

Instructions for use

Title On the amount of nonconstructivity in learning formal languages from text

Author(s) Jain, Sanjay; Stephan, Frank; Zeugmann, Thomas

Citation Information and computation, 281, 104668
https://doi.org/10.1016/j.ic.2020.104668

Issue Date 2020-11

Doc URL http://hdl.handle.net/2115/87290

Rights ©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information noncons.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

On the Amount of Nonconstructivity in Learning Formal
Languages from Text

Sanjay Jaina,1, Frank Stephanb,1, Thomas Zeugmannc

aDepartment of Computer Science, National University of Singapore, Singapore 117417, Republic of
Singapore

bDepartment of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore
cDivision of Computer Science, Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

Abstract

Nonconstructive computations by various types of machines and automata have been
considered by, for example, Karp and Lipton [21], and Freivalds [9, 10]. They allow
to regard more complicated algorithms from the viewpoint of much more primitive
computational devices. The amount of nonconstructivity is a quantitative characteriza-
tion of the distance between types of computational devices with respect to solving a
specific problem.

This paper studies the amount of nonconstructivity needed to learn classes of for-
mal languages. Different learning types are compared with respect to the amount of
nonconstructivity needed to learn indexable classes and recursively enumerable classes,
respectively, of formal languages from positive data. Matching upper and lower bounds
for the amount of nonconstructivity needed are shown.

Keywords: Inductive inference, learning in the limit, non-constructivity, formal
languages.

1. Introduction

For millenia mathematicians have been aware of the method to show the existence of
a mathematical object by constructing it, and the nonconstructive method of proving
that it cannot fail to exist. On the other hand, before the end of the 19th century con-
structive proofs have been the dominant ones. And in the forties of the last century
nonconstructive methods found their way to discrete mathematics (cf., for example,
Erdős [8]).

Email addresses: sanjay@comp.nus.edu.sg (Sanjay Jain), fstephan@comp.nus.edu.sg
(Frank Stephan), thomas@ist.hokudai.ac.jp (Thomas Zeugmann)

1This research has been supported by Ministry of Education Academic Research Fund grants R252-000-
420-112, R146-000-234-112 (MOE2016-T2-1-019) and R146-000-304-112 (MOE2019-T2-2-121) to Frank
Stephan (PI) and Sanjay Jain (Co-PI); furthermore, Sanjay Jain is supported in part by NUS grant C252-000-
087-001.

Preprint submitted to Elsevier November 10, 2020

If it is known that a mathematical object exists, one can also ask what does it
take to construct such an object. In this context, the notion of complexity as well as
the distinction between uniform and non-uniform models of computations comes into
play. Allowing a uniform model of computation to use an arbitrary string as additional
input converts it into a non-uniform model. Such strings are often called advice. An
influential paper in this regard was Bārzdin, š [3], who introduced the notion of advice
in the setting of Kolmogorov complexity of recursively enumerable sets.

Further examples comprise Karp and Lipton [21]. They studied the problem under
what circumstances non-uniform upper bounds can be used to obtain uniform upper
bounds. To achieve this goal the notion of a Turing machine that can take advice
has been coined. Furthermore, Damm and Holzer [7] adapted the notion of advice to
finite automata, and Cook and Krajiček [6] initiated the study of proof systems that
use advice for the verification of proofs. Even more recently, Beyersdorff et al. [4]
continued along this line of research.

Quite often, we experience that finding a proof for a new deep theorem is triggered
by a certain amount of inspiration. Being inspired does not mean that we do not have
to work hard in order to complete the proof and to elaborate all the technical details.
However, this work is quite different from enumerating all possible proofs until we
have found the one sought for. Also, as experience shows, the more complicated the
proof, the higher is the amount of inspiration needed. These observations motivated
Freivalds [9, 10] to introduce a qualitative approach to measure the amount of noncon-
structivity (or advice) in a proof. Analyzing three examples of nonconstructive proofs
led him to a notion of nonconstructive computation which can be used for many types
of automata and machines and which essentially coincides with Karp and Lipton’s [21]
notion when applied to Turing machines.

As outlined by Freivalds [9, 10], there are several results in the theory of inductive
inference of recursive functions which suggest that the notion of nonconstructivity may
be worth a deeper study in this setting, too. Subsequently, Freivalds and Zeugmann [11]
introduced a model to study the amount of nonconstructivity needed to learn recursive
functions.

In the present paper we generalize the model of Freivalds and Zeugmann [11] to
the inductive inference of formal languages. That is, we aim to characterize the dif-
ficulty to learn classes of formal languages from positive data by using the amount of
nonconstructivity needed to learn these classes. We shortly describe this model. The
learner receives, as usual, growing initial segments of a text for the target language L,
where a text is any infinite sequence of strings and a special pause symbol # such that
the range of the text minus the pause symbol contains all elements of L and nothing
else. In addition, the learner receives as a second input a bitstring of finite length which
we call help-word. Given a correct / appropriate help-word, the learner can learn in the
desired sense. Since there are infinitely many languages to learn, a parameterization
is necessary, that is, we allow for every n a possibly different help-word and we re-
quire the learner to learn every language contained in {L0, . . . , Ln} with respect to
the hypothesis space (Li)i∈N chosen (cf. Definition 2.7). The difficulty of the learning
problem is then measured by the length of the help-words needed, that is, in terms of
the growth rate of the function d bounding this length. As in previous approaches, the
help-word does not just provide an answer to the learning problem. There is still much

2

work to be done by the learner.
First, we consider the learnability of indexable classes in the limit from positive

data and ask for the amount of nonconstructivity needed to learn them. This is quite
a natural choice, since even simple indexable subclasses of the class of all regular
languages are known not to be inferable in the limit from positive data [13, 15, 28].
Second we investigate the amount of nonconstructivity needed to infer recursively enu-
merable classes of recursively enumerable languages. Moreover, several variations of
Gold’s [13] model of learning in the limit have been considered, see [15, 25] and the
references therein. Thus, it is only natural to consider some of these variations, too. In
particular, we shall study conservative as well as strong-monotonic learning.

We prove upper and lower bounds for the amount of nonconstructivity in learning
classes of formal languages from positive data. The usefulness of this approach is
nicely reflected by our results which show that the function d may considerably vary.
In particular, the function d may be arbitrarily slow-growing for learning indexable
classes in the limit from positive data (cf. Theorem 3.1), while we have an upper bound
of log n and a lower bound of log n− 2 for conservative learning of indexable classes
from positive data (cf. Theorems 3.2 and 3.3). Furthermore, we have a 2 log n upper
bound and a 2 log n − 4 lower bound for strong-monotonic inference of indexable
classes from positive data (cf. Theorems 3.4 and 3.5).

Moreover, the situation changes considerably when looking at recursively enumer-
able classes of recursively enumerable languages. For learning in the limit from posi-
tive data we have an upper bound of log n and a lower bound of log n − 2, while for
conservative learning even any limiting recursive bound on the growth of the function d
is not sufficient to learn all recursively enumerable classes of recursively enumerable
languages from positive data (cf. Theorems 3.7, 3.9 and 3.11).

2. Preliminaries

Any unspecified notation follows Rogers [26]. In addition to or in contrast with [26]
we use the following. By N = {0, 1, 2, . . . } we denote the set of all natural numbers,
and we set N+ = N \ {0}.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set
of the set S. Let ∅, ∈, ⊂, ⊆, ⊃, and ⊇ denote the empty set, element of, proper
subset, subset, proper superset, and superset, respectively. Let S1, S2 be any sets. By
S1 \S2 we denote the difference of sets, and we write S14S2 to denote the symmetric
difference of S1 and S2, that is, S14S2 = (S1 \S2)∪(S2 \S1). By maxS and minS
we denote the maximum and minimum of a set S, respectively, where, by convention,
max ∅ = 0 and min ∅ =∞.

We use T to denote the set of all total functions of one variable over N. For n ∈ N+,
the set of all partial recursive functions and of all recursive functions of one and n
variables over N is denoted by P, R, Pn, Rn, respectively. A function f ∈ P is said
to be strictly monotonic provided for all x, y ∈ N with x < y we have, if both f(x)
and f(y) are defined then f(x) < f(y). By Rmon we denote the set of all strictly
monotonic recursive functions.

3

Furthermore, let f ∈ P , then we use dom(f) to denote the domain of the func-
tion f , that is, dom(f) = {x | x ∈ N, f(x) is defined}. By range(f) we denote the
range of f , that is, range(f) = {f(x) | x ∈ dom(f)}.

It is technically most convenient to define recursively enumerable families of recur-
sively enumerable languages as follows. Any function ψ ∈ P2 is called a numbering.
Let ψ ∈ P2, then we write ψi instead of λx.ψ(i, x). We define Pψ = {ψi | i ∈ N}.
Furthermore, we set Wψ

i = dom(ψi) and refer to it as the ith enumerated language.
Clearly, the sets Wψ

i ⊆ N are recursively enumerable. A numbering ϕ ∈ P2 is called
a Gödel numbering for P [26] if Pϕ = P , and for every numbering ψ ∈ P2, there is a
compiler c ∈ R such that ψi = ϕc(i) for all i ∈ N. If ϕ ∈ P2 is any arbitrarily fixed
Gödel numbering then we also use Wi as a shorthand for Wϕ

i .
Let Σ be any fixed finite alphabet, and let Σ∗ be the free monoid over Σ. Any

L ⊆ Σ∗ is a language. Furthermore, we fix a symbol # such that # /∈ Σ∗. We denote
the empty string by λ and use |w| to denote the length of any string w ∈ Σ∗. By REG
we denote the class of all regular languages. Furthermore, we use C and L to denote
any (infinite) class and family of languages, respectively.

Definition 2.1 (Gold [13]). Let L be any language. Every total function t : N→ Σ∗ ∪
{#} with {t(j) | j ∈ N} \ {#} = L is called a text for L.

Note that the symbol # denotes pauses in the presentation of data. Furthermore,
there is no requirement concerning the computability of a text. So, any order and
any number of repetitions is allowed. For any n ∈ N we use t[n] to denote the ini-
tial segment (t(0), . . . , t(n)). We use content(t[n]) = {t(0), . . . , t(n)} \ {#} and
content(t) = {t(j) | j ∈ N} \ {#} to denote the content of an initial segment and of
a text, respectively.

An algorithmic learner M finds a rule (grammar) from growing initial segments
of a text. On each initial segment the learner M has to output a hypothesis which
is a natural number, that is, M(t[n]) ∈ N. Then the sequence (M(t[n]))n∈N has to
converge (to some representation of the input), that is, there is a j ∈ N such that
M(t[n]) = j for all but finitely many n ∈ N.

So, we still have to specify the semantics of the numbers output by M . In order to
do so, we need the following.

Definition 2.2 (Angluin [2]). A family (Lj)j∈N of languages is said to be uniformly
recursive if there exists a recursive function f : N× Σ∗ → {0, 1} such that Lj = {w |
w ∈ Σ∗, f(j, w) = 1} for all j ∈ N. We refer to f as a decision function.

Definition 2.3. A class C of non-empty recursive languages is said to be indexable if
there is a family (Lj)j∈N of uniformly recursive languages such that C = {Lj | j ∈ N}.
Such a family is said to be an indexing of C.
By ID we denote the collection of all indexable classes.

Note that REG is an indexable class. Also, the class of all context-free languages and
the class of all context-sensitive languages form an indexable class. Lange, Zeugmann
and Zilles [25, 28] provide further information concerning indexable classes and their
learnability.

4

So, when dealing with the learnability of indexable classes, it is only natural to
interpret the hypotheses output by M with respect to a chosen indexing of a class
containing the target class C (cf. Definition 2.4 below). On the other hand, when con-
sidering recursively enumerable classes C of recursively enumerable languages then we
always take as hypothesis space the family (Wψ

i)i∈N, where ψ ∈ P2 is the numbering
defining the class C.

Definition 2.4. Let C be an indexable class. A family H = (Lj)j∈N is called an in-
dexed hypothesis space for C if (Lj)j∈N is uniformly recursive and C ⊆ {Lj | j ∈ N}.

Following Lange and Zeugmann [24], if C = {Lj | j ∈ N} then we call H class
preserving and if C ⊆ {Lj | j ∈ N} then the hypothesis space H is said to be class
comprising.

Now we are ready to provide the formal definition of learning in the limit from text.
Following Gold [13] we call our learners inductive inference machines (abbr. IIM). To
unify notations, in the definitions below we useH = (Lj)j∈N to denote our hypothesis
spaces, where we assume the interpretation given above.

Definition 2.5 (Gold [13]). Let C be any class of languages, let H = (Lj)j∈N be a
hypothesis space for C, and let L ∈ C. An IIM M is said to learn L in the limit from
text with respect toH if

(1) for every text t for L there is a j ∈ N such that the sequence (M(t[n]))n∈N
converges to j, and

(2) L = Lj .

An IIM M learns C in the limit from text with respect to H if M learns all L ∈ C in
the limit from text with respect toH.

The collection of all classes C for which there is an IIM M and a hypothesis
space H such that M learns C in the limit from text with respect to H is denoted
by LimTxt.

Since, by the definition of convergence, only finitely many data of L were seen by the
IIM up to the (unknown) point of convergence, whenever an IIM learns the possibly
infinite language L, indeed some form of learning must have taken place. For this
reason, hereinafter the terms learn, infer and identify are used interchangeably.

In the following modifications of Definition 2.5 additional requirements are intro-
duced which the IIM has to satisfy.

Definition 2.6 (Angluin [1, 2], Jantke [20], Lange and Zeugmann [23]). Let C be a
class of languages, let H = (Lj)j∈N be a hypothesis space for C, and let L ∈ C. An
IIM M is said to learn L with respect toH

(A) conservatively, and
(B) strong-monotonically,

respectively, if M learns L in the limit from text with respect to H and for every text t
for L the following conditions are satisfied:

5

(A) for all n,m ∈ N, if j = M(t[n]) 6= M(t[n+m]) then content(t[n+m]) 6⊆ Lj;
and

(B) for all n,m ∈ N, if j = M(t[n]) 6= M(t[n+m]) = k then Lj ⊆ Lk,

respectively. An IIM M learns C conservatively, or strong-monotonically with respect
to H if M learns every L ∈ C conservatively, or strong-monotonically, respectively,
with respect toH.

We denote the resulting learning types by ConsvTxt, and SmonTxt, respectively.

After having defined several learning models, it is only natural to ask why should we
study learning with nonconstructivity. The answer is given by the fact that many inter-
esting language classes are not learnable from text. As shown in [13, 28], even quite
simple language classes cannot be learned from text, for example, the following class
over the alphabet Σ = {a}:

C = (Lj)j∈N where L0 = {aj | j ∈ N+} and Lj = {a` | 1 ≤ ` ≤ j} . (1)

We aim to characterize quantitatively the difficulty of such learning problems by mea-
suring the amount of nonconstructivity needed to solve them.

The learners used for nonconstructive inductive inference take as input not only
growing initial segments t[n] of a text t but also a help-word w. The help-words are
assumed to be encoded in binary. So, for such learners we write M(t[n], w) to denote
the hypothesis output by M . Then, for all the learning types defined above, we say
that M nonconstructively identifies L with the help-word w provided that for every
text t for L the sequence (M(t[n], w))n∈N converges to a number j such that Lj =
L (for LimTxt) and M is conservative (strong-monotonic) for ConsvTxt (SmonTxt),
respectively. More formally we have the following definition.

Definition 2.7. Let C be any class of languages, let H = (Lj)j∈N be a hypothesis
space for C, and let d ∈ R. An IIM M infers C with nonconstructivity d(n) in the limit
with respect toH, if for each n ∈ N there is a help-word w of length at most d(n) such
that for every language L ∈ C ∩ {L0, L1, . . . , Ln} and every text t for L the sequence
(M(t[m], w))m∈N converges to a hypothesis j satisfying Lj = L.

Clearly, Definition 2.7 can be directly modified to obtain nonconstructive conservative
and strong-monotonic learning.

Looking at Definition 2.7 it should be noted that the IIM may need to know either
an appropriate upper bound for n or even the precise value of n in order to exploit the
fact that the target language L is from C ∩ {L0, L1, . . . , Ln}.

To simplify notation, we make the following convention. Whenever we talk about
nonconstructivity log n, we assume that the logarithmic function lg n to the base 2 is
replaced by its integer valued counterpart. That is, we set log n = blg nc + 1 and
log 0 = 1.

Now we are ready to present our results. Note that the definitions developed in this
paper were influenced by the corresponding definitions for function learning in [11].
The paper [11] also provided the proof idea for Theorem 3.1 and the idea about using
the number of distinct functions/languages which is used in some of our proofs such
as Theorem 3.4. Techniques from team learning (from papers such as [17, 27]) are

6

used for Proposition 3.10. Another technique which has been useful is the concept of
removing/erasing wrong grammars that is, the paradigm of learning by erasing (also
called co-learning, see Jain et al. [14] and Freivalds and Zeugmann [12]). This con-
cept is useful in the sense that we sometimes “eliminate” wrong grammars using the
additional help-words provided.

3. Results

Already Gold [13] showed that REG /∈ LimTxt and as mentioned in (1), even quite
simple subclasses of REG are not in LimTxt. So, we start our investigations by asking
for the amount of nonconstructivity needed to identify any indexable class in the limit
from text with respect to any indexed hypothesis spaceH.

3.1. Nonconstructive Learning of Indexable Classes
As we shall see, the needed amount of nonconstructivity is surprisingly small. In order
to show this result, for every function d ∈ Rmon we define its inverse dinv as follows.
We set dinv (n) = µy[d(y) ≥ n] for all n ∈ N. Recall that range(d) is recursive for
all d ∈ Rmon . Thus, for all d ∈ Rmon we can conclude that dinv ∈ R.

Theorem 3.1. Let C ∈ ID be arbitrarily fixed, let H = (Lj)j∈N be any indexed
hypothesis space for C, and let d ∈ Rmon be any function. Then there is a computable
IIM M such that the class C can be identified by M with nonconstructivity log dinv (n)
in the limit from text with respect toH.

Proof. Assuming any help-word w of length precisely log dinv (n), the IIM M creates
a bitstring containing only 1s that has the same length asw. This bitstring is interpreted
as a natural number k. Consequently, k ≥ dinv (n). Let u∗ = d(k). Then we have

u∗ = d(k) ≥ d(dinv (n)) ≥ n . (2)

We define the IIM M in a way such that it will identify every language L ∈ C ∩
{L0, . . . , Lu∗} from any of its texts. So, fix any such L, let t be any text for L, and let
m ∈ N.

Now, the idea to complete the proof is as follows. In the limit, the IIM M can
determine the number ` of pairwise different languages enumerated in L0, . . . , Lu∗
as well as the least indices j1, . . . , j` of them and can then find the language among
them which is equal to L. This is achieved as follows. We assume any fixed length-
lexicographical ordering ≤lo of all strings from Σ∗, that is, s0, s1, . . . such that si ≤lo
si+1 for all i ∈ N.

Using m, t[m], and the decision function f for H, the IIM M computes the least
number r such that m ≤ r and s ≤lo sr for all s ∈ content(t[m]). Next, M computes

Lr0 = {w | w ≤lo sr, f(0, w) = 1},
Lr1 = {w | w ≤lo sr, f(1, w) = 1},

...
...

Lru∗ = {w | w ≤lo sr, f(u∗, w) = 1} ,

7

and chooses the least indices j1, . . . , j`m from 0, 1, . . . , u∗ of all the distinct languages
in the list Lr0, . . . , L

r
u∗ .

From these languages Lrjz , IIM M deletes from consideration all those indices for
which content(t[m]) 6⊆ Lrjz (the inconsistent ones). From the remaining indices, M
outputs the least index j such that |Lrj \ content(t[m])| is minimal.

Now, it is easy to see that the sequence (`m)m∈N converges to `, the number of the
pairwise different languages enumerated in L0, . . . , Lu∗ , and that the IIM M finds in
the limit the least indices j1, . . . , j` for these pairwise different languages.

From these languages Lj1 , . . . , Lj` the ones satisfying L \ Ljz 6= ∅ are deleted
from consideration by IIM M for large enough m — the m for which an element
in L \ Ljz appears in content(t[m]).

That leaves all those Ljz with L ⊆ Ljz . Now, by assumption there is a least
j ∈ {0, . . . , u∗} with Lj = L. If L ⊂ Ljz , then there is a string sp ∈ Ljz \ L, and as
soon as m ≥ p, the index j wins against jz since L = Lj ⊆ Ljz and m ≥ p implies,
|Lrj \ content(t[m])| < |Lrjz \ content(t[m])|.

Thus, the sequence (M(t[m], w))m∈N converges to j. �

The above result shows that for, indexed families, for any non-decreasing unbounded
computable function f , the amount of nonconstructively needed to learn an indexed
family in the limit can be bounded by f . The amount of nonconstructivity needed
cannot be bounded by a constant, since otherwise we would have REG ∈ LimTxt (as
one could fix the nonconstructive advice to be the one which appears as advice for
learning {L0, L1, . . . , Ln}, for infinitely many n). Thus, there is no computable non-
constant smallest amount of nonconstructivity needed to learn REG in the limit from
text. If one just considers the method of the above Theorem, then one can get a non-
computable lower bound on the amount of nonconstructivity needed for this method as
follows. One can define a total function t ∈ T such that t(n) ≥ d(n) for all d ∈ Rmon

and all but finitely many n. Consequently, log tinv is then a lower bound for the amount
of nonconstructivity needed to learnREG in the limit from text for the technique used
to show Theorem 3.1.

We continue by asking what amount of nonconstructivity is needed to obtain con-
servative learning from text for any indexable class. Now, the situation is intuitively
more complex, since ConsvTxt ⊂ LimTxt [2, 24]. Also, it is easy to see that the IIM
M given in the proof of Theorem 3.1 is in general not conservative. But the basic
idea still works mutatis mutandis provided we know the number ` of pairwise different
languages enumerated in L0, . . . , Ln.

Theorem 3.2. Let C ∈ ID be arbitrarily fixed, and let H = (Lj)j∈N be an indexed
hypothesis space for C. Then there is a computable IIM M such that the class C can be
conservatively identified byM with nonconstructivity log n from text with respect toH.

Proof. Let H = (Lj)j∈N be any indexed hypothesis space for C, and let n ∈ N. The
help-word w is defined as follows. Let q ≥ 1 be minimal such that n < 2q , and thus
log n = q. Let ` denote the number of different languages in L0, L1, . . . , L2q−1. Then,
the help-word w represents the number `− 1 using q bits. Note that ` is at least 1 and
at most 2q . Thus, q = log n bits are enough to represent ` − 1. As an example, if

8

n = 1 = 20, then q = 1 and a help-word is of 1 bit size, which is enough to distinguish
whether there are one or two different languages in L0, L1.

Given the help-word representing `−1 using q bits, the desired IIMM can find the
least indices of these ` pairwise different languages among L0, L1, . . . , L2q−1 by using
the decision function f for (Lj)j∈N as in the proof of Theorem 3.1 above, where u∗ is
taken as 2q− 1 (recall that u∗ in Theorem 3.1 was an upper bound on n), and r is addi-
tionally taken to be large enough to detect ` different languages. That is, it is assumed
that r is large enough so that the list Lr0, L

r
1, . . . , L

r
2q−1 contains at least ` different

languages, besides the conditions that r ≥ m, and s ≤lo sr for all s ∈ content(T [m]).
Recall that s0, s1, . . . is again any fixed length-lexicographical ordering of all strings
from Σ∗.

The rest is done inductively. Let t be a text for L ∈ C ∩ {L0, L1, . . . , L2q−1}.
On input t[0], the IIM M checks whether or not t(0) ∈ Lrjz , where z = 1, . . . , `, and
deletes all languages which fail. Then M orders the remaining sets Lrjz with respect
to set inclusion, and outputs the index of a minimal set among these with the smallest
index. For m > 0, M checks whether or not content(t[m]) ⊆ LM(t[m−1]). If it is,
it outputs M(t[m − 1]). Otherwise, it checks whether or not content(t[m]) ⊆ Lrjz ,
z = 1, . . . , `, and deletes all languages which fail. Then M orders the remaining sets
Lrjz with respect to set inclusion, and outputs the index of a minimal set among these
with the smallest index. It is now easy to verify that M is a conservative learner and
identifies C. �

We also have the following lower bound.

Theorem 3.3. There is a class C ∈ ID and an indexed hypothesis spaceH = (Lj)j∈N
for it such that, for every IIM that learns C conservatively with respect to H, less than
log n− 2 many bits of nonconstructivity are not enough.

Proof. This proof is done by diagonalization. We have to define a familyH = (Lj)j∈N
of uniformly recursive languages and then to show that it satisfies the assertion of the
theorem using C = {Lj | j ∈ N}. Let ϕ ∈ P2 be any fixed Gödel numbering of P . We
interpret every partial recursive function ϕi as an IIM, that is, we set Mi = ϕi. Below
we shall use the alphabet Σ = {a, b}. Let FINSEQ denote the set of all finite sequences
over Σ∗. We assume some fixed recursive encoding 〈·, ·〉, from FINSEQ×{0, 1}∗ onto
the natural numbers. To simplify notation we write M(σ, β) instead of M(〈σ, β〉),
where σ ∈ FINSEQ and β ∈ {0, 1}∗. Also, we write M(σ, β) ↓= ` provided the
computation of M(σ, β) stops in a finite number of steps and outputs `.

Our construction is organized in blocks, where in Block i, i ∈ N+, we shall define
languages L2i+j for all j ∈ {0, 1, . . . , 2i − 1}, that is, the languages L2i , . . . , L2i+1−1
by diagonalizing againstMi−1 and all possible help-words β ∈ {0, 1}∗ with 0 ≤ |β| <
i including the empty one λ. Note that there are 2i − 1 many such β.

Part of the construction is based on an idea developed by Angluin [2]. For the sake
of completeness we set L0 = {b} and define L1 = {bb}.

For i ≥ 1 we have to define 2i many languages. In addition, we also define a text ti
incrementally. This is done in Block i as follows.

For j = 0, . . . , 2i − 1 execute the following.

9

Initialize L2i+j = {ai}, set Ci = {β | β ∈ {0, 1}∗, 0 ≤ |β| < i}, Di = ∅, and
initialize the text ti by defining ti(0) = ai. Go to Stage 1.

Stage k. Execute the following instructions.

(A) Let ti(k) = aibk.
(B) Let L2i+j = L2i+j ∪ {aibk} for all j ∈ {0, . . . , 2i − 1} \Di.
(C) For all β ∈ Ci and all ` = 0, 1, . . . , k check whether or not

Mi−1(ti[`], β)↓= 2i + j for some j ∈ {0, . . . , 2i − 1} \Di (3)

can be verified within at most k steps of computation until the first such β, j
and ` are found, if ever.
If β and j are found then

let j∗ = min({0, . . . , 2i − 1} \ (Di ∪ {j})); Ci = Ci \ {β} and
Di = Di ∪ {j∗}.

Else do nothing.
Go to Stage k + 1.

End Stage k.

Now, it is easy to see that (L`)`∈N is a family of uniformly recursive languages.
Let i ≥ 1 be arbitrarily fixed and suppose by way of contradiction that Mi−1

conservatively learns all the languages L2i+j , where 0 ≤ j ≤ 2i−1, defined in Block i
by using help-words of size less than i. Note that i − 1 = blg(2i+1 − 1)c + 1 − 2 =
log(2i+1 − 1)− 2 by the convention made at the very end of Section 2.

Note that in Instruction (C), if β and j have been found, then exactly one element
is added toDi. Since there are only 2i−1 possible help-words β, we directly conclude
that the set {0, 1, 2, . . . , 2i − 1} \Di is never empty. So, there is always a number j∗
and by construction we have j 6= j∗.

Let β be any of the admissible help-words. We distinguish the following cases.
Case 1. The help-word β is not removed from Ci in any of the stages.
In this case Mi−1 fails to identify L2i+j for all j ∈ {0, 1, 2, . . . , 2i− 1} \Di when

using the help-word β. Note that the Di used here is the “eventual value of Di.” Since
by construction {0, 1, 2, . . . , 2i − 1} \Di 6= ∅, at least one language is not learned, a
contradiction.

Case 2. The help-word β is removed from Ci in some Stage k.
Let j and j∗ be as described in Instruction (C) above when executing this Stage k.

Then by construction we know that content (ti[k]) = L2i+j∗ , since j∗ is added to Di

and so L2i+j∗ is not changed any further in Instruction (B). On the other hand, j is
still not in Di and thus L2i+j∗ ⊂ L2i+j after the execution of Stage k + 1. Conse-
quently, the IIMMi−1 cannot learnL2i+j∗ conservatively when using the help-word β,
a contradiction.

Therefore, for every help-word, at least one of the languages in Block i is not
learned by Mi−1 or on which Mi−1 is not conservative.

Finally, suppose that there is an IIMM that learns the indexable class (L`)`∈N with
nonconstructivity log n − 2 with respect to the hypothesis space (L`)`∈N. Then there

10

must be an i ∈ N such that M = Mi. Consequently, for n = 2i+2 − 1 there must
be a help-word w of length less than i + 1 such that Mi conservatively learns all the
languages L0, . . . , L2i+2−1 from any of its texts and w.

Now, we consider in particular Block i+1, that is, the languagesL2i+1 , . . . , L2i+2−1.
Since |w| < i+ 1 there must be a β such that w = β for some β ∈ Ci+1, for the even-
tual value of Ci+1. But as our discussion above showed, this is impossible. So, we
have a contradiction and our supposition must be false. This proves the theorem. �

Finally, we look at strong-monotonic learning. Again the situation is more complex,
since SmonTxt ⊂ ConsvTxt, see [24]. We also add L0 = ∅ to every hypothesis space
allowed, that is, we always consider class comprising hypothesis spaces.

Theorem 3.4. Let C ∈ ID be arbitrarily fixed, and let H = (Lj)j∈N be an indexed
hypothesis space for C, where L0 = ∅. Then there is a computable IIM M such that
the class C can be strong-monotonically identified by M with nonconstructivity 2 log n
from text with respect toH.

Proof. Suppose q = log n. Thus, n < 2q . The key observation is that along with q, it
suffices to know the following number

p = |{(i, j) | Li 6⊆ Lj , i, j ∈ {0, . . . , 2q − 1}}| .

So, the help-word is of size 2q encoding p. Note that 2q bits are enough to encode
p in binary as p < 22q . Let s0, s1, . . . be the length-lexicographical ordering of all
strings from Σ∗. Let f be the decision function for (Lj)j∈N. Let Lrj = {w | w ≤lo
sr, f(j, w) = 1}. Given p and q, the IIM M can determine j1, j2, . . . , j` < 2q such
that (a) Lj1 , Lj2 , . . . , Lj` are pairwise different with j1 = 0, and (b) for some r,

|{(z, y) | Lrjz 6⊆ L
r
jy ; z, y ∈ {1, 2, . . . , `}}| = p.

Note that by the hypothesis on p, all Lj , j < 2q , belong to the set {Lj1 , Lj2 , . . . , Lj`},
as otherwise Lj would be different from Lj1 and thus the value of p is not correct.
Furthermore, Lrjz ⊆ Lrjy iff Ljz ⊆ Ljy as otherwise value of p would be incorrect.
Here without loss of generality, one can assume that jz is minimal index for Ljz .

Initially, the IIM M outputs j1 (recall that j1 = 0, and thus the first output of M
is for ∅). Thereafter, on input t[m], a new conjecture is output only if there is a unique
minimal language among Lj1 , Lj2 , . . . , Lj` containing content(t[m]). In this case, the
index jz of this unique minimal language is output. Otherwise, the IIM M repeats
its previous conjecture. Note that the IIM M can check and find the unique minimal
language as above, as the ordering among languages based on subset can be determined
based on Lrjz as mentioned above. It follows that M is strong monotonic (as it always
outputs the unique minimal index containing the input) and identifies (Lj)j∈N with
nonconstructive information 2 log n. �

Again, the bound given in Theorem 3.4 cannot be improved substantially, since we
have the following lower bound.

Theorem 3.5. There is a class C ∈ ID and an indexed hypothesis spaceH for it such
that, for every IIM that learns C strong-monotonically with respect to H, less than
2 log n− 4 many bits of nonconstructivity are not enough.

11

Proof. Again we use diagonalization to show the desired result. Let Σ = {a, b}.
We construct a family (Lj)j∈N of uniformly recursive languages. As in the proof of
Theorem 3.3 let Mi = ϕi, where ϕ ∈ P2 is any fixed Gödel numbering of P , and we
use the same notations as there for IIMs. The construction is done in Blocks, where
in Block i, i ∈ N+, we shall define languages L2i+j for all j ∈ {0, . . . , 2i − 1}
by diagonalizing against Mi−1 and the length-lexicographically first 22(i−1) possible
help-words β ∈ {0, 1}∗. For the sake of completeness we set L0 = ∅ and L1 = {b}.

For every i ≥ 1 we have to define 2i many languages. We divide these languages
in two groups of size 2i−1, where the first group contains the languages L2i+j for
j = 0, . . . , 2i−1 − 1. In order to simplify notation, we refer to the languages in the
first group as Lpj , j = 0, . . . , 2i−1 − 1, that is, Lpj = L2i+j . The second group
contains the remaining languages L2i+j for j = 2i−1, . . . 2i − 1. We refer to these
languages as Lqk , where k = 0, . . . , 2i−1 − 1, that is, Lqk = L2i+2i−1+k. Since the
construction is a bit more complicated, for each Lpj we incrementally define a text tji ,
where j = 0, . . . , 2i−1 − 1.

In Block i do the following.
Initialize the languages Lpj = {ai} for all j = 0, . . . , 2i−1 − 1 and Lqk = {ai}

for all k = 0, . . . , 2i−1 − 1, set Ci = {β | 0 ≤ |β| < 2(i − 1)} ∪ {02(i−1)}, and let
tji (0) = ai for all j = 0, . . . , 2i−1 − 1. Furthermore, set x = 0 and set Dj = ∅ for
j = 0, . . . , 2i−1 − 1. Go to Stage 1.

Stage s. Execute the following loop.

For j = 0 to 2i−1 − 1 do
x = x+ 1;
Lpj = Lpj ∪ {aibx};
tji (x) = aibx;
tzi (x) = tzi (x− 1) for all z ∈ {0, . . . , 2i−1 − 1} \ {j};
Lqz = Lqz ∪ {aibx} for all z ∈ {0, . . . , 2i−1 − 1};
For k = 0 to 2i−1 − 1 do

If k ∈ Dj then
do nothing in this iteration and continue with the next iteration
of this For loop;

Else (that is, k 6∈ Dj) continue with the following.
For all β ∈ Ci and ` = 0, . . . , x check whether or not

Mi−1(tji [`], β)↓= pj (4)

can be verified within at most s steps of computation.
Below we refer to (4) as Test (4).
If the Test (4) is satisfied for a β ∈ Ci then
Ci = Ci \ {β};
x = x+ 1;
Lpj = Lpj ∪ {aibx};
tji (x) = aibx;
tzi (x) = tzi (x− 1) for all z ∈ {0, . . . , 2i−1 − 1} \ {j};

12

Lqz = Lqz ∪ {aibx} for all z ∈ {0, . . . , 2i − 1} \ {k};
Dj = Dj ∪ {k};

Else do nothing.
endfor

endfor
If Ci 6= ∅, Go to Stage s+ 1.

End Stage s.

It should also be noted that we introduced the variable x above just to make sure
that all texts have the same length and that any new element added to the corresponding
languages has not been inserted in an earlier execution of the nested loops in the current
stage nor did we insert the new element in a previous stage.

Now, it is easy to see that (L`)`∈N is a family of uniformly recursive languages.
Let i ≥ 1 be arbitrarily fixed and suppose by way of contradiction that Mi−1

strong-monotonically learns all the languages L2i+j , where 0 ≤ j ≤ 2i− 1, defined in
Block i by using help-words of size less than 2(i − 1) or the help-word 02(i−1). Note
that

2(i− 1) = 2(blg(2i+1 − 1)c+ 1)− 4 = 2 log(2i+1 − 1)− 4

by the convention made at the very end of Section 2.
Furthermore, note that by construction for every j the set Dj can be updated at

most 2i−1 many times. As soon as Dj = {0, . . . , 2i−1 − 1} the second loop does
nothing for this j. Also note that for any change of some Dj a success in Test (4) is
necessary. Thus, when Dj = {0, . . . , 2i−1− 1} for all j, we must have also deleted all
help-words.

Let β be any help-word in Ci as at the start of the construction. We distinguish the
following cases.

Case 1. The help-word β is not removed from Ci in any of the stages.
In this case, there must be at least one j∗ such that Dj∗ ⊂ {0, . . . , 2i−1 − 1}.

So, if the Test (4) does never succeed for such a j∗, when using the help-word β then
for Lpj∗ we have a text tj∗i on which the IIM Mi−1 fails to learn Lpj∗ when using β.
So, the IIM Mi−1 does not learn Lpj∗ when using β as help-word for at least one text,
a contradiction.

Case 2. The help-word β is removed from Ci in some stage.
Let s be the stage in which this happens. Then there must be a j∗ and a k∗ such

that the variable j in the first loop takes the value j∗ and the variable k in the second
loop takes the value k∗ and the Test (4) is satisfied for some `. This also implies
that k∗ /∈ Dj∗ at that point.

Now, by construction we know that content(tj∗i [x]) ⊆ Lqk∗ and content(tj∗i [x]) ⊆
Lpj∗ , where x is as at the time when Test (4) is executed. However, now the language
Lpj∗ obtains the new element aibx+1 while Lqk∗ does not. Consequently, we have
Lpj∗ 6⊆ Lqk∗ . So, we have an initial segment of a text for Lqk∗ , that is, tj∗i [x], such that
the IIM Mi−1, using the help-word β, cannot strong-monotonically learn Lqk∗ from

13

any text extending tj∗i [x], since it has output pj∗ on tj∗i [`] for some ` ≤ x. This is a
contradiction.

Consequently, for each help-word β there is at least one language in Block i that is
not learned at all by Mi−1 or for which Mi−1 is not strong-monotonic.

The rest is done mutatis mutandis as in the proof of Theorem 3.3 and therefore
omitted. �

Having these general results, we can also ask what happens if we allow a suitably
chosen hypothesis space for REG such as all DFAs. Then for all i, j ∈ N equality
Li = Lj and subset Li ⊆ Lj are decidable, and thus from d ∈ Rmon we can find u∗
as in the proof of Theorem 3.1, and then q such that 2q > u∗, and then p as in the proof
of Theorem 3.4. This gives us the following theorem.

Theorem 3.6. Let C ⊆ REG be arbitrarily fixed, let H = (Lj)j∈N be any indexed
hypothesis space for C such thatH has a decidable subset problem, and let d ∈ Rmon

be any function. Then there is a computable IIMM such that the class C can be strong-
monotonically identified byM with nonconstructivity log dinv (n) from text with respect
toH.

3.2. Nonconstructive Learning of Recursively Enumerable Classes
Next, we turn our attention to the amount of nonconstructivity needed to learn recur-
sively enumerable classes of recursively enumerable languages.

Theorem 3.7. Let ψ ∈ P2 be any numbering. Then there is always an IIMM learning
the family (Wψ

i)i∈N+ in the limit from text with nonconstructivity log n with respect
to (Wψ

i)i∈N+ .

Proof. The help-word w is essentially the same as in the proof of Theorem 3.2, that is,
for q = log n, it is a bitstring w of length q which is the binary representation of `− 1,
where ` is the number of pairwise different languages among Wψ

0 , . . . ,W
ψ
2q−1. Recall

that the help-word also provides q due to its length. Let L ∈ C ∩ {Wψ
0 , . . . ,W

ψ
2q−1}

and let t be a text for L. On input t[m] and the help-wordw the desired IIMM executes
the following.

(1) For all i < 2q enumerateWψ
i form steps, that is, M tries to compute ψi(0), . . . ,

ψi(m) for at most m steps and enumerate those arguments x for which ψi(x)

turns out to be defined. Let Wψ
i,m be the resulting sets, for i < 2q .

(2) For all pairs (i, j), with i, j < 2q , check whether or not Wψ
i,m \W

ψ
j,m 6= ∅. If it

is, let d(i, j) be the least element in Wψ
i,m \W

ψ
j,m. If there is no such element,

we set d(i, j) = ∞. Let xi,j = min(Wψ
i,m4W

ψ
j,m), for i, j < 2q . Here if

Wψ
i,m = Wψ

j,m, then xi,j =∞.
(3) Having the numbers d(i, j) the IIMM checks whether or not there exist at least `

pairwise different languages among Wψ
0,m, . . . ,W

ψ
2q−1,m. If this is not the case,

then M(t[m]) = 0.
For S ⊆ {i | i < 2q} of size `, let s(S) = max{xi,j | i, j ∈ S, i 6= j}. Note that
if there are at least ` pairwise different languages among Wψ

0,m, . . . ,W
ψ
2q−1,m,

14

then s(S) is finite for some S of size ` (the S which contain ` different members
of Wψ

0,m, . . . ,W
ψ
2q−1,m).

Let S̃ of size ` be such that s(S̃) is minimized (where if there are several such
S̃, choose the lexicographically smallest one in some ordering). Suppose S̃ =
{i1, i2, . . . , i`}. Then M takes the languages Wψ

i1,m
, . . . ,Wψ

i`,m
into considera-

tion. From these candidate hypotheses i1, . . . , i` the least i is output for which
content(t[m]) contains all finite d(i, j), j = i1, . . . , i`, and content(t[m]) does
not contain any of the finite d(j, i), j = i1, . . . , i`. If there is no such i, then
M(t[m]) = 0.

It remains to argue thatM learnsL in the limit from t. Note that the ` pairwise different
languages are found in the limit, since the minimal element in the symmetric difference
of the two languages tends to infinity if the two languages are equal (if any element is
found at all).

So, the set S̃ and thus the sequence i1, i2, . . . , i` and all finite d(j, k), with j, k ∈
{i1, i2, . . . , i`} stabilize in the limit. By construction M then outputs the correct i as
soon as the initial segment t[m] is large enough to contain all finite d(i, j) for j ∈
{i1, i2, . . . , i`} \ {i}. �

Note that the IIM defined in the proof of Theorem 3.7 even witnesses a much stronger
result, that is, it always converges to the minimum index i of the target language.

The lower bound in Theorem 3.9 shows that Theorem 3.7 cannot be improved sub-
stantially. In order to show this result we need the following proposition (a more gen-
eralized version of this proposition is proved in Proposition 3.10).

Proposition 3.8. Given a setM = {M1,M2,M3, . . . ,Mm} ofm IIMs, one can effec-
tively find grammars gM0 , gM1 , . . . , gMm such that none of M1,M2, . . . ,Mm can learn
in the limit each and every of the languages WgM0

,WgM1
, . . . ,WgMm

.

Theorem 3.9. There is a numbering ψ ∈ P2 such that no IIM M can learn the
family (Wψ

i)i∈N+ in the limit from text with nonconstructivity log n − 2 with respect
to (Wψ

i)i∈N+ .

Proof. Using Proposition 3.8, the theorem can be shown as follows. For any learner
M , let Mβ be the learner which behaves just like M with the advice β as additional
input.

We define the numbering ψ as follows. Let ϕ be any fixed Gödel numbering of P .
We interpret every partial recursive function ϕi as an IIM Mi, that is, Mi = ϕi for
every i ∈ N. Let Mβ

i denote the machine Mi using the advice β.
The set Wψ

j , for j ∈ {2i, . . . , 2i+1 − 1}, is defined to be WgM
j−2i

, where M =

{Mβ
i | |β| < i}. Note that there are 2i − 1 many help-words β with 0 ≤ |β| < i,

and we thus have the needed number 2i of grammars (cf. Proposition 3.8). Thus, for
any i and any β of length at most i − 1, the IIM Mβ

i does not learn at least one of the
languages Wψ

j , j ∈ {2i, . . . , 2i+1 − 1}.
Now, suppose by way of contradiction that there is an IIM M that learns the whole

family (Wψ
j)j∈N+ using nonconstructivity log n−2. Then there must be an i ∈ N such

15

that M = Mi. So this IIM Mi learns the family (Wψ
j)j∈N+ using nonconstructivity

log n− 2. By using n = 2i+1 − 1, the IIM Mβ
i , for some β with length at most i− 1,

learns all the languages Wψ
j , for j ∈ {2i, . . . , 2i+1 − 1}. A contradiction. �

So, it remains to show Proposition 3.8. We shall show a bit stronger result.

Proposition 3.10. Given a set M = {M1,M2,M3, . . . ,Mm} of m IIMs, and two
disjoint finite sets S1 and S2, where S1, S2 ⊆ N, one can effectively (inM, S1, S2) find
grammars gM,S1,S2

0 , gM,S1,S2

1 , . . ., gM,S1,S2
m such that none of the IIMs M1, . . . ,Mm

learns in the limit all the languages W
g
M,S1,S2
0

,W
g
M,S1,S2
1

, . . ., W
g
M,S1,S2
m

, where we
additionally have the properties that

(a) S1 ⊆Wg
M,S1,S2
i

, for i ≤ m, and
(b) S2 ∩Wg

M,S1,S2
i

= ∅, for i ≤ m.

Proof. We show below how to define gM,S1,S2

j , for every j with 0 ≤ j ≤ |M|. These
grammars are generated implicitly by using the operator recursion theorem [5]. We will
define W

g
M,S1,S2
i

inductively on size ofM. IfM = ∅ then we let W
g
M,S1,S2
0

= S1.

Inductively, for m > 0, suppose gM,S1,S2

j has been defined for allM of size less
than m, and all disjoint finite sets S1, S2.

SupposeM = {M1,M2, . . . ,Mm} and let disjoint finite sets S1, S2 be given. The
sets W

g
M,S1,S2
j

, for j ∈ {1, . . . ,m}, are defined via a staging construction as follows.
Note that the construction is different for each different inputM, S1, S2.

Fix suchM, S1, S2. For ease of notation below let hj denote gM,S1,S2

j .
Let σ0 be a sequence with content S1. Enumerate S1 in each of Whj

, j ≤ m.
At the beginning of Stage s, for j ≤ m, it will be the case that content(σs) = Whj

enumerated before Stage s. Go to Stage 0.

Stage s. Dovetail Steps 1 and 2, until, if ever, Step 1 succeeds. If Step 1 succeeds,
then stop Step 2 and go to Step 3.

Step 1. Search for an extension σ of σs, where content(σ) ∩ S2 = ∅, such that
the condition M(s mod m)+1(σs) 6= M(s mod m)+1(σ) is verified.

Step 2. Let x be such that x 6∈ content(σs) ∪ S2.
Enumerate x in Whm

.
Let S′2 = S2 ∪ {x}. Let S′1 = content(σs).
LetM′ =M\ {M(s mod m)+1}.
Let Whj , for j < m, output more and more of W

g
M′,S′1,S′2
j

until, if ever

search in Step 1 succeeds (note that if and when search in Step 1 succeeds,
Whj would have output only finitely many elements from W

g
M′,S′1,S′2
j

).

Step 3. If and when Step 1 succeeds, let X = content (σ) ∪
⋃
j≤mWhj

enu-
merated up to now.
Enumerate X in Whj , for j ≤ m.
Let σs+1 be an extension of σ such that content(σs+1) = X .
Go to Stage s+ 1

16

End Stage s.

We now claim that gM,S1,S2

j as defined above satisfy the proposition. This is by induc-
tion on size of M. The proposition clearly holds when |M| = 0 as gM,S1,S2

0 is not
learnt by any machine in M (as M is empty). For m > 0, suppose the proposition
properties hold for allM of size less than m. Then, we show that it holds forM of
size m.

FixM (of sizem) and S1, S2, and consider the following cases for the construction
given above.

Case 1. There are infinitely many stages.
In this case, all Whj

, j ≤ m, are the same language given by content(
⋃
s∈N σs),

and each of the learners M1,M2, . . . ,Mm makes infinitely many mind changes on the
text

⋃
s∈N σs.

Case 2. Stage s starts but does not finish.
In this case, clearly, M(s mod m)+1 converges to M(s mod m)+1(σs) on all texts

extending σs which do not contain any element from S2. Thus, either M(s mod m)+1

does not learn Whm
(which contains x as defined in Stage s) or does not learn any of

Whj
, j < m, which do not contain x. Finally, by the induction hypothesis, none of the

learners inM′ learns all the languages Whj
, for j < m. Thus, the proposition follows.

�

The situation considerably changes if we require conservative learning. In order to
present this result, we need the following. A function h : N → N is said to be limiting
recursive if there is a function h̃ ∈ R2 such that h(i) = lim

t→∞
h̃(i, t) for all i ∈ N.

Theorem 3.11. For every limiting recursive function h there is a recursively enumer-
able family (Wψ

i)i∈N of recursively enumerable languages such that no IIM with non-
constructivity at most h can learn (Wψ

i)i∈N conservatively with respect to (Wψ
i)i∈N.

Proof. Let the limiting recursive function h : N→ N be arbitrarily fixed. Furthermore,
we assume any fixed function h̃ ∈ R2 such that h(i) = lim

n→∞
h̃(i, n) for all i ∈ N.

Again, we fix any Gödel numbering ϕ of P and interpret each ϕi as an IIM, that is,
we have Mi = ϕi for all i ∈ N.

For every number i ∈ N we construct two recursively enumerable sets Wψ
2i and

Wψ
2i+1 such that for each help-word β ∈ {0, 1}∗ with 0 ≤ |β| ≤ h(2i + 1), Mi fails

to learn at least one of the languages Wψ
2i and Wψ

2i+1 or Mi is not conservative. This is
done as follows.

For each number i ∈ N do the following.

Begin

Set t = 0.

Initialize Wψ
2i = {〈i, 2x〉 | x ∈ N} and Wψ

2i+1 = {〈i, 2x+ 1〉 | x ∈ N}.

Go to (1).

17

(1) Compute mt = h̃(2i+ 1, t) and let rt = 2mt+1 − 1.
We define Ct = {1, . . . , rt} and enumerate in lexicographic order all
strings β ∈ {0, 1}∗ with 0 ≤ |β| ≤ mt. We refer to these elements as
βj , where j ∈ Ct.
Dovetail the execution of (α) and (2).
(α) Do forever

t = t+ 1;
if h̃(2i+ 1, t− 1) < h̃(2i+ 1, t) then

let mt = h̃(2i+ 1, t) and rt = 2mt+1 − 1;
UpdateCt = {1, . . . , rt} and update (A) by including the newly
found j ∈ Ct.

enddo
(2) Start (A).

(A) For each j ∈ Ct try to find, by dovetailing the following search, a
finite sequence σβj

of elements from {〈i, x〉 | x ∈ N} such that the
condition Mi(σβj

, βj)↓= 2i is verified.
Once such a sequence σβj

is found, if ever, stop (A) for the j for which
the search succeeded but continue for the remaining values of j, and
update

Wψ
2i = Wψ

2i ∪ content (σβj
) , (5)

Wψ
2i+1 = Wψ

2i+1 ∪ content (σβj
) . (6)

Now start (B) for the j for which the search succeeded.
(B) Try to find a finite sequence τβj of elements from {〈i, x〉 | x ∈ N}

such that the condition Mi(σβj
� τβj

, βj)↓= 2i+ 1 is verified, where
σβj
� τβj

denotes the concatenation of the finite sequences σβj
and

τβj
.

If such a τβj
is found, if ever, stop (B) for the j for which the search

succeeded and update

Wψ
2i = Wψ

2i ∪ content (τβj
) , (7)

Wψ
2i+1 = Wψ

2i+1 ∪ content (τβj
) . (8)

Furthermore, set Ct = Ct \ {j}. If Ct 6= ∅ continue (A) or (B) for the
remaining j ∈ Ct.
If Ct = ∅ then stop (A) and (B) until, if ever, in (α) the set Ct is
updated.

End

Now, it is easy to see that (Wψ
`)`∈N is a recursively enumerable family of recursively

enumerable languages. It remains to show that no IIM M can learn (Wψ
`)`∈N conser-

vatively with nonconstructivity h with respect to (Wψ
`)`∈N.

Suppose the converse, that is, there is an IIM M that learns (Wψ
`)`∈N conserva-

tively with respect to (Wψ
`)`∈N. In order to obtain a contradiction, it suffices to show

18

that there is some n ∈ N such that for each help-word w with 0 ≤ |w| ≤ h(n) there
is a language W from our family such that W ∈ {Wψ

0 , . . . ,W
ψ
n } but W is not learned

conservatively by M .
SinceM is an IIM, there must be an i ∈ N such thatM = Mi. Furthermore, since h

is limiting recursive, there must be t0 ∈ N such that h(2i + 1) = h̃(2i + 1, t0 + k)
for all k ∈ N. That is, as soon as our t in (α) satisfies t ≥ t0 no further update
of Ct is occurring in (α). It should also be noted that we may have included more
help-words βj in our construction than actually necessary, since we only checked if
h̃(2i+ 1, t) does increase. But this does not matter as we shall see below.

We claim that for n = 2i + 1 the desired contradiction can be obtained. Let us
consider the sets Wψ

2i and Wψ
2i+1.

As said above, as soon as t ≥ t0 the set Ct does not change any further in the
loop (α). So, let m = h(2i + 1) and r = 2m+1 − 1. It suffices to consider all
help-words β1, . . . , βr, where 0 ≤ |βj | ≤ m for all j ∈ {1, . . . , r}.

Let any such βj be arbitrarily fixed. Then we try in (A) in particular any finite
sequence σ with content(σ) ⊆ {〈i, x〉 | x ∈ N} of elements of Wψ

2i. Thus, if for all
these finite sequences σ either Mi(σ, βj) remains undefined or turns out to be defined
but Mi(σ, βj) 6= 2i then Mi fails to learn Wψ

2i when using the help-word βj , since
there is no other index for this language in (Wψ

`)`∈N. Here it should be noted that
Wψ

2i 6= Wψ
2i+1, since the at most finitely often occurring updates in (5), (6), (7), and (8)

do only add finitely often finitely many elements to Wψ
2i and Wψ

2i+1, respectively.
Otherwise, the search must eventually succeed, that is, we find a finite sequence

σβj such that Mi(σβj , βj)↓= 2i.
Now, by construction we know that content (σβj) ⊆ Wψ

2i+1, too (see Instruc-
tion (6)). So, in (B) we try in particular any finite sequence τ of elements of Wψ

2i+1,
and by construction also each sequence σβj �τ is an initial segment of a text forWψ

2i+1.
Consequently, if we never verify Mi(σβj � τ, βj) ↓= 2i + 1 in (B) then Mi fails to
learn Wψ

2i+1 from every text starting with σβj .
Otherwise, in (B) we find a τβj

such that Mi(σβj
� τβj

, βj)↓= 2i+ 1.
Taking (8) and (7), respectively, into account, by construction we know that

content (σβj) ∪ content (τβj) ⊆Wψ
2i+1

as well as

content (σβj
) ∪ content (τβj

) ⊆Wψ
2i .

Thus, σβj � τβj is an initial segment of a text for both Wψ
2i and Wψ

2i+1. But since

Mi(σβj
, βj)↓= 2i 6= 2i+ 1 = Mi(σβj

� τβj
, βj)↓ ,

we see that Mi(σβj
, βj) 6= Mi(σβj

� τβj
, βj) even though content (σβj

� στj) is con-
tained in Wψ

2i. This is a contradiction to Mi (with help-word βj) being conservative.
So, for every help-word βj , 0 ≤ |βj | ≤ m the IIM Mi either does not learn Wψ

2i

or Wψ
2i+1 or it is not conservative. Thus, the theorem is shown. �

19

Since SmonTxt ⊆ ConsvTxt (see [16, 18, 22]), Theorem 3.11 directly allows for the
following corollary.

Corollary 3.12. For every limiting recursive function h there is a recursively enumer-
able family (Wψ

i)i∈N of recursively enumerable languages such that no IIM with non-
constructivity at most h can learn (Wψ

i)i∈N strong-monotonically with respect to the
hypothesis space (Wψ

i)i∈N.

4. Conclusions

We have presented a model for the inductive inference of formal languages from text
that incorporates a certain amount of nonconstructivity. In our model, the amount of
nonconstructivity needed to solve the learning problems considered has been used as a
quantitative characterization of their difficulty.

We studied the problem of learning indexable classes under three postulates, that
is, learning in the limit, conservative identification, and strong-monotonic inference.
As far as learning in the limit is concerned, the amount of nonconstructivity needed to
learn any indexable class can be very small and there is no smallest amount that can be
described in a computable way (cf. Theorem 3.1).

Moreover, we showed upper and lower bounds for conservative learning of in-
dexable classes and for strong-monotonic inference roughly showing that the amount
of nonconstructivity needed is log n for conservative learning and 2 log n for strong-
monotonic inference.

However, if we allow canonical indexed hypothesis spaces forREG such that pair-
wise containment of languages in the hypothesis space is decidable, then the amount of
nonconstructivity needed to learn REG even strong-monotonically can be made very
small.

Finally, we studied the problem to learn recursively enumerable classes of recur-
sively enumerable languages. In this setting, the amount of nonconstructivity needed
to learn in the limit is log n, while there is not even a limiting recursive bound for the
amount of nonconstructivity to learn all recursively enumerable classes of recursively
enumerable languages conservatively or strong-monotonically.

Acknowledgment

We thank the anonymous referee for several helpful comments which improved the
presentation of the paper. This research was performed partially while the third author
was visiting the Institute of Mathematical Sciences at the National University of Singa-
pore in September 2011. His visit was supported by the Institute. Preliminary version
of this paper appeared in TAMC 2012 [19].

References

[1] Dana Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21(1):46–62, 1980.

20

[2] Dana Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control, 45(2):117–135, 1980.

[3] Jānis M. Bārzdin, š. Complexity of programs to determine whether natural num-
bers not greater than n belong to a recursively enumerable set. Soviet Mathemat-
ics Doklady, 9:1251–1254, 1968.

[4] Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller. Proof systems that take
advice. Information and Computation, 209(3):320–332, 2011.

[5] John Case. Periodicity in generations of automata. Mathematical Systems Theory,
8(1):15–32, 1974.

[6] Stephen Cook and Jan Krajiček. Consequences of the provability of NP ⊆
P/poly . The Journal of Symbolic Logic, 72(4):1353–1371, 2007.

[7] Carsten Damm and Markus Holzer. Automata that take advice. In Mathematical
Foundations of Computer Science 1995, 20th International Symposium, MFCS
’95, Prague, Czech Republic, August 28 - September 1, 1995, Proceedings, vol-
ume 969 of Lecture Notes in Computer Science, pages 149–158, Berlin, 1995.
Springer.

[8] Paul Erdős. Some remarks on the theory of graphs. Bulletin of the American
Mathematical Society, 53(4):292–294, 1947.

[9] Rūsin, š Freivalds. Amount of nonconstructivity in finite automata. In Sebastian
Maneth, editor, Implementation and Application of Automata, 14th International
Conference, CIAA 2009, Sydney, Australia, July 14-17, 2009. Proceedings, vol-
ume 5642 of Lecture Notes in Computer Science, pages 227–236, Berlin, 2009.
Springer.

[10] Rūsin, š Freivalds. Amount of nonconstructivity in deterministic finite automata.
Theoretical Computer Science, 411(38-39):3436–3443, 2010.

[11] Rūsin, š Freivalds and Thomas Zeugmann. On the amount of nonconstructivity in
learning recursive functions. In Mitsunori Ogihara and Jun Tarui, editors, Theory
and Applications of Models of Computation, 8th Annual Conference, TAMC 2011,
Tokyo, Japan, May 23-25, 2011, Proceedings, volume 6648 of Lecture Notes in
Computer Science, pages 332–343. Springer, 2011.

[12] Rusins Freivalds and Thomas Zeugmann. Co–learning of recursive languages
from positive data. In Dines Bjørner, Manfred Broy, and Igor V. Potttosin, editors,
Perspectives of System Informatics, Second International Andrei Ershov Memo-
rial Conference, Akademgorodok, Novosibirsk, Russia, June 1996, Proceedings,
volume 1181 of Lecture Notes in Computer Science, pages 122–133. Springer,
1996.

[13] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

21

[14] Sanjay Jain, Efim Kinber, Steffen Lange, Rolf Wiehagen, and Thomas Zeugmann.
Learning languages and functions by erasing. Theoretical Computer Science,
241(1-2):143–189, 2000. Special issue for ALT ’96.

[15] Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems that
Learn: An Introduction to Learning Theory, second edition. MIT Press, Cam-
bridge, Massachusetts, 1999.

[16] Sanjay Jain and Arun Sharma. On monotonic strategies for learning r.e. lan-
guages. In Setsuo Arikawa and Klaus P. Jantke, editors, Algorithmic Learning
Theory, 4th International Workshop on Analogical and Inductive Inference, AII
’94, 5th International Workshop on Algorithmic Learning Theory, ALT ’94, Rein-
hardsbrunn Castle, Germany, October 1994, Proceedings, volume 872 of Lecture
Notes in Artificial Intelligence, pages 349–364. Springer-Verlag, 1994.

[17] Sanjay Jain and Arun Sharma. Computational limits on team identification of
languages. Information and Computation, 130:19–60, 1996.

[18] Sanjay Jain and Arun Sharma. Generalization and specialization strategies
for learning r.e. languages. Annals of Mathematics and Artificial Intelligence,
23(1/2):1–26, 1998.

[19] Sanjay Jain, Frank Stephan, and Thomas Zeugmann. On the amount of noncon-
structivity in learning formal languages from positive data. In Manindra Agrawal,
S. Barry Cooper, and Ansheng Li, editors, Theory and Applications of Models of
Computation, 9th Annual Conference, TAMC 2012, Beijing, China, May 16-21,
2012, Proceedings, volume 7287 of Lecture Notes in Computer Science, pages
423–434. Springer, 2012.

[20] Klaus P. Jantke. Monotonic and non-monotonic inductive inference. New Gener-
ation Computing, 8(4):349–360, 1991.

[21] Richard M. Karp and Richard J. Lipton. Turing machines that take advice. L’
Enseignement Mathématique, 28:191–209, 1982.

[22] Efim Kinber and Frank Stephan. Language learning from texts: Mind changes,
limited memory and monotonicity. Information and Computation, 123:224–241,
1995.

[23] Steffen Lange and Thomas Zeugmann. Types of monotonic language learning and
their characterization. In David Haussler, editor, Proceedings of the Fifth Annual
ACM Workshop on Computational Learning Theory, pages 377–390, New York,
NY, 1992. ACM Press.

[24] Steffen Lange and Thomas Zeugmann. Language learning in dependence on the
space of hypotheses. In Lenny Pitt, editor, Proceedings of the Sixth Annual ACM
Conference on Computational Learning Theory, pages 127–136, New York, NY,
1993. ACM Press.

22

[25] Steffen Lange, Thomas Zeugmann, and Sandra Zilles. Learning indexed fami-
lies of recursive languages from positive data: A survey. Theoretical Computer
Science, 397(1-3):194–232, 2008.

[26] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted, MIT Press 1987.

[27] Carl H. Smith. The power of pluralism for automatic program synthesis. Journal
of the ACM, 29(4):1144–1165, 1982.

[28] Thomas Zeugmann and Steffen Lange. A guided tour across the boundaries
of learning recursive languages. In Algorithmic Learning for Knowledge-Based
Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages 190–258.
Springer, 1995.

23

