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Abstract. In this paper, we propose a novel algorithm to learn a Büchi automa-
ton from a teacher who knows anω-regular language. The algorithm is based on
learning a formalism namedfamily of DFAs(FDFAs) recently proposed by An-
gluin and Fisman [10]. The main catch is that we use aclassification treestructure
instead of the standardobservation tablestructure. The worst case storage space
required by our algorithm is quadratically better than the table-based algorithm
proposed in [10]. We implement the first publicly available library ROLL (Reg-
ular Omega Language Learning), which consists of allω-regular learning algo-
rithms available in the literature and the new algorithms proposed in this paper.
Experimental results show that our tree-based algorithms have the best perfor-
mance among others regarding the number of solved learning tasks.

1 Introduction

Since the last decade, learning-based automata inference techniques [7,11,30,35] have
received significant attention from the community of formalsystem analysis. In general,
the primary applications of automata learning in the community can be categorized into
two: improving efficiency and scalability of verification[6,15,17,19,21,23,25,32] and
synthesizing abstract system model for further analysis[1,5,16,18,22,24,26,34,36,39].

The former usually is based on the so calledassume-guaranteecompositional veri-
fication approach, which divides a verification task into several subtasks via a compo-
sition rule. Learning algorithms are applied to construct environmental assumptions of
components in the rule automatically. For the latter, automata learning has been used to
automatically generate interface model of computer programs [5,22,26,36,40], a model
of system error traces for diagnosis purpose [16], behaviormodel of programs for sta-
tistical program analysis [18], and model-based testing and verification [24,34,39].

Besides the classical finite automata learning algorithms,people also apply and de-
velop learning algorithm for richer models for the above twoapplications. For example,
learning algorithms for register automata [27, 28] have been developed and applied to
synthesis system and program interface models. Learning algorithm for timed automata
has been developed for automated compositional verification for timed systems [32].
However, all the results mentioned above are for checkingsafety propertiesor synthe-
sizing finite behavior modelsof systems/programs. Büchi automaton is the standard
model for describing liveness properties of distributed systems [4]. The model has been
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applied in automata theoretical model checking [38] to describe the property to be veri-
fied. It is also often used in the synthesis of reactive systems. Moreover, Büchi automata
have been used as a means to prove program termination [31]. However, unlike the case
for finite automata learning, learning algorithms for Büchi automata are very rarely used
in our community. We believe this is a potentially fertile area for further investigation.

The first learning algorithm for the full-class ofω-regular languages represented
as Büchi automata was described in [20], based on theL∗ algorithm [7] and the result
of [14]. Recently, Angluin and Fisman propose a new learningalgorithm forω-regular
languages [10] using a formalism called afamily of DFAs(FDFAs), based on the results
of [33]. The main problem of applying their algorithm in verification and synthesis is
that their algorithm requires a teacher for FDFAs. In this paper, we show that their
algorithm can be adapted to support Büchi automata teachers.

We propose a novelω-regular learning algorithm based on FDFAs and aclassifi-
cation treestructure (inspired by the tree-basedL∗ algorithm in [30]). The worst case
storage space required by our algorithm is quadratically better than the table-based al-
gorithm proposed in [10]. Experimental results show that our tree-based algorithms
have the best performance among others regarding the numberof solved learning tasks.

For regular language learning, there are robust and publicly available libraries, e.g.,
libalf [12] andLearnLib [29]. A similar library is still lacking for Büchi automatalearn-
ing. We implement the first publicly available Büchi automata learning library, named
ROLL (Regular Omega Language Learning,http://iscasmc.ios.ac.cn/roll), which
includes all Büchi automata learning algorithms of the full class ofω-regular languages
available in the literature and the ones proposed in this paper. We compare the perfor-
mance of those algorithms using a benchmark consists of 295 Büchi automata corre-
sponding to all 295 LTL specifications available in BüchiStore [37].

To summarize, our contribution includes the following. (1)Adapting the algorithm
of [10] to support Büchi automata teachers. (2) A novel learning algorithm forω-regular
language based on FDFAs and classification trees. (3) The publicly available library
ROLL that includes all Büchi automata learning algorithms can be found in the litera-
ture. (4) A comprehensive empirical evaluation of Büchi automata learning algorithms.

2 Preliminaries

Let A andB be two sets. We useA⊕ B to denote theirsymmetric difference, i.e., the set
(A \ B) ∪ (B \ A). LetΣ be a finite set calledalphabet. We useǫ to represent an empty
word. The set of all finite words is denoted byΣ∗, and the set of all infinite words, called
ω-words, is denoted byΣω. Moreover, we also denote byΣ+ the setΣ∗ \ {ǫ}. We use|u|
to denote the length of the finite wordu. We use [i · · · j] to denote the set{i, i+1, · · · , j}.
We denote byw[i] the i-th letter of a wordw. We usew[i..k] to denote the subword of
w starting at thei-th letter and ending at thek-th letter, inclusive, wheni ≤ k and the
empty wordǫ wheni > k. A languageis a subset ofΣ∗ and anω-languageis a subset
of Σω. Words of the formuvω are calledultimately periodicwords. We use a pair of
finite words (u, v) to denote the ultimately periodic wordw = uvω. We also call (u, v) a
decompositionof w. For anω-languageL, let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L},
i.e., all ultimately periodic words inL.
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A finite automaton(FA) is a tupleA = (Σ,Q, q0, F, δ) consisting of a finite alphabet
Σ, a finite setQ of states, an initial stateq0, a setF ⊆ Q of accepting states, and a
transition relationδ ⊆ Q × Σ × Q. For convenience, we also useδ(q, a) to denote the
set{q′ | (q, a, q′) ∈ δ}. A run of an FA on a finite wordv = a1a2a3 · · ·an is a sequence
of statesq0, q1, · · · , qn such that (qi, ai+1, qi+1) ∈ δ. The runv is acceptingif qn ∈ F.
A word u is accepting if it has an accepting run. The language ofA, denoted byL(A),
is the set{u ∈ Σ∗ | u is accepted byA}. Given two FAsA andB, one can construct a
product FAA× B recognizingL(A) ∩ L(B) using a standard product construction.

A deterministic finite automaton(DFA) is an FA such thatδ(q, a) is a singleton for
any q ∈ Q anda ∈ Σ. For DFA, we writeδ(q, a) = q′ instead ofδ(q, a) = {q′}. The
transition can be lifted to words by definingδ(q, ǫ) = q andδ(q, av) = δ(δ(q, a), v) for
q ∈ Q, a ∈ Σ andv ∈ Σ∗. We also useA(v) as a shorthand forδ(q0, v).

A Büchi automaton(BA) has the same structure as an FA, except that it accepts only
infinite words. A run of an infinite word in a BA is an infinite sequence of states defined
similarly to the case of a finite word in an FA. An infinite wordw is accepted by a BA
iff it has a run visiting at least one accepting state infinitely often. The language defined
by a BA A, denoted byL(A), is the set{w ∈ Σω | w is accepted byA}. An ω-language
L ⊆ Σω isω-regular iff there exists a BAA such thatL = L(A).

Theorem 1 (Ultimately Periodic Words ofω-Regular Languages [13]).Let L, L′ be
twoω-regular languages. Then L= L′ if and only if UP(L) = UP(L′).

Definition 1 (Family of DFAs (FDFA) [10]). A family of DFAsF = (M, {Aq}) over
an alphabetΣ consists of a leading automaton M= (Σ,Q, q0, δ) and progress DFAs
Aq = (Σ,Qq, sq, δq, Fq) for each q∈ Q.

Notice that the leading automatonM is a DFA without accepting states. Each FDFA
F characterizes a set of ultimately periodic wordsUP(F ). Formally, an ultimately pe-
riodic wordw is in UP(F ) iff it has a decomposition (u, v) acceptedby F . A decom-
position (u, v) is accepted byF iff M(uv) = M(u) andv ∈ L(AM(u)). An example of
an FDFAF is depicted in Fig. 1. The leading automatonM has only one stateǫ. The
progress automaton ofǫ is Aǫ . The word (ba)ω is in UP(F ) because it has a decomposi-
tion (ba, ba) such thatM(ba· ba) = M(ba) andba∈ L(AM(ba)) = L(Aǫ). It is easy to see
that the decomposition (bab, ab) is not accepted byF sinceab< L(AM(bab)) = L(Aǫ).

ǫstart

M a

b

ǫstart a

Aǫ

a, b

a

b

Fig. 1. An example of an FDFA

For anyω-regular languageL, there
exists an FDFAF such thatUP(L) =
UP(F ) [10]. We show in Sec. 6 that it
is not the case for the reverse direction.
More precisely, in [10], three kinds of
FDFAs are suggested as the canonical
representation ofω-regular languages,
namelyperiodic FDFA, syntacticFDFA

andrecurrentFDFA. Their formal definitions are given in terms ofright congruence.
An equivalence relation∽ onΣ∗ is a right congruence ifx ∽ y implies xv ∽ yv for

everyx, y, v ∈ Σ∗. The index of∽, denoted by|∽|, is the number of equivalence classes
of ∽. We useΣ∗/∽ to denote the equivalence classes of the right congruence∽. A finite
right congruenceis a right congruence with a finite index. For a wordv ∈ Σ∗, we use



the notation [v]∽ to represent the class of∽ in which v resides and ignore the subscript
∽ when the context is clear. The right congruence∽L of a givenω-regular languageL
is defined such thatx ∽L y iff ∀w ∈ Σω.xw ∈ L ⇐⇒ yw ∈ L. The index of∽L is finite
because it is not larger than the number of states in a deterministic Muller automaton
recognizingL [33].

Definition 2 (Canonical FDFA [10]). Given anω-regular language L, a periodic (re-
spectively, syntactic and recurrent)FDFAF = (M, {Aq}) of L is defined as follows.
The leading automaton M is the tuple(Σ, Σ∗/∽L , [ǫ]∽L , δ), whereδ([u]∽L , a) = [ua]∽L for
all u ∈ Σ∗ and a∈ Σ.

We define the right congruences≈u
P,≈

u
S, and≈u

R for progress automata Au of peri-
odic, syntactic, and recurrentFDFA respectively as follows:

x ≈u
P y iff ∀v ∈ Σ∗, u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L,

x ≈u
S y iff ux∽L uy and∀v ∈ Σ∗, uxv∽L u =⇒ (u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L), and

x ≈u
R y iff ∀v ∈ Σ∗, uxv∽L u∧ u(xv)ω ∈ L⇐⇒ uyv∽L u∧ u(yv)ω ∈ L.

The progress automaton Au is the tuple(Σ, Σ∗/≈u
K
, [ǫ]≈u

K
, δK , FK), whereδK([u]≈u

K
, a) =

[ua]≈u
K

for all u ∈ Σ∗ and a ∈ Σ. The accepting states FK is the set of equivalence
classes[v]≈u

K
for which uv∽L u and uvω ∈ L when K∈ {S,R} and the set of equivalence

classes[v]≈u
K

for which uvω ∈ L when K∈ {P}.

In this paper, by an abuse of notation, we use a finite wordu to denote the state in a
DFA in which the equivalence class [u] resides.

Lemma 1 ([10]). Let F be a periodic (syntactic, recurrent)FDFA of an ω-regular
language L. Then UP(F ) = UP(L).

Lemma 2 ([9]). LetF be a periodic (syntactic, recurrent)FDFA of anω-regular lan-
guage L. One can construct a BA recognizing L fromF .

3 Büchi Automata Learning Framework based on FDFA

We begin with an introduction of the framework of learning BArecognizing an un-
knownω-regular languageL.

Overview of the framework: First, we assume that we already have a BA teacher who
knows the unknownω-regular languageL and answersmembershipandequivalence
queries aboutL. More precisely, a membership queryMemBA(uvω) asks ifuvω ∈ L.
For an equivalence queryEquBA(B), the BA teacher answers “yes” whenL(B) = L,
otherwise it returns “no” as well as a counterexampleuvω ∈ L ⊕ L(B).

The framework depicted in Fig. 2 consists of two components,namely the FDFA
learner and the FDFAteacher. Note that one can place any FDFA learning algorithm
to the FDFA learner component. For instance, one can use the FDFA learner from [10]
which employs a table to store query results, or the FDFA learner using a classification
tree proposed in this paper. The FDFA teacher can be any teacher who can answer
membership and equivalence queries about an unknown FDFA.
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Table-based [10]

(Sec.4)

Tree-based (Sec. 5)
– Periodic FDFA
– Syntactic FDFA
– Recurrent FDFA

FDFA F to BA B (Sec. 6)
– Under-ApproximationB
– Over-ApproximationB

Analyze CE (Sec. 7)
– Under-ApproximationB
– Over-ApproximationB

F

MemFDFA(u, v) MemBA(uvω)

yes/no

EquFDFA(F) EquBA(B)

yes

Output a BA recognizing the target language

no+ uvωno+(u′, v′)

Fig. 2. Overview of the learning framework based on FDFA learning. The components in
boxes are results from existing works. The components in boxes are our new contributions.

FDFA learners: The FDFA learners component will be introduced in Sec. 4 and 5.
We first briefly review the table-based FDFA learning algorithms [10] in Sec. 4. Our
tree-based learning algorithm for canonical FDFAs will be introduced in Sec. 5. The al-
gorithm is inspired by the tree-basedL∗ learning algorithm [30]. Nevertheless, applying
the tree structure to learn FDFAs is not a trivial task. For example, instead of a binary
tree used in [30], we need to use aK-ary tree to learn syntactic FDFAs. The use of
K-ary tree complicates the procedure of refining the classification tree and automaton
construction. More details will be provided in Sec. 5.

FDFA teacher: The task of the FDFA teacher is to answer queriesMemFDFA(u, v) and
EquFDFA(F) posed by the FDFA learner. AnsweringMemFDFA(u, v) is easy. The FDFA
teacher just needs to redirect the result ofMemBA(uvω) to the FDFA learner. Answering
equivalence queryEquFDFA(F) is more tricky.

From an FDFAF to a BA B: The FDFA teacher needs to transform an FDFAF to a
BA B to pose an equivalence queryEquBA(B). In Sec. 6, we show that, in general, it
is impossible to build a BAB from an FDFAF such thatUP(L(B)) = UP(F). There-
fore in Sec. 6, we propose two methods to approximateUP(F), namely theunder-
approximationmethod and theover-approximationmethod. As the name indicates,
the under-approximation (respectively, over-approximation) method constructs a BA
B from F such thatUP(L(B)) ⊆ UP(F) (respectively,UP(F) ⊆ UP(L(B))). The under-
approximation method is modified from the algorithm in [14].Note that if the FDFAs
are the canonical representations, the BAs built by the under-approximation method
recognize the same ultimately periodic words as the FDFAs, which makes it a com-



plete method for BA learning (Lem. 1 and 2). As for the over-approximation method,
we cannot guarantee to get a BAB such thatUP(L(B)) = UP(F) even if theF is a
canonical representation, which thus makes it an incomplete method. However, in the
worst case, the over-approximation method produces a BA whose number of states is
only quadratic in the size of the FDFA. In contrast, the number of states in the BA con-
structed by the under-approximation method is cubic in the size of the FDFA.

Counterexample analysis:If the FDFA teacher receives “no” and a counterexampleuvω

from the BA teacher, the FDFA teacher has to return “no” as well as a valid decom-
position (u′, v′) that can be used by the FDFA learner to refineF. In Sec. 7, we show
how the FDFA teacher chooses a pair (u′, v′) from uvω that allows FDFA learner to re-
fine current FDFAF. As the dashed line with a labelF in Fig. 2 indicates, we use the
current conjectured FDFAF to analyze the counterexample. The under-approximation
method and the over-approximationmethod of FDFA to BA translation require different
counterexample analysis procedures. More details will be provided in Sec. 7.

Once the BA teacher answers “yes” for the equivalence queryEquBA(B), the FDFA
teacher will terminate the learning procedure and outputs aBA recognizingL.

4 Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based learner for FDFAs [10]. It employs
a structure calledobservation table[7] to organize the results obtained from queries and
propose candidate FDFAs. The table-based FDFA learner simultaneously runs several
instances of DFA learners. The DFA learners are very similarto theL∗ algorithm [7],
except that they use different conditions to decide if two strings belong to the same state
(based on Def. 2). More precisely, the FDFA learner uses one DFA learnerL∗M for the
leading automatonM, and for each stateu in M, one DFA learnerL∗Au for each progress
automatonAu. The table-based learning procedure works as follows. The learnerL∗M
first closes the observation table by posing membership queries and then constructs
a candidate for leading automatonM. For every stateu in M, the table-based algo-
rithm runs an instance of DFA learnerL∗Au to find the progress automatonAu. When
all DFA learners propose candidate DFAs, the FDFA learner assembles them to an
FDFA F = (M, {Au}) and then poses an equivalence query for it. The FDFA teacher
will either return“yes” which means the learning algorithm succeeds or return“no”
accompanying with a counterexample. Once receiving the counterexample, the table-
based algorithm will decide which DFA learner should refine its candidate DFA. We
refer interested readers to [10] for more details of the table-based algorithm.

5 Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for FDFAs. To that end,
we first define the classification tree structure for FDFA learning in Sec. 5.1 and present
the tree-based algorithm in Sec. 5.2.



5.1 Classification Tree Structure in Learning

Here we present our classification tree structure for FDFA learning. Compared to the
classification tree defined in [30], ours is not restricted tobe a binary tree. Formally,
a classification tree is a tupleT = (N, r, Ln, Le) whereN = I ∪ T is a set of nodes
consisting of the setI of internal nodesand the setT of terminal nodes, the noder ∈ N
is the root of the tree,Ln : N → Σ∗∪(Σ∗×Σ∗) labels an internal node with anexperiment
and a terminal node with astate, andLe : N × D → N maps a parent node and a label
to its corresponding child node, where the set of labelsD will be specified below.

During the learning procedure, we maintain aleading treeT for the leading au-
tomatonM, and for every stateu in M, we keep aprogress treeTu for the progress
automatonAu. For every classification tree, we define a tree experiment functionTE :
Σ∗ × (Σ∗ ∪ (Σ∗ ×Σ∗))→ D. Intuitively, TE(x, e) computes the entry value at row (state)
x and column (experiment)eof an observation table in table-based learning algorithms.
The labels of nodes in the classification treeT satisfy the follow invariants: Lett ∈ T
be a terminal node labeled with a statex = Ln(t). Let t′ ∈ I be an ancestor node oft
labeled with an experimente= Ln(t′). Then the child oft′ following the labelTE(x, e),
i.e.,Le(t′,TE(x, e)), is either the nodet or an ancestor node oft.

Leading tree T : The leading treeT for M is a binary tree with labelsD = {F,T}.
The tree experiment functionTE(u, (x, y)) = T iff uxyω ∈ L (recall the definition of
∽L in Sec. 2) whereu, x, y ∈ Σ∗. Intuitively, each internal noden in T is labeled by an
experimentxyω represented as (x, y). For any wordu ∈ Σ∗, uxyω ∈ L (or uxyω < L)
implies that the equivalence class ofu lies in the T-subtree (or F-subtree) ofn.

Progress treeTu: The progress treesTu and the corresponding functionTE(x, e) are
defined based on the right congruences≈u

P, ≈u
S, and≈u

R of canonical FDFAs in Def. 2.

Periodic FDFA:The progress tree for periodic FDFA is also a binary tree labeled with
D = {F,T}. The experiment functionTE(x, e) = T iff u(xe)ω ∈ L wherex, e ∈ Σ∗.

Syntactic FDFA:The progress tree for syntactic FDFA is aK-ary tree with labelsD =
Q× {A,B,C} whereQ is the set of states in the leading automatonM. For all x, e ∈ Σ∗,
the experiment functionTE(x, e) = (M(ux), t), wheret = A iff u = M(uxe)∧u(xe)ω ∈ L,
t = B iff u = M(uxe) ∧ u(xe)ω < L, andt = C iff u , M(uxe).

For example, assuming thatM is constructed from the right congruence∽L, for
any two statesx andy such thatTE(x, e) = TE(y, e) = (z,A), it must be the case that
ux ∽L uy becauseM(ux) = z = M(uy). Moreover, the experimente cannot distinguish
x andy becauseuxe∽L u ∽L uyeand bothu(xe)ω, u(ye)ω ∈ L.

Recurrent FDFA:The progress tree for recurrent FDFA is a binary tree labeledwith
D = {F,T}. The functionTE(x, e) = T iff u(xe)ω ∈ L ∧ u = M(uxe) wherex, e ∈ Σ∗.

5.2 Tree-based Learning Algorithm

The tree-based learning algorithm first initializes the leading treeT and the progress
treeTǫ as a tree with only one terminal noder labeled byǫ.



From a classification treeT = (N, r, Ln, Le), the learner constructs a candidate of
a leading automatonM = (Σ,Q, ǫ, δ) or a progress automatonAu = (Σ,Q, ǫ, δ, F) as
follow. The set of states isQ = {Ln(t) | t ∈ T}. Givens ∈ Q anda ∈ Σ, the transition
function δ(s, a) is constructed by the following procedure. Initially the current node
n := r. If n is a terminal node, it returnsδ(s, a) = Ln(n). Otherwise, it picks a unique
child n′ of n with Le(n,TE(sa, Ln(n))) = n′, updates the current node ton′, and repeats
the procedure4. By Def. 2, the set of accepting statesF of a progress automaton can be
identified from the structure ofM with the help of membership queries. For periodic
FDFA, F = {v | uvω ∈ L, v ∈ Q} and for syntactic and recurrent FDFA,F = {v | uv∽M

u, uvω ∈ L, v ∈ Q}.
Whenever the learner has constructed an FDFAF = (M, {Au}), it will pose an

equivalence query forF . If the teacher returns “no” and a counterexample (u, v), the
learner has to refine the classification tree and propose another candidate of FDFA.

Definition 3 (Counterexample for FDFA Learner). Given the conjecturedFDFA F
and the target language L, we say that the counterexample

– (u, v) is positiveif uv ∽M u, uvω ∈ UP(L), and(u, v) is not accepted byF ,
– (u, v) is negativeif uv ∽M u, uvω < UP(L), and(u, v) is accepted byF .

We remark that in our case all counterexamples (u, v) from the FDFA teacher satisfy
the constraintuv∽M u, which corresponds to thenormalized factorizationform in [10].

Counterexample guided refinement ofF : Below we show how to refine the classi-
fication trees based on a negative counterexample (u, v). The case of a positive coun-
terexample is symmetric. By definition, we haveuv ∼M u, uvω < UP(L) and (u, v) is
accepted byF . Let ũ = M(u), if ũvω ∈ UP(L), the refinement of the leading tree is
performed, otherwise ˜uvω < UP(L), the refinement of the progress tree is performed.

Refinement for the leading tree: In the leading automatonM of the conjectured
FDFA, if a statep has a transition to a stateq via a lettera, i.e, q = M(pa), then
pa has been assigned to the terminal node labeled byq during the construction ofM.
If one also finds an experimente such thatTE(q, e) , TE(pa, e), then we know thatq
andpashould not belong to the same state in a leading automaton. W.l.o.g., we assume
TE(q, e) = F. In such a case, the leading tree can be refined by replacing the terminal
node labeled withq by a tree such that (i) its root is labeled bye, (ii) its left child is a
terminal node labeled byq, and (iii) its right child is a terminal node labeled bypa.

Below we discuss how to extract the required statesp, q and experimente. Let |u| =
n ands0s1 · · · sn be the run ofM overu. Note thats0 = M(ǫ) = ǫ andsn = M(u) = ũ.
From the facts that (u, v) is a negative counterexample and ˜uvω ∈ UP(L) (the condition
to refine the leading tree), we haveTE(s0, (u[1 · · ·n], v)) = F , T = TE(sn, (ǫ, v)) =
TE(sn, (u[n+ 1 · · ·n], v)) becauseuvω < UP(L) andũvω ∈ UP(L). Recall that we have
w[ j · · · k] = ǫ when j > k. Therefore, there must exist a smallestj ∈ [1 · · ·n] such

4 For syntactic FDFA, it can happen thatδ(s,a) goes to a “new” terminal node. A new state for
the FDFA is identified in such a case.



thatTE(sj−1, (u[ j · · ·n], v)) , TE(sj , (u[ j + 1 · · ·n], v)). It follows that we can use the
experimente= (u[ j + 1 · · ·n], v) to distinguishq = sj andpa= sj−1u[ j].

Example 1.Consider a conjectured FDFAF in Fig. 1 produced during the process of
learningL = aω + bω. The corresponding leading treeT and the progress treeTǫ are
depicted on the left of Fig. 3. The dotted line is for the F label and the solid one is for
the T label. Suppose the FDFA teacher returns a negative counterexample (ab, b). The
leading tree has to be refined sinceM(ab)bω = bω ∈ L. We find an experiment (b, b)
to differentiateǫ anda using the procedure above and update the leading treeT to T ′.
The leading automatonM constructed fromT ′ is depicted on the right of Fig. 3.

ǫ

T

ǫ

ǫ a

Tǫ

CE (ab, b)
(b, b)

a ǫ

T ′

ǫstart a

M

a

b

a

b

Fig. 3. Refinement of the leading tree and the corresponding leadingautomaton

Refinement for the progress tree:Here we explain the case of periodic FDFAs. The
other cases are similar and we leave the details in Appendix B. Recall that ˜uvω < UP(L)
and thus the algorithm refines the progress treeTũ. Let |v| = n andh = s0s1 · · · sn be the
corresponding run ofAũ overv. Note thats0 = Aũ(ǫ) = ǫ andsn = Aũ(v) = ṽ. We have
ũ(ṽ)ω ∈ UP(L) because ˜v is an accepting state. From the facts that ˜uvω < UP(L) and
ũ(ṽ)ω ∈ UP(L), we haveTE(s0, v[1 · · ·n]) = F , T = TE(sn, ǫ) = TE(sn, v[n+1 · · ·n]).
Therefore, there must exist a smallestj ∈ [1 · · ·n] such thatTE(sj−1, v[ j · · ·n]) ,
TE(sj , v[ j + 1 · · ·n]). It follows that we can use the experimente = v[ j + 1 · · ·n] to
distinguishq = sj , pa= sj−1v[ j] and refine the progress treeTũ.

Optimization: Example 1 also illustrates the fact that the counterexample(ab, b) may
not be eliminated right away after the refinement. In this case, it is still a valid counterex-
ample (assuming that the progress treeTǫ remains unchanged). Thus as an optimization
in our tool, one can repeatedly use the counterexample untilit is eliminated.

6 From FDFA to Büchi Automata

ǫstart

M
a

b

ǫstart a

b

Aǫ
a

b

b

a
a b

Fig. 4. An FDFA F such thatUP(F ) does
not characterize anω-regular language

Since the FDFA teacher exploits the BA
teacher for answering equivalence queries, it
needs first to convert the given FDFA into a
BA. Unfortunately, with the following exam-
ple, we show that in general, it is impossible
to construct apreciseBA B for an FDFAF
such thatUP(L(B)) = UP(F ).

Example 2.Consider a non-canonical FDFA
F in Fig. 4, we haveUP(F ) =

⋃∞
n=0{a, b}

∗ ·



(abn)ω. We assume thatUP(F ) characterizes anω-regular languageL. It is known that
the periodic FDFA recognizes exactly theω-regular language and the index of each
right congruence is finite [10]. However, we can show that theright congruence≈ǫP of
a periodic FDFA ofL is of infinite index. Observe thatabk 6≈ǫP abj for anyk, j ≥ 1 and
k , j, becauseǫ · (abk ·abk)ω ∈ UP(F ) andǫ · (abj ·abk)ω < UP(F ). It follows that≈ǫP is
of infinite index. We conclude thatUP(F ) cannot characterize anω-regular language.

We circumvent the above problem by proposing two BAsB, B, which under- and
over-approximate the ultimately periodic words of an FDFA.Given an FDFAF =
(M, {Au}) with M = (Σ,Q, q0, δ) andAu = (Σ,Qu, su, δu, Fu) for all u ∈ Q, we define
Ms

v = (Σ,Q, s, δ, {v}) and (Au)s
v = (Σ,Qu, s, δu, {v}), i.e., the DFA obtained fromM

and Au by setting their initial and accepting states ass and {v}, respectively. Define
N(u,v) = {vω | uv∽M u∧ v ∈ L((Au)su

v )}. ThenUP(F ) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v).
We constructB andB by approximating the setN(u,v). For B, we first define an FA

P(u,v) = (Σ,Qu,v, su,v, { fu,v}, δu,v) = Mu
u × (Au)su

v and letN(u,v) = L(P(u,v))ω. Then one can
construct a BA (Σ,Qu,v ∪ { f }, su,v, { f }, δu,v ∪ δ f ) recognizingN(u,v) where f is a “fresh”
state andδ f = {( f , ǫ, su,v), ( fu,v, ǫ, f )}. ForB, we define an FAP(u,v) = Mu

u×(Au)su
v ×(Au)v

v
and letN(u,v) = L(P(u,v))

ω. One can construct a BA recognizingN(u,v) using a similar

construction to the case ofN(u,v). In Def. 4 we show how to construct BAsB andB s.t.
UP(L(B)) =

⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v) andUP(L(B)) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v).

Definition 4. Let F = (M, {Au}) be anFDFA where M = (Σ,Q, q0, δ) and Au =

(Σ,Qu, su, Fu, δu) for every u ∈ Q. Let (Σ,Qu,v, su,v, { fu,v}, δu,v) be a BA recognizing
N(u,v) (respectivelyN(u,v)). Then the BA B(respectivelyB) is defined as the tuple

















Σ,Q∪
⋃

u∈Q,v∈Fu

Qu,v, q0,
⋃

u∈Q,v∈Fu

{ fu,v}, δ ∪
⋃

u∈Q,v∈Fu

δu,v ∪
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u∈Q,v∈Fu

{(u, ǫ, su,v)}

















.

Lemma 3 (Sizes and Languages ofB and B). Let F be an FDFA and B, B be the
BAs constructed fromF by Def. 4. Let n and k be the numbers of states in the leading
automaton and the largest progress automaton ofF . The number of states of BandB
are inO(n2k3) andO(n2k2), respectively. Moreover, UP(L(B)) ⊆ UP(F ) ⊆ UP(L(B))
and we have UP(L(B)) = UP(F ) whenF is a canonicalFDFA.

The properties below will be used later in analyzing counterexamples.

Lemma 4. Given anFDFAF = (M, {Au}), and Bthe BA constructed fromF by Def. 4.
If (u, vk) is accepted byF for every k≥ 1, then uvω ∈ UP(L(B)).

Lemma 5. Given anω-word w ∈ UP(L(B)), there exists a decomposition(u, v) of w
and n≥ 1 such that v= v1 · v2 · · · vn and for all i ∈ [1 · · ·n], vi ∈ L(AM(u)) and uvi ∽M u.

Fig. 5 depicts the BAsB and B constructed from the FDFAF in Fig. 1. In the
example, we can see that thebω ∈ UP(F ) while bω < UP(L(B)).
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Fig. 5. NBA B andB for F in Fig. 1

7 Counterexample Analysis for FDFA Teacher

During the learning procedure, if we failed the equivalencequery for the BAB, the BA
teacher will return a counterexampleuvω to the FDFA teacher.

Definition 5 (Counterexample for the FDFA Teacher).Given the conjectured BA
B ∈ {B, B}, the target language L, we say that

– uvω is apositive counterexampleif uvω ∈ UP(L) and uvω < UP(L(B)),
– uvω is anegative counterexampleif uvω < UP(L) and uvω ∈ UP(L(B)).

Obviously, the above is different to the counterexample for the FDFA learner in
Def. 3. Below we illustrate the necessity of the counterexample analysis by an example.

Example 3.Again, consider the conjectured FDFAF depicted in Fig. 1 forL = aω+bω.
Suppose the BA teacher returns a negative counterexample (ba)ω. In order to remove
(ba)ω ∈ UP(F ), one has to find a decomposition of (ba)ω thatF accepts, which is the
goal of the counterexample analysis. Not all decompositions of (ba)ω are accepted by
F . For instance, (ba, ba) is accepted while (bab, ab) is not.

A positive (respectively negative) counterexampleuvω for the FDFA teacher is
spuriousif uvω ∈ UP(F ) (respectivelyuvω < UP(F )). Suppose we use the under-
approximation method to construct the BAB fromF depicted in Fig. 5. The BA teacher
returns a spurious positive counterexamplebω, which is inUP(F ) but not inUP(L(B)).
We show later that in such a case, one can always find a decomposition, in this example
(b, bb), as the counterexample for the FDFA learner.

Given FDFAF = (M, {Au}), in order to analyze the counterexampleuvω , we define:

– an FADu$v with L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, uvω = u′v′ω},
– an FAD1 with L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv∽M u, v ∈ L(AM(u))}, and
– an FAD2 with L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv∽M u, v < L(AM(u))}.

Here $ is a letter not inΣ. Intuitively,Du$v accepts every possible decomposition (u′, v′)
of uvω, D1 recognizes every decomposition (u′, v′) which is accepted byF andD2

accepts every decomposition (u′, v′) which is not accepted byF yet u′v′ ∽M u′.
Given a BAB constructed by the under-approximation method to construct a BA

B from F , we have thatUP(L(B)) ⊆ UP(F ). Fig. 6(a) depicts all possible cases of
uvω ∈ UP(L(B)) ⊕ UP(L).
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Fig. 6.The Case for Counterexample Analysis

U1 : uvω ∈ UP(L)∧uvω < UP(F ) (Point in red). The worduvω is a positive counterex-
ample, one has to find a decomposition (u′, v′) such thatu′v′ ∽M u′ andu′v′ω = uvω.
This can be easily done by taking a wordu′$v′ ∈ L(Du$v) ∩ L(D2).

U2 : uvω < UP(L) ∧ uvω ∈ UP(F ) (Point in blue). The worduvω is a negative coun-
terexample, one needs to find a decomposition (u′, v′) of uvω that is accepted byF .
This can be done by taking a wordu′$v′ ∈ L(Du$v) ∩ L(D1).

U3 : uvω ∈ UP(L) ∧ uvω ∈ UP(F ) (Point in green). The worduvω is a spurious
positive counterexample. Suppose the decomposition (u, v) of uvω is accepted by
F , according to Lem. 4, there must exist somek ≥ 1 such that (u, vk) is not accepted
byF . Thus, we can also use the same method in U1 to get a counterexample (u′, v′).

We can also use the over-approximation construction to get aBA B from F such
thatUP(F ) ⊆ UP(L(B)), and all possible cases for a counterexampleuvω ∈ UP(L(B))⊕
UP(L) is depicted in Fig. 6(b).

O1 :uvω ∈ UP(L)∧uvω < UP(F ) (Point in red). The worduvω is a positive counterex-
ample that can be dealt with the same method for case U1.

O2 : uvω < UP(L) ∧ uvω ∈ UP(F ) (Point in green). The worduvω is a negative
counterexample that can be dealt with the same method for case U2.

O3 : uvω < UP(L) ∧ uvω < UP(F ) (Point in blue). In this case,uvω is a spurious
negative counterexample. In such a case it is possible that we cannot find a valid
decomposition ofuvω to refineF . By Lem. 5, we can find a decomposition (u′, v′)
of uvω such thatv′ = v1v2 · · · vn, u′vi ∽M u′, andvi ∈ L(AM(u′)) for somen ≥ 1.
It follows that (u′, vi) is accepted byF . If we find somei ∈ [1 · · ·n] such that
u′vωi < UP(L), then we return (u′, vi), otherwise, the algorithm aborts with an error.

Finally, we note that determining whetheruvω ∈ UP(L) can be done by posing a
membership queryMemBA(uvω), and checking whetheruvω ∈ UP(F ) boils down to
checking the emptiness ofL(Du$v) ∩ L(D1). The construction forDu$v, D1, andD2,
and the correctness proof of counterexample analysis are given in Appendix D.

8 Complexity

We discuss the complexity of tree-based FDFA learning algorithms in Sec. 5. LetF =
(M, {Au}) be the corresponding periodic FDFA of theω-regular languageL, and letn



be the number of states in the leading automatonM andk be the number of states in
the largest progress automatonAu. We remark thatF is uniquely defined forL and the
table-based algorithm needs the same amount of equivalencequeries as the tree-based
one in the worst case. Given a counterexample (u, v) returned from the FDFA teacher,
we define itslengthas|u| + |v|.

Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample returned
from theFDFA teacher. The number of equivalence queries needed for the tree-based
FDFA learning algorithm to learn the periodicFDFA of L is inO(n + nk), while the
number of membership queries is inO((n+ nk) · (|u| + |v| + (n+ k) · |Σ|)).

For the syntactic and recurrentFDFAs, the number of equivalence queries needed
for the tree-basedFDFA learning algorithm is inO(n+n3k), while the number of mem-
bership queries is inO((n+ n3k) · (|u| + |v| + (n+ nk) · |Σ|)).

The learning of syntactic and recurrent FDFAs requires morequeries since once
their leading automata have been modified, they need to redo the learning of all progress
automata from scratch.

Theorem 3 (Space Complexity).For all tree-based algorithms, the space required to
learn the leading automaton is inO(n). For learning periodicFDFA, the space required
for each progress automaton is inO(k), while for syntactic and recurrentFDFAs, the
space required is inO(nk). For all table-based algorithms, the space required to learn
the leading automaton is inO((n+ n · |Σ|) · n). For learning periodicFDFA, the space
required for each progress automaton is inO((k + k · |Σ|) · k), while for syntactic and
recurrentFDFAs, the space required is inO((nk+ nk · |Σ|) · nk).

Theorem 4 (Correctness and Termination). The BA learning algorithm based on
the under-approximation method always terminates and returns a BA recognizing the
unknownω-regular language L in polynomial time. If the BA learning algorithm based
on the over-approximation method terminates without reporting an error, it returns a
BA recognizing L.

Given a canonical FDFAF , the under-approximationmethod produces a BAB such
thatUP(F ) = UP(L(B)), thus in the worst case, FDFA learner learns a canonical FDFA
and terminates. In practice, the algorithm very often finds aBA recognizingL before
converging to a canonical FDFA.

9 Experimental results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA.
The DFA operations inROLL are delegated to thedk.brics.automatonpackage, and
we use the RABIT tool [2, 3] to check the equivalence of two BAs. We evaluate the
performance ofROLL using the smallest BAs corresponding to all the 295 LTL specifi-
cations available in BüchiStore [37], where the numbers ofstates in the BAs range over
1 to 17 and transitions range over 0 to 123. The machine we usedfor the experiments is
a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We set the timeout period to 30 minutes.

http://iscasmc.ios.ac.cn/roll


Table 1.Overall experimental results. We show the results of 285 cases where all algorithms can
finish the BA learning within the timeout period and list the number of cases cannot be solved
(#Unsolved). The markn∗/m denotes that there aren cases terminate with an error (in the over-
approximation method) and it ran out of time form− n cases. The rows #St., #Tr., #MQ, and
#EQ, are the numbers of states, transitions, membership queries, and equivalence queries. Timeeq

is the time spent in answering equivalence queries and Timetotal is the total execution time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct.&
Approxi.

Table Tree
Table Tree Table Tree Table Tree

under over under overunder over under overunder over under over
#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1
#St. 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400
#Tr. 10.6k10.3k 13.0k 13.0k13.4k 12.8k13.6k 13.6k12.2k 12.2k12.7k 12.7k12.8k 12.8k
#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k
#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037
Timeeq(s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465
Timetotal(s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501
EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

The overall experimental results are given in Tab. 1. In thissection, we useL$ to
denote theω-regular learning algorithm in [20], andLPeriodic, LSyntactic, andLRecurrent

to represent the periodic, syntactic, and recurrent FDFA learning algorithm introduced
in Sec. 4 and 5. From the table, we can find the following facts:(1) The BAs learned
from L$ have more states but fewer transitions than their FDFA basedcounterpart. (2)
LPeriodic uses fewer membership queries comparing toLSyntactic andLRecurrent. The rea-
son is thatLSyntactic andLRecurrent need to restart the learning of all progress automata
from scratch when the leading automaton has been modified. (3) Tree-based algorithms
always solve more learning tasks than their table-based counterpart. In particular, the
tree-basedLSyntactic with the under-approximation method solves all 295 learning tasks.
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Fig. 7. Growth of state counts in BA

In the experiment, we observe that table-
basedL$ has 4 cases cannot be finished within
the timeout period, which is the largest number
amount all learning algorithms5. We found that
for these 4 cases, the average time required forL$

to get an equivalence query result is much longer
than the FDFA algorithms. Under scrutiny, we
found that the growth rate of the size (number
of states) of the conjectured BAs generated by
table-basedL$ is much faster than that of table-
based FDFA learning algorithms. In Fig. 7, we
illustrate the growth rate of the size (number of
states) of the BAs generated by each table-based

learning algorithm using one learning task that cannot be solved by L$ within the
timeout period. The figures of the other three learning tasksshow the same trend and

5 Most of the unsolved tasks using the over-approximation method are caused by the situation
that the FDFA teacher cannot find a valid counterexample for refinement.



hence are omitted. Another interesting observation is thatthe sizes of BAs generated by
LSyntactic can decrease in some iteration because the leading automaton is refined and
thus the algorithms have to redo the learning of all progressautomata from scratch.

It is a bit surprise to us that, in our experiment, the size of BAs B produced by
the over-approximation method is not much smaller than the BAs B produced by the
under-approximation method. Recall that the progress automata ofB comes from the
product of three DFAsMu

u × (Au)su
v × (Au)v

v while those forB comes from the product
of only two DFAs Mu

u × (Au)su
v (Sec. 6). We found the reason is that very often the

language of the product of three DFAs is equivalent to the language of the product of
two DFAs , thus we get the same DFA after applying DFA minimizations. Nevertheless,
the over-approximationmethod is still helpful forLPeriodic andLRecurrent. ForLPeriodic, the
over-approximation method solved more learning tasks thanthe under-approximation
method. ForLRecurrent, the over-approximation method solved one tough learning task
that is not solved by the under-approximation method.

As we mentioned at the end of Sec. 5.2, a possible optimization is to reuse the
counterexample and to avoid equivalence query as much as possible. The optimization
helps the learning algorithms to solve nine more cases that were not solved before.

10 Discussion and Future works

Regarding our experiments, the BAs from LTL specifications are in general simple; the
average sizes of the learned BAs are around 10 states. From our experience of applying
DFA learning algorithms, the performance of tree-based algorithm is significantly bet-
ter than the table-based one when the number of states of the learned DFA is large, say
more than 1000. We believe this will also apply to the case of BA learning. Nevertheless,
in our current experiments, most of the time is spent in answering equivalence queries.
One possible direction to improve the scale of the experiment is to use a PAC (proba-
bly approximately correct) BA teacher [8] instead of an exact one, so the equivalence
queries can be answered faster because the BA equivalence testing will be replaced with
a bunch of BA membership testings.

There are several avenues for future works. We believe the algorithm and library
of learning BAs should be an interesting tool for the community because it enables the
possibility of many applications. For the next step, we willinvestigate the possibility of
applying BA learning to the problem of reactive system synthesis, which is known to
be a very difficult problem and learning-based approach has not been triedyet.

There are learning algorithms for residual NFA [11], which is a more compact
canonical representation of regular languages than DFA. Wethink maybe one can
also generalize the learning algorithm for family of DFAs tofamily of residual NFAs
(FRNFA). To do this, one needs to show FRNFAs also recognizeω-regular language
and finds the corresponding right congruences.
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Appendix

In this section, we first show that although our acceptance condition defined in Sec. 2 is
different from the original one defined in [10], but the ultimately periodic words of the
FDFA will be preserved. Then, we give the refinement for the progress trees of syntactic
and recurrent FDFAs in Sec. B. In Sec. C, we present the proofsof the lemmas given
in Sec. 6. In Sec. D, we provide the constructions for the FAsDu$v,D1 andD2 as well
as the correctness proof of counterexample analysis. We also give the correctness proof
and complexity of the tree-based learning algorithm in Sec.E.

A Language Preservation under Different Acceptance Conditions

Recall that the original acceptance condition for periodicFDFA in [10] is that (u, v)
is accepted byF if v ∈ L(Aũ) whereũ = M(u). While the original acceptance condi-
tions for syntactic and recurrent FDFA in [10] are the same asthe one defined in this
paper. More specifically, (u, v) is accepted byF if M(uv) = M(u) andv ∈ L(AM(u)).
The set of ultimately periodic words of an FDFAF is defined asUP(F ) = {uvω |
(u, v) is accepted byF }. The acceptance condition for periodic FDFA used in this pa-
per is different from the original one in [10]. We prove that the acceptance condition
does not change the ultimately periodic words of the periodic FDFAs.

Lemma 6. LetF be a periodic (syntactic, recurrent)FDFA under the acceptance con-
dition in [10], then UP(F ) is preserved under the acceptance condition defined in this
paper.

Proof. We only need to prove the preservation of ultimately periodic words for the pe-
riodic FDFAs. Given a periodic FDFAF , the original acceptance condition of periodic
FDFA requires that (u, v) is accepted byF if v ∈ L(Aũ) whereũ = M(u). Clearly, the
acceptance condition defined in this paper implies the original acceptance condition for
the periodic FDFA. Therefore, we only need prove that if (u, v) satisfies the original
acceptance condition, then there exists some decomposition (x, y) of ω-worduvω which
satisfies our acceptance condition. To achieve this, we firstfind a normalized formaliza-
tion (x, y) of (u, v) such thatx = uvi, y = v j andxy∽M x for somei ≥ 0, j ≥ 1 according
to [10]. Further, it is known that periodic FDFA issaturatedin the sense that under the
original acceptance condition, if (u, v) is accepted byF , then every decomposition of
uvω is accepted byF . Therefore we have that (x, y) is accepted byF , which means that
y ∈ L(Ax̃) wherex̃ = M(x). It follows that (x, y) is accepted byF under our acceptance
condition. �

We remark that in [10], they also define an acceptance condition callednormalized
acceptance condition, which is able to make the syntactic and recurrent FDFAs satu-
rated in the sense that if (u, v) is accepted by the FDFA, then every decomposition of
uvω is accepted by the FDFA. Since our goal is to learn a BA in this paper, we do not
require the saturation property for all decompositions of acceptedω-word. Thus, we do
not use the normalized acceptance condition.



B Refinement of the Progress Trees

Suppose ˜u · vω < UP(L) for negative counterexample (u, v), we thus need refine the
progress treeTũ. Let |v| = n andh = s0s1 · · · sn be the corresponding run ofv overAũ.
At the beginning, we haves0 = ǫ and sn = ṽ whereṽ = Aũ(v) and ṽ is an accepting
state inAũ, which implies that ˜u(ṽ)ω ∈ UP(L). Our job here is to find the smallest
j ∈ [1 · · ·n] such thatTE(sj−1, v[ j · · ·n]) , TE(sj , v[ j + 1 · · ·n]) so that we can use the
experimente = v[ j + 1 · · ·n] to differentiatepa = sj−1v[ j] andq = sj since currently
sj = δ(sj−1, v[ j]).

Afterwards, the progress treeTũ can be refined by replacing the terminal node la-
beled withsj by a tree such that (i) its root is labeled bye = v[ j + 1 · · ·n], (ii) its
TE(sj , v[ j+1 · · ·n])-subtree is a terminal node labeled bysj , and (iii) itsTE(sj−1v[ j], v[ j+
1 · · ·n])-subtree is a terminal node labeled bysj−1v[ j].

In order to establish above result, we have to prove thatTE(s0, v) , TE(sn, ǫ) to
ensure that there exists somej ∈ [1 · · ·n] such thatTE(sj−1, v[ j · · ·n]) , TE(sj , v[ j +
1 · · ·n]). The proof is as follows.

– For periodic FDFA, we haveTE(ǫ, v) = F sinceũ(ǫ · v)ω < UP(L). Sinceṽ is an
accepting state, we haveTE(ṽ, ǫ) = T.

– For syntactic FDFA, we notice that the counterexample requiresuv ∽M u, that is,
ũ = M(uv) = M(u) = M(ũv).
First, we haveTE(ǫ, v) = (M(ũ · ǫ),B) = (ũ,B), where B is obtained here since
ũ = M(ũ · ǫ · v) andũ(ǫ · v)ω < UP(L) according to the definition ofTE in syntactic
FDFA.
Since ṽ is an accepting state in syntactic FDFA, it follows that ˜u = M(ũṽ) and
ũ(ṽ)ω ∈ L according to Def. 2. Thus, we haveTE(ṽ, ǫ) = (M(ũṽ),A) = (ũ,A)
where A is obtained since ˜u = M(ũ · ṽ · ǫ) andũ(ṽ · ǫ)ω ∈ UP(L).

– For recurrent FDFA, similar as in syntactic FDFA, we haveTE(ǫ, v) = F and
TE(ṽ, ǫ) = T.

We remark that, if the target is syntactic or recurrent FDFA,as long as the leading
automatonM changes, we need to initialize the classification treeTu again for every
stateu in leading automaton since the labels on the edges depend on current leading
automatonM.

C Proofs of Lem. 3, Lem 4 and Lem 5

Lemma 4. Given anFDFAF = (M, {Au}), and Bthe BA constructed fromF by Def. 4.
If (u, vk) is accepted byF for every k≥ 1, then uvω ∈ UP(L(B)).

Proof. From the assumption, we haveuvk
∽M u andvk ∈ L(Aũ) for anyk ≥ 1 where

ũ = M(u). It must be the case that some accepting state, sayf in Aũ, will be visited
twice after we readvn from initial state for somen > |Aũ| with f = Aũ(vn) sinceAũ is a
finite automaton. In other words, there is a loop in the run ofvn overAũ. Without loss
of generality, suppose there existi, j ≥ 1 with i + j = n such thatf = Aũ(vi) = Aũ(vi+ j).

In the following, our goal is to find some accepting statef ′ such thatf ′ = Aũ(vk) =
Aũ(v2k) for somek ≥ 1. Fig. 8 depicts how to find the accepting statef ′ along the loop
path in following two cases.



– j ≥ i. Let k = j.
– j < i. Let k = l × j such thatk ≥ i with the smallestl ≥ 1.

sũstart f f ′

j ≥ i

vi
vj−i

vi

sũstart f f ′

j < i

vi
vc

vj−c

Fig. 8. Findingvk. If j ≥ i, we letk = j, otherwise letc = (l · j − i)% j ≥ 0 wherek = l · j ≥ i for
somel ≥ 1

It is easy to check thatAũ(vk) = Aũ(v2k) since progress automatonAũ is deterministic
and the correspondingf ′ is an accepting state.

It follows thatvk is accepted by the productP(ũ, f ′) of three automataMũ
ũ , (Aũ)sũ

f ′ and

(Aũ) f ′

f ′ wheresũ is the initial state ofAũ. In other words,ω-worduvω will be accepted in

B sinceu · (vk)ω ∈ L(Mq0

ũ ) · (L(P(ũ, f ′)))
ω. �

Lemma 5. Given anω-word w ∈ UP(L(B)), there exists a decomposition(u, v) of w
and n≥ 1 such that v= v1 · v2 · · · vn and for all i ∈ [1 · · ·n], vi ∈ L(AM(u)) and uvi ∽M u.

Proof. Here we only consider ultimately periodicω-words inB, so everyω-word can
be given by a decomposition.

SinceUP(L(B)) =
⋃

u∈Q,p∈Fu
L(Mq0

u ) · (L(P(u,p)))ω, supposeω-word w = uvω ∈

UP(L(B)), thenw can be given by a decomposition (u, v) such thatu ∈ L(Mq0

ũ ) and
v ∈ (L(P(ũ,p)))+ for somep ∈ Fũ whereũ = M(u). Thus, we havev = v1 · · · vn for some
n ≥ 1 such thatvi ∈ L(P(ũ,p)) for every 1≤ i ≤ n. In addition, sinceP(ũ,p) = Mũ

ũ × (Aũ)sũ
p ,

we conclude thatuv∽M u andvi ∈ L((Aũ)sũ
p ) for every 1≤ i ≤ n wheresũ is the initial

state inAũ.
Observe thatp is the only accepting state of (Aũ)sũ

p and (Aũ)sũ
p is obtained fromAũ

by settingp ∈ Fũ as its only accepting state, we have thatp = (Aũ)sũ
p (vi) = Aũ(vi) for

every 1≤ i ≤ n andp is an accepting state inAũ.
The remaining job is how to find the accepting statep in Aũ. Suppose we have the

counterexampleuvω given by the decomposition (u, v), from which we construct the FA
Du$v by the method in Sec. D.1. The number of states inDu$v is in O(|v|(|v| + |u|)). In
addition, we can construct an FAA such thatL(A) =

⋃

u∈Q,p∈Fu
L(Mq0

u ) · $ · (L(Mu
u ×

(Au)su
p ))+ where su is the initial state ofAu. By fixing u and p, we getL(A(u,p)) =

L(Mq0
u ) · $ · (L(Mu

u × (Au)su
p ))+ = L(Mq0

u ) · $ · (L(P(u,p)))+. We get the correspondingu
and p such thatL(A(u,p) × Du$v) , ∅. There must exist suchu and p otherwiseuvω

will not be accepted byB. To get all the fragment wordsvi from v, one only needs to
run the finite wordv overP(u,p). The time and space complexity of this procedure are
in O(nk(n+ nk) · (|v|(|v| + |u|))) andO((n + nk) · (|v|(|v| + |u|))) respectively wheren is
the number of states in the leading automaton andk the number of states in the largest
progress automaton. Thus we complete the proof. �



Lemma 3 (Sizes and Languages ofB and B). Let F be an FDFA and B, B be the
BAs constructed fromF by Def. 4. Let n and k be the numbers of states in the leading
automaton and the largest progress automaton ofF . The number of states of BandB
are inO(n2k3) andO(n2k2), respectively. Moreover, UP(L(B)) ⊆ UP(F ) ⊆ UP(L(B))
and we have UP(L(B)) = UP(F ) whenF is a canonicalFDFA.

Proof. In the following, we prove the lemma by following cases.

– Sizes ofB andB. In the under approximation construction, for every stateu in M,
there is a progress automatonAu of size at mostk. It is easy to conclude that the
automatonP(u,v) is of sizenk2 for everyv ∈ Fu, soB is of sizen+nk·nk2 ∈ O(n2k3).

The over-approximation method differs in the construction of the automatonP(u,v)

from the under-approximation method. It is easy to concludethat the automaton
P(u,v) is of sizenk for everyv ∈ Fu, soB is of sizen+ nk · nk ∈ O(n2k2).

– UP(L(B)) ⊆ UP(F ). Suppose ultimately periodicω-wordw is accepted byB, there

must be an accepting run inB in form of q0
u
−→ ũ

ǫ
−→ sũ,v

v1
−→ fv

ǫ
−→ f ′v

ǫ
−→ sũ,v · · · . Then

theω-wordw can be divided into the form ofu · ǫ · v1 · ǫ · ǫ · v2 · · · by ǫ-transitions.
According to the construction ofB, we haveu ∈ L(Mq0

ũ ) andvi ∈ L(P(ũ,v)) for any
i ≥ 1. Moreover, sinceP(ũ,v) is the product of three automataMũ

ũ, (Aũ)sũ
v and (Aũ)v

v

wheresũ is the initial state inAũ. It follows thatL(Mq0

ũ ) · (L(P(ũ,v)))∗ = L(Mq0

ũ ) and
(L(P(ũ,v)))+ = L(P(ũ,v)).
By Lem.5 in [14], there exist two wordsx ∈ L(Mq0

ũ ) andy ∈ L(P(ũ,v)) such that
w = x · yω. In other words, we have ˜u = M(x), xy ∽M x andy ∈ L(Aũ) , which
implies thatw is accepted byF .

– UP(F ) ⊆ UP(L(B)). Suppose anω-word w ∈ UP(F ), then there exists a decom-
position (u, v) of w such thatuv ∽M u andṽ is an accepting state where ˜u = M(u)
andṽ = Aũ(v). It follows thatv ∈ L(P(ũ,ṽ)) according to Def. 4. In addition, we have
u ∈ L(Mq0

ũ ), which follows thatu · vω ∈ L(Mq0

ũ ) · (L(P(ũ,ṽ)))ω = UP(L(B)).
– UP(L(B)) = UP(F ) if F is a canonical FDFA. For any FDFAF , we haveUP(L(B)) ⊆

UP(F ). Thus, the remaining job is to prove thatUP(F ) ⊆ UP(L(B)) if F is a
canonical FDFA, which follows from Prop. 1 and Lem. 4. Thus, we complete the
proof.

�

We present Prop. 1, which follows from Def. 2 of the canonicalFDFAs.

Proposition 1. Let L be anω-regular language,F = (M, {Au}) the corresponding pe-
riodic (syntactic, recurrent)FDFA and u, v ∈ Σ∗. We have that if(u, v) is accepted by
F then(u, vk) is also accepted byF for any k≥ 1.

Proof. Let ũ = M(u) andṽk = Aũ(vk) , then we have thatvk ≈ũ
K ṽk for everyk ≥ 1 where

K ∈ {P,S,R}. This is becausẽvk = Aũ(ṽk) = Aũ(vk) which makesvk in the equivalence
class [ṽk]. Our goal is to prove that (u, vk) is also accepted byF , that is,uvk

∽M u and
ṽk is an accepting state for everyk ≥ 1. Since∽M and∽L is consistent in the three
canonical FDFAs, so from the fact that (u, v) is accepted byF , we have thatuv ∽M u,
i.e., uv ∽L u. It follows thatuvk

∽L u for everyk ≥ 1. Thus, the remaining proof is to
prove thatṽk is an accepting state for everyk ≥ 1 in the three canonical FDFAs.



– For periodic FDFA, since (u, v) is accepted byF , i.e, ṽ is an accepting state inAũ,
then we have ˜u(ṽ)ω ∈ L according to Def. 2. By definition of≈ũ

P and the fact that
ṽ ≈ũ

P v, we have that ˜u(v)ω ∈ L, i.e., ũ(vk)ω ∈ L for everyk ≥ 1. Similarly, since
ũ(vk)ω ∈ L andvk ≈ũ

P ṽk, we conclude that ˜u(ṽk)ω ∈ L, which means that the state
ṽk is an accepting state inAũ for everyk ≥ 1.

– By the definition of≈ũ
R, if x ≈ũ

R y, then we have ˜ux ∽L ũ ∧ ũxω ∈ L ⇐⇒ ũy ∽L

ũ ∧ ũyω ∈ L for any x, y ∈ Σ∗. Sincex ≈ũ
S y implies x ≈ũ

R y, we also have above
result if x ≈ũ

S y. In the following,≈ũ
K can be replaced by≈ũ

S and≈ũ
R.

For syntactic FDFA and recurrent FDFA, if (u, v) is accepted byF , thenũṽ ∽L ũ
and ũ(ṽ)ω ∈ L according to Def. 2. By the fact thatv ≈ũ

K ṽ, if we setx = v and
y = ṽ, then we have that ˜uv ∽L ũ andũ(v)ω ∈ L, which implies that ˜uvk

∽L ũ and
ũ(vk)ω ∈ L for everyk ≥ 1.
Similarly, asvk ≈ũ

K ṽk, if we set x = vk andy = ṽk, we have that ˜uṽk ∽L ũ and
ũ(ṽk)ω ∈ L, which follows thatṽk is an accepting state inAũ for everyk ≥ 1. �

D Finite Automaton Construction and Correctness for
Counterexample Analysis

D.1 Construction forDu$v

In [14], they presented a canonical representationL$ = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L}
for a regularω-languageL. Theoretically, we can apply their method to obtain theDu$v

automaton for anω-word uvω where the number of states inDu$v is in O(2|u|+|v|). In
this section, we introduce a more effective way to build an automatonDu$v such that
L(Du$v) = {u$v | u ∈ Σ∗, v ∈ Σ+, uvω = w} for a givenω-word w with the number
of states inO(|v|(|v| + |u|)). A similar construction forDu$v has been proposed in [20],
which first computes the regular expression to represent allpossible decompositions of
uvω and then constructs a DFA from the regular expression. In this section, we give a
direct construction forDu$v of uvω as well as the complexity of the construction.

Fig. 9 depicts an example automatonDu$v for ω-word (ab)ω. From the example,
we can find that both decompositions (aba, ba) and (ababa, bababa) have the same
periodic word (ba)ω, which means that the second finite word of a decomposition can
be simplified as long as we do not change the periodic word.

q0start q1 q2 q3

q4 q5 q6 q7

$

a

a
b

a
b

$ b
a

b

Fig. 9.Du$v for ω-word (aba, ba)



Formally, we give the definition of asmallest periodin anω-word w given by its
decomposition (u, v) wherev ∈ Σ+. To that end, we need more notations. We useuE v
to represent that there exists somej ≥ 1 such thatu = v[1 · · · j] , and we sayu is a
prefix ofv. We useu⊳ v if uE v andu , v.

Definition 6 (Smallest period).For anyω-word w given by(u, v), we say r is the small-
est period of(u, v) if r E v, rω = vω and for any t⊳ r, we have tω , rω.

Take theω-word (ab)ω as an example,abandbaare the smallest periods of decomposi-
tion (ab, ab) and (aba, ba) respectively. It is interesting to see that|ab| = |ba| andabcan
be transformed toba by shift the first letter ofab to its tail. In general, givenω-word
w, the length of the smallest period is fixed no matter howw is decomposed which is
justified by Lem. 7.

Lemma 7. Given anω-word w,(u, v) and(x, y) are different decompositions of w and
their corresponding smallest periods are r and t, respectively. Then|r | = |t| = n and
either there exists j≥ 2 such that r= t[ j · · ·n] · t[1 · · · j − 1] or r = t.

Proof. According to Def. 6,w = uvω = urω = xyω = xtω. We prove it by contradiction.
Without loss of generality, suppose|r | > |t|. If |u| = |x|, thenrω = tω, we then conclude
that r is not a smallest period of (u, v) sincet ⊳ r. Otherwise if|u| , |x|, we can either
prove thatr = t or find somej ≥ 2 such thatz= t[ j · · ·n] · t[1 · · · j − 1] ⊳ r andzω = rω

in following cases.

– |u| > |x|. Let k = (|u| − |x|)%|t| + 1. If k = 1, thenz= t, otherwisej = k;
– |x| > |u|. Let k = (|r | − (|x| − |u|)%|r |)%|t| + 1. If k = 1, thenz= t, otherwisej = k;

We depict the situation where|u| > |x| in the following.

(u, r) u[1]u[2] · · ·u[k]u[k + 1] · · ·u[m] · r · r · r · · ·

(x, t) x[1]x[2] · · · x[k]t[1] · · · · ·t[ j − 1] · z · z · z· · ·

From the assumption|t| < |r |, we have thatz ⊳ r. However, sincezω = rω, we
conclude thatr is not the smallest period of (u, v). Contradiction. Thus we complete the
proof. �

Lem. 7 shows that if the size of the smallest period of anω-word w is n, then there
are exactlyn different smallest periods forw. In the following, we define the shortest
form for a decomposition of anω-word.

Lemma 8. For any decomposition(u, v) of anω-word w, and y is its corresponding
smallest period, then we can rewrite u= xyi and v= y j for some i≥ 0, j ≥ 1 such that
for any x′ E u with u= x′yk for some0 ≤ k ≤ i, we have x′ = xyi−k. We say such(x, y)
is theshortest formfor (u, v).

Proof. This can be proved by Def. 6 and the fact thatyω = vω, which can be further
illustrated by the procedure of constructing (x, y). To find the shortest form of (u, v),
we need to first find the smallest periody of (u, v), which is illustrated by following
procedure. At first we initializek = 1.



– Step 1. Lety = v[1 · · ·k], we recursively check whether there exists somej ≥ 1
such thatv = y j . If there exists suchj, we returny as the smallest period. Otherwise
we go to Step 2.

– Step 2. We increasek by 1 and go to Step 1.

Sincek starts at 1, theny must be the smallest period of (u, v) such thatvω = yω.
We find the abovex of the shortest form in the following procedure.

– Step 1. Letx = u. If x = ǫ, or x = y then we returnǫ. Otherwise we check whether
there exists somek ≥ 1 such thatx = x[1 · · ·k] ·x[k+1 · · · |x|] andy = x[k+1 · · · |x|].
If there is no suchk, we returnx as the final result. Otherwise we go to Step 2.

– Step 2. We setu = x[1 · · ·k].

One can easily conclude thatx is the shortest prefix ofu such thatu = xyi for some
i ≥ 0. �

Following corollary is straightforward.

Corollary 1. Given two decompositions(u1, v1) and(u2, v2) of uvω. If (u1, v1) and(u2, v2)
share the smallest period y, then they also have the same shortest form(x, y) where
u1 = xyi , u2 = xyj for some i, j ≥ 0.

Proof (Sketch).If we assume they have different shortest forms, they should not be two
decompositions of the sameω-word. �

By Coro. 1, we can represent all decompositions of anω-word w which share the
same smallest periody with (xyi , y j) with somei ≥ 0, j ≥ 1. In addition, since the
number of different smallest periods is|y|, we can thus denote all the decompositions of
w by the set

⋃|y|
k=1{(xkyi

k, y
j
k) | i ≥ 0, j ≥ 1} where (xk, yk) is thek-th shortest form ofw.

Therefore, we provide the construction ofDu$v as follows.

Construction ofDu$v Now we are ready to give the construction ofDu$v for a single
ω-wordw given by (u, v). Suppose (x, y) is the shortest form of (u, v), then we construct
Du$v as follows. Letk = 1, n = |y|, and we first construct an automatonD1 such that
L(D1) = xy∗$y+.

– Step 1. Ifk = n, then we construct theDu$v such thatL(Du$v) =
⋃n

i=1 L(Di),
otherwise, we go to Step 2.

– Step 2. We first increasek by 1. Letu′ = x · y[1] andy′ = y[2 · · ·n] · y[1]. We then
get the shortest form (x′, y′) of (u′, y′) where the second element isy′ sincey′ is the
smallest period of (u′, y′) according to Lem. 7. We then construct an automatonDk

such thatL(Dk) = x′y′∗$y′+ and letx = x′, y = y′ and go to Step 1.

Suppose|x| = m and|y| = n, the DFAA that acceptsxy∗$y+ can be constructed as
follows.

– If m = 0, then we construct a DFAA = (Σ, {q0, · · · , q2n}, q0, {q2n}, δ) where we
have thatδ(qk−1, y[k]) = qk when 1≤ k ≤ n − 1, δ(qn−1, y[n]) = q0, δ(q0, $) = qn,
δ(qn−1+k, y[k]) = qn+k when 1≤ k ≤ n, andδ(q2n, y[1]) = qn+1.



– Otherwisem ≥ 1, then we construct a DFAA = (Σ, {q0, · · · , q2n+m}, q0, {qm+2n}, δ)
where we have thatδ(qk−1, x[k]) = qk when 1≤ k ≤ m, δ(qm−1+k, y[k]) = qm+k when
1 ≤ k ≤ n − 1, δ(qm+n−1, y[n]) = qm, δ(qm, $) = qm+n, δ(qm+n+k−1, y[k]) = qm+n+k

when 1≤ k ≤ n, andδ(qm+2n, y[1]) = qm+n+1.

One can validate thatL(A) = xy∗$y+ and the number of states inA is at most|x|+2|y|+1.

Proposition 2. LetDu$v be the DFA constructed from the decomposition(u, v) of ω-
word uvω, then L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, u′v′ω = uvω}.

Proof.
⊆. This direction is easy sinceL(Du$v) =

⋃n
i=1 L(Di), we only need to prove that for any

1 ≤ i ≤ n, if u′$v′ ∈
⋃n

i=1 L(Di), thenu′v′ω = uvω. SupposeL(Di) = xiy∗i $y+i , thus for
anyu′$v′ ∈ L(Di), we haveu′ = xiy

j
i andv′ = yk

i for some j ≥ 0, k ≥ 1. It follows that
u′v′ω = uvω sincexiyωi = uvω.
⊇. For any decomposition (u′, v′) of uvω, we can get its shortest form (x′, y′) wherey′

is the smallest period of (u′, v′) according to Lem. 8. Suppose (x, y) is the first shortest
form used in theDu$v construction. By Lem. 7, we proveu′$v′ is accepted byDu$v as
follows.

– y = y′. We have thatu′ = xyi andv′ = y j for somei ≥ 0, j ≥ 1, thusu′$v′ ∈
L(D1) ⊆ L(Du$v).

– y′ = y[ j · · ·n]y[1 · · · j − 1] for some j ≥ 2. We conclude thatL(D j) = x′y′∗$y′+

since the shortest form is unique if we fix the smallest periodby Coro. 1, which
follows thatu′$v′ ∈ L(D j) ⊆ L(Du$v).

Therefore, we complete the proof. �

Proposition 3. Given anω-word w given by(u, v), then the automatonDu$v has at
mostO(|v|(|u| + |v|) of states.

For every automatonDi such thatL(Di) = xy∗$y+, the number of states inDi is at
most|u| + 2|r | + 2 wherer is the smallest period of (u, v), thus the number of states in
Du$v is inO(|r | × (|r | + |u|)) ∈ O(|v|(|u| + |v|).

D.2 Construction ofD1 andD2

In this section, given an FDFAF = (M, {Au}), we provide the constructions forD1

andD2. To ease the construction, we define two automataNu and Nu which will be
used in the construction for every stateu in the leading automatonM. Assume that we
haveMu

u, the corresponding progress automatonAu = (Σ,Qu, su, Fu, δu) and a DFA
Au = (Σ,Qu, su,Qu \ Fu, δu) built from Au such thatL(Au) = Σ∗ \ L(Au). Note that the
transitionδu is complete in the sense thatδu(s, a) is defined for everys ∈ Qu, a ∈ Σ.

– ForD1, we haveNu = Mu
u × Au. Intuitively, we only keep the finite words which

start atu and can go back tou in the leading automaton. In other words,L(Nu) =
{v ∈ Σ∗ | uv∽M u, v ∈ L(Au)}.

– ForD2, we haveNu = Mu
u × Au. Similarly, we haveL(Nu) = {v ∈ Σ∗ | uv∽M u, v <

L(Au)}.



More precisely, The construction is as follows.

Definition 7. LetF = {M, {Au}} be anFDFA where we have M= (Σ,Q, q0, δ) and for
every u∈ Q, the corresponding progress automaton Au = (Σ,Qu, su, Fu, δu). Let Nu

(andNu) be given by(Σ,Qu, su, Fu, δu). The DFAD1 (andD2) is defined as the tuple
(Σ ∪ {$},Q∪ QAcc, q0, F, δ ∪ δAcc∪ δ$) where

QAcc =
⋃

u∈Q

Qu and F=
⋃

u∈Q

Fu andδAcc =
⋃

u∈Q

δu

δ$ = {(u, $, su) | u ∈ Q}

where$ is a fresh symbol.

In Fig. 10, we depict the DFAD1 andD2 constructed fromF in Fig. 1.
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Fig. 10.D1 andD2 for F in Fig. 1

Proposition 4. Given anFDFAF = (M, {Au}) andD1 defined in Def. 7, then L(D1) =
{u$v | u ∈ Σ∗, v ∈ Σ∗, uv∽M u, ũ = M(u), v ∈ L(Aũ)}.

Proof. By Def. 7, it is easy to conclude that for anyu ∈ Σ∗, then we have ˜u = M(u) =
D1(u). For anyu, v ∈ Σ∗, we have thatNũ(v) = D1(u$v) whereũ = M(u) sinceD1

is a DFA. By acceptance condition, (u, v) is accepted byF iff we haveuv ∽M u and
v ∈ L(Aũ) whereũ = M(u). Thus we just need to prove that (u, v) is accepted byF iff
u$v is accepted byD1.
⊇. (u, v) is accepted byF , thenu$v ∈ L(D1). By uv∽M u andv ∈ L(Aũ), we have that
v ∈ L(Nũ), which follows thatNũ(v) is an accepting state. SinceNũ(v) = D1(u$v), we
have thatD1(u$v) is an accepting state. Therefore,u$v ∈ L(D1).
⊆. First, we have thatL(D1) ⊆ Σ∗$Σ∗ by Def. 7. For anyu, v ∈ Σ∗, if u$v ∈ L(D1),
thenD1(u$v) is an accepting state. It follows thatv ∈ L(Nũ) with ũ = M(u). Since
Nũ = Mũ

ũ × Aũ, we have thatv ∈ L(Mũ
ũ) andv ∈ L(Aũ), which implies thatuv∽M u and

v ∈ L(Aũ). Thus, we conclude that (u, v) is accepted byF . �

Proposition 5. Given anFDFAF andD2 the corresponding deterministic automaton,
then L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv∽M u, ũ = M(u), v < L(Aũ)}.

Proof. By Def. 7, it is easy to conclude that for anyu ∈ Σ∗, then we have ˜u = M(u) =
D2(u). For anyu, v ∈ Σ∗, we have thatNũ(v) = D2(u$v) whereũ = M(u) sinceD2 is a
DFA.



⊇. Assume that we haveuv ∽M u andv < L(Aũ) whereũ = M(u). By uv ∽M u, we
have thatv ∈ L(Mũ

ũ). Further, fromv < L(Aũ), we have thatv ∈ L(Aũ). It follows that
Nũ(v) is an accepting state. SinceNũ(v) = D2(u$v), thenD2(u$v) is an accepting state.
Therefore,u$v ∈ L(D2).
⊆. First, we have thatL(D2) ⊆ Σ∗$Σ∗ by Def. 7. For anyu, v ∈ Σ∗, if u$v ∈ L(D2),
thenD2(u$v) is an accepting state. It follows thatv ∈ L(Nũ) with ũ = M(u). Since
Nũ = Mũ

ũ × Aũ, we have thatv ∈ L(Mũ
ũ) andv ∈ L(Aũ), which implies thatuv∽M u and

v < L(Aũ). �

Proposition 6. The numbers of states inD1 andD2 are both inO(n+ n2k).

Supposen is the number of states inM andk is the number of states in the largest
progress automaton, then the number of states inD1 (D2) is inO(n+ n2k).

D.3 Correctness of Counterexample Analysis for FDFA Teacher

Given the counterexampleuvω for the FDFA teacher, we prove the decomposition
(u′, v′) is a counterexample for FDFA learner defined in Def. 3 by following cases:

– uvω ∈ UP(L)∧uvω < UP(F ). By Def. 3, we know thatuvω is a positive counterex-
ample and we return a counterexample (u′, v′) such thatu′$v′ ∈ L(Du$v) ∩ L(D2).
We first need to prove thatL(Du$v) ∩ L(D2) is not empty. Sinceuvω < UP(F ),
then any decomposition ofuvω, say (u, v), is not accepted byF . SinceM is a DFA,
we can always find a decompositionx = uvi andy = v j from somei ≥ 0, j ≥ 1
such thatxy ∽M x according to [10]. Therefore (x, y) is also a decomposition of
uvω and it is not accepted byF , that is,y < L(Ax̃) wherex̃ = M(x). It follows that
x$y ∈ L(D2) according to Thm. 5. Thus, we conclude thatL(Du$v) ∩ L(D2) is not
empty. We letu′ = x andv′ = y, and it is easy to validate that (u′, v′) is a positive
counterexample for FDFA learner. This case is applied for case U1 and O1.

– uvω ∈ UP(L) ∧ uvω ∈ UP(F ). In this case,uvω is a spurious positive coun-
terexample, which happens when we use the under-approximation method to con-
struct the Büchi automaton. Here we also return a counterexample (u′, v′) such that
u′$v′ ∈ L(Du$v) ∩ L(D2). Sinceuvω ∈ UP(F ), then there exists some decom-
position ofuvω, say (u, v), is accepted byF . We observe thatuvω < UP(L(B)),
which follows that there exists somek ≥ 1 such that (u, vk) is not accepted byF
by Lem. 4. Byuv ∽M u, we also have thatuvk

∽M u sinceM is a DFA. It fol-
lows thatu$vk ∈ L(D2). Therefore, we conclude thatL(Du$v)∩ L(D2) is not empty
and for every finite wordu′$v′ ∈ L(Du$v) ∩ L(D2), we have (u′, v′) is a positive
counterexample for FDFA learner. This case is applied for U3.

– uvω < UP(L) ∧ uvω ∈ UP(F ). In this case,uvω is a negative counterexample,
one has to return a counterexample (u′, v′) such thatu′$v′ ∈ L(Du$v) ∩ L(D1). We
first need to prove thatL(Du$v) ∩ L(D1) is not empty. Sinceuvω ∈ UP(F ), then
there exists some decomposition (u′, v′) of uvω is accepted byF . It follows that
u′$v′ ∈ L(D1) by Thm. 4. Thus we conclude thatL(Du$v) ∩ L(D1) is not empty.
Moreover, it is easy to validate that (u′, v′) is a negative counterexample for FDFA
learner. This case is applied for U2 and O2.



– uvω < UP(L)∧uvω < UP(F ). In this case,uvω is a spurious negative counterexam-
ple, which happens when we use the over-approximation method to construct the
Büchi automaton. It is possible that we cannot find a valid decomposition (u′, v′)
to refineF . According to the proof of Lem. 5, one can construct a decomposition
(u, v) of uvω andn ≥ 1 such thatv = v1·v2 · · · vn and for alli ∈ [1 · · ·n], vi ∈ L(AM(u))
anduvi ∽M u. If we find somei ≥ 1 such thatuvωi < UP(L), then we letu′ = u and
v′ = vi . Clearly, (u′, v′) is a negative counterexample for FDFA learner. This case is
applied for O3.

E Correctness and Termination of Tree-based Algorithm

In the following, we need the notion called normalized factorization introduced in [10].
Recall that given a decomposition (u, v) of ω-word uvω and the leading automatonM,
we can get its normalized factorization (x, y) with respect toM such thatx = uvi , y = v j

andM(xy) = M(x) for some smallesti ≥ 0, j ≥ 1 sinceM is finite.

E.1 Correctness of Tree-based Algorithm for FDFA

Lem. 9 establishes the correctness of our tree-based algorithm for periodic FDFA.

Lemma 9. For the leading tree in all threeFDFAs and the progress trees in the periodic
FDFA, the tree-based algorithm will never classify two finite words which are in the
same equivalence class into two different terminal nodes.

Proof. We prove by contradiction. Suppose there are two finite wordx1, x2 ∈ Σ
∗ which

are in the same equivalence class but they are currently classified into different terminal
nodes in classification treeT .

– T is the leading tree. We assume thatx1 ∽L x2. Supposex1 and x2 have been
assigned to terminal nodest1 and t2 respectively witht1 , t2. Therefore, we can
find the least common ancestorn from T , whereLn(n) = (y, v) is supposed to be
an experiment to differentiatex1 andx2. Without loss of generality, we assume that
t1 and t2 are in the left and right subtrees ofn respectively. Therefore, we have
TE(x1, (y, v)) = F andTE(x2, (y, v)) = T. It follows that x1(yv)ω < UP(L) and
x2(yv)ω ∈ UP(L), which implies thatx1 6∽L x2. Contradiction.

– T = Tu is a progress tree in periodic FDFA. We assume thatx1 ≈
u
P x2. Similarly,

supposex1 and x2 have been assigned to terminal nodest1 and t2 of Tu respec-
tively with t1 , t2. Therefore, we can find the least common ancestorn from Tu,
whereLn(n) = v is supposed to be an experiment to differentiatex1 andx2. Without
loss of generality, we assume thatt1 and t2 are in the left and right subtrees ofn
respectively. Therefore, we haveTE(x1, v) = F andTE(x2, v) = T. It follows that
u(x1v)ω < UP(L) andu(x2v)ω ∈ UP(L), which implies thatx1 6≈

u
P x2. Contradic-

tion.

�



Lem. 9 cannot apply to the progress trees in syntactic and recurrent FDFAs as the
progress trees heavily rely on the current leading automaton. In the following, we prove
the correctness of syntactic and recurrent FDFA. We say the leading automatonM is
consistent with∽L iff for anyx1, x2 ∈ Σ

∗, we haveM(x1) = M(x2)⇐⇒ x1 ∽L x2.

Lemma 10. For the progress trees in the syntactic and recurrentFDFA, the tree-based
algorithm will never classify two finite words which are in the same equivalence class
into two different terminal nodes if the leading automaton M is consistent with ∽L.

If the tree-based algorithm classifies two finite words whichare in the same equiva-
lence class into two different terminal nodes, then M is not consistent with∽L currently.

Proof. Intuitively, the progress treesTu in syntactic and recurrent FDFAs are con-
structed with respect to the current leading automaton. We prove the lemma in following
cases.

– Tu is a progress tree in syntactic FDFA. We assume thatx1 ≈
u
S x2. Supposex1 and

x2 have been assigned to terminal nodet1 andt2 of Tu respectively. Therefore, we
can find the least common ancestorn from Tu, whereLn(n) = v is supposed to be
an experiment to differentiatex1 andx2. Thus, by the definition ofTE in syntactic
FDFA, we can assume thatd1 := TE(x1, v) = (M(ux1),m1) andd2 := TE(x2, v) =
(M(ux2),m2) wherem1,m2 ∈ {A, B,C}. Sincet1 andt2 are in different subtrees of
n, we thus haved1 , d2, that is,M(ux1) , M(ux2) or m1 , m2.
1) First we assume thatM is consistent with∽L.
• M(ux1) , M(ux2). Sincex1 ≈

u
S x2, we haveux1 ∽L ux2, which implies that

M(ux1) = M(ux2). Contradiction.
• m1 , m2. Sincex1 ≈

u
S x2, we haveux1 ∽L ux2, which follows thatM(ux1) =

M(ux2) since M is consistent with∽L. Moreover, we have thatM(ux1v) =
M(ux2v) sinceM is deterministic. We discuss the values ofm1 andm2 in the
following.
∗ u = M(ux1v). It follows that ux1v ∽L u sinceM is consistent with∽L,

which implies thatu(x1v)ω ∈ UP(L)⇐⇒ u(x2v)ω ∈ UP(L). Moreover, we
haveu = M(ux2v) sinceux1 ∽L ux2. Therefore, we conclude thatm1,m2 ∈

{A, B} by the definition ofTE. Without loss of generality, we letm1 = A
andm2 = B, which implies thatu(x1v)ω ∈ UP(L) while u(x2v)ω < UP(L).
Contradiction.
∗ u , M(ux1v). Thus, we havem1 = m2 = C, which follows thatd1 = dn

sinceM(ux1) = M(ux2). Contradiction.
Therefore,t1 andt2 cannot be different terminal nodes.
2) In this case,M is not necessarily consistent with∽L.
• M(ux1) , M(ux2). Let s1 = M(ux1) ands2 = M(ux2). We have thats1 ands2

are classified into different terminal nodes in the leading treeT sinces1 , s2

and they are two labels of the terminal nodes. It follows thats1 6∽L s2 by Lem. 9.
By x1 ≈

u
S x2, we haveux1 ∽L ux2, which implies thats1 6∽L ux1 or s2 6∽L ux2,

otherwise we gets1 ∽L s2. Without loss of generality, supposes1 6∽L ux1,
then there exists some experiment (y, v) to differentiate them. However,ux1 is
currently assigned into the equivalence class ofs1 sinces1 = M(ux1). It follows
thatM is not consistent with∽L.



• m1 , m2.
1) We assume thatux1v ∽L u, then we haveux2v ∽L u sinceux1 ∽L ux2 by
x1 ≈

u
S x2, which implies thatu(x1v)ω ∈ UP(L) ⇐⇒ u(x2v)ω ∈ UP(L). If

M is consistent with∽L, we conclude thatm1 = m2 = A or m1 = m2 = B.
Contradiction. Therefore,M is not consistent with∽L.
2) We assume thatux1v 6∽L u, then we can find some experiment (y, z) to differ-
entiate them. It follows thatux2v 6∽L u sincex1 ≈

u
S x2 andux1 ∽L ux2. Assume

thatM is consistent with∽L, then we have thatu , M(ux1v) andu , M(ux2v),
which implies thatm1 = m2 = C. Contradiction. Thus,M is not consistent with
∽L.

– Tu is a progress tree in recurrent FDFA. The analysis is similaras the syntactic
FDFA. We assume thatx1 ≈

u
R x2. Supposex1 andx2 have been assigned to terminal

nodet1 andt2 of Tu respectively. Therefore, we can find the least common ancestor
n from Tu, whereLn(n) = v is supposed to be an experiment to differentiatex1

and x2. Thus, we can assume thatd1 := TE(x1, v) and d2 := TE(x2, v) where
d1, d2 ∈ {F,T}. Sincet1 andt2 are in different subtrees ofn, we thus haved1 , d2.
1) We assume thatM is consistent with∽L. Without loss of generality, suppose
d1 = F andd2 = T. Sinced2 = T, we have thatu = M(ux2v) andu(x2v)ω ∈ UP(L).
It follows that ux2v ∽L u sinceM is consistent with∽L. Moreover, we conclude
thatu = M(ux1v) andu(x1v)ω ∈ UP(L) by the fact thatx1 ≈

u
R x2. By the definition

of TE, we haved1 = T. Contradiction. Therefore,t1 and t2 cannot be different
terminal nodes.
2) M is not necessarily consistent with∽L. Without loss of generality, suppose
d1 = F andd2 = T. Sinced2 = T, we have thatu = M(ux2v) andu(x2v)ω ∈ UP(L).
Assume thatM is consistent with∽L, it follows that ux2v ∽L u. Moreover, we
conclude thatu = M(ux1v) andu(x1v)ω ∈ UP(L) by the fact thatx1 ≈

u
R x2. By the

definition of TE, we haved1 = T. Contradiction. Therefore,M is not consistent
with ∽L.

�

Once two finite words which are in the same equivalence class have been classified
into two terminal nodes in the progress tree, we can always prove that the leading au-
tomaton is not consistent with∽L. Therefore, the FDFA teacher is able to return some
counterexample to refine the leading automaton. If the leading automaton changes, the
FDFA learner should learn all progress automata from scratch with respect to current
leading automaton. At a certain point, the leading automaton M will be consistent with
∽L since it will be added a new state after every refinement. Thus, we conclude that the
equivalence classes in the progress trees will finally be classified correctly.

Proposition 7. Given theFDFA teacher that is able to answer membership and equiva-
lence queries forFDFA, the tree-basedFDFA learning algorithm can correctly classify
all finite words.

E.2 Complexity for Tree-based FDFA Learning Algorithm

The counterexample guided refinement forF shows that:



Corollary 2. Given a counterexample(u, v) for FDFA learner, the tree-basedFDFA
learner will either add a new state to the leading automaton Mor the corresponding
progress automaton Aũ.

Corollary. 2 is a critical property for the termination of the tree-based FDFA learning
algorithm since each time we either make progress for the leading automaton or the
corresponding progress automaton.

In Lem. 10, we encounter a situation where the progress tree may classify two finite
words which are in the same equivalence class into two terminal nodes ifM is not con-
sistent with∽L. One may worry that if the FDFA teacher chooses to refine the progress
automaton continually, the refinement may not terminate. Lem. 11 shows that it will ter-
minate since the number of equivalence classes of the progress automata with respect to
M is finite. More precisely, if we fix the leading automatonM, we are actually learning
a DFA induced by the right congruencex ≈u

S′ y iff M(ux) = M(uy) and for everyv ∈ Σ∗,
if M(uxv) = u, thenu(xv)ω ∈ L ⇐⇒ u(xv)ω ∈ L. One can easily verify thatx ≈u

S′ y is a
right congruence. We remark that ifM is consistent with∽L, thenx ≈u

S′ y is equivalent
to x ≈u

S y.

Lemma 11. Given then leading automaton M, then for every state u in M, the index of
≈u

S′ is bounded by|Q| · | ≈u
P | where Q is the state set of M.

Proof. We prove the lemma by giving the upper bound|Q| · | ≈u
P | of the index of≈u

S′ .
We useqi to denote the state which can be reached byu for 1 ≤ i ≤ n wheren is the
number of states reachable byu. We classify anyx ∈ Σ∗ into a equivalence class of≈u

S′

as follows.
We first findqi = M(ux). Since for everyy ∈ Σ∗ with qi = M(uy), we haveM(uxv) =

M(uyv), thus those experimentsv ∈ Σ∗ with M(uxv) , u are not able to differentiatex
andy. In other words, the value ofM(uxv) = u is not necessary here. Therefore, if we
only considerx, y ∈ Σ∗ with qi = M(ux) = M(uy), the criterion to decide whetherx and
y are in the same equivalence class is to judge whether for anyv ∈ Σ∗, u(xv)ω ∈ L⇐⇒
u(yv)ω ∈ L, which is exactly the same definition for≈u

P. Thus, we can find the notation
(qi , [x]≈u

P
) to uniquely represent the equivalence class [x]≈u

S′
. Therefore, the index of the

right congruence≈u
S′ is n · | ≈u

P | ≤ |Q| · | ≈
u
P |. �

Similarly, if we fix the leading automatonM and learn recurrent FDFA, we are
actually learning DFA induced by the right congruencex ≈u

R′ y iff for everyv ∈ Σ∗,
M(uxv) = u∧ u(xv)ω ∈ L⇐⇒ M(uyv) = u∧ u(yv)ω ∈ L. Sincex ≈u

S′ y impliesx ≈u
R′ y,

it follows that | ≈u
R′ | is smaller than| ≈u

S′ |.
The implication fromx ≈u

S′ y to x ≈u
R′ y can be easily established by assuming

x ≈u
S′ y and then for anyv ∈ Σ∗, we have thatuyv ∽M u ∧ u(yv)ω ∈ L if uxv ∽M

u ∧ u(xv)ω ∈ L. First, assuming thatuxv ∽M u ∧ u(xv)ω ∈ L and x ≈u
S′ y, one can

easily conclude thatu(yv)ω ∈ L. In addition, one can combine the resultux∽M uy from
x ≈u

S′ y and assumptionuxv∽M u together to proveuyv∽M u sinceM is deterministic
and∽M is an equivalence relation.

Lemma 12. Given the leading automaton M, then for every state u in M, theindex of
≈u

R′ is bounded by|Q| · | ≈u
P | where Q is the state set of M.



Assume thatF = (M, {Au}) is the corresponding periodic FDFA recognizingL. Let
n be the number of states inM of F andk be the number of states in the largest progress
automaton ofF .

Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample returned
from theFDFA teacher. The number of equivalence queries needed for the tree-based
FDFA learning algorithm to learn the periodicFDFA of L is inO(n + nk), while the
number of membership queries is inO((n+ nk) · (|u| + |v| + (n+ k) · |Σ|)).

For the syntactic and recurrentFDFAs, the number of equivalence queries needed
for the tree-basedFDFA learning algorithm is inO(n+n3k), while the number of mem-
bership queries is inO((n+ n3k) · (|u| + |v| + (n+ nk) · |Σ|)).

Proof. Thm. 2 can be concluded from Lem. 9, Coro. 2, Lem. 11, and Lem. 12. Suppose
F = (M, {Au} is the corresponding periodic FDFA recognizingL. The number of states
in M is n andk is the number of the largest progress automaton inF .

Given a counterexample (u, v), the number of membership queries is at most|u| if
we refine the leading automaton and is at most|v| if we refine the progress automa-
ton. Therefore, the number of membership queries used in analyzing counterexample
is bounded by|u| + |v|. One can also use binary search to reduce the number of mem-
bership queries used by counterexample analysis to log(|u| + |v|). Moreover, when the
classification tree has been refined, we need to construct thecorrespondingM or AM(u)

again. Suppose the new added terminal node is labeled byp, the terminal node which
needs to refined is labelled byq and the experiment ise. We only need to compute the
successors ofp and update the successors of the predecessors ofq.

– Computing the successors ofp is to calculateδ(p, a) for everya ∈ Σ, which requires
|Σ| · h membership queries whereh is the height of the classification tree.

– Updating the successors of the predecessors ofq is to calculateTE(s, e) for every
state labels anda ∈ Σ such that currently we haveδ(s, a) = q, which requires at
most |Σ| · m membership queries wherem is the number of states in currentM or
AM(u).

Since the height of the classification tree is at mostm, thus the number of membership
queries needed for constructing the conjectured DFA is at most 2 · m · |Σ|. It follows
that for the tree-based algorithm, the number of membershipqueries used in the coun-
terexample guided refinement is bounded by|u| + |v| + 2m · |Σ|. We remark that in the
table-based algorithm, the number of membership queries used in the counterexample
guided refinement is bounded by|u| + |v| +m+ |Σ| ·m+ |Σ|.

We give the complexity of the tree-based algorithm as follows.

– For periodic FDFA. During the learning procedure, when receiving a counterex-
ample for FDFA learner, the tree-based algorithm either adds a new state into the
leading automaton or into the corresponding progress automaton. Thus, the number
of the equivalence queries is bounded byn + nk since the number of states in the
target periodic FDFA is bounded byn+ nk. In periodic FDFA, we havem ≤ n+ k
since every time we either refine the leading automaton or a progress automaton.
Therefore, the number of membership queries needed for the algorithm is bounded
by (n+ nk) · (|u| + |v| + 2(n+ k) · |Σ|) ∈ O((n+ nk) · (|u| + |v| + (n+ k) · |Σ|)) in the
worst case.



– For syntactic and recurrent FDFA, when receiving a counterexample for FDFA
learner, the tree-based algorithm will first decide whetherto refine the leading au-
tomaton or the progress automaton. If it decides to refine theleading automaton,
we need to initialize all progress trees with a single node labelled byǫ again, so the
number of states in the progress automata of the FDFA may decrease at that point,
otherwise it refines the progress automaton and the number ofstates in FDFA will
increase by one.
In the worst case, the learner will try to learn the progress automata as much as
possible. In other words, if current leading automaton hasm states, the number
of states in every progress automaton is at mostm · k according to Lem. 11 and
Lem. 12. When all progress trees cannot be refined any more, either the learning
task finishes or the FDFA teacher returns a counterexample torefine current leading
automaton. For the latter case, the number of states in the leading automaton will
increase by one, that is,m+1, and we need to redo the learning work for all progress
trees. The number of states in all progress automata in the new FDFA is bounded
by (m+ 1)2 · k. Therefore, the number of equivalence queries needed for tree-based
algorithm is bounded by (1+ 1 · 1 · k)+ (1+ 2 · 2 · k)+ · · · (1+ (n− 1) · (n− 1) · k)+
(1 + n · n · k) ∈ O(n + n3k). Similarly, in syntactic and recurrent FDFAs, we have
thatm ≤ n+ nk since the number of states in a progress automaton is boundedby
nk. It follows that the number of membership queries needed forthe algorithm is in
O((n+ n3k) · (|u| + |v| + 2(n+ nk) · |Σ|)) ∈ O((n+ n3k) · (|u| + |v| + (n+ nk) · |Σ|)) in
the worst case.

�

Theorem 3 (Space Complexity).For all tree-based algorithms, the space required to
learn the leading automaton is inO(n). For learning periodicFDFA, the space required
for each progress automaton is inO(k), while for syntactic and recurrentFDFAs, the
space required is inO(nk). For all table-based algorithms, the space required to learn
the leading automaton is inO((n+ n · |Σ|) · n). For learning periodicFDFA, the space
required for each progress automaton is inO((k + k · |Σ|) · k), while for syntactic and
recurrentFDFAs, the space required is inO((nk+ nk · |Σ|) · nk).

Proof. As we mentioned in Sec. 4, the FDFA learner can be viewed as a learner con-
sisting of many component DFA learners. For a component DFA learner, suppose the
number of the states in the target DFA ism, for table-based component DFA learner,
the size of the observation table is inO((m+m· |Σ|) ·m) since there arem+m· |Σ| rows
and at mostm columns in the observation table in the worst case. In contrast, for the
tree-based component DFA learner, the number of nodes in theclassification tree is in
O(m) since the number of terminal nodes in the classification tree ism and the number
of internal nodes is at mostm− 1.

– For the periodic FDFA, the number of states in the FDFA will increase after each
refinement step. Thus, it is easy to conclude that the space required for the leading
automaton is inO(n) if we use tree-based learning algorithm and the space required
by the table-based algorithm is inO((n+ n · |Σ|) · n). Similarly, the space required
by tree-based learning algorithm to learn each progress automaton is inO(k), while
for table-based algorithm, the space required is inO((k+ k · |Σ|) · k).



– For the syntactic and recurrent FDFA. The learning procedure for the leading au-
tomaton is the same as periodic automaton. Thus the space required by table-based
and tree-based algorithm remain the same.
For learning progress automaton, the number of states in each progress automaton is
at mostnkaccording to Lem. 11 and Lem. 12. Therefore, for table-basedalgorithm,
the space required is inO((nk+ nk · |Σ|) · nk). While for tree-based algorithm, the
space required to learn each progress automaton is inO(nk).

�

Proposition 8. In FDFA teacher, suppose n is the number of states in the leading au-
tomaton and k is the number of states in the largest progress automaton in the input
FDFAF and the returned counterexample uvω has a decomposition(u, v). Then

– the time and space complexity for building the BAs Band B are inO(n2k3) and
O(n2k2) respectively, and

– for the under approximation method, the time and space complexity for analyzing
the counterexample uvω are inO(n2k·(|v|(|v|+ |u|)), while for the over approximation
method, the time and space complexity for analyzing the counterexample uvω are
in O(n2k2 · (|v|(|v| + |u|)) and inO(n2k(|v|(|v| + |u|)) respectively.

Proof. Suppose the FDFA teacher currently needs to answer the equivalence query for
FDFAF = (M, {Au}). Then the number of states inB (B) is inO(n+n2k3) (respectively,
O(n+n2k2)). In addition, the number of states in FAD1 andD2 are both inO(n+n2k) and
the number of states inDu$v is at most|v|(|v| + |u|) given that (u, v) is a decomposition
of the returned counterexampleuvω, which can be applied to the under and the over
approximation except for case O3 in the over approximation.When we analyze the
spurious negative counterexample, the time and space complexity are inO(nk(n+ nk) ·
(|v|(|v|+ |u|))) andO((n+nk) · (|v|(|v|+ |u|))) according to Lem. 5. Therefore, we complete
the proof. �

Theorem 4 (Correctness and Termination).The BA learning algorithm based on the
under-approximation method always terminates and returnsa BA recognizing the un-
knownω-regular language L in polynomial time. If the BA learning algorithm based on
the over-approximation method terminates without reporting an error, it returns a BA
recognizing L.

Proof. If we use the under-approximation method to construct the B¨uchi automaton,
then the BA learning algorithm will need to first learn a canonical FDFA to get the final
Büchi automaton in the worst case. This theorem is justifiedby Lem. 2 and Lem. 3.�
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