One-Pass and Tree-Shaped Tableau Systems
for TPTL and TPTL,+Past

Luca Geatti, Nicola Gigante, and Angelo Montanari Mark Reynolds
University of Udine, Italy The University of Western Australia
{geatti.luca,gigante.nicola}@spes.uniud.it mark.reynolds@uwa.edu.au

angelo.montanari@uniud.it

In this paper, we propose a novel one-pass and tree-shaped tableau method for Timed Propositional
Temporal Logic and for a bounded variant of its extension with past operators. Timed Propositional
Temporal Logic (TPTL) is a real-time temporal logic, with an EXPSPACE-complete satisfiability
problem, which has been successfully applied to the verification of real-time systems. In contrast to
LTL, adding past operators to TPTL makes the satisfiability problem for the resulting logic (TPTL+P)
non-elementary. In this paper, we devise a one-pass and tree-shaped tableau for both TPTL and
bounded TPTL4P (TPTLp+P), a syntactic restriction introduced to encode timeline-based planning
problems, which recovers the EXPSPACE-complete complexity. The tableau systems for TPTL and
TPTLp+P are presented in a unified way, being very similar to each other, providing a common
skeleton that is then specialised to each logic. In doing that, we characterise the semantics of
TPTLp+P in terms of a purely syntactic fragment of TPTL+P, giving a translation that embeds the
former into the latter. Soundness and completeness of the system are proved fully. In particular, we give
a greatly simplified model-theoretic completeness proof, which sidesteps the complex combinatorial
argument used by known proofs for the one-pass and tree-shaped tableau systems for LTL and LTL+P.

1 Introduction

Among the reasoning methods used to decide the satisfiability of logical formulae, tableau methods are
among the earliest proposed and most studied solutions [4]]. Classic tableau methods for logics of the
linear time, such as, for instance, Linear Temporal Logic (LTL) [[8,9], build a graph structure which is
then traversed to look for possible models of the formula. Despite being a useful theoretical tool, such
graph-shaped tableau systems are not efficient in practice as they need to build and traverse a huge graph
structure in multiple passes. Various ways of overcoming such a limitation have been proposed in the
literature, including incremental [[7] and single pass techniques [[12]. Recently, a one-pass and tree-shaped
tableau system for LTL has been devised [11]], which does not build any huge preliminary structure and,
thanks to its pure rule-based tree-search structure, proved to be amenable to efficient implementation and
easy parallelisation [3,[10]]. Recent work also suggested that its modular structure makes it possible to
easily extend it to other linear time logics (the extension to LTL with past operators is described in [[6]).

Timed Propositional Temporal Logic (TPTL) is a linear time logic, which extends LTL with the ability
to express real-time properties of systems and computations [2]. The greater expressive power of TPTL is

@ These results were developed mainly while A. Montanari was on leave at the Stockholm University, and N. Gigante was
on leave at the University of Western Australia, supported by the AIxIA Outgoing mobility grant 2017. The work was partially
supported by the Italian GNCS project Formal methods for verification and synthesis of discrete and hybrid systems (N. Gigante
and A. Montanari), the PRID project ENCASE - Efforts in the uNderstanding of Complex interActing SystEms (N. Gigante and
A. Montanari), and the Australian Research Council funding—-DP140103365 (M. Reynolds).

A. Orlandini, M. Zimmermann (Eds.): 9th Symposium on © L. Geatti, N. Gigante, A. Montanari, and M. Reynolds
Games, Automata, Logics and Formal Verification (GandALF’18) This work is licensed under the
EPTCS 277, 2018, pp. 176190} doi:10.4204/EPTCS.277.13 Creative Commons| Attribution License.

http://dx.doi.org/10.4204/EPTCS.277.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 177

reflected in the computational complexity of its satisfiability problem, which is EXPSPACE-complete.
Originally proposed as a formal tool for the verification of real-time systems, it recently found interesting
applications in the area of artificial intelligence, to encode a meaningful class of timeline-based planning
problems [5]]. This and other application scenarios benefit from/require the use of past operators, which
allow the logic to compactly predicate about events in the past of the current time point. However, in
contrast to the case of LTL, where past operators can be supported without harm, adding them to TPTL
greatly increases the complexity of its satisfiability problem, which becomes non-elementary [1f]. For this
reason, bounded TPTL with Past (TPTLp+P) has been introduced [5]], which supports past operators,
but suitably restricts their use in order to recover an EXPSPACE-complete satisfiability problem. While
initially introduced as a specific tool to encode planning problems, TPTLp+P is interesting by itself,
since it enables the use of past operators in a fairly natural way.

In this paper, we exploit the extensibility of the aforementioned tableau system to provide a one-pass
and tree-shaped tableau method for TPTL and TPTL,+P. We present both tableau systems, which are
very similar, in a unified way by first (i) factoring out the common structure, and then (ii) showing how
to specialise it in the case of TPTL (future-only) and TPTL,+P (bounded) formulae, thus obtaining a
one-pass and tree-shaped tableau system for both logics. To show how the tableau for TPTL+P formulae
works, (iii) we characterise the semantics of the logic in terms of a guarded fragment of the full TPTL+P
logic, showing how to translate TPTL,+-P into this fragment. Furthermore, (iv) the completeness of the
two tableau systems is shown by a greatly simplified proof exploiting a new model-theoretic technique
which sidesteps the complex combinatorial argument used by known proofs for LTL and LTL+P.

The tableau systems presented here for TPTL and TPTL,+P are truly extensions of the previously
known ones for LTL and LTL+P, respectively, in the sense that their rules and behaviour are exactly the
same as before when applied to pure LTL/LTL+P formulae, further confirming the modular and extensible
nature of the one-pass tree-shaped system.

The paper is structured as follows. Syntax and semantics of TPTL, TPTL+P, and TPTL,+P are
illustrated in Section [2| Then, Section [3|describes the tableau systems for TPTL and TPTL,+P. It
first introduces the general skeleton common to both, and then it shows how to tailor it to TPTL and
TPTL,+P. Finally, soundness and completeness of both systems are proved in Section [4] Section
concludes with some considerations on the obtained results and open problems.

2 Timed Propositional Temporal Logic

This section defines syntax and semantics of TPTL [2], TPTL+P [2]], and TPTL,+P [5]. Let AP =
{p,q,r,...} be a set of proposition letters and V = {x,y,z,...} be a set of variables. A TPTL+P formula
¢ over AP and V is recursively defined as follows:

P:=p[=01 |V |xd|x<y+tc|x<c|x=uy+c
[XO1 [01U [01RO [Yo | 01Sh |1 T ¢,

where p € AP, ¢; and ¢, are TPTL+P formulae, x,y € V, ¢ € Z, m € N, and =, is the congruence
modulo the constant m. Formulae of the form x.¢ are called freeze quantifications, while those of the
forms x <y+4c, x <c, and x =, y are called timing constraints. Standard logical and temporal shortcuts,
e.g., T for pV —p, for some p € AP, L for =T, ¢; A ¢, for =(=¢; V —=¢), F¢ for T U ¢, G¢ for ~F ¢,
and P ¢ for T S ¢, as well as constraint shortcuts, e.g., x <y forx <y+0,x >yfor ~(x <y),andx =y
for =(x < y) A=(y < x), are used. A formula ¢ is closed if each occurrence of a variable x is enclosed
by a subformula of the form x.y. As for LTL+-P, the temporal operators can be partitioned in future

178 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

(tomorrow X, until U, and release R) and past (yesterday Y, since S, and triggered T) ones. TPTL is the
fragment of TPTL-+P where only future operators are used.

TPTL+P formulae are interpreted over timed state sequences, i.e., structures p = (o, 7), where
o = (0v,01,...) is an infinite sequence of states o; € 2P, for i > 0, and T = (19, 71,...) is an infinite
sequence of timestamps T; € N, for i > 0, such that (i) 7;+1 > 7; (monotonicity), and (ii) for all t € N,
there is some i > 0 such that 7; > t (progress). Formally, the semantics of TPTL+-P is defined as follows.
Functions & : V — N mapping variables to timestamps are called environments. A timed state sequence p
satisfies a formula ¢ at position i > 0, with environment &, written p):% ¢, if (and only if):

1. p):%p iff peoy

2. pE:OVe iff pELgrorp L o

3. p e iff p L 91

4 pELx<yrc iff EWZED) +

5. p):%xgc iff &(x) <c;

6. p):%xzmy—i—c iff E(x) =, EO)+c;

7. pE:x$ iff p):g, ¢, where &' = E[x + 1;);

8. pE:X¢ iff p " ors |

9. p):% o1 U iff there exists j > i such that p }zé ¢ and p):’E ¢p foralli <k < j;

10. p):% ¢ R, iff either p):é ¢, for all j > i, or there exists a k > i such that p ’:’é ¢ and

P):é ¢ forall i < j <k;

11. p):%wpl iff i>0andp™! ¢ ¢r; .

12. p):% 01S P iff there exists-j <isuch that p }zé ¢, and p }z’é ¢ forall j <k <i;

13. p):% 0N T iff either p):é ¢, for all 0 < j <, or there exists a k < i such that p lz’é o
and p):é ¢, forall i > j >k,

where &’ = £ [x « 1] is the environment equal to & possibly excepting &’(x) = 7. A closed formula ¢ is
satisfied by a timed state sequence p, written p |= ¢, if p):2 ¢, for any &. TPTL and TPTL+P can thus
be viewed as (metric) extensions of, respectively, LTL and LTL+P with the freeze quantifier x.¢, that
allows one to bind a variable to the timestamp of the current state, which can then be compared with other
variables by the timing constraints. In contrast to LTL and LTL+P, which both have a PSPACE-complete
satisfiability problem, adding past operators to TPTL causes a complexity blowup: the satisfiability
problem is EXPSPACE-complete for TPTL, but non-elementary for TPTL+P [2].

The unconstrained use of past operators in these timed logics is thus impossible in practice. However,
there are many scenarios where referring to the past may be needed, and thus it is useful to search for
possible ways of adding past operators to TPTL while retaining a (relatively) practicable complexity.
TPTLp+P has been introduced to encode a meaningful class of timeline-based planning problems, whose
synchronisation rules can interchangeably refer to the future or the past [5]]. The syntax of TPTLp+P is
similar to that of TPTL+P, the only difference being that each temporal operator is subscripted with a
bound which constrains the visibility of the operator. Formally, a TPTL,+P formula ¢ over AP and V is
recursively defined as follows:

O:=p| ¢ |1V |x[x<y+c|x<c|x=py+c
| X1 | X1 | 01Uy 02 | 1Ry 02 | Yo | Yoot | 1S 02 | 01 Ty 02,

where w € NU {400}, p € AP, @1, ¢ are TPTLp+P formulae, x,y € V, m € N, and ¢ € Z. The bound on

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 179

any temporal operator can be w = oo (or omitted) only if applied to a closed formula. This restriction
limits any temporal modality (including future ones) to look only as far as their bound. As it will be shown
later, this implies that when interpreting any timing constraint, such as, e.g., x < y+ ¢, the timestamps x
and y can be distant, at most, an amount of time which is exponential in the size of the formula.
Formally, the semantics of TPTL,+P is defined as follows. Let p be a timed state sequence and let &
be an environment. We say that p satisfies a TPTL,+P formula ¢ at position i > 0 with environment &,
written p):% @, if (and only if):
LopELXv¢r iff T —m<wandp %?1 o1
2. pE; Xp¢1 iff T —17 <wimplies p =i g |
3.p):’5 ¢1 Uy, ¢ iff there exists j > isuch that: () 7, — 7 <w, (ii) p ':é @,
and (iii) p):’5 91 forall i <k < j
4. p):% ¢1 Ry, ¢ iff either (i) 7; — 7; < w implies p):é ¢, for all j > i, or (ii) there exists
k > i such that 7, — 7; < w and p):’E ¢1,and p):é ¢, foralli < j<k;
5 pELYwer iff i>0,5-7 <w,andp #fgl o1
cpELYwer iff i>0and 57 <wimply p =5 o .
7. p):% ¢1 Sy ¢ iff there exists j <i such that: (i) & —7; < w, (ii) p }:é 02,
and (iii) p):’5 ¢ forall j <k <i;
8 p):% o1 Ty ¢ iff either (i) 7; — 7; < w implies p):é ¢, for all 0 < j <, or (ii) there exists
k <isuch that 7; — 7; <w and p):’E ¢1,and p):é ¢, forall k < j < i;
9. same semantics as TPTL+P for the remaining operators.

In addition to the bounded versions of all the temporal operators of TPTL+P, TPTL,+P includes
a weak version of both the tomorrow and yesterday ones. While the formula X,, ¢ (resp., Y,, ¢) require
the next (resp., previous) state to be distant at most w time steps and to satisfy ¢, the weak tomorrow
(resp., yesterday) operator in a formula of the form X ¢ (resp., \% ¢), requires the next (resp., previous)
state to satisfy ¢ only if such a state exists and its distance is at most w. The weak tomorrow and
yesterday operators are introduced as duals of the standard ones, in such a way that =X, ¢ = X —¢ and
Xy ¢ = X,, —¢ (and similarly for the yesterday ones). This ensures that each temporal modality has its
own negated dual (such as the until/release and since/triggered pairs), so that any TPTL,+P formula
can be put into negated normal form, where negations are only applied to proposition letters and timing
constraints. The existence of a negated normal form for TPTL,+P formulae will play an important role
in the definition of the tableau system (see Section [3.3).

3 The tableau systems for TPTL and TPTL,4+P

This section describes the one-pass and tree-shaped tableau systems for TPTL and TPTL,+P, that
respectively extend those for LTL and LTL+P presented in [[5,/6]. Soundness and completeness of the
systems are proved in Section4} The two systems are very similar, differing only in specific parts and
sharing the vast majority of their workings. Hence, a common skeleton is first described, making some
assumptions that will then be fulfilled for the two specific logics.

180 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

3.1 The common skeleton

The parts in common between the two tableau systems will be presented as if they were supposed to
handle TPTL+P formulae. TPTL is a proper fragment of TPTL+P, and TPTL,+P, as it will be shown
later, can be fully embedded in a proper guarded fragment of TPTL+P. Hence, both tableaux do indeed
handle TPTL+P formulae, albeit of a specific kind. We will mention the specific logics when stating
results that are not proved for the full TPTL+P logic.

W.l.o.g, we may assume formulae to be in negated normal form, which is guaranteed to exist for
formulae of both logics. As shown in [2]] for TPTL and in [5]] for TPTL,+P, w.l.o.g., we can also restrict
ourselves to models with a bound on the maximum temporal distance between two subsequent states.

Proposition 1 (6-bounded models [2,5]). Let ¢ be a closed TPTL or TPTLy,+P formula. A model
p = (0,7) of ¢ is said to be 5-bounded, for some 6 > 0, if 111 — T; < O for all i > 0. Then, it holds that
¢ is satisfiable if and only if there exists some 0y > 0 such that ¢ has a 8y-bounded model.

In [2,)5], it is shown how to compute J, starting from the constants appearing in ¢: roughly, &, is
the product of all the constants in ¢. Similarly, we can assume that no absolute timing constraints (those
of the form x < ¢) are used in the formulae (see Lemma 6 in [2]). W.l.0.g., we can also assume that any
variable x is used only in one freeze quantifier in any formula, so that in a formula like x. ¥ any occurrence
of x in y is free. Since freeze quantifiers can be pushed out of boolean connectives, when talking about
closed formulae we will write them as x.y, with explicit reference to the outermost freeze quantifier.

We start by defining an important building block of the system.

Definition 2 (Temporal shift). Let us denote as wwf the set of all the well-formed TPTL+P formulae.
The temporal shift operator is a function - : wwf x Z — wwf such that:

1. for any closed TPTL+P formula x.y and any & € 7, timed state sequence p, environment &, and
position i > 0, it holds that p):lé x. w0 ifand only if p):’5, Y, where &' = E[x + 1, — 0],

2. there exists 8' € Z such that x.y® = x.y% 1 and x.w=% = x. =% forall i > 0.

Item of Definition [2[states that the truth value of x.y?, interpreted at the current state, is the same as
that of y in the case where x were bound to the timestamp of a previous state located exactly & time units
before. By Item[2] this transformation has to be defined in such a way that it converges to a fixed point
after a large enough amount of shifting, so that for a given x.y, the number of different formulae of the
form x.y? is finite. It is not known whether such an operator exists for full TPTL+P. Later, we will show
how to define it in the cases of TPTL and TPTL,+P.

The closure of a formula z.¢ contains all the formulae that are relevant to the satisfaction of z.¢.

Definition 3 (Closure of a formula). Let z.¢ be a closed TPTL+P formula and let -° be a temporal shift
operator. Then, the closure of z.¢ is the set C(z.9) recursively defined as follows:

1. 2.9 €C(z.9);

2. ifx.(yi Ayn) € C(z.9), then {x.y1,x.y»} CC(z.9);

3. ifx.(yiVyn) €C(z.9), then {x.y1,x.yr} CC(z.9);

4. if x. Xy € C(z.0), then x.w® € C(z.9), for all § > 0;

5. ifx.Ywy€C(z.9), then x.yw % € C(z.9), for all § > 0;

6. ifx.(y10oyr) € C(z.9), where o € {U,R,S, T}, then {x.y1,x.yr,x. X(y10yn)} CC(z.9);
7. ifxy.y € C(z.9), then x.y[y/x] € C(z.9).

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 181

Name Rule

CONJUNCTION x.(y1 Ayr) — {x.yi,x.yn}
FREEZE x.y.y; — {xyily/x]}
DISJUNCTION x.(y1Vya) — {x.y1} | {x.yn}
UNTIL x.(l//1U1[/2) — {x.l//z}\{x.llll,x.X(llllUlllz)}
SINCE x.(yiSwyn) — {xya}|{xy,x.Y(y1Sy)}
RELEASE x.(yiRyn) — {x.yi,xyo} | {x.yo,x. X(y1 Rys)}
TRIGGERED x.(vi Tyn) — {x.yi,xya} | {x.y2,x.Y(y1 Tyr)}

Table 1: Expansion rules.

Note that, if -9 is a temporal shift operator, then C (z.9) is a finite set, thanks to Item [2| of Definition
Moreover, note that, by construction, every formula in C(z.¢) is a closed formula.

Now we can effectively start describing the one-pass and tree-shaped tableau system for TPTL+P.
The tableau for a closed formula z.¢ is a tree where each node u of the tree is labelled with a finite set
I'(u) C C(z.¢). Additionally, a non-negative integer time(u) € N is associated with each node u. Given
two nodes u and v, we write u < v (u < v) if u is a (proper) ancestor of v. The root note u is labelled by
the formula itself, i.e., ['(ug) = {z.9 }, and is set at time(up) = 0. The tableau is built top-down, from the
root to the leaves, performing a state-by-state search for a model of the formula where each accepted
branch of the complete tableau corresponds to a satisfying model. At each step, a set of expansion rules is
applied to the leaf nodes of the tree, until no expansion rule can be applied anymore. Each application of
an expansion rule results in the addition of one or more children to the selected node, making the tree
grow and refining the choice of which formulae of the closure have to hold at the current state. Then, a set
of termination rules decides if the current tableau branch has to be accepted (v), rejected (X), or if the
branch can continue to be explored, making a step to the next state. Expansion rules are shown in Table T}
Each rule of the form y — A’ is applied to any node u such that y € I'(x) and causes the addition of a
child «’ of u such that I'(«’) = (I'(«) \ {w}) UA'. Similarly, a rule of the form y — A" | A” causes the
addition of two children «’ and «”, where I'(«') = (T'(u) \ {w}) UA" and T'(u"") = (T'(u) \ {w}) UA".

By construction, repeatedly applying expansion rules will eventually result into leaves labelled only by
proposition letters, timing constraints, or formulae of the forms x. X y or x. Y y, which cannot be further
expanded. Formulae of this kind are called elementary formulae, and a node (resp., a leaf) whose label
contains only elementary formulae is a poised node (resp., poised leaf).

When a poised leaf is obtained, the search can proceed to the next temporal state. The formulae
labelling the current state are used to determine the label of the next one. Moreover, an amount of time has
to be guessed to choose the timestamp of the next state. This operation is performed by the STEP rule.

STEP Let u be a poised node, and let &, ¢ > 0 be the bound as computed in Proposition Then, 6,4 + 1

children nodes u, ..., us_ , are added to u, such that:

T(us) = {x.¥° | x. Xy € T(u)}

_] forall0 <6 < 0.
time(ug) = time(u) + 6

The STEP rule is one of the most evident differences between the tableau system for TPTL and
TPTLp+P, and those for LTL and LTL+-P, since here we have to handle the advancement of the timestamp
of the next state. The formulae in the subsequent state, which are taken from the tomorrow formulae of
the current one, are shifted accordingly.

182 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

Besides the children added to by the STEP rule, others can be subsequently added to a poised node,
as it will be shown later, if it does not fulfil some past request coming from the next state. Given a branch
u = (up,...,u,) and a poised node u;, with 0 < i < n, u; is said to be a step node for the branch u if its
child u;. | has been added by the STEP rule. Moreover, if u; is a step node for the branch #, we define
A(u;) = U jcp<; T (ux), where u; is the closest step node among the proper ancestors of ;.

In any case, before applying the STEP rule to advance to the next state, the branch has to be checked
for contradictions and any other condition that can cause it to be rejected or accepted. To this end, the
following termination rules are applied to poised leaves. In what follows, any formula x.y € C(¢) of
the form x. X(yq U y») is called an X-eventuality. Let @ = (u, ..., u,) be a branch of the tableau. An X-
eventuality x. ¥ = x. X(y1 U y) is said to be requested at position i if x.y € I'(u;), and fulfilled at position

j>iifxyd € T(u;) and x.y* € T(wy), for all i < k < j, where & = time(1;) — time(u;), for i < [< j.

CONTRADICTION Let u be a poised leaf. If {x.p,x.-p} C I'(u), for some p € AP, then u is crossed
and the branch is rejected.

EMPTY Let u be a poised leaf such that I'(#) = @. Then, u is ticked and the branch is accepted.

SYNC Let u be a poised node. If either x.(x <x+c¢) € I'(u), x.~(x <x+c) €T(u), x.(x=p x+¢) €'(u),
or x.—(x =, x+c¢) € I'(u), but, respectively, ¢ <0, ¢ > 0, ¢ %, 0, or ¢ =, 0, then u is crossed and
the branch is rejected.

YESTERDAY Let v be a poised leaf such that x. Y y € I'(v) for some x.y € C(z.9). If v is the first step
node of its branch, then it is crossed and the branch is rejected. Otherwise, let u < v be the closest step
node among the proper ancestors of v, §, , = time(v) —time(u), and Q = {x.y =% | x.Y y € T(v)}.
If Q € A(u), then v is crossed, the branch is rejected, and a child ' is added to u such that
') =T(u)UQ.

LOOP Let v be a poised leaf, and u < v a step node, proper ancestor of v, such that I'(u) =I'(v) and all
the X-eventualities requested in u are fulfilled between u and v (included). Then,

LOOP; if time(u) = time(v), then v is crossed and the branch rejected;
LOOP; if time(u) < time(v), then v is ticked and the branch accepted.

PRUNE Let w be a poised leaf. If there exist three step nodes u < v < w such that I'(u) =T'(v) = T'(w),
and each X-eventuality requested in u and fulfilled between v and w is also fulfilled between u and v,
then, w is crossed and the branch rejected.

The above rules resemble the structure of the one-pass and tree-shaped tableau for LTL+P presented
in [6]], but adapted to the new logic. The SYNC rule has been added to the termination rules to detect
contradictory timing constraints. The STEP rule, thanks to the temporal shift operator, can push freeze
quantifiers to the next state, without explicitly keeping track of variable bindings. In such a way, it ensures
that nodes are labelled only by closed formulae of the form x.y, the base case of timing constraints
consisting only in formulae of the form x.(x ~ x4 ¢), which involve a single variable. Judging the validity
of the constraints is then trivial. This mechanism was originally exploited in the graph-shaped tableau for
TPTL given in [2]]. The LOOP rule handles the case where the branch is cycling through a segment which
fulfils all the requests, and thus a satisfying model of the formulae has been found. However, since timed
state sequences must satisfy the progress property, the rule has to reject those branches where the loop has
not advanced in time (LOOP;) and to accept a branch only if some progress has been made (LOOP). In
Fig. |1} we give a brief example of tableau for the TPTL formula x. Gy.(p — y < x+2), which expresses
the property that p holds only on states with timestamp less than 2. Firstly we focus on node u;: it is

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 183

crossed by the LOOP; rule because there is another node (i.e., u;) such that all the conditions of the
LOOP rule are satisfied but time does not increase between these two nodes. Nevertheless, if we choose
to increment by one time unit the candidate model by means of the STEP rule, we eventually reach node
u3, which does not contain any timed constraint, since they all have been simplified by the temporal
shift -%. Now the LOOP; can be applied on node uy4, since nodes u3 and uy have the same label, all the
X-eventualities (there are none) are fulfilled in between, and the time between u3 and u4 does increase:
thus, we tick u4 and accept the corresponding branch. This, in turn, corresponds to a correct model of the
input formula which starts from the root of the tableau, goes down to u4 and then cycles between u3 and u4.

—— expansion step {x.Gy.(p =y < x+2)}[ME=0

— STEP rule | ALwaYs

- - - multiple collapsed steps {xy.(p =y <x+2), x.XGy.(p — y < x42)} IME=0
- - > multiple collapsed steps + STEP rule ‘ FREEZE

{x.(p = x<x+2), x.XGy.(p — y < x+2)}IME=0

/DISJUNCTION \

u: e () 2 X Gy (p =y Sx+2)FTMERD T (v S x42), 2. XGy.(p — y S x+2)}IMESO

P %TEPO \ETEPI l STEPy 25

{x. Gy(p%y<X+2)}”ME {x.Gy.(p =y <x+ 1)} IME=]

Mk {/<x+l xXG)(P%y<x+l)}’”ME :

w: - {x.(-p), xXGy(p%y<X+2)}
lSTEP|

{(x.Gy(p >y <)

~

{x.(x <x), x.XGy.(p — y < x)}IME=2
lSTEP,
{x.Gy.(p —y 1)} TIME=3

X (LOOP,)
JTIME=2

o {elp) X G(p— LYTMES (L e
| | STEP,
\ v X (CONTRADICTION)
uy: = {x.(=p), x. XGy.(p — L)}TME=4
v (LOOP,)

Figure 1: The tableau for the formula x. Gy.(p =y < x+2)

The PRUNE rule handles the case where the branch is cycling without being able to fulfil all the
requests, possibly because some of them are unsatisfiable. This rule was the main novelty of the one-pass
and tree-shaped tableau system for LTL in [11]], and, notably, it does not need to be changed at all to work
for TPTL+P as well. An interesting example showing an application of the PRUNE rule in the context
of a tableau for LTL is shown in [3]].

Note that, supposing to employ a proper temporal shift operator, the set of Definition [3]is finite. This
fact allows us to prove the termination of the construction of the tableau with a simple argument.

Theorem 4 (Termination of tableau construction). Let z.¢ be a closed TPTL+P formula and let - be a
proper temporal shift operator. Then, the construction of a complete tableau for 7.9, built with 9 always
terminates in a finite number of steps.

Proof. First, observe that the tableau for a TPTL+P formula z.¢ has a finite branching factor, since all
the expansion rules create at most two children for any node, and the number of children created by the

184 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

STEP rule is bounded by 4. Other children may be added to a poised node by failed instances of the
YESTERDAY rule, but since C(z.¢) is finite, the number of possible different labels is finite, and since
the rule never creates two nodes with the same label, then the number of children added in this way is
finite as well. Thus, by Konig’s lemma, for the construction to proceed forever the tree should contain
at least one infinite branch. However, since the number of possible labels is finite, two nodes with the
same label are guaranteed to appear, and if they do not trigger the LOOP rule, then, after a finite number
of repetitions of the same label, the PRUNE rule is guaranteed to be eventually triggered because the
different combinations of X-eventualities satisfied between either two of those nodes is finite as well. [

3.2 The tableau system for TPTL

Let us now specialise the above general rules to TPTL formulae. Basically, we need to define a proper
temporal shift operator. Consider a formula x.y € C(z.¢), and any other variable y appearing in y. Since
x.y is a closed formula, y must be quantified inside y, and, being y a future-only formula, it can only be
bound to a timestamp greater than or equal to x. Hence, any timing constraint of the form x <y + ¢, with
¢ > 0, always holds regardless of the specific evaluation of the variables. A similar consideration can be
made for timing constraints of the form y < x4 ¢, with ¢ < 0, which are always false. This fact, originally
observed in [2f], leads to the following definition of the temporal shifting operator for TPTL formulae.

Definition 5 (Temporal shift operator for TPTL formulae [2]]). Let x.y be a closed TPTL formula and
8 € N. Then, x.y? is the formula obtained by applying the following steps:

1. replace any timing constraint of the forms x <y+c, y <x+c¢, and x =, y+ c, for any other
variable y € V, by, respectively, x <y+c, y<x+c", and x =, y+ (¢’ mod m), where ¢ =c+d
and ¢ = ¢ — 8; and then

2. replace any timing constraint of the forms x <y+c andy < x+c", with ¢ > 0 and " < 0, by,
respectively, T and 1.

The one-pass and tree-shaped tableau system for TPTL is obtained from the set of rules of Section
[3.1]by considering the temporal shift operator of Definition[5] It can be easily checked that Definition 3]
satisfies the requirements of Definition [2| for any non-negative § > 0. Since the YESTERDAY rule never
comes into play with TPTL formulae, this is sufficient, as the proofs in Sectiond] will confirm.

3.3 The tableau system for TPTL,+P

Let us now specialise the above set of tableau rules to TPTL,+P. TPTL,+P is not a proper fragment of
TPTL+P as-is, and thus it may seem that those rules cannot be directly applied to TPTL,+P formulae.
However, TPTL,+P can be embedded into a guarded fragment of TPTL+-P, that is, a syntactic fragment
of the logic, that we call G(TPTL+-P), where each occurrence of any temporal operator is guarded by
an additional formula which implements the bounded semantics of TPTL+P operators. G(TPTL+P)
syntax is defined as follows:

p:=pl-¢ [V |[x<yt+tc[x<clx=uy+c
[Xp.(BY A1) [Xy (1 = 01) [2. Yy.(57 A o) [xYy.(v" — 1)
| x (257 = 0 Uy (57 A 92) | x. (2 (%7 A1) Ry.(1%7 — ¢2))
| x(z.(B7 = 01)Sy-(B A 92) |x(z(mZA0) Ty.(% — ¢2)),

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 185

where ¥%,” =y <x+w, if w # +oo, and %, = T otherwise, with w € NU{+o} and x and y fresh in ¢ and
¢». Moreover, as in TPTL,+P, each temporal operator can appear with w = +oo only if the corresponding
formula is closed. All the temporal operators where w # +oo are called guarded.

One can check that (i) the negated normal form of a G(TPTL+P) formula is still a G(TPTL+P)
formula, and (ii) each TPTL,+P formula can be translated into an equivalent G(TPTL+P) one. A
notable example is the translation of the X and X operators (and, symmetrically, Y and V), that both get
translated into a formula using a guarded X operator, but with the guard that, respectively, is conjuncted to
and implies the target formula, i.e., X, ¥ = x. Xy.(y < x+wA W) and X, W = x. Xy.(y < x+w —), if
W # o0, and simply X,io Y =)A(+<x, v = Xy otherwise. The translation provides a sound and complete
embedding of TPTL,+P into (the G(TPTL+P) syntactic fragment of) TPTL+P.

Lemma 6. Let ¢ be a TPTLy+P formula over the proposition letters AP and the variables V. Then,
there exists a G(TPTL+P) formula ¢’ such that for any timed state sequence p, any environment &, and
any i > 0, it holds that p):’5 ¢ if and only if p):f,: 0.

Hence, we can apply the general tableau rules to the G(TPTL+P) translation of any TPTL,+P
formula, provided that, similar to the TPTL case, a proper temporal shift operator can be defined. This can
actually be done by exploiting the following observation: thanks to the bounds applied to the TPTL,+P
temporal operators, whose semantics is implemented in G(TPTL+P) formulae by means of the guards,
when interpreting a timing constraint like x < y+ ¢, the distance between variables x and y cannot be
greater than an upper bound W that depends on the bounds applied to the temporal operators of the
formula. This observation was exploited in [5] to prove decidability and EXPSPACE-completeness of
TPTL,+P. Now, given a G(TPTL-+P) formula z.¢, let m be the number of guarded temporal operators
used in z.¢, let wo = max{wy, ..., Wy, 51,(;,}, where wy,...,w,, are the bounds applied to the respective
guarded temporal operators and &, ¢ is computed as per Proposition |1} and let W, ¢ = wq - (m+1).

Definition 7 (Temporal shift operator for G(TPTL+P) [3]). Let z.¢ be a closed TPTL formula, 6 € N,
and x.y € C(z.9). Then, x.l//5 is the formula obtained by applying the following steps:

1. replace any timing constraint of the forms x <y+c, y < x+c¢, and x =, y+ ¢, for any other
variable y € V, by, respectively, x <y+c/,y <x+c", and x=,, y+ (¢’ mod m), where ¢ =c+ 8
and ¢ = ¢ — 8; and then

2. replace any timing constraint of the forms x <y+c and y < x+c either by T, if c > W, 4, or by 1,
ifc< _WZ-¢‘

It can be easily shown that Definition [7] defines a temporal shift operator as per Definition 2] 5] .

4 Soundness and Completeness

We now prove soundness and completeness of the tableau systems for TPTL and TPTL,+P. Given that
the two systems are nearly identical, excepting for the definition of the proper temporal shift operator,
both proofs will be given at once, differentiating between the two logics only when necessary.

4.1 Soundness

Here we prove that the tableau system is sound, that is, if a complete tableau for a formula has a successful
branch, then the formula is satisfiable (and a model for the formula can be effectively extracted from the
successful branch). As a preliminary step, we introduce the notion of pre-model: an abstract, easy to
manipulate representation of a model of a formula.

186 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

Definition 8 (Atom). An atom for a TPTL/ TPTLp+P formula z.¢ is a set A C C(z.¢) such that:

1. x.peA iff x.—p¢&A, forany proposition x.p € C(z.9);
Xy Y1 €A if xyly/x €A;
x(yiAy) EA iff {xyi,xyn} CA
x.(YiVyr) €A iff eitherx.yy € Aorx.yn €A;
(vilwyn) € A iff either x.yp € Aor {x.y1,x. X(y1Uyn)} CA;
(l]/l R llfz) €A lﬁt either {X.l//],x.lllz} CAor {x.l//z,x.X(l;ll R l//z)} CA;
()EA iff either x.yp, € Aor {x.y,x.Y(y1Syn)} CA;
(l[/l TI//Q) eA lﬁ(either {x.l//l,x.l;/z} CAor {x.lllz,x.Y(llll TI[/Q)} CA.

Intuitively, atoms are sets of formulae such that the presence of each non-elementary formula is
justified (i.e., implied) by the elementary formulae in the set, and each non-elementary formula that can
be justified by the set is present.

Definition 9 (Pre-model). Let z.¢ be a closed TPTL/ TPTLy+P formula. A pre-model of z.9 is a pair

1= (A7), where T = (19, 11,...) is an infinite sequence of timestamps satisfying the progress and mono-

tonicity conditions, and A = (Mg, Ay, ...) is an infinite sequence of atoms for z.¢ such that, for all i > 0,
1. 2.0 € Ay;

2. ifx. Xy € A, then x.y% € Ay y;

o NSk

3. ifx.(y1Uvyn) € A, then there exists a j > i such that x.l//fi‘j €Ajand x.q/fi'k EApforalli<k<j;
4. ifxYy e, theni>0andx.yw % cAi_;

5. ifx.(y1Synr) € A, then there exists a j < i such thatx.l[/{aj‘i EA; andx.l[/l_sk'i €Ay forall j <k<i
where & = 1o, Oj+1 = lLiy1 — i for i >0, and 8,y = Y p<in Op for all n,m € N.

Pre-models take their name from the fact that they abstractly represent a model for their formula, and
thus the existence of a pre-model witnesses the satisfiability of the formula.

Lemma 10. Let 7.9 be a closed TPTL/ TPTLy+P formula. If 7. has a pre-model, then z.¢ is satisfiable.

Proof. Let 1 = (A,T) be a pre-model of z.¢ and let p = (0, T) be a timed state sequence such that 1; = 7;
and x.p € A; if and only if p =’ p. Note that each 7 satisfies the monotonicity and progress conditions
because T does by definition of pre-model. Then, we show that p = z.¢ and thus the formula is satisfiable.

For any x.y € C(z.9), let the nesting degree deg(x.y) of x.y be defined inductively as follows:
deg(x.p) =deg(x.—p) =0 for p € AP, deg(x.y.y) =deg(y.y) + 1, and deg(x(¢; 0 ¢,)) = max(deg(x.y1),
deg(x.yn)) + 1, with o € {A,V,U,S,R, T}. We prove by induction on deg(x.y) that if x.y € A;, then
p =" v for any x.y € C(z.¢) and any i > 0 (since all x.y € C(z.¢) are closed, we do not need to take care
of environments). The thesis then follows from Item of Definition @l, since z.¢ € Ag.

As for the base case, if x.p € A; or x.—p € A;, then the thesis follows by the definition of p.

As for the inductive step, we go by cases:

1. if x.y.y € A, then x.y[y/x] € A; and by the inductive hypothesis p = x.y[y/x], thus p = x.y.y;
2. if x.(y1 Vyn) € A; (resp., x.(y1 A y2)), then by definition of atom and the inductive hypothesis,
either p = x.y1 or p = x.y (resp., both), and thus p = x.(y1 V) (resp., p = x.(y1 Ay»));

3. if x. Xy € A, then, by Item I of Definition |§L it holds that x.yd%1 € Ajy. Since deg(x.y) <
deg(x. X y), by the inductive hypothesis it follows that p):‘gl x.yd%+1 for any £. By Deﬁnition

this implies that p =51 | ¥, thatis, p =01 . Then, by the semantics of the romorrow

ExeTi1—6i11 Elem]

operator and of the freeze quantifier, we have p ':’5 vt Xy and thus p):’5 x. Xy;

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 187

4. if x.(y1 Uyn) € A;, then, by definition of atom, there exists j > i such that x.l//fi'j € A; and
x.l//;S "* € A, for all i < k < j. Then, by the inductive hypothesis, p):é x.l//fi‘j and p)z’é x.l//;S “*, for

any & andalli <k < j. By Deﬁnition we have that p |:é -5, V2 and p |:’é e

i)

i <k<j,thatis, p):é[x o V2 and p):'E ez VI for all i < k < j. Finally, by the semantics of the

y forall

until operator and of the freeze quantifier, we have p):ig[x g Y1 Uy and thus p):% x.(yiUwyn);

5. the case when x.(y1 Ryp) € A, is similar to Item 4] and the cases when x. Y y € A, x.(y1 Sy») € A;
or x.(y; T yn) € A; are similar and specular to Items and respectively. O

To complete the proof, it suffices to show that a pre-model for a formula can be obtained from a
successful branch of the tableau.

Lemma 11. Let z.¢ be a closed TPTL or TPTLp+P formula and T a complete tableau for z.¢. If T has
a successful branch, then there exists a pre-model for z.9.

Proof. Letu = (uy,...,u,) be a successful branch of T and let T = (m, ..., 7,,) be the subsequence of
step nodes of #. Intuitively, a pre-model for z.¢ can be obtained from # by building the atoms from the
labels of the step nodes, and extending them to an infinite sequence. Let A(7;) be the atom obtained from
I'(7;) by arbitrarily completing it with missing literals and closing it over the requirements of Definition
The sequence of A(7;), with 0 < i < m, forms the basic skeleton of the pre-model IT = (A,7) defined as
follows. As for the atoms, A; = A(7k(;)), where K: N — {0,...,m}, is defined differently depending on
which rule caused the branch to be accepted:

1. if m,, was ticked by the LOOP rule, then there exists k < m such that I'(m,) = I'(7,,) and all the
X-eventualities requested in 7 are fulfilled between 7 and 7,. Then, the pre-model repeats forever
the atoms between A(m 1) and A(m,,), and thus K(i) =i, for 0 <i < k, and K(i) = k+ ((i — k)
mod T'), with T = m —k, for i > k;

2. if m, was ticked by the EMPTY rule, then I'(7,,) = 0 and the pre-model repeats forever the atom
A(my,), hence K(i) =i if i <m, and K(i) = m if i > m.

As for the sequence of timestamps, it is taken directly from the step nodes accordingly:
1. if m,, was ticked by the LOOP; rule, then t; = time; | +(time(7y ;) — time(mk ;1)) for all i > 0;
2. if m, was ticked by the EMPTY rule, then 1; = time(mw;) for i <m, and 1,4 = 1;+ 1 for all i > m.

We now show that I1 is indeed a pre-model for z.¢. First, note that, by construction, 7 satisfies the
progress and monotonicity conditions (in particular, LOOP rule ensures that time(7,,) > time(7). Then,
observe that z.¢ € Ay because z.¢ € I'(my) by construction, and thus Item of Definition E] is satisfied.

Consider now any formula x. Xy € A;. Being an elementary formula, we know that x. Xy € T'(7 ;)).
Two cases have to be considered. If 7k ;1) = 7k (;) 41, i-€., the next atom comes from the actual successor
of the current one in the tableau branch, then, by the STEP rule, x. w5f+1 € Aiy1. Otherwise, A; = A(7,,)
and m,, was ticked by the LOOP, (because A, is not empty), and thus A;;; = A(m1) for some k < m
such that I'(m;) = I'(m,,). Hence, x. Xy € ['(m;) as well, and, by the STEP rule applied to m, x.y%+ €
A(T41) = Aiy1, and thus Item of Definition E] is satisfied.

Finally, consider any formula x. Y y € A; and thus x. Y 'y € I'(7k;)). By the YESTERDAY rule, i > 0.
As in the previous case, either A;_; is the atom coming from the previous step node, and thus x.y~% € A;_
by the YESTERDAY rule, or A; = A7) for some k that triggered the LOOP rule because I'(m;) =
['(7,,). By the YESTERDAY rule, x.Y y %1 € Ay, and, since §; = &, x. Yy % € A, = A_;.

The other cases are straightforward in view of how expansion rules are defined. O

188 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

Theorem 12 (Soundness). Let z.¢ be a closed TPTL / TPTLy+P formula, and let T be a complete
tableau for z.¢. If T has a successful branch, then z.¢ is satisfiable.

Proof. Extract a pre-model for z.¢ from the successful branch of 7' as in Lemma|l 1} and then obtain from
it an actual model for the formula as in Lemma 10l O

4.2 Completeness

We now prove the completeness of the tableau system, i.e., if a formula z.¢ is satisfiable, then any
complete tableau 7 for it has an accepting branch. We make use of a new model-theoretic argument
providing a much simpler and shorter proof, which sidesteps the complex combinatorial argument used in
completeness proofs for the one-pass tree-shaped tableaux for LTL [11]] and LTL+P [6].

To start with, we introduce the key concept of greedy pre-model. Given a pre-model IT = (A7), an
X-eventuality xy = x. X(y; U yr) is requested at position i > 0 if x.y € A;, and fulfilled at j > i if j
is the first position where x.l//fi"’ €A and x. l//fi’k € Ay, forall i <k < j. Let £(z.90) = {x.y € C(z.9) |
x.y is an X-eventuality }. For each position i > 0, we define the delay vector at position i as a function
d; : £(z.¢) — N providing a natural number for each eventuality in £(z.¢), as follows:

di(x.p) 0 if x.y is not requested at position i
(xy) =
Y n if x.y is requested at i and fulfilled at j such thatn = j—i

Intuitively, d;(x.y) is the number of states elapsed between the request and the fulfilment of x.y.
We denote as d = (dg,di,...) the sequence of delay vectors of the atoms of A, and define d; < d; if and
only if d;(y) < di(y), for all y € £(¢). A pre-order relation on pre-models of a given formula can be
defined by comparing the d; lexicographically: IT < IT" if dy < d;, or dg = dj, and I1>; < IIL,, where
> = (A>1,T51) with As| = (A1, Ay, ...) and T>1 = (14, 1, .. .). Greedy pre-models are minimal elements
of this pre-order. We show that if a formula admits a pre-model, then it admits a greedy pre-model. The
completeness result can then be proved directly.

Definition 13 (Greedy pre-models). Let I1 be a pre-model for a formula z.¢. I1 is greedy if there is no
pre-model T # I1 such that TT' < T1.

Lemma 14. Let I1 be a pre-model for a formula z.¢. Then, there is a greedy pre-model TI' < TL

Proof. We distinguish two cases. If there is a finite sequence IT; (=I1) > I > ... > I1,, withn > 1,
which is maximal with respect to >, i.e., it cannot be further extended, then IT' =TI, is a greedy model
with IT" < 1. Otherwise, let IT; (=1II) > II, > ... be an infinite sequence of pre-models. We prove that
its limit is a greedy model IT'. To this end, it suffices to show that for every n € N (prefix length), there is
m € N (pre-model index) such that the prefix up to position n of pre-models I1,,,I1,,,1,... is the same.
For i > 1, let d' = (di),d},...) be the sequence of delay vectors of II;. Let us consider the j-th
pre-model I1;, for some j > 1. By definition of -, there is a position n; > 0 such that d{:l < d{;],, and
d{;fl = d{'n, for all 0 < m < n;. We show that there are finitely many indexes [> j (let be the largest one)
for which there exists a position ny, with n; < n;, such that df;:l < df;k» and d/' =dJ | forall 0 < m < ny.
We prove it by contradiction. Assume that there are infinitely many. Let nj, be the leftmost position that
comes into play infinitely many times. If n, = O, then there is an infinite strictly decreasing sequence
of delay vectors dg‘ > dgz > dg3 > ..., with j < hy < hy < h3 < ..., which cannot be the case since the
ordered set (NI€(@9)l <) is well-founded (the definition of temporal shift operators ensures that the closure

set of z.¢ is finite, and thus £(z.¢) is finite as well). Let 0 < n, < n;. Since the positions to the left of ny,

L. Geatti, N. Gigante, A. Montanari, and M. Reynolds 189

are chosen only finitely many times, there exists a tuple (do,...,d,,—1) which is paired with an infinite
strictly decreasing sequence of delay vectors dﬁ; > dﬁi > dﬁz > ..., with j <h; <hy < h3 <..., which
again cannot be the case since the ordered set (NI€(9)| <) is well-founded. This allows us to conclude

that the prefix up to position 7; of all pre-models of index greater than or equal to [is the same. O

Theorem 15 (Completeness). Let z.¢) be a closed TPTL/ TPTLy+P formula and let T be a complete
tableau for z.¢. If 7.9 is satisfiable, then T contains a successful branch.

Proof. Let p = (0, 7) be a model for z.¢. It is straightforward to build a pre-model for z.¢ from p. Then,
given a pre-model for z.¢, Lemma[I4]ensures that a greedy pre-model for it exists. We can thus restrict our
attention to greedy pre-models. Let IT= (A, T) be a greedy pre-model for z.¢). We look for a successful
branch in T by using II as a guide to descend down the tree until a leaf is found, showing that any leaf
found in this way must be ticked. The descent proceeds as follows. At each step i > 0, we maintain a
sequence of nodes (which will be the prefix of some branch of the tree) u; = (ug, uy, ..., u;) that is extended
to Wi+1 = (uo, U1, ..., Ui, uiy1) by choosing ;| among the children of u;. A map J: N — N is built during
the descent, where initially J(0) = 0, which links each nodes in #; to a position in the pre-model by
maintaining the invariant that if x.y € I'(u), then x.y € Aj), for each 0 < k <iand each x.y € C(z.9).
Ateach step i > 0, u;+ is chosen among the children of u; in the following way: if u; is not a poised node,
u;11 is chosen as any of its children uf. such that F(uf) satisfies the invariant. It is easy to check that at
least one such child exists by construction because of how expansion rules are defined and the fact that
I1is a pre-model. If, otherwise, ; is a poised node, then it has &, 4 children (i3, ..., ”¢SS,¢> created by the

STEP rule, and potentially other children (), ...,u!) added by failed instances of the YESTERDAY rule.
If there is any uly whose label satisfies the invariant, then one of those is selected as u;1. If no such child
exists, u; 1 is chosen according to the timestamp of the next atom in the pre-model, i.e., u;11 = M§J<i+1)'
The invariant in this case is satisfied by construction because of the definition of the STEP rule.

Since each step always descends down the tree, we will eventually reach a leaf u,,. We now show that u,,
has to be a ticked leaf. If instead u,, was crossed, it could not have been crossed by contradiction, because
there would be some p and —p in A(u,) that would imply that p € A J(n) and —p € Ay(,), which cannot be the
case. Similarly, it could not have been crossed by the SYNCH rule. Furthermore, the LOOP; rule could not
have crossed u,,, because the timestamps were chosen following 7, which by definition satisfies the progress
and monotonicity conditions. Then, u, has to have been crossed by the PRUNE rule, hence there exist other
two nodes u,, and u, such that I'(u,,) =I'(u,) =I'(u,) and all the eventualities requested in u,, and fulfilled
between u, and uy, are also fulfilled between u,, and u,, and A;(,,;) = Aj(;) = Ay (). Now, it can be checked
that the pre-model IT' obtained by removing all the atoms between A J(r)+1 and Ay, is still a pre-model
for z.¢. Then, we show that IT' < I, leading to a contradiction, since we supposed that IT was greedy.

We proceed by showing that d; < d;, while d/, < d,, for all n < i, thus implying that IT" < IT. To this
end, we need to show that there is at least one X-eventuality x.y for which d}(x.y) < d;(x.y) while the
other values of the delay vector for the other eventualities remains constant. First, consider an eventuality
x.y which is requested in A;, but not in A ;. Then, it holds that its first fulfilment happens before A; and the
cut between A; and Ay cannot change its delay. Now, suppose x.y is requested in A; and A; and is fulfilled
between A; and A;. Hence, by definition of PRUNE rule, it is also fulfilled between A; and A, thus again
its first fulfilment after A; is before A;, and the cut does not change its delay. The remaining case is that
of x.y being requested in A; and A; but not fulfilled between them, and thus neither between A; and A;.
At least one eventuality of this kind is required to exist by the definition of PRUNE rule. Then, since x.y
is not fulfilled before Ay, it must be requested there, and fulfilled later, and the cut between A; and Ay will
decrease the value of d}(x.y). Thus d} < d;. Now, consider any position n < i. In any of those positions,

190 One-pass and Tree-Shaped Tableau Systems for TPTL and TPTL,+Past

for any eventuality x.y, d,(x.y) cannot increase because of the cut, otherwise the first fulfilment of x.y
would have been between A; and Ay, which cannot be the case because all the eventualities fulfilled there
are fulfilled also before, between A; and A;. Hence d), = d,, for all n < i, and thus IT" < I1. J

5 Conclusions

In this paper, we developed one-pass and tree-shaped tableau systems for TPTL and TPTL,+P. They
extend those for LTL [11]] and LTL+P [6] with the ability of dealing with freeze quantifiers and timing
constraints. Notably, the PRUNE rule, which was the main novelty of the one-pass and tree-shaped
tableau system for LTL, did not need to be changed at all to work in the new systems. This confirms the
great extensibility of this tableau system. The completeness of the PRUNE rule has been proved here
with a new model-theoretic argument, much simpler than those used in the proofs for LTL and LTL+P.
Whether or not such a tableau system can be extended to support full TPTL4-P is still an open problem.

References

[1] R. Alur & T. A. Henzinger (1993): Real-Time Logics: Complexity and Expressiveness. Information and
Computation 104(1), pp. 35-77, doi;10.1006/inc0.1993.1025.

[2] R. Alur & T. A. Henzinger (1994): A Really Temporal Logic. Journal of the ACM 41(1), pp. 181-204,
doi:10.1145/174644.174651.

[3] M. Bertello, N. Gigante, A. Montanari & M. Reynolds (2016): Leviathan: A New LTL Satisfiability Checking
Tool Based on a One-Pass Tree-Shaped Tableau. In: Proc. of the 25™ International Joint Conference on
Atrtificial Intelligence, IICAI/AAAI Press, pp. 950-956.

[4] M. D’Agostino, D.M. Gabbay, R. Héihnle & J. Posegga, editors (1999): Handbook of Tableau Methods.
Springer, doi:10.1023/A:1017520120752.

[5] D. Della Monica, N. Gigante, A. Montanari, P. Sala & G. Sciavicco (2017): Bounded Timed Propositional
Temporal Logic with Past Captures Timeline-based Planning with Bounded Constraints. In: Proc. of the 26
International Joint Conference on Atrtificial Intelligence, pp. 1008—1014, doi:10.24963/ijcai.2017/140.

[6] N. Gigante, A. Montanari & M. Reynolds (2017): A One-Pass Tree-Shaped Tableau for LTL+Past. In: Proc. of
21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series
in Computing 46, pp. 456-473, do0i{10.29007/3hb9.

[7] Y. Kesten, Z. Manna, H. McGuire & A. Pnueli (1993): A Decision Algorithm for Full Propositional Temporal
Logic. In: Proc. of the 5 International Conference on Computer Aided Verification, LNCS 697, Springer, pp.
97-109, doi:10.1007/3-540-56922-7 9.

[8] O. Lichtenstein & A. Pnueli (2000): Propositional Temporal Logics: Decidability and Completeness. Logic
Journal of the IGPL 8(1), pp. 55-85, doi:10.1093/jigpal/8.1.55.

[9] Z. Manna & A. Pnueli (1995): Temporal Verification of Reactive Systems - Safety. Springer, doi;10.1007/978
1-4612-4222-2.

[10] J. Christopher McCabe-Dansted & M. Reynolds (2017): A Parallel Linear Temporal Logic Tableau. In
P. Bouyer, A. Orlandini & P. San Pietro, editors: Proceedings 8" International Symposium on Games,
Automata, Logics and Formal Verification, EPTCS 256, pp. 166—179, doi:10.4204/EPTCS.256.12.

[11] M. Reynolds (2016): A New Rule for LTL Tableaux. In: Proc. of the 7" International Symposium on Games,
Automata, Logics and Formal Verification, EPTCS 226, pp. 287-301, doi:10.4204/EPTCS.226.20.

[12] S. Schwendimann (1998): A New One-Pass Tableau Calculus for PLTL. In: Proc. of the 7" International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, LNCS 1397, Springer, pp.
277-292, doii10.1007/3-540-69778-0_28.

http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1145/174644.174651
http://dx.doi.org/10.1023/A:1017520120752
http://dx.doi.org/10.24963/ijcai.2017/140
http://dx.doi.org/10.29007/3hb9
http://dx.doi.org/10.1007/3-540-56922-7_9
http://dx.doi.org/10.1093/jigpal/8.1.55
http://dx.doi.org/10.1007/978-1-4612-4222-2
http://dx.doi.org/10.1007/978-1-4612-4222-2
http://dx.doi.org/10.4204/EPTCS.256.12
http://dx.doi.org/10.4204/EPTCS.226.20
http://dx.doi.org/10.1007/3-540-69778-0_28

	1 Introduction
	2 Timed Propositional Temporal Logic
	3 The tableau systems for -NoValue-and TPTLbP
	3.1 The common skeleton
	3.2 The tableau system for -NoValue-
	3.3 The tableau system for TPTLbP

	4 Soundness and Completeness
	4.1 Soundness
	4.2 Completeness

	5 Conclusions

