A strongly homogeneous 3-graph G either admits wqo, or for some i, j ∈

{1, 2, 3} (not necessarily distinct) the graph (V,Ci ∪C j) contains arbitrarily long paths

as induced subgraphs.

We prove that Theorem 4 implies Theorem 3 in the next section. Then, in the rest

of the paper we concentrate solely on the proof of Theorem 4.

Example 3. For a quasi-order (X,≤), the multiset inclusion is defined as follows for

m,m′ ∈ M(X): m′ is included in m if m′ is obtained from m by a sequence of operations,

where each operation either removes some element, or replaces some element by a

smaller one wrt. ≤. The structure A= = (N,=) admits wqo. Indeed, Age(A=) contains

just finite pure sets, thus ✂X is quasi-order-isomorphic to the multiset inclusion on

M(X), and is therefore a wqo whenever the underlying quasi-order (X,≤) is. Similarly,

A1 = (N2,=1,=) also admits wqo, as ✂X is quasi-order-isomorphic to the multiset

inclusion onM(M(X)).
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On the other hand, consider a 3-graph

(N2,=1,=2,,12) where =2 is symmetric to =1

and (n,m) ,12 (n′,m′) if n , n′ and m , m′.

It refines A1 and does not admit wqo and hence

satisfies the second case of Theorem 4. In-

deed, the graph (N2,=1 ∪ =2) contains arbi-

trarily long paths of the shape presented on the

right, where the two colors depict =1 and =2, re-

spectively, and lack of color corresponds to ,12.

Note that (N2,=1,=2,,12) is homogeneous but

not strongly so.

Finally, the strongly homogenous 3-graph exhibited in Example 2 also belongs to

the second case of Theorem 4. Indeed, no red-green triangle is forbidden and hence

the 3-graph contains a infinite red-green clique which contains, as induced subgraphs,

both arbitrarily long red paths and arbitrarily long green paths.

4. Theorem 4 implies Theorem 3

Assume Theorem 4 holds. Towards proving Theorem 3 consider an effective strongly

homogeneous 3-graph A = (V,C1,C2,C3) that does not admit wqo and let E = Ci ∪

C j ⊆ V2 given by Theorem 4. Thus we know that the graph (V, E) contains arbitrarily

long paths. We will demonstrate that Petri nets with data domain A can faithfully sim-

ulate computations of 2-counter machines. To this aim we fix an arbitrary deterministic

counter machineMwith two counters c1, c2, and states Q; and construct a Petri net NM
with data A that simulates the computation ofM starting in the initial configuration:

initial state qinit and the counter values c1 = c2 = 0. Places of the net will include

{b1,m1, e1, b2,m2, e2, q, r} ∪ Q ⊆ P

plus some further auxiliary ones. In particular, every state ofMwill have a correspond-

ing place in N. The idea is to represent a value c j = n by storing n + 2 tokens carrying,

as its values, nodes of a path of length n+2 in the graph (V, E). The two tokens carrying

the ends of the path will be stored on places b j and e j, respectively, while the remaining

n tokens will be stored on place m j. Simulation of a zero test amounts then to checking

if the ends are related by an edge. Simulation of a decrement amounts to replacing

one end (say from place e j) by its only neighbor from place m j. And simulation of an

increment amounts to moving the token from e j to m j, accompanied by production of a

new token on place e j carrying an arbitrary (guessed nondeterministically) value v ∈ V

not related by E to any of the other tokens on places b j and m j.

Zero test and decrement. IfM does zero test for c j in state q and goes to q′, the net

NM has a transition z j,q,q′ that inputs one token from b j and one token from e j, checks

that data values they carry are related by E, and puts back the same tokens to the two

places (cf. Fig. 2). In addition, the transition z j,q,q′ moves one token from place q to

q′, irrespectively of the data values it carries. Similarly, decrement of c j is performed

by a transition d j,q,q′ that inputs one token from m j and one token from e j, checks that

9



x

x′

y

y′

b j e jz j,q,q′

xEy ∧ x′ = x ∧ y′ = y

x y

y′

m j e jd j,q,q′

xEy ∧ y′ = x

Figure 2: Transition z j,q,q′ and d j,q,q′ simulating zero test and decrement of counter c j , respectively. Places

corresponding to control states ofM are omitted for simplicity.

p

p′
r

r′

m

m′
e

e′

p r

m j e j

t j

m E p ∧ m , r ∧ ¬m E e ∧ e′ = e ∧ m′ = m ∧ p′ = m ∧ r′ = p

Figure 3: Transition t j used in the simulation of increment on counter c j .

data values they carry are related by E, and then puts back the former token to e j while

discarding the latter one.

Increment. Slightly more complicated is the simulation of increment of a counter c j,

as it involves creating a fresh value that must correctly extend, by one vertex, the path

currently stored on places b j,m j, e j. In the first step of the simulation, the net executes

a transition i j that guesses a data value v ∈ V related by E to the value ve carried by the

single token on place e j but not to the value vb carried by the single token on place b j;

the token from e j is moved to m j (and its copy is additionally put to an auxiliary place

p for future use), and a new token carrying v is put on e j (and its copy is additionally

put to an auxiliary place r for future use). What remains to be checked in that v has

been guessed correctly by i j, namely that v is related by E to none of the data values

carried by tokens on m j except for ve. To this end the net performs a traversal through

the path, in the direction from ve to vb, in order to check the correctness of v. The

traversal is done by iterative execution of the transition t j, depicted on Fig. 3, which

uses the places p, r to store the current edge of the path in the course of traversal. The

condition m E p ∧ m , r checks that the value of variable m is the other neighbour of

p along the path; the condition ¬m E e checks that the guessed value v, stored on place

e j, is indeed not related by E to the value of m; the condition e′=e ∧ m′=m ensures

that the same value returns to places m j and e j; and finally the condition p′=m ∧ r′=p

ensured that the current edge is moved along the path.
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Finally, the simulation of increment of c j finishes with a transition i′
j
that is enabled

when the value on place p is related by E to the value on place b j; transition i′
j
removes

the tokens from places p and r.

Initial configuration CM of NM puts one token on each of the places b1, b2, e1, e2,

using two arbitrary data values related by E, to encounter for c1 = c2 = 0; and one

token on the place corresponding to the initial state qinit.

We have thus sketched a construction of a net NM and the initial configuration CM.

Observe that consecutive steps of NM faithfully simulate consecutive steps ofM, using

a path of sufficient length. N can however get stuck at some point of simulation, if the

currently used path can not be extended to a longer one; a priori, this could happen if the

fresh data values v used in the simulation of increments are not guessed appropriately.

Nevertheless, since the net N stops when a token is put on phalt (i.e., when no token is

stored on places in Q \ {phalt}), we have:

Claim 1. The place phalt corresponding to the halting state ofM is nonempty in some

run of (NM,CM) if, and only if the machineM halts.

In one direction, a run of (NM,CM) putting a token on phalt simulates the halting

run ofM from the initial configuration. In the other direction, ifM halts then the net

NM can use a sufficiently long path in (V, E) for values v guessed in the simulation of

increments to be able to simulate the whole computation ofM and finally put a token

on place phalt. Thus the claim directly entails undecidability of the place non-emptiness

problem, and hece also of the coverability problem. To treat other decision problems,

we notice that (V, E) contains, in addition to arbitrarily long finite paths, also an infinite

ω-path:

Claim 2. The graph (V, E) contains an ω-path.

Indeed, treat finite paths as finite words over a 2-letter alphabet, and arrange all

finite paths into a tree. The tree contains arbitrarily long branches, thus it necessarily

contains an infinite branch. Using homogeneity of A one argues (see e.g. Lemma 6.1.3

in [14]) that every infinite branch realizes as an ω-path in (V, E). With the last claim

we obtain:

Claim 3. (NM,CM) terminates if and only if the machineM halts.

Indeed, when the computation ofM from the initial configuration halts then NM
necessarily terminates. On the other hand, if the computation of M from the initial

configuration is infinite, an infinite ω-path in (V, E) can be used for the simulation thus

constituting an infinite run of (NM,CM). This entails undecidability of the termination

problem, and hence also of the boundedness problem and the inevitability problem.

5. Proof of Theorem 4

From now on we consider a fixed 3-graph G = (V,C1,C2,C3) as data domain,

assuming G to be countably infinite and strongly homogeneous. We treat G as a clique

with 3-colored edges: we call C1,C2 and C3 colors and put Colors = {C1,C2,C3} ⊂

P(V × V). To denote individual colors from this set, we will use variables a, b, c and
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x, y, z. A path in the graph (V, a ∪ b) we call ab-path (ab ∈ Colors); for simplicity,

we will write a-path instead of aa-path. Likewise we speak of ab-cliques, a-cliques,

ab-cycles, etc. A triangle △abc is a 3-clique with edges colored by a, b, c. (Note that

△abc = △bca = △cba).

Sketch of the proof. Lemma 1 below states that any 3-graph G has to meet one of the

four listed cases. It splits the proof into four separate paths:

Cor. 3 Cor. 4 Lemma 11 Lemma 12

Lemma 4

Lem. 2, Thm 5 Lemma 3 Lemma 4

Lemma 5

A)

B)

C)
D)

– G embeds arbitrarily long paths – G admits WQO

Lemma 1

After stating and proving Lemma 1 we proceed with the proofs of Cases A), B) and

C). Case A) constitutes the most difficult part of the proof and involves a complex

and delicate analysis of consequences of the amalgamation property. It consists of

four steps that deduce extension of the assumed induced substructures by individual

vertices (cf. Cor. 3), individual edges (cf. Cor. 4), paths of length 2 (cf. Lemma 11),

resp., culminating in derivation of arbitrarily long paths (cf. Lemma 12). Thus in case

A) only the second condition of Theorem 4 is possible, while in the other two cases

both conditions of Theorem 4 may hold true.

Lemma 1. Every homogeneous 3-graphG = (V,C1,C2,C3) satisfies one of the follow-

ing conditions:

A) for some color c ∈ Colors, G contains the following induced substructures:

c

. . . a

xc

, a

cc

a) arbitrarily large

c-cliques

b) two triangles: △axc and △acc

for some colors a, x different than c

B) for some colors x , y, (V, x ∪ y) is a union of disjoint cliques,

C) for some color x, (V, x) is a union of finitely many disjoint infinite cliques,

D) for some colors x , y, (V, x ∪ y) contains arbitrarily long paths.

Proof. By Ramsey theorem, G contains an arbitrarily large monochromatic cliques.

Let us state a bit stronger requirement:

Condition ♠ For some a, c ∈ Colors, G contains arbitrarily large c-cliques and a

triangle △acc with exactly two c-edges (a , c).

Consider two cases, depending on whether the condition ♠ is satisfied or not.

12



Case 1◦ Assume that G contains both arbitrarily large c-cliques and a triangle △acc for

some a, c ∈ Colors. Let b be the third, remaining color. Our goal will be to show that

either A) or B) holds.

If the graph (V, a ∪ b) is a disjoint sum of cliques, we immediately obtain B). Sup-

pose the contrary. We get that G has to contain one of the three possible counterexam-

ples for transitivity of relation a ∪ b:

a

ac

a

bc

b

bc

– △aac – △abc – △bbc

If it contains the triangle △aac or △abc, case A) holds.

Suppose we got △bbc. Let us check this time whether colors a and c form a union

of disjoint cliques. Again, if it is so, we easily get B), so we assume the contrary.

Similarly, we necessarily obtain one of the following triangles:

a

ab

a

cb

c

cb

– △aab – △acb – △ccb

This time case A) also holds for two out of the three triangles above:

• for △acb, because together with subgraphs resulting from assumption ♠ (i.e. with

triangle △acc and the c-cliques) we get all graphs required by A).

• for △ccb paired with the triangle △bbc we just obtained, using color b appearing

in those triangles in place of a in condition A).

It only remains to consider the situation when we got △aab. We use it together with

previously obtained triangle △bbc to build the following instance of singleton amalga-

mation:

b

a

a

b

c

Depending on the color of the dashed edge, in the solution we get one of the following

triangles:

a c

a

a c

b a b

c
– △aac – △abc – △abc

and each one alone completes the requirements of A). This closes case 1◦.

Case 2◦ Suppose condition ♠ is false. Remind that G contains arbitrarily large c-cliques

for some c ∈ G. Since ♠ does not hold, the graph does not contain a triangle △cca for

any a , c; in other words, the color c appears only within cliques. We conclude that

(V, c) is a union of disjoint cliques. Clearly at least one of such cliques has to be infinite.

By homogeneity we get that all the cliques in (V, c) have to be infinite. Now our target

is to show that either C) or D) holds.

The case C) is fulfilled when there are only finitely many c-cliques. Let us assume

the contrary. In each of the c-cliques we chose one vertex. Edges between the chosen

13



vertices form an infinite ab-clique K. Using Ramsey theorem again, we conclude that

in K one of the colors a, b forms arbitrarily large monochromatic cliques. W.l.o.g.

suppose that this is color b.

If the graph G contained △ybb for some y , b, then the assumptions of ♠ would be

met, leading to a contradiction. Therefore we conclude that (V, b) is a union of disjoint

infinite b-cliques.

When there are only finitely many b-cliques, condition C) is fulfilled. Otherwise

we know that G is a union of infinitely many x-cliques for both x = c and x = b. Using

homogenity, it is easy to show that then every pair of differently colored cliques has

exactly one common vertex, so the graph G takes the form as depicted in Example 3.

A graph of such form contains arbitrarily long bc-path, so the requirements of D) are

met.

6. Case C) in the proof of Theorem 4

Let c be the color that satisfies condition C), and a, b — the remaining two colors.

In this section we often treat G as the k-partite graph (V, a ∪ b) (for some k ∈ N): k

cliques of color c allow to distinguish k groups of vertices V1∪V2 ∪ · · · ∪Vk = V (from

now on we will refer to them as layers). The remaining two colors can be interpreted

as existence (a) and nonexistence (b) of edges between these groups.

Remark ⋆. We observe that the special color c between vertices within each layer Vi

ensures that the automorphisms of G will not ’mix’ those layers: when two vertices

u, v belong to a common layer Vi, then their images f (u), f (v) will also belong to some

common layer V j, no matter what automorphism f ∈ Aut(G) we choose. Obviously,

the automorphisms can switch positions of whole layers, e.g. move all vertices from Vi

to some V j and vice versa — in this respect the layers are undistinguishable.

Lemma 2. For every i, j ∈ {1, 2, . . . , k}, the

bipartite graph Gi, j = (Vi ∪ V j, a∩ (Vi ∪ V j)
2,

Vi,V j) (with two distinguishable sides Vi,V j)

is homogeneous.

...

...
...

. . .

remaining
(k − 3) layers

V1 V2

V3

G2,3

The vertex sets Vi and V j are used here as

unary relations that allow to tell the two lay-

ers of Gi, j (sides of Gi, j) apart. An example

is shown on the right, with three layers V1,V2

and V3, and three bipartite graphs G1,2, G2,3

and G1,3.

Proof. Fix Gi, j a bipartite graph. Note that Gi, j has distinguishable sides. To prove

its homogeneity we have to show that each isomorphism of two of its finite induced

subgraphs may be extended to some automorphism of Gi, j. Let us then take some
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given isomorphism f : G1 → G2 for some finite induced subgraphs G1,G2 of Gi, j. It

is easy to extend it to a full automorphism when it ’touches’ both layers of Gi, j, i.e.:

V(G1) ∩ Vi , ∅ ∧ V(G1) ∩ V j , ∅

where V(G1) is the set of vertices of G1. In this case, by homogeneity of G, we con-

struct a full automorphism f ′ : G → G, which extends f . It is easy to see that in this

case f ′ has to fix the layers Vi and V j ( f ′(Vi) = Vi and f ′(V j) = V j), and hence f ′

restricted to the graph Gi, j is a correct automorphism of this graph.

Things get more complicated when f operates only on some single layer of Gi, j.

W.l.o.g. suppose that it ’touches’ only Vi, so V(G1)∩ V j = ∅. Now the above construc-

tion will not work out of the box — if we were unlucky, the automorphism of G we get

by homogeneity moves the whole layer V j to some Vn located ’outside’ the graph Gi, j

(n < {i, j}).

It will be handy to make the following observation: when f ’touches’ only Vi,

which is an infinite c-clique, we may assume that V(G1) ∩ V(G2) = ∅. Indeed, every

function g : G1 → G2 that violates this condition may be decomposed as g = f2 ◦ f1
for some f1, f2:

G1

f1
−→ H

f2
−→ G2

such that H is disjoint both with G1 and with G2.

Now, let N = |V(G1)| = |V(G2)| be the size of the domain of isomorphism f . Let

us take an arbitrary infinite family (S n)n∈N of subgraphs of G with disjoint vertex sets,

such that the following conditions are met:

• |V(S n) ∩ Vm| = 1 for m , i (and this single vertex will be denoted as v
(n)
m ),

• |V(S n) ∩ Vi| = N (denote these vertices as s
(n)

1
, s

(n)

2
, s

(n)

3
, . . . , s

(n)

N
).

We define a connection type of a layer Vi with Vm in the graph S n as the N-element

sequence of colors of edges from the list bellow:

({s
(n)

1
, v(n)

m }, {s
(n)

2
, v(n)

m }, . . . , {s
(n)

N
, v(n)

m })

E.g. in the graph bellow, the connection type of layer Vi = V3 with V1 is abba, and

with V2 — aaba (remembering that b is treated as lack of an edge):

Vi

V2

V1

. . .

. . .

. . .

. . .

. . .

. . .

s
(n)

1
s

(n)

2
s

(n)

3
s

(n)

4

Furthermore, we define the type of graph S n to be the sequence of types arising be-

tween Vi and other layers plus the list of edge-colors between all pairs of vertices v
(n)
•

(enumerated in some consistent way). As there are only finitely many such types, by

pigeonhole principle there exists a pair of graphs S a and S b with the same type.
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Let us fix some order on vertices of G1: V(G1) = {g1, g2, . . . , gN}. Let h be the

partial isomorphism that moves the vertices as follows:

s
(a)

1
→ g1 s

(b)

1
→ f (g1)

. . . . . .

s
(a)

N
→ gN s

(b)

N
→ f (gN)

By homogeneity, it has to extend to a full automorphism h′ ∈ Aut(G). In particular, in

the neighbourhood of G1 and G2 there will be images of all vertices v
(α)
• of graphs S a

and S b:

h′
(

v
(α)

1

)

, h′
(

v
(α)

2

)

, . . . , h′
(

v
(α)

i−1

)

, h′
(

v
(α)

i+1

)

, . . . , h′
(

v
(α)

k

)

(for α in {a, b}). What follows is that G1 with added vertices h′(v
(a)
• ) has the same

type as G2 with h′(v
(b)
• ) respectively (that type may differ from the type of S a and S b

though!). It is best illustrated on a picture:

v
(a)

1

v
(a)

2

v
(a)

3

v
(a)

4

v
(b)

1

v
(b)

2

v
(b)

3

v
(b)

4

h′
(

v
(a)

3

)

h′
(

v
(a)

2

)

h′
(

v
(a)

4

)

h′
(

v
(a)

1

)

h′
(

v
(b)

3

)

h′
(

v
(b)

2

)

h′
(

v
(b)

4

)

h′
(

v
(b)

1

)

s
(a)

1
s

(b)

1
g1 f (g1)

s
(a)

2
s

(b)

2
g2 f (g2)

s
(a)

3
s

(b)

3
g3 f (g3)

s
(a)

4
s

(b)

4
g4 f (g4)

V1

V2

V3

V4

Vi

S a S b

h G1 G2

Above, the colored triangles represent the types of connections. The order of those

types may get permuted when applying h′, but still — in line with the remark ⋆ —

for each β ∈ {1, 2, . . . , k} \ {i} the vertex h′
(

v
(a)

β

)

must stay in the same layer as h′
(

v
(b)

β

)

,

furthermore their type of connection with layer Vi is preserved.

Extending the isomorphism f in a natural way (thanks to the compatibility of types)

on those newly obtained vertices:

h′
(

v
(a)
•

) f
−−−−−−−−→ h′

(

v
(b)
•

)

we get an isomorphism that this time ’operates’ on all layers V•. If we now extend

it to an automorphism of the whole G, we will get a function that fixes all layers V•.

This function may be safely restricted to Vi ∪ V j, staying a correct automorphism of

our initial bipartite graph Gi, j, which completes the proof.

We are going to apply to graphs Gi, j the following classification result:
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Theorem 5 ([17]). A countably infinite homogeneous bipartite graph (with distinguish-

able sides) is either empty, or full, or a perfect matching, or the complement of a perfect

matching, or a universal graph.

From our point of view, all we need to know about the universal graph is that it

contains arbitrarily long paths which – translated to our notation – would mean that Gi, j

contains arbitrarily long a-paths. Therefore in our further considerations we assume

that Gi, j is not universal which, in our notation, leaves two types of Gi, j:

1. all edges of Gi, j have the same color x ∈ {a, b}, i.e. Gi, j is a full or empty bipartite

graph,

2. one of the colors x ∈ {a, b} forms a perfect matching in Gi, j, the second one

(y , x) is then the complement of this matching.

Graphs of type 2. may be seen as bijections between their sets of vertices (layers).

Lemma 3 states that those bijections have to preserve other graphs, up to complement.

Lemma 3. Let Vi,V j,Vk be some arbitrary pairwise different layers, such that Gi, j is

of type 2 and ψ : Vi → V j is the bijection it determines. Then ψ takes a ∩ (Vi ∪ Vk)2 to

a ∩ (V j ∪ Vk)2, or to its complement. Formally:




∀

u∈Vi

∀
v∈Vk

u a v
︸︷︷︸

♣

⇔ ψ(u) a v
︸   ︷︷   ︸

♠




∨




∀

u∈Vi

∀
v∈Vk

¬u a v
︸ ︷︷ ︸

♥

⇔ ψ(u) a v
︸   ︷︷   ︸

♦





Proof. We head towards a contradiction. Negating the claim we get:

(

∃
u∈Vi

∃
v∈Vk

¬♣ ∧ ♠ ∨ ♣ ∧ ¬♠
)

∧
(

∃
u∈Vi

∃
v∈Vk

¬♥ ∧ ♦ ∨ ♥ ∧ ¬♦
)

which leads to four cases with similar proofs. We will consider one of them (corre-

sponding to ¬♥∧ ♦ and ♣ ∧ ¬♠) and omit the other. Let us then assume that there exist

x, x′ ∈ Vi and y, y′ ∈ Vk such that:

x a y ∧ x′ a y′ ∧ ψ(x) a y ∧ ¬ψ(x′) a y′.

Let g be a partial isomorphism of the form g = {x → x′, y → y′}. By homogeneity of

G, there is some full automorphism g′ ∈ Aut(G) extending g. If additionally we were

able to force g to fix the layer V j, we would be almost done. Let us try to achieve that

property.

For that purpose, in V j we choose a vertex v such that:

I. v < ψ({x, x′}),

II. if G j,k is a graph of type 2. defining a bijection φ : Vk → V j, then also v <

φ({y, y′}).

Clearly such vertex must exist – two above conditions exclude at most 4 different ver-

tices from the infinite set of candidates. The function g extended with v
g
−→ v stays a

correct isomorphism, because:
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• in Gi, j by definition of isomorphism we need the edges {x, v} and {g(x), g(v)} to

be equally colored, and, in fact, they are. We get this thanks to the condition

I.: x is connected with all vertices from V j \ {ψ(x)} by x-edges, x ∈ {a, b}. We

similarly handle x′.

• in turn in G j,k — if it is a graph of type 1., the needed equality of colors of edges

{y, v} and {g(y), g(v)} trivially holds. If it is a graph of type 2., the equality of

colors is derived similarly as in Gi, j, using the condition II.

Presence of the vertex v ensures that layer V j is preserved by the full automorphism

g′ ∈ Aut(G) we get by homogeneity.

Since Gi, j is of type 2., the vertex ψ(x′) is the only possible choice for the image of

ψ(x) under g′ — this is the only vertex x′ is connected to by an appropriately colored

edge. Because g′ is an automorphism, we get that ψ(x′) a y′, which leads us to the

contradiction.

From the lemma we have just proved one easily derives the following corollary:

Corollary 2. The following relation ≡ on layers is transitive:

Vi ≡ V j ⇔ the graph Gi, j is of type 2.

Furthermore, if Vi ≡ V j and V j ≡ Vk then f j,k ◦ fi, j = fi,k, where fi, j, fi,k, f j,k are the

bijections determined by graphs Gi, j,Gi,k and G j,k.

In Lemma 5 below, which is the last step of the proof of case C), we will apply the

following fact (a special case thereof is shown in Theorem 2 in [19]):

Lemma 4. Consider a homogeneous 3-graph G and a partition of its vertex set V =
⋃

n∈N Un into sets U• of equal finite cardinality. Suppose further that for every n ∈ N,

there is an automorphism πn of G that swaps U0 with Un and is identity elsewhere.

Then G admits wqo.

Proof. Let G = (V, a, b, c) be a 3-graph. Define for u ∈ U0 the sets Vu ⊆ V , which we

call layers:

Vu = { πn(u) | n ∈ N } .

We will prove that the structure G′ = (V, a, b, c, (Vu)u∈U0
) admits wqo. This will imply

that G admits wqo as well; indeed, compared to G, structure G′ is equipped with

additional unary relations V•, which only makes the order ✂ in Age(G′) finer than the

analogous order in Age(G).

Let Gn denote the induced substructure of G′ on vertex set Un. By the assumptions,

for every n,m ∈ N there is a swap of Un and Um that, extended with identity elsewhere,

is an automorphism of G′. In consequence, all structures G• are isomorphic, and the

embedding order ✂ of induced substructures of G′ is isomorphic to finite multisets

over Age(G0), ordered by multiset inclusion. Thus (Age(G′),✂) is isomorphic to the

multiset inclusion inM(Age(G0)), which is a wqo as U0 is finite. For any wqo (X,≤),

analogous isomorphism holds between the lifted embedding order (Age(G′),✂X) and

the multiset inclusion in multisets over induced substructures of G0 labeled by elements

of X, and again the latter order is a wqo. Thus G′ admits wqo.
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Lemma 5. The 3-graph G admits wqo.

Proof. We are going to prepare the ground for the use of Lemma 4. By Corollary 2.

the vertex set V partitions into V =
⋃

n∈N Un so that

a) every layer Vi shares with every set Un exactly one vertex: Un ∩ Vi = {v
(n)

i
},

b) if fi, j is the bijection determined by Gi, j (a graph of type 2.), then fi, j(v
(n)

i
) ∈ Un,

so all the bijections preserve every set U•.

Intuitively, G can by cut into thin ’slices’ perpendicular to the layers V•. By thin we

mean that the slices have exactly one vertex in each layer. The cut is made along the

bijections dictated by the graphs of type 2. as in the picture bellow:

U1 U2 U3 U4 U5 U6 U7 U8
. . .

. . .
. . .

. . .
. . .

V1

V2

V3

V4

We observe that for every n, the bijection hn : V → V that swaps U1 and Un along

the only bijection U1 → Un that preserves layers, and is identity elsewhere, is an

automorphism of G. Indeed, for any three slices Ua,Ub,Uc we have that:

v
(a)

i
a v

(c)

j
⇔ v

(b)

i
a v

(c)

j

so the edges
{

v
(a)

i
, v

(c)

j

}

and
{

v
(b)

i
, v

(c)

j

}

are colored the same way. The above equivalence

is obvious in case when Gi, j is a graph of type 1. In the case of graph of type 2., the

vertex v
(c)

i
is connected with all vertices from V j but one by x-edges for some x ∈ {a, b}.

However, the special vertex fi, j(v
(c)

i
) that is not connected by a x-edge, by the condition

b), also belongs to Uc, so it does not interfere with above equivalence.

By Lemma 4 we deduce that G admits wqo, which completes the proof.

7. Case B) in the proof of Theorem 4

Let a, b be the two colors such that the graph H = (V, a ∪ b) is a sum of disjoint

cliques. The color appearing between the cliques we mark as c. Since the set of vertices

V is infinite, the graph H cannot be a finite sum of finite cliques. Furthermore, by

homogeneity we have that all ab-cliques in G are isomorphic, so their sizes are equal.

We then have three cases to investigate:

1. H is a sum of infinite number of infinite ab-cliques,

2. H is a sum of finite number of infinite ab-cliques,

3. H is a sum of infinite number of finite ab-cliques.
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Let us concentrate on the first case. Because each ab-clique K E G maximal in

terms of relation ’E’ is homogeneous, we can apply Theorem 2 to deduce that either

K admits wqo, or it contains arbitrarily long x-paths for some x ∈ {a, b}. We only need

to consider the former case.

The crucial observation is that the embedding order on induced substructures of G

is isomorphic to the multiset inclusion inM(Age(K)). Indeed, any induced substructure

X ✂ G splits into the ab-cliques, and as there are only c-edges between the cliques,

this split of X determines X uniquely. Finally, the choice of particular ab-cliques is

irrelevant, as they are all isomorphic.

As the multiset inclusion inM(Age(K)) admits wqo by assumption, being itself a

wqo in particular, we deduce that (Age(G),✂) is a wqo too. Similarly one observes

that the lifted order ✂X is a wqo, for any underlying wqo (X,≤).

The second case, when H is a sum of k infinite ab-cliques, is dealt analogously with

the only difference that multisets over Age(K) of size at most k are considered instead

of multisets of unbounded size.

Finally the third case, when H is a sum of finite ab-cliques, follows immediately

by Lemma 4.

8. Case A) in the proof of Theorem 4

This is the most extensive part of the proof. Now we assume that case A) of

Lemma 1 holds and analyze the consequences. We are going to present a chain of

lemmas that eventually gives us the existence of arbitrarily long paths in G.

From now on we fix the color c appearing in case A) of lemma 1 and consider it

as the no-edge relation. Consequently, we will treat G as a 2-edge-colored graph. For

that reason we define Colors′ = Colors \ {c}. In all pictures in this section, the lack

of an edge between some two vertices of graph will mean that they are connected by a

c-edge.

Let us introduce a few new notations:

• xyz . . . will denote an ab-path with consecutive edges colored by x, y, z, etc.

(a, b ∈ Colors′). E.g., aba corresponds to the following path:
a b a

The

single-vertex path will be written as •.

• For cycles we will use similar notation: ◦xy . . . z stands for a ab-cycle with con-

secutive edges painted x, y, . . . , z.

• For two given graphs G1 and G2, a graph G1 + G2 is built as follows: We take

disjoint copies of G1 and G2 and connect the two parts with c-edges. E.g., aa+ •

denotes the graph: ”
a a

”.

• For a given graph G1, a sum of its k copies (in the above sense) is written as

k ·G1, e.g. 3 · • = • + • + •.

• Discrete graph Dk is a graph k · •.

Now we can reformulate the case A) of Lemma 1 using the new convention:
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Lemma 1 (new formulation of case A). G contains the following induced subgraphs

. . . a

x

, a

a) arbitrarily large discrete graphs

Dk for k ∈ N

b) above graphs: ax and a + •

for some colors a, x ∈ Colors′

8.1. Adding isolated vertices

Our first goal is to show that G embeds a graph ax + k · • for each k ∈ N. The

proof will be inductive. The induction base follows easily by the assumed condition

A). Two coming lemmas, when combined, will form the inductive step. From now on,

the expression k · • will appear many times, so for readability we will emphasize it as

k · • .

Lemma 6. Let G be a strongly homogeneous, 2-edge colored graph that embeds arbi-

trarily large discrete graphs and also the subgraphs ax+ k · • and a+ •+ k · • for some

a, x ∈ Colors′ and k ∈ N. Then G embeds graphs:

1. a2y + k · • ,

2. a2 + • + • + k · •

for some colors a2, y ∈ Colors′.

(It is important to note that a does not have to be equal to a2.)

Lemma 7. Let G be a strongly homogeneous, 2-edge colored graph that embeds

graphs ay + k · • and a + • + • + k · • for some a, y ∈ Colors′ and k ∈ N. Then G

embeds graph az + • + k · • for some color z ∈ Colors′.

Juxtaposition of those lemmas allows us to ’add’ arbitrarily many isolated vertices:

{

ax + k · •

a + • + k · •

}

Lem. 6.
−−−−−→

{

a2y + k · •

a2 + • + • + k · •

}

Lem. 7.
−−−−−→






a2z + • + k · •

a2 + • + • + k · •






Similar scheme will emerge also in subsequent parts of the proof: in analogous way

we will later be adding isolated edges and two-edge paths.

Now, let us move on to the proof of Lemmas 6 and 7. They will be the first from a

group of lemmas making a heavy use of the amalgamation property.

Proof of Lemma 6. By assumptions we know that G1 = ax + k · • E G as well as

G2 = a + • + k · • E G for some given colors a, x ∈ Colors′. The set Colors′ has two

elements — let b be the second of its elements, different from a.
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Current target. To prove the lemma, it suffices to show one of the following state-

ments:

1) G embeds a graph a + • + • + k · •

(paired with G1, it will give us the thesis of lemma),

2) G embeds graphs b + • + • + k · • and by + k · •

(here G1 would not help, since lemma requires compatibility of edge colors, yet

G1 may not contain b-edge if x = a).

Instance 6.1. We begin by considering the following amalgamation instance:

a + k · •

ay + k · •

a + k · •

1)
∃

¬∃

If in its solution the edge is not present, we get graph a + • + • + k · • , so 1) is

obtained immediately. Assume the contrary — that some y-edge appeared y ∈ Colors′.

Instance 6.2. Using the obtained graph, we build a new instance:

a y + k · •
a y

a

+ k · • a y + k · •

a y

b

+ k · •

1) 1)

a ¬∃

b

The above instance is one of the few that actually use the strong amalgamation

property. As shown on the picture, in cases when we get an a-edge or we do not get an

edge at all, condition 1). is easily met. Let us assume we obtained a b-edge.

At this point we have to notice that b+ay+ k · • embeds a graph b+•+•+ k · • , so

from now on to prove 2), it suffices to obtain ab + k · • . Hence, if y = b, we would

have the missing graph ab + k · • as a subgraph of b + ay + k · • . It then only remains

to consider the case y = a.

For later use, from b + aa + k · • we take the following subgraph G3:
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a a
G3 = + k · •

Instance 6.3. We use it to construct a new instance of amalgamation:

a

aa + k · •

a

aa

b

+ k · •

a

aa + k · •

a

aa

a

+ k · •

2) 1)

G4 =

b ¬∃

a

Again, two cases immediately lead us to the end of the proof (see the picture), so only

one needs further examination: If an a-edge is present in the solution, we have the

graph G4 = ◦aaaa+ •+ k · • . It will come useful in a moment (at the end of the proof),

but first we have to ’construct’ yet another one. The construction will take three up-

coming amalgamations, then we will return to G4.

Instance 6.4. To build the instance we again use graph G3, this time paired with the

discrete graph Dk+4 — we can afford to do that, since in G embeds arbitrarily large

discrete graphs.

aa

+ k · •

aa

b

+ k · •

aa

+ k · •

aa

a

+ k · •

2) 1)

G5 =

b ¬∃

a
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The acquired graph G5 will be used in Instance 6.6. To complete the proof of lemma,

we still need one more graph — namely aaa + k · • . We will get it quickly in the

following instance of amalgamation:

Instance 6.5. This time we put together two copies of G3:

a

a a

a

+ k · •

a

a a

ab

+ k · •

a

a a

a

+ k · •

a

a a

aa

+ k · •

2) we get aaa

we get aaa

b ¬∃

a

If we obtained a b-edge, we luckily end, having met the condition 2). In both

remaining cases from the resulting graph we derive a path aaa.

Instance 6.6. Using that path together with G5 (from Instance 6.4), we construct an-

other instance of amalgamation. Fortunately, it is the penultimate instance in the proof

of the current lemma.

a
a

aa

+ k · •
a

a

aa

b

+ k · •

a
a

aa

+ k · •

a
a

aa

a

+ k · •

2) 1)

G6 =

b ¬∃

a

Similarly as in all previous instances, only one case does not end immediately by satis-

fying one of the conditions 1) or 2). Let G6 be the graph we get in the a-edge–

case.
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Instance 6.7. We have nearly made it through to the end of the proof of Lemma 6. For

construction of the last amalgamation instance we need graphs G4 (from Instance 6.3)

and G6 (just created).

a
a

a

a

a

+ k · •

a
a

a

a

a

b

+ k · •

a
a

a

a

a

+ k · •

a
a

a

a

a

a

+ k · •

2) 1)

1)

b ¬∃

a

Each of three possible outcomes of this instance allows to fulfill the conditions

1) or 2), thus we finally completed the proof of Lemma 6.

There is nothing left to do but to proceed with proving the next lemma. This proof

will be a bit shorter, as it consists only of four amalgamation instances.

Proof of Lemma 7. The assumptions of the lemma require G to embed the following

graphs:

• graph G1 = ay + k · • ,

• graph G2 = a + • + • + k · • obtained as the result of previous lemma.

for some colors a, y ∈ Colors′. As before, let b denote the second (i.e. different than

a) color from two-element set Colors′.

Proof structure. Present lemma aims at showing that G embeds a graph of the form

az+ •+ k · • . The structure of the proof has a slight subtlety: depending on color y two

different cases may occur:

1. if y = b, then we are bound to succeed with finding the required graph az + • +

k · • ,

2. however, if y = a, in some case we may not immediately find such graph. Instead

of it, first we will find graph G′
1
= ab + k · • — a graph that looks like G1 we

have in our assumptions, but with one edge recolored from y to b. This graph

allows us to repeat the whole reasoning, but now with the guarantee that we will

end in the first case (y = b).
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Let us now move on to the proof — even if the subtlety is not entirely clear now,

everything should get more evident, when we will get to the problematic point.

Instance 7.1. The first amalgamation instance is built using the graphs G1 and G2

following from the assumptions:

a

y

+ k · •a

y

a + k · • a

y

+ k · •

a

y

b + k · •

a ¬∃

b

In case where the solution does not contain a new edge, we directly get the graph we

are looking for. The case of and a-edge is not much difficult – to successfully deal with

it, we only need one additional amalgamation. It turns out, that the appearance of a

b-edge is the most cumbersome case. We will return to it in instance 7.3.

Instance 7.2. Here we use the graph axa we just obtained (in case of a-edge) together

with G2.

a a

y

+ k · •

a a

y

+ k · •

a a

y

x

+ k · •

¬∃ ∃

In each of possible cases we get a graph that matches the pattern we look for — a graph

az+ •+ k · • for some z ∈ Colors′. Let us return to the omitted b-edge case of Instance

7.1:

Instance 7.3. Present instance differs from the previous one only with the color of one

edge, but it has substantial consequences for our proof.
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a b

y

+ k · •

a b

y

a

+ k · •

a b

y

+ k · •

a b

y b

+ k · •

G3 =

a ¬∃

b

Let us now consider two possible values of edge color y in the resulting graph.

Case 1◦. (y = b). Here, to get the graph we look for, it suffices to build one additional

amalgamation instance. As the ingredients we take two copies of graph G3, having in

mind the assumed color substitution y = b:

Instance 7.4.

a
b

a
b b

+ k · •a
b

a
b b

?

+ k · • a
b

a
b b

+ k · •

∃ ¬∃

It is easy to see that in each case we get an appropriate subgraph required by the lemma.

We may thus move on to the second case.

Case 2◦. (y = a). Color y has originally appeared in our considerations, because we

started with the assumed graph G1 = ay+ k · • . If y is equal to a, we cannot directly use

the technique from the case 1◦., however – happily – not everything is lost. After the

instance 7.3. we obtained (as a subgraph of G3) the following graph: G′
1
= ab + k · • .

It enables us to repeat the whole proof of the lemma 7. with a new value of variable y,

now being certain, that we will succeed: even if none of the previous instances yields

the graph we want, we will necessarily fall to the case 1◦.

Above observation completes the proof of Lemma 7.

Lemmas 6 and 7 — in accordance to the previous remarks — form an inductive

step that allows to easily prove the following corollary:

Corollary 3. If G satisfies the condition A) of Lemma 1 then for every k ∈ N there exist

colors a, x ∈ Colors′ such that G embeds the graph:

ax + k · •
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We omit the simple proof.

8.2. Adding isolated edges

In this part of the proof we will be showing a fact similar to the one stated in

Corollary 3, but respecting the existence of graphs ax + k · a E G for some a, x ∈

Colors′:

a
a x

k ·

This time the whole reasoning is divided into three lemmas. Their proofs will be a bit

simpler, but the way we should connect them to form a valid inductive step will be less

obvious.

Notational remark. Some parts of the statements of the three lemmas were circled .

Those expressions are required from the formal point of view, but in fact they make the

idea behind the lemmas harder to grasp. It should be noted that the graph S present in

those fragments never changes — the lemma ’gets’ it from the assumptions and yields

it in its thesis in an unchanged form. Similarly, the discrete graphs n ·• contribute to the

proof in a very simple way: each lemma ’uses’ a few their isolated vertices (constants

M•) and returns the remaining (n − M•) vertices. Due to that fact, when reading the

lemmas, one should not pay a great attention to the circled fragments. All we have to

know is that they exist, then we may safely ignore them.

Lemma 8. Let G be a homogeneous, 2-edge-colored graph which embeds aa+ n · • + S

for some given n ∈ N and colors a, b ∈ Colors′ (a , b). Then, if n ≥ M8, G embeds

also one of the following graphs:

1. a + a + (n − M8) · • + S ,

2. ab + (n − M8) · • + S

for some constant M8 ∈ N (its precise value is not important).

Lemma 9. Let G be a homogeneous, 2-edge-colored graph that embeds a graph ab +

n · •+S for some given n ≥ M9 and colors a, b ∈ Colors′ (a , b). Then G also embeds

the graph:

x + y + (n − M9) · • + S

for some constant M9 ∈ N and colors x, y ∈ Colors′.

Lemma 10. Let G be a strongly homogeneous, 2-edge-colored graph that embeds the

following graphs:

1. ax + n · • + S ,

2. a + y + n · • + S ,

for some n ≥ M10 and colors a, b, x ∈ Colors′ (a , b) and y ∈ {a, x}. Then one of the

following cases holds:
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1. G embeds a graph a1x1 + a1 + R for some a1, x1 ∈ Colors′,

2. G embeds a graph ab + R and also embeds either aa + b + R or bb + a + R .

Above R = (n − M10) · • + S , and M10 ∈ N is — as in previous lemmas — some

constant resulting from the structure of the proof.

Proofs of the above lemmas will help us to show the following corollary:

Corollary 4. If a strongly homogeneous, 2-edge-colored graphG satisfies Corollary 3,

i.e., for every k ∈ N there exist colors a0, x0 ∈ Colors′ such that G embeds the graph

a0x0+k ·•, then also for every k ∈ N there exist (potentially new) colors a′, x′ ∈ Colors′

such that G embeds the following graph:

a′x′ + k · a′

(We first show how we derive the above corollary from the lemmas, and only later will

we focus on proving the three lemmas.)

Proof. The procedure of ’producing’ the desired graph a′x′ + k · a′ will be inductive.

Using it, we will be successively getting the following graphs:

a0x0 + (3k ) · M · •

a1x1 + (3k − 1) · M · • + a1

a2x2 + (3k − 2) · M · • + a1 + a2

a3x3 + (3k − 3) · M · • + a1 + a2 + a3

. . .

a2kx2k + (k ) · M · • + a1 + a2 + a3 + · · · + a2k

. . .

a3kx3k + (0 ) · M · • + a1 + a2 + a3 + · · · + a2k + · · · + a3k

After repeating the inductive step 2k times, we will get the graph that – apart from

the path a2kx2k – will contain 2k isolated edges colored by a1, a2, . . . , a2k ∈ Colors′

respectively. It is clear there exists a group of at least k edges painted with a common

color w. If a2k = w we get the thesis of the corollary — we just found a graph:

a2kx2k + k · a2k

Similarly, if in one of the next k steps we will get a2k+i = w (i ∈ {1, 2, . . . , k}), the

requirements of the corollary are met. Otherwise, we have a2k = a2k+1 = a2k+2 = · · · =

a3k = w (where w ∈ Colors′, w , w), so we have just obtained k isolated edges in a

color w together with a path wx3k. It would complete the proof of the corollary.

It remains to show how to use the three lemmas to build the inductive step.
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Inductive step. At this point it is easy to guess, what was the purpose of the circled

fragments of the form n · • + S appearing in the lemmas:

a2kx2k + (k ) · M · •
︸              ︷︷              ︸

k · M · •

+ a1 + a2 + a3 + · · · + a2k
︸                        ︷︷                        ︸

S 2k

The first part n · • corresponds to a ’resource’ of vertices that is used by the lemmas to

’produce’ the new edges ai that appear in the induction scheme we presented earlier.

In turn S is a common notation for the edges that are already produced: we begin with

empty S 0 and after each inductive step we add one edge to it. After i steps we get

S i = a1 + a2 + · · ·+ ai. For the sake of simplicity, we will omit both kinds of graphs in

the further considerations, only indicating their presence with symbol ♣ .

Let us assume we have already shown that G embeds:

ax + ♣

Our current goal is to show, that G also embeds:

a′x′ + a′ + ♣

If x = a (so we have aa+ ♣ ), we use lemma 8., trying to show that G embeds a+a+ ♣ .

If we fail because the second option from lemma takes place, we get the graph ab + ♣

(for b , a). It allows us to move on to the case x = b. If x = b (and then we have

ab+ ♣ ), we can now use lemma 9. In this case we will certainly get the graph v+w+ ♣

(where v,w ∈ Colors′).

Summing the two above cases up, we may end getting one of the three graphs:

a + a + ♣ , a + b + ♣ , b + b + ♣ ,

wherein the latter two are obtained only when x = b. In other words, we now have:

1. ax + ♣ , (from assumptions)

2. a + y + ♣ for y ∈ {a, x}. (just obtained)

It turns out that those are exactly the assumptions of Lemma 10. Let us use it then.

The lemma lists two possible cases. When the first one holds, we directly get what

we wanted — the graph:

a′x′ + a′ + ♣

for some a′, x′ ∈ Colors′.

The second case makes the situation a bit more complicated. Although just as we

wanted, we get two separate paths — w.l.o.g. aa + b + ♣ — but they do not share a

color of some edge, this being needed to complete the proof. We have to repeat all the

steps we made so far, adding the obtained edge b to ♣ :

♣
′ = b + ♣
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If we again end up in this ’unfortunate’ second case of lemma 10, this time we will

finally succeed closing the proof. Indeed, in that situation we will get the graph:

ab + ♣ ′ = ab + b + ♣

which corresponds to the graph a′x′ + b′ + ♣ appearing in the induction scheme (for

a′ = b and x′ = a).

Proof of Lemma 8. A simple proof of this lemma consists of two amalgamations only.

To construct the first one, we use two subgraphs of graph aa + ♣ that is present in the

assumptions:

Instance 8.1.

a a

a
+ ♣

a a

a
+ ♣

a a

a

b

+ ♣

a a

a

a

+ ♣

case 1. case 2.

¬∃ b

a

If an a-edge does not appear, either case 1. or 2. of the lemma holds, so we are done.

If it does, we use two copies of the resulting graph to form the next amalgamation:

Instance 8.2.

a
a

a
a a

+ ♣
a

a

a
a a

+ ♣
a

a

a
a a

b

+ ♣

a
a

a
a a

a

+ ♣

case 1.

case 1.

case 2.

¬∃ b

a
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Here, no matter what the result is, we get one of the cases stated in the lemma, what

ends the proof. (We may notice here, that for this lemma the constant M8 is equal to 2,

both isolated vertices were consumed in the first instance of amalgamation.)

Proof of the next lemma is equally simple — it is built from three amalgamations,

wherein two of them are very similar, so we omit one of them.

Proof of Lemma 9. Now in the assumptions we have the graph ab + ♣ E G. We build

the first instance as in the previous proof:

Instance 9.1.

a b

a

+ ♣
a b

a

+ ♣

a b

a

b
+ ♣

a b

a

a
+ ♣

¬∃

b
a

In the case of nonexistent edge we get what we were looking for — two disjoint edges

(+ ♣ ). However, if the edge exists, we have to use two further instances — for a and

for b. Again, they are similar, so we omit the second one.

Instance 9.2. (The third one is analogous.)

a
a

a
a b

+ ♣a
a

a
a b

+ ♣ a
a

a
a b

b

+ ♣

a
a

a
a b

a

+ ♣

a + a + ♣

a + b + ♣

b + b + ♣

¬∃ b

a
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This ends the proof of the lemma, since in all above cases we get the subgraphs we

need.

Now the only remaining part is the proof of Lemma 10.

Proof of Lemma 10. From the assumptions we get the subgraphs ax + ♣ E G and

a + y + ♣ E G for some colors a, b, x ∈ Colors′ (a , b) and y ∈ {a, x}.

We will start by considering the following instance:

Instance 10.1.

y x a

+ ♣

y x a

+ ♣

y w x a

+ ♣

case 1.

¬∃

∃

If in its solution the edge will not emerge, we get appropriate graph: since y ∈ {a, x},

we know that y will appear somewhere on the path ax, and this suffices to fulfill the

case 1. of the lemma we are proving.

Otherwise we get a path P = ywxa+ ♣ . We will consider two cases, depending on

whether it has the form W = ab?? + ♣ or not.

We should first observe, that there is only one case when P does not match W.

Indeed: When x = b, P is bound to have the form W. In the other case P takes the

shape awaa + ♣ , since y ∈ {a, x}, and yet now x = a. It follow immediately that the

only case when P is not of the form W is P = aaaa + ♣ .

Case 1◦. (P = abαβ+ ♣ , where α, β ∈ Colors′) Here, the only amalgamation instance

is built as follows:

Instance 10.2.
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a b α

β

β

+ ♣

a b α

β

β

+ ♣

a b α

β

β

γ

+ ♣

case 1. or 2.

case 1.

¬∃

∃

If as a result of amalgamation we get an edge, we may easily fulfill case 1. of our

lemma — the only thing we need is that color γ appears on the path ab, and this of

course is happening, since γ ∈ {a, b} = Colors′.

If in turn the edge was not produced, we get (as a subgraph): ββ + a + ♣ . Now,

depending on the value of β, either case 1. or 2. is fulfilled. Indeed, when β = a we

obtain the subgraph aa + a + ♣ and case 1. of the lemma holds. When we get β = b,

then (together with graph ab + ♣ E P) we have all what is needed for case 2. of the

lemma.

Case 2◦. (P = aaaa + ♣ ) Here, the simple amalgamation instance similar to the one

from case 1◦ (picture omitted) completes the proof only in cases ¬∃ and a . If

instead we got the following result

a a a

a

a

b

+ ♣

we cannot use it for case 1. of the lemma, and to satisfy the case 2. an additional graph

♥ = ab + ♣ is required. Another sequence of amalgamations awaits — four extra

instances will be needed.

Instance 10.3.
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a

a

a

+ ♣

a

a

a

+ ♣

ab

a

a

+ ♣

aa

a

a

+ ♣

case 1. case 2.

¬∃ b

a

Above, when the edge does not exist case 1. of lemma easily follows. If in turn we

get a b-edge, there appears the graph ♥ we are searching for, allowing to meet the

requirements of case 2. Let us assume then, that we got an a-edge.

Instance 10.4. The graph we just obtained allows to build the following instance:

a a
a

a a + ♣

a a
a

a a + ♣

a b a
a

a a + ♣

a a a
a

a a + ♣

case 1. case 2.

¬∃ b

a

As before, the lack of an edge of the appearance of a b-edge lead us straight to the

cases 1. or 2. Again, we assume we unluckily got an a-edge.

Instance 10.5. From the result of previous instance we take the subgraph ◦aaa + ♣ ,

and, pairing it with the graph a + a + ♣ , we build an amalgamation as follows:
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a a

a a

+ ♣
a a

a a

+ ♣
a b a

a a

+ ♣

a a a

a a

+ ♣

G1 =

case 1.

¬∃ b

a

Here, if we got a b-edge, we finish with case 2., having found the graph ♥. If the edge

was not present, we immediately get a graph G1 that later will help us to finish the

proof. If in turn an a-edge appeared, we need to perform one additional amalgamation

in order to get the same G1.

Instance 10.6. (building G1) Now, we pair the previous result with the path P:

a

a

a

a

a

a

+ ♣
a

a

a

a

a

a

+ ♣
a b

a

a

a

a

a

+ ♣

a a

a

a

a

a

a

+ ♣

case 1. graph ♥

graph G1

¬∃ b

a

In two out of three possible cases we finish immediately, while in the third one the

expected graph G1 appears as a subgraph.

Instance 10.7. Using the graph G1 and the result of instance 10.4., we perform the last

amalgamation in the proof of this lemma, thus providing the final missing link needed

to finalize the proof of Corollary 4.

a
a a a

a

+ ♣

a
a a a

a

+ ♣

a
a v a a

a

+ ♣

case 1. case 1.

¬∃ ∃
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No matter if the edge appeared or not, case 1. of the lemma gets fulfilled, what finishes

the proof.

8.3. Adding paths of length 2

In the previous part of the proof we had a ’resource’ ♣ of isolated vertices and we

could use them as needed to construct successive instances of amalgamation. From

now on — thanks to Corollary 4. — we may afford to maintain an arbitrarily large

collection of edges a (a ∈ Colors′).

The aim of the next four amalgamations will be to show, that we actually can afford

even more — a collection of 2-edge paths of the form ax (for some x ∈ Colors′). It

is the last step we need to make before showing the ultimate goal of this branch of the

proof — deriving the existence of arbitrarily long ab-paths in G.

Let us formalize the lemma we intend to prove:

Lemma 11. If a strongly homogeneous, 2-edge-colored graph G satisfies Corollary 4,

i.e., for every k ∈ N there exist colors a, x ∈ Colors′ such that G embeds the graph

ax+ k · a, then for every n ∈ N there exist colors a, y ∈ Colors′ such that G embeds the

graph

n · ay E G

Proof. As in the previous part, the proof will be inductive. This time, aiming to find

n · ay E G (for some y ∈ Colors′), we will produce successively all the graphs bellow:

ax0 + (2n ) · M · a

ax1 + (2n − 1) · M · a + ay1

ax2 + (2n − 2) · M · a + ay1 + ay2

ax3 + (2n − 3) · M · a + ay1 + ay2 + ay3

. . .

ax2n + (0 ) · M · a + ay1 + ay2 + ay3 + · · · + ay2n

At each point, to produce one isolated path ayi we will have to get some constant

number M ∈ N of isolated edges a from our ’resource’. After completing 2n steps,

among the resulting paths ay•, by pigeonhole principle, there exists a subset of n paths

all colored the same way. This will finish the proof.

Similarly as before, to hide the unnecessary details, we will use the symbol � for

the frequently appearing graphs of the form α · a + ay1 + · · ·+ ayi — they are almost

passive in the steps of the coming proof. It is enough to remember, that each time we

need a new isolated edge a, we take it from � . Moreover, after each inductive step we

add to � a new isolated path ayi.

Inductive step. From the assumptions we have the graph au + � (for some a, u ∈

Colors′), and this time our goal is to prove that G embeds a graph av + aw + � . As

we have already mentioned, we only have to consider four instances of amalgamation.

Instance 11.1.
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a

u u

a

+ �

a

u u

a

+ �

a

u u

a

?

+ �

¬∃ ∃

No matter what the result will be, we will get the following path:

a x y
+ �

for some x, y ∈ Colors′.

Instance 11.2. Using it (with an additional edge a taken from � ), we build the follow-

ing instance:

a

x

y

x

a

+ �

a

x

y

x

a

+ �

a

x

y

x

a

z

+ �
¬∃ ∃

If the edge is not present in the solution, we readily get two disjoint paths of length 2.

Suppose then that some z-edge appeared (z ∈ Colors′). If z = y, we move on straight

to the instance 4. If in turn z , y, an additional step in necessary:

Instance 11.3. Once more we get one edge from � and build an instance similar to the

previous one — the only difference is the new edge colored with z , y.

a

x

y

z

x

a

+ �

a

x

y

z

x

a

+ �

a

x

y

z

x

a

γ

+ �
¬∃ ∃
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If we do not obtain an edge, we end having – as before – two disjoint paths. When

some edge exists, we are sure that its color γ ∈ Colors′ is either equal y or z, since

y , z and Colors′ has only two elements. W.l.o.g. let us assume, that γ = y.

Then we have, as a result of Instance 11.2 or 11.3, a graph of the form:

a x

y

y

x a

+ �

Using it we may create the last amalgamation instance and finalize the proof.

Instance 11.4.

a x y

y

x

x

a

a

+ �

a x y

y

x

x

a

a

+ �

a x y

y

x

x

a

a

α

+ �

¬∃ ∃

Independently form the existence of an edge, in the result we may fine a subgraph of

the following form:

av + aw + �

Its presence ends the proof of the lemma.

8.4. Producing arbitrarily long paths

There is the last thing to do in case A) — showing that in G arbitrarily long paths

exist. It is formalized by the following lemma:

Lemma 12. If a homogeneous, 2-edge-colored graph G satisfies Lemma 11, i.e., for

every n ∈ N there exist colors a, x ∈ Colors′ such that G embeds the graph n · ax E

G, then G also embeds an arbitrarily long ab-path (b being the second element of

Colors′).

Proof. Once more we conduct an induction.
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Inductive step. Here we will be showing how from shorter paths we may produce

longer ones: Assuming that we have a graph that is a sum of paths of length d ∈ N, d ≥

2., we will build (using amalgamation) a graph that is a sum of (fewer) paths of length

2d − 1.

More precisely, we will show how from the graph 2k ·P (where k ∈ N and P is some

ab-path of length d) we can derive in k steps a graph Q1 + Q2 + · · ·+ Qk, where Q• are

ab-paths of length 2d−1. Taking sufficiently large k we will ensure, that among those k

paths (by pigeonhole principle) there will be a group of size n of equally colored ones.

The outline of the procedure is as follows:

(k ) · P

(k − 1) · P + Q1

(k − 2) · P + Q1 + Q2

(k − 3) · P + Q1 + Q2 + Q3

. . .

(0 ) · P + Q1 + Q2 + Q3 + · · · + Qk

To show a single step, one amalgamation will be enough:

Instance 12.1.

(d − 3) edges (d − 3) edgesx y
z z

y x

+ (2k − 2i − 2) · P + Q1 + · · · + Qi

x y
z z

y x

+ (2k − 2i − 2) · P + Q1 + · · · + Qi

w

x y
z z

y x

+ (2k − 2i − 2) · P + Q1 + · · · + Qi

¬∃ ∃

In both cases we get the path of length 2d − 1 we wanted. It should be noted here, that

the construction required a pair of equally colored paths.

Repeating the above amalgamation k times (according to the previously mentioned

outline) we get a collection of k disjoint paths, each of length 2d − 1. They are not

necessarily painted the same way, but fixing some sufficiently large k (e.g. k = 2d−1 · n

surely would do), we may choose a subset of n same-looking paths. We are allowed to
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do that, since by assumption for each k ∈ N we can produce a graph k · P (for some

ab-path P of length d). This ends the proof of the inductive step.

Because at the very beginning we can choose an arbitrarily large sum of equal

paths ax, then using the inductive step repeatedly we will be proving the possibility of

producing collections of paths of increasing lengths:

2 −−−−−→ (2 · 2) − 1 = 3 −−−−−→ 5 −−−−−→ 9 −−−−−→ 17 −−−−−→ . . .

This observation completes our proof.

8.4.1. Summary

We made our way to the end of Section 8. The chain of lemmas that were stated

has its beginning at the case A) of Lemma 1. As we move along this chain, we show

the possibility of adding to the initial graphs respectively:

• first, an arbitrary number of isolated vertices,

• then, isolated edges,

• next, 2-edge paths,

• and finally, arbitrarily long paths.

At the end of the chain, we have obtained the second case of Theorem 4, so we may at

last consider the case A) as resolved.

Acknowledgements. We are grateful to the anonymous referees for valuable com-

ments.
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