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Abstract. In this paper, we propose a novel algorithm to learn a Bliotoraa-
ton from a teacher who knows asrregular language. The algorithm is based on
learning a formalism namef@&mily of DFAs(FDFAS) recently proposed by An-
gluin and Fismari[10]. The main catch is that we uskaasification treetructure
instead of the standabservation tabletructure. The worst case storage space
required by our algorithm is quadratically better than thlalé-based algorithm
proposed in[[10]. We implement the first publicly availabledry ROLL (Reg-
ular Omega Language Learning), which consists ofuategular learning algo-
rithms available in the literature and the new algorithnappsed in this paper.
Experimental results show that our tree-based algorithave lthe best perfor-
mance among others regarding the number of solved learaghg .t

1 Introduction

Since the last decade, learning-based automata infereciveitjues 7, 11, 30, 35] have
received significant attention from the community of forsdtem analysis. In general,
the primary applications of automata learning in the comityuwran be categorized into
two: improving gficiency and scalability of verificatioi@,[15/17, 19, 21,23, 25, 32] and
synthesizing abstract system model for further ana[i§& 16, 18,22,24,26, 84,36,39].
The former usually is based on the so cablsdume-guaranteompositional veri-
fication approach, which divides a verification task intoesalsubtasks via a compo-
sition rule. Learning algorithms are applied to construnstimnmental assumptions of
components in the rule automatically. For the latter, a@i@nearning has been used to
automatically generate interface model of computer progr&| 22,26, 36,40], a model
of system error traces for diagnosis purpose [16], behawimtel of programs for sta-
tistical program analysis$ [18], and model-based testirdy\arification [24, 34, 39].
Besides the classical finite automata learning algoritipagple also apply and de-
velop learning algorithm for richer models for the above applications. For example,
learning algorithms for register automatal[27, 28] havent@eveloped and applied to
synthesis system and program interface models. Learngogigim for timed automata
has been developed for automated compositional verifitdtintimed systems [32].
However, all the results mentioned above are for checkafgty propertiesr synthe-
sizing finite behavior modelsf systemgprograms. Buchi automaton is the standard
model for describing liveness properties of distributestesns([4]. The model has been
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applied in automata theoretical model checking [38] to dbsdhe property to be veri-

fied. Itis also often used in the synthesis of reactive systéhoreover, Biichi automata
have been used as a means to prove program termination [@dg\r, unlike the case

for finite automata learning, learning algorithms for Biehtomata are very rarely used
in our community. We believe this is a potentially fertilearfor further investigation.

The first learning algorithm for the full-class af-regular languages represented
as Bichi automata was described[in/[20], based on.tregorithm [7] and the result
of [14]. Recently, Angluin and Fisman propose a new learilggrithm forw-regular
languages [10] using a formalism callethanily of DFAS(FDFAS), based on the results
of [33]. The main problem of applying their algorithm in igzation and synthesis is
that their algorithm requires a teacher for FDFAs. In thipgrawe show that their
algorithm can be adapted to support Biichi automata teacher

We propose a noveb-regular learning algorithm based on FDFAs andassifi-
cation treestructure (inspired by the tree-badedalgorithm in [30]). The worst case
storage space required by our algorithm is quadraticaliebthan the table-based al-
gorithm proposed in_[10]. Experimental results show that toee-based algorithms
have the best performance among others regarding the nwhé@ved learning tasks.

For regular language learning, there are robust and puylaicilable libraries, e.g.,
libalf [12] andLearnLib [29]. A similar library is still lacking for Biichi automataarn-
ing. We implement the first publicly available Biichi autdmbearning library, named
ROLL (Regular Omega Language Learnihgtp://iscasmc.ios.ac.cn/roll), which
includes all Buchi automata learning algorithms of thédldss ofw-regular languages
available in the literature and the ones proposed in thiep&jge compare the perfor-
mance of those algorithms using a benchmark consists of 2@hiBautomata corre-
sponding to all 295 LTL specifications available in Bicli®t 37].

To summarize, our contribution includes the following. Adapting the algorithm
of [10] to support Biichi automata teachers. (2) A noveldeag algorithm forw-regular
language based on FDFAs and classification trees. (3) Thiclyuavailable library
ROLL that includes all Buichi automata learning algorithms carfidund in the litera-
ture. (4) A comprehensive empirical evaluation of Biichtibawata learning algorithms.

2 Preliminaries

Let AandB be two sets. We usé® B to denote theisymmetric dferencei.e., the set
(A\ B)U (B\ A). LetX be a finite set calledlphabet We user to represent an empty
word. The set of all finite words is denoted b¥, and the set of all infinite words, called
w-words, is denoted b¥“. Moreover, we also denote By the set™ \ {e}. We usgu|
to denote the length of the finite woadWe use(- - - j] to denote the sdt,i+1,--- , j}.
We denote by[i] thei-th letter of a wordv. We usew{i..k] to denote the subword of
w starting at the-th letter and ending at thieth letter, inclusive, whem < k and the
empty worde wheni > k. A languages a subset o™ and anw-languageis a subset
of 2“. Words of the formuv* are calledultimately periodicwords. We use a pair of
finite words (i, v) to denote the ultimately periodic wowd = uv~. We also call ¢, v) a
decompositiof w. For anw-languagd., letUP(L) = {uv’ |ue 2*,ve X, uw € L},
i.e., all ultimately periodic words ih.
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A finite automator{FA) is a tupleA = (2, Q, do, F, ) consisting of a finite alphabet
X, a finite setQ of states, an initial statgp, a setF C Q of accepting states, and a
transition relations € Q x 2’ x Q. For convenience, we also uéfg, a) to denote the
set{q | (g,a ) € ¢}. A run of an FA on a finite wordr = ajapaz - - - a, is a sequence
of statesqo, 1, - - - , gn Such that ¢, a1, gi+1) € 6. The runv is acceptingif g, € F.

A word u is accepting if it has an accepting run. The languagA,afenoted by (A),
is the setfu € 2* | uis accepted byA}. Given two FASA and B, one can construct a
product FAA x B recognizingL(A) N L(B) using a standard product construction.

A deterministic finite automatofDFA) is an FA such thaé(q, a) is a singleton for
anyq € Qanda € 2. For DFA, we writeé(g,a) = ¢ instead ofs(g,a) = {d'}. The
transition can be lifted to words by definidgg, €) = g andd(q, av) = 6(6(q, @), v) for
ge Q,ae X andv e X2*. We also usé\(v) as a shorthand fai(qo, v).

A Bilchi automatofiBA) has the same structure as an FA, exceptthat it accefsts on
infinite words. A run of an infinite word in a BA is an infinite asenpce of states defined
similarly to the case of a finite word in an FA. An infinite wondis accepted by a BA
iff it has a run visiting at least one accepting state infinitéigro The language defined
by a BA A, denoted byL(A), is the sefw € 2 | wis accepted by}. An w-language
L C 2* is w-regular if there exists a BAA such thal = L(A).

Theorem 1 (Ultimately Periodic Words of w-Regular Languages[[13])Let L, L’ be
two w-regular languages. Then £ L’ if and only if URL) = UP(L").

Definition 1 (Family of DFAs (FDFA) [10]). A family of DFAsF = (M, {A%}) over
an alphabet> consists of a leading automaton M (2, Q, do, §) and progress DFAs
Al = (X, Qq, 8, 6g, Fg) for each ge Q.

Notice that the leading automatdhis a DFA without accepting states. Each FDFA
F characterizes a set of ultimately periodic wotdiB(F). Formally, an ultimately pe-
riodic wordw is in UP(¥) iff it has a decompositionu(v) acceptedoy . A decom-
position ,Vv) is accepted by iff M(uv) = M(u) andv € L(AMWY). An example of
an FDFA¥ is depicted in Figl11. The leading automaté@hhas only one state The
progress automaton efis A<. The word ba) is in U P(¥) because it has a decomposi-
tion (ba, ba) such thaM(ba- ba) = M(ba) andba e L(AM®A) = | (A). Itis easy to see
that the decompositiofbéh ab) is not accepted by sinceab ¢ L(AM®PaD) = L (A).
For anyw-regular languagé, there

M a A€ a exists an FDFAF such thatUP(L) =
ab UP(¥) [10]. We show in Sed.]6 that it
startﬂé startﬂ@% is not the case for the reverse direction.
b More precisely, in[[10], three kinds of
b FDFAs are suggested as the canonical

representation ofw-regular languages,
namelyperiodic FDFA, syntacticFDFA
andrecurrentFDFA. Their formal definitions are given in termsrifht congruence

An equivalence relatiosr onX* is a right congruence X - y impliesxv « yv for
everyx,y,v e 2*. The index of-, denoted by-|, is the number of equivalence classes
of —~. We useX*/_ to denote the equivalence classes of the right congruengdinite
right congruencas a right congruence with a finite index. For a ward 2*, we use

Fig. 1. An example of an FDFA



the notation y].. to represent the class efin which v resides and ignore the subscript
—~ when the context is clear. The right congruengeof a givenw-regular languagé

is defined such that - yiff Yw € 2“.xw e L < yw e L. The index of~_ is finite
because it is not larger than the number of states in a detestimiMuller automaton
recognizingL [33].

Definition 2 (Canonical FDFA [10Q]). Given anw-regular language L, a periodic (re-
spectively, syntactic and recurremPFA ¥ = (M, {AY}) of L is defined as follows.
The leading automaton M is the tudlg, 2*/_ , [€].,, ), wheres([u].., , &) = [ud].., for
allu e 2*andae 2.

We define the right congruenceg, ~¢, and~} for progress automata ‘fof peri-
odic, syntactic, and recurrefi®DFA respectively as follows:

X~ Yif Yve X u(xv)¥ € L = u(yw” € L,
X ~d Yiff ux—L uy and¥v e X*,uxv-L U= (u(xv)* € L & u(yw“ € L), and
X=R Y iff YV e Z*  UXV—L UA U(XV)® € L &< uyv—L UA U(yW)* € L.

The progress automatort'As the tuple(X, 2*/.u, [€]xy, 0k, Fk), wheredk ([u]~e, @) =
[ug]sy for allu € 2™ and a € X. The accepting stateskFis the set of equivalence
classegv].: for which uv~_ uand u¥ € L when Ke {S, R} and the set of equivalence
classegVv].y for which uy € L when Ke {P}.

In this paper, by an abuse of notation, we use a finite wotal denote the state in a
DFA in which the equivalence clasg][resides.

Lemma 1 ([10]). Let ¥ be a periodic (syntactic, recurrenfDFA of an w-regular
language L. Then U@F) = UP(L).

Lemma 2 ([9]). LetF be a periodic (syntactic, recurrenEDFA of anw-regular lan-
guage L. One can construct a BA recognizing L ftem

3 Bichi Automata Learning Framework based on FDFA

We begin with an introduction of the framework of learning Bécognizing an un-
knownw-regular languageé.

Overview of the framework: First, we assume that we already have a BA teacher who
knows the unknowmu-regular languagé and answersnembershiand equivalence
queries about.. More precisely, a membership queviem®*(uv) asks ifuv’ € L.
For an equivalence queiiqu®?(B), the BA teacher answers “yes” whéiB) = L,
otherwise it returns “no” as well as a counterexamplé € L & L(B).

The framework depicted in Figl 2 consists of two componemsyely the FDFA
learnerand the FDFAteacher Note that one can place any FDFA learning algorithm
to the FDFA learner component. For instance, one can uselRa kearner from|[[10]
which employs a table to store query results, or the FDFAnktansing a classification
tree proposed in this paper. The FDFA teacher can be anydeadio can answer
membership and equivalence queries about an unknown FDFA.
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Fig. 2. Overview of the learning framework based on FDFA learninge Tomponents i
boxes are results from existing works. The componen._  boxes are our new contributions.

FDFA learners: The FDFA learners component will be introduced in $éc. 4[and 5
We first briefly review the table-based FDFA learning aldoris [10] in Sec[ 4. Our
tree-based learning algorithm for canonical FDFAs will iedduced in Se€]5. The al-
gorithm is inspired by the tree-baskdlearning algorithm([30]. Nevertheless, applying
the tree structure to learn FDFAs is not a trivial task. Faraple, instead of a binary
tree used in[[30], we need to useKaary tree to learn syntactic FDFAs. The use of
K-ary tree complicates the procedure of refining the clasdgifin tree and automaton
construction. More details will be provided in SEL. 5.

FDFA teacher: The task of the FDFA teacher is to answer quekesn™™(u, v) and
EqufP™(F) posed by the FDFA learner. Answeritdem™™™(u, v) is easy. The FDFA
teacher just needs to redirect the resulve®”(uv”) to the FDFA learner. Answering
equivalence quergqu™PM(F) is more tricky.

From an FDFAF to a BAB: The FDFA teacher needs to transform an FDFAo a
BA B to pose an equivalence queEgu®A(B). In Sec[H, we show that, in general, it
is impossible to build a BA from an FDFAF such thatJP(L(B)) = UP(F). There-
fore in Sec[b, we propose two methods to approxintalF), namely theunder-
approximationmethod and thever-approximatiormethod. As the name indicates,
the under-approximation (respectively, over-approxiorgtmethod constructs a BA
B from F such thatJP(L(B)) € UP(F) (respectivelylJ P(F) € UP(L(B))). The under-
approximation method is modified from the algorithmlinl[1Mbte that if the FDFAs
are the canonical representations, the BAs built by the mapproximation method
recognize the same ultimately periodic words as the FDFAschvmakes it a com-




plete method for BA learning (Lerill 1 affl 2). As for the ovepximation method,
we cannot guarantee to get a BAsuch thatUP(L(B)) = UP(F) even if theF is a
canonical representation, which thus makes it an incormplesthod. However, in the
worst case, the over-approximation method produces a BAseinomber of states is
only quadratic in the size of the FDFA. In contrast, the nundfstates in the BA con-
structed by the under-approximation method is cubic in ihe af the FDFA.

Counterexample analysigthe FDFA teacher receives “no” and a counterexanupte
from the BA teacher, the FDFA teacher has to return “no” ad ala valid decom-
position (/, V') that can be used by the FDFA learner to refihdn Sec[¥, we show
how the FDFA teacher chooses a pait, {') from uv” that allows FDFA learner to re-
fine current FDFAF. As the dashed line with a labElin Fig.[2 indicates, we use the
current conjectured FDFA to analyze the counterexample. The under-approximation
method and the over-approximation method of FDFA to BA tiaien require diferent
counterexample analysis procedures. More details willrbgiged in Sed.]7.

Once the BA teacher answers “yes” for the equivalence qiguf*(B), the FDFA
teacher will terminate the learning procedure and outp&4 aecognizingL.

4 Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based leafiore=-DFAs [10]. It employs

a structure calledbservation tabl§7] to organize the results obtained from queries and
propose candidate FDFAs. The table-based FDFA learneftsineously runs several
instances of DFA learners. The DFA learners are very simildhe L* algorithm [7],
except that they useftierent conditions to decide if two strings belong to the satae s
(based on Def]2). More precisely, the FDFA learner uses dffeBarnerL;, for the
leading automatoM, and for each statein M, one DFA learnet,, for each progress
automatonA". The table-based learning procedure works as follows. €amerL},

first closes the observation table by posing membershipiegiand then constructs
a candidate for leading automatdh. For every statel in M, the table-based algo-
rithm runs an instance of DFA learnkf, to find the progress automatayy. When

all DFA learners propose candidate DFAs, the FDFA learnserables them to an
FDFA ¥ = (M, {A"}) and then poses an equivalence query for it. The FDFA teacher
will either return“yes” which means the learning algorithm succeeds or retoor
accompanying with a counterexample. Once receiving thateoexample, the table-
based algorithm will decide which DFA learner should refitsecandidate DFA. We
refer interested readers to [10] for more details of theetddalsed algorithm.

5 Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorifor FDFAs. To that end,
we first define the classification tree structure for FDFAéay in Sec[ 5.1l and present
the tree-based algorithm in Séc.]5.2.



5.1 Classification Tree Structure in Learning

Here we present our classification tree structure for FDRA&nmg. Compared to the
classification tree defined in_[30], ours is not restricted¢oa binary tree. Formally,
a classification tree is a tupfe = (N,r, L, Le) whereN = 1 U T is a set of nodes
consisting of the sdtof internal nodesand the seT of terminal nodesthe node € N
isthe rootofthe tred,, : N — X*U(2*x2*) labels an internal node with axperiment
and a terminal node with state andL. : N x D — N maps a parent node and a label
to its corresponding child node, where the set of labelsill be specified below.

During the learning procedure, we maintaiteading tree7 for the leading au-
tomatonM, and for every state in M, we keep gprogress treer, for the progress
automatorA'. For every classification tree, we define a tree experimerttion TE :
2*x (2* U (2" x2¥)) — D. Intuitively, TE(x, €) computes the entry value at row (state)
x and column (experimengof an observation table in table-based learning algorithms
The labels of nodes in the classification tfEesatisfy the follow invariants: Lete T
be a terminal node labeled with a state- L,(t). Lett’ € | be an ancestor node bf
labeled with an experimeet= Ly(t"). Then the child of’ following the labelTE(x, €),
i.e., Le(t', TE(X, €)), is either the nodeor an ancestor node tf

Leading tree 7: The leading treg for M is a binary tree with label® = {F, T}.
The tree experiment functiofE(u, (x,y)) = T iff uxy” € L (recall the definition of
~_ in Sec[2) wherey, x,y € 2*. Intuitively, each internal nodein 7 is labeled by an
experimentxy” represented as(y). For any wordu € X*, uxy” € L (or uxy” ¢ L)
implies that the equivalence classiolies in the T-subtree (or F-subtree)raf

Progress tree7: The progress trees, and the corresponding functidriE(x, €) are
defined based on the right congruenegs~4, and=}; of canonical FDFAs in Def]2.

Periodic FDFA:The progress tree for periodic FDFA is also a binary treel&bwith
D = {F, T}. The experiment functioME(x, €) = T iff u(xe® € L wherex,e e 2*.
Syntactic FDFAThe progress tree for syntactic FDFA iKaary tree with label® =
Q x {A, B, C} whereQ is the set of states in the leading automatbnor all x, e € 2*,
the experiment functiolE(x, €) = (M(ux), t), wheret = Aiffu = M(uxAu(xe® € L,
t=Biffu= M(uxe A u(xe® ¢ L, andt = Ciff u # M(uxe.

For example, assuming thM is constructed from the right congrueneeg, for
any two statex andy such thafTE(x,€) = TE(y, €) = (z A), it must be the case that
ux —_ uy becauseM(ux) = z = M(uy). Moreover, the experimemtcannot distinguish
x andy becauseixe-| u -~ uyeand bothu(xe®, u(ye® € L.

Recurrent FDFAThe progress tree for recurrent FDFA is a binary tree labelitlal
D = {F, T}. The functionTE(x, €) = T iff u(xe“ € L A u= M(uxe wherex, e € 2*.
5.2 Tree-based Learning Algorithm

The tree-based learning algorithm first initializes thedlag tree7” and the progress
tree7. as a tree with only one terminal nodéabeled bye.



From a classification tre& = (N,r, L, Lg), the learner constructs a candidate of
a leading automatoM = (X, Q, ¢,6) or a progress automato = (2, Q,¢,6, F) as
follow. The set of states iQ = {Ln(t) | t € T}. Givens € Q anda € %, the transition
function (s, @) is constructed by the following procedure. Initially therent node
n :=r. If nis a terminal node, it return¥s,a) = L,(n). Otherwise, it picks a unique
child n” of n with L¢(n, TE(sa Ln(n))) = ', updates the current noder and repeats
the proceduﬂe By Def.[2, the set of accepting state®f a progress automaton can be
identified from the structure df1 with the help of membership queries. For periodic
FDFA,F = {v| uw € L,v € Q} and for syntactic and recurrent FDFR,= {v | uv «y
uuw el,ve Q).

Whenever the learner has constructed an FBOFA= (M, {AY}), it will pose an
equivalence query fof. If the teacher returns “no” and a counterexample/), the
learner has to refine the classification tree and proposéancéndidate of FDFA.

Definition 3 (Counterexample for FDFA Learner). Given the conjectureBDFA ¥
and the target language L, we say that the counterexample

— (u,V) is positiveif uv «~ u, uw € UP(L), and(u, v) is not accepted by,
— (u,V) is negativef uv ~y u, uw ¢ UP(L), and(u, V) is accepted by .

We remark that in our case all counterexamples)from the FDFA teacher satisfy
the constraintiv -~y u, which corresponds to theormalized factorizatioform in [10].

Counterexample guided refinement off: Below we show how to refine the classi-
fication trees based on a negative counterexamplg.(The case of a positive coun-
terexample is symmetric. By definition, we have ~y u, uv ¢ UP(L) and {, V) is

accepted byF. Let 0 = M(u), if v € UP(L), the refinement of the leading tree is
performed, otherwisav” ¢ UP(L), the refinement of the progress tree is performed.

Refinement for the leading tree: In the leading automatoM of the conjectured
FDFA, if a statep has a transition to a statpvia a lettera, i.e, q = M(pa), then
pa has been assigned to the terminal node labeled thyring the construction dfA.
If one also finds an experimeatsuch thaifTE(q, €) # TE(pa, €), then we know tha
andpashould not belong to the same state in a leading automatdbo.§V, we assume
TE(qg,€) = F. In such a case, the leading tree can be refined by replacinigtiminal
node labeled withy by a tree such that (i) its root is labeled gy(ii) its left child is a
terminal node labeled by, and (iii) its right child is a terminal node labeled pyp.
Below we discuss how to extract the required stgtepand experimerg. Let|u| =
nandss; - - - S, be the run oM overu. Note thatsy = M(€) = e ands, = M(u) = Q.
From the facts thatf v) is a negative counterexample am# € UP(L) (the condition
to refine the leading tree), we haV& (s, (U[1---n],v)) = F # T = TE(S), (6,V)) =
TE(Sy, (Un+1---n],Vv)) becauseiv’ ¢ UP(L) anduv € UP(L). Recall that we have
w[j---k] = e whenj > k. Therefore, there must exist a small¢st [1---n] such

4 For syntactic FDFA, it can happen this, a) goes to a “new” terminal node. A new state for
the FDFA is identified in such a case.



that TE(sj-1, (u[j---n],v)) # TE(sj, (u[j + 1---n],v)). It follows that we can use the
experimene = (u[j + 1---n],v) to distinguishg = s; andpa = sj_1u[j].

Example 1.Consider a conjectured FDFA in Fig.[d produced during the process of
learningL = a® + b“. The corresponding leading trge and the progress treg. are
depicted on the left of Fidl3. The dotted line is for the F ledo®d the solid one is for
the T label. Suppose the FDFA teacher returns a negativae@xampledb, b). The
leading tree has to be refined singab)b” = b“ € L. We find an experiment(b)

to differentiates anda using the procedure above and update the leading/tree7".
The leading automatol constructed fron¥” is depicted on the right of Fig] 3.

7'/

M a
CE @b b
e _CE@hD | (b.b) startH@L§
RN 2N
b b

a] @]

Fig. 3. Refinement of the leading tree and the corresponding leaditgmaton

<
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Refinement for the progress tree: Here we explain the case of periodic FDFAs. The
other cases are similar and we leave the details in AppéddReBall that’ ¢ UP(L)
and thus the algorithm refines the progressfrgd_et|v| = nandh = 5s; - - - S, be the
corresponding run oA” overv. Note thatsy = A’(e) = € ands, = Al(v) = V. We have
(W e UP(L) becauseris an accepting state. From the facts thet ¢ UP(L) and
(W)« € UP(L), we haveTE(so,V[1---n]) = F# T = TE(Sy, €) = TE(S, v[n+1---n]).
Therefore, there must exist a smallgste [1---n] such thatTE(sj-1,V[j---n]) #
TE(sj,v[j + 1---n]). It follows that we can use the experimest= v[j + 1---n] to
distinguishqg = sj, pa = sj_1V[j] and refine the progress tr&g.

Optimization: Exampld1 also illustrates the fact that the counterexaraldr) may

not be eliminated right away after the refinement. In thigc#ss still a valid counterex-
ample (assuming that the progress tfeeemains unchanged). Thus as an optimization
in our tool, one can repeatedly use the counterexampleitistiéliminated.

6 From FDFA to Blchi Automata

Since the FDFA teacher exploits the BA
teacher for answering equivalence queries,

it M a A¢ b
needs first to convert the given FDFA into g a
BA. Unfortunately, with the following exam- startﬂé start—
ple, we show that in general, it is impossible b b 4
ac(b)ob

to construct greciseBA B for an FDFAF
such thatU P(L(B)) = UP(¥).

. ) Fig. 4. An FDFA ¥ such thatU P(¥) does
Example 2.Consider a non-canonical FDFAqt characterize an-regular language

# in Fig.[4, we havdJ P(F) = Uy ofa b}* -



(ab")“. We assume thdd P(¥) characterizes am-regular language. It is known that
the periodic FDFA recognizes exactly theregular language and the index of each
right congruence is finite [10]. However, we can show thatrihlt congruence-f, of

a periodic FDFA ofL is of infinite index. Observe thatt* £ ab’ for anyk, j > 1 and

k # j, because-(abt-ab)® € UP(F) ande-(abl -ab)~ ¢ UP(F). It follows that~ is

of infinite index. We conclude th&i P(¥) cannot characterize an-regular language.

We circumvent the above problem by proposing two BR\&, which under- and
over-approximate the ultimately periodic words of an FDR#ven an FDFAF =
(M, {A"}) with M = (2, Q, qo, ) and A" = (X, Qu, Su, du, Fu) for all u € Q, we define
M = (2,Q,s86,{v}) and AY)s = (2, Qu, S bu, {V}), i.e., the DFA obtained fronM
and A" by setting their initial and accepting statessaand {v}, respectively. Define
Nuy) = (v [ uv -y UA Ve L((AY)Y)}. ThenUP(F) = Uuequer, L(MJ) . Nuy)-

We construcB andB by approximating the selly,y). For B, we first define an FA
Puy) = (&, Quys Suvs { fuv, Suy) = MY x (A% and letN,,y) = L(Pwy)“. Then one can
constructa BAE, Quv U {f}, Suv, {f}, Suv U 6¢) recognizingﬁ(u,\,) wheref is a “fresh”
state and = {(f, €, suv), (fuv. € f)}. ForB, we define an F&, ) = Miix (A")y x (A)y
and letN,, ,, = L(P,,))”. One can construct a BA recognizify, , using a similar
construction to the case Kf(u,v). In Def.[4 we show how to construct Bﬁgandg s.t.

U P(L(E)) = UueQ,veFu L(ML(}O) : N(u,V) andUP(L@)) = UueQ,veFu L(ML(}O) : N(u,v)'

Definition 4. Let ¥ = (M,{A"}) be anFDFA where M = (2,Q,0o,6) and A' =
(2, Qu, sus Fu, 0u) for every ue Q. Let(Z, Quy, Suvs { fuv}, duy) be a BA recognizing

Ny (respectivelyNy)). Then the BA BrespectivelyB) is defined as the tuple

2Qu | Qe | thhou [ swu [ (weswif.

ueQ,vek, ueQ,vek, ueQ,vek, ueQ,vek,

Lemma 3 (Sizes and Languages d8 and B). Let# be an FDFA and BB be the
BAs constructed front by Def[4. Let n and k be the numbers of states in the leading
automaton and the largest progress automatofofThe number of states of &1d B

are in O(n?k%) andO(n?k?), respectively. Moreover, UB(B)) € UP(¥) < UP(L(B))

and we have URL(B)) = UP(¥) when¥ is a canonicaFDFA.

The properties below will be used later in analyzing cousxamples.

Lemma 4. Given anFDFA ¥ = (M, {AY}), and Bthe BA constructed fromt by Def[4.
If (u,V¥) is accepted by for every k> 1, then u¢ € UP(L(B)).

Lemma 5. Given anw-word w e UP(L(B)), there exists a decompositi¢n, v) of w
andn> 1suchthatv= vi-Vo---vaandforallie [1---n], v € LAMYW) and uy ~y u.

Fig.[d depicts the BAS and B constructed from the FDFAF in Fig.[d. In the
example, we can see that the € UP(¥) while b* ¢ UP(L(B)).
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Fig.5. NBA B andB for ¥ in Fig.[I

7 Counterexample Analysis for FDFA Teacher

During the learning procedure, if we failed the equivaleqgery for the BAB, the BA
teacher will return a counterexample’ to the FDFA teacher.

Definition 5 (Counterexample for the FDFA Teacher).Given the conjectured BA
B € {B, B}, the target language L, we say that

— uw is apositive counterexampiéuv” € UP(L) and uv ¢ UP(L(B)),
— UW is anegative counterexampifeuv® ¢ UP(L) and u¥ € UP(L(B)).

Obviously, the above is fierent to the counterexample for the FDFA learner in
Def.[3. Below we illustrate the necessity of the countergxaranalysis by an example.

Example 3.Again, consider the conjectured FDFAdepicted in Fig 1l fot. = a“+b®.
Suppose the BA teacher returns a negative counterexaimgte (n order to remove
(ba)® € UP(¥F), one has to find a decomposition &f“ that# accepts, which is the
goal of the counterexample analysis. Not all decompostminba) are accepted by
¥ . For instance,l{a, ba) is accepted whilelahk ab) is not.

A positive (respectively negative) counterexampl¢’ for the FDFA teacher is
spuriousif uv’ € UP(F) (respectivelyuv ¢ UP(¥)). Suppose we use the under-
approximation method to construct the Bfrom # depicted in Fig.b. The BA teacher
returns a spurious positive counterexanilewhich is inUP(#) but not inU P(L(B)).
We show later that in such a case, one can always find a decd@imapgis this example
(b, bb), as the counterexample for the FDFA learner.

Given FDFAF = (M, {A"}), in order to analyze the counterexampi¢ , we define:

— an FADyg, with L(Dygy) = (USV | U € 25,V € X2, uw = U'V¥},
— an FAD; with L(D1) = {u$v|ue Z*,ve X, uv—y u,v e L(AMW)}, and
— an FAD, with L(D,) = {u$v|ue Z*,ve ", uv—y u,v ¢ L(AMW)},

Here $ is a letter not ia. Intuitively, D g, accepts every possible decompositioh {)
of uvw’, D, recognizes every decompositiow,(') which is accepted by and D,
accepts every decompositiauf (v') which is not accepted by yetu'v' —y U'.

Given a BAB constructed by the under-approximation method to cons&riBA
B from ¥, we have thaUP(L(B)) € UP(¥). Fig.[6(a) depicts all possible cases of
uv € UP(L(B)) ® UP(L).



(a) Under-Approximation (b) Over-Approximation

Fig. 6. The Case for Counterexample Analysis

Ul :uw e UP(L) Auw ¢ UP(¥) (Pointin red). The wordiv is a positive counterex-
ample, one has to find a decompositiaf) ') such that'v’ «y U andu’v® = uv”.
This can be easily done by taking a war@v’ € L(Dyg,) N L(D2).

U2 :uw ¢ UP(L) A uw € UP(¥) (Point in blue). The wordiv is a negative coun-
terexample, one needs to find a decompositivn/) of uv” that is accepted by .
This can be done by taking a woutBv' € L(Dyg,) N L(Dy).

U3 :uw € UP(L) A uw e UP(¥) (Point in green). The wordiv is a spurious
positive counterexample. Suppose the decompositiov) pf uv” is accepted by
¥, according to LenL]4, there must exist soke 1 such thati, V¥ is not accepted
by . Thus, we can also use the same method in U1 to get a countepéx@’, v').

We can also use the over-approximation construction to @ & from F such
thatU P(F) € UP(L(B)), and all possible cases for a counterexarptec UP(L(B))®
UP(L) is depicted in Fig.J6(b).

O1 :uw e UP(L)Auwv ¢ UP(F) (Pointin red). The wordiv is a positive counterex-
ample that can be dealt with the same method for case U1.

02 :uw ¢ UP(L) A uw e UP(¥) (Point in green). The wordiv’ is a negative
counterexample that can be dealt with the same method ferlé2s

03 :uw ¢ UP(L) A uw ¢ UP(¥) (Point in blue). In this caseyw is a spurious
negative counterexample. In such a case it is possible thatannot find a valid
decomposition ofiv’ to refine# . By Lem.[§, we can find a decompositiau (V')
of uv such thatv’ = vivo -+ -V, UV, —y U, andy; € L(AMW) for somen > 1.
It follows that ((/,v;) is accepted byF. If we find somei € [1---n] such that
u'v ¢ UP(L), then we returnu(, v;), otherwise, the algorithm aborts with an error.

Finally, we note that determining whethew” € UP(L) can be done by posing a
membership querimemBA(uv?), and checking whethan € UP(¥) boils down to
checking the emptiness €{Dyg) N L(D1). The construction foDyg,, D1, and Dy,
and the correctness proof of counterexample analysis ee@ gi AppendixD.

8 Complexity

We discuss the complexity of tree-based FDFA learning élymis in Sec b. LeF =
(M, {A"}) be the corresponding periodic FDFA of theregular languagé, and letn



be the number of states in the leading automadtbandk be the number of states in
the largest progress automatdh We remark tha# is uniquely defined fok and the
table-based algorithm needs the same amount of equivatpracées as the tree-based
one in the worst case. Given a counterexamplg)(returned from the FDFA teacher,
we define itdengthas|u| + |v].

Theorem 2 (Query Complexity). Let (u, V) be the longest counterexample returned
from theFDFA teacher. The number of equivalence queries needed forekebsed
FDFA learning algorithm to learn the periodiEDFA of L is in O(n + nK), while the
number of membership queries isd{(n + nk) - (Ju + |v| + (n + k) - |2])).

For the syntactic and recurref@DFAs, the number of equivalence queries needed
for the tree-base®@DFA learning algorithm is inO(n + n3k), while the number of mem-
bership queries is iIO((n + n°K) - (Ju] + V| + (n + nk) - |Z])).

The learning of syntactic and recurrent FDFASs requires nopreries since once
their leading automata have been modified, they need to hedearning of all progress
automata from scratch.

Theorem 3 (Space Complexity)For all tree-based algorithms, the space required to
learn the leading automaton is @(n). For learning periodid=DFA, the space required
for each progress automaton is @(k), while for syntactic and recurreriDFAs, the
space required is i@(nk). For all table-based algorithms, the space required to fear
the leading automatonis i@((n + n- |21) - n). For learning periodicFDFA, the space
required for each progress automaton is@f(k + k - |21) - k), while for syntactic and
recurrentFDFAs, the space required is ((nk+ nk- |X]) - nK).

Theorem 4 (Correctness and Termination). The BA learning algorithm based on
the under-approximation method always terminates andmsta BA recognizing the
unknownw-regular language L in polynomial time. If the BA learningatithm based
on the over-approximation method terminates without répgran error, it returns a
BA recognizing L.

Given a canonical FDFA, the under-approximation method produces afBguch
thatUP(F) = UP(L(B)), thus in the worst case, FDFA learner learns a canonicdD
and terminates. In practice, the algorithm very often find&\arecognizingL before
converging to a canonical FDFA.

9 Experimental results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA.
The DFA operations irROLL are delegated to thek.brics.automatompackage, and
we use the RABIT tool[]Z,13] to check the equivalence of two B¥%& evaluate the
performance oROLL using the smallest BAs corresponding to all the 295 LTL dpeci
cations available in BuchiStore [37], where the numbertates in the BAs range over
1to 17 and transitions range over 0 to 123. The machine wefos#te experiments is
a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We set the timeoui@eto 30 minutes.


http://iscasmc.ios.ac.cn/roll

Table 1. Overall experimental results. We show the results of 28Bsadere all algorithms can
finish the BA learning within the timeout period and list thenmber of cases cannot be solved
(#Unsolved). The mark*/m denotes that there arecases terminate with an error (in the over-
approximation method) and it ran out of time for— n cases. The rows #St., #Tr., #MQ, and
#EQ, are the numbers of states, transitions, membershifeguand equivalence queries. Tipe
is the time spent in answering equivalence queries andJime the total execution time.

Models L$ LPenodlc LSynlactlc LRecurrenl
Struct.& Table Tree Table Tree Table Tree
. |Table Tre

Approxi. under overunder ovefunder overjunder ovefunder overunder over
#Unsolved 4 2 3 02 2 01 1 4*5 0 3%3 1 01 1 01
#St. 3078 30782481 24682526 24172591 25912274 22742382 23822400 2400
#Tr. 10.6k10.3k{13.0k 13.0k13.4k 12.8k13.6k 13.6k12.2k 12.2k12.7k 12.7k12.8k 12.8k
#MQ 105k 114k 86k 85k 69k 67k| 236k 238k 139k 139K 124k 124K 126k 126k
#EQ 1281 2024 1382 13511950 19181399 1394 2805 2786 1430 1421 3037 3037
Timeg(s) | 146 817 580 92 186 159 111 115 89 91 149 149 462 465
Timee(s)| 183 861 610 114 213 186 140 144 118 120, 175 176 499 501
EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

The overall experimental results are given in Tab. 1. In $eistion, we usé® to
denote thav-regular learning algorithm iri [20], anideriodic | Syntactic - g | Recurrent
to represent the periodic, syntactic, and recurrent FDBfni@g algorithm introduced
in Sec[4 and]5. From the table, we can find the following fa@tsThe BAs learned
from L® have more states but fewer transitions than their FDFA basadterpart. (2)
LPeriedic ses fewer membership queries comparing®§ctc andLRecuent The rea-
son is thatlSymactic gng LRecurent need to restart the learning of all progress automata
from scratch when the leading automaton has been modifig@iré®-based algorithms
always solve more learning tasks than their table-basedtepart. In particular, the
tree-based SY"a%t with the under-approximation method solves all 295 leaytasks.

In the experiment, we observe that table-
basedL® has 4 cases cannot be finished within
the timeout period, which is the largest number
amount all learning algorithrisWe found that
- | forthese 4 cases, the average time requireti¥or
\ \ , to get an equivalence query result is much longer
_ ‘ .+ | than the FDFA algorithms. Under scrutiny, we
ol | found that the growth rate of the size (number
010 2 3 4 so Of states) of the conjectured BAs generated by
e e .. table-based® is much faster than that of table-

based FDFA learning algorithms. In Fig. 7, we
illustrate the growth rate of the size (number of
states) of the BAs generated by each table-based
learning algorithm using one learning task that cannot deesoby L® within the
timeout period. The figures of the other three learning tafksv the same trend and

200~
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Fig. 7. Growth of state counts in BA

5 Most of the unsolved tasks using the over-approximatiorhotire caused by the situation
that the FDFA teacher cannot find a valid counterexampleefimement.



hence are omitted. Another interesting observation isttteasizes of BAs generated by
LSyntectic can decrease in some iteration because the leading autoisatefined and
thus the algorithms have to redo the learning of all progaeissmata from scratch.

It is a bit surprise to us that, in our experiment, the size A5 B produced by
the over-approximation method is not much smaller than the B produced by the
under-approximation method. Recall that the progressnaait® ofB comes from the
product of three DFAMY x (AY)¢* x (A")Y while those forB comes from the product
of only two DFAs MY x (AY)y* (Sec[®). We found the reason is that very often the
language of the product of three DFAs is equivalent to thguage of the product of
two DFAs , thus we get the same DFA after applying DFA minirtizzas. Nevertheless,
the over-approximation method is still helpful figfeodic andl_Recurent For| Periodic the
over-approximation method solved more learning tasks tharunder-approximation
method. ForLReeuen the over-approximation method solved one tough learrisk t
that is not solved by the under-approximation method.

As we mentioned at the end of Séc.]5.2, a possible optimizasido reuse the
counterexample and to avoid equivalence query as much agfmsThe optimization
helps the learning algorithms to solve nine more cases tae not solved before.

10 Discussion and Future works

Regarding our experiments, the BAs from LTL specificatiomsia general simple; the
average sizes of the learned BAs are around 10 states. Froexperience of applying
DFA learning algorithms, the performance of tree-basedrétlym is significantly bet-
ter than the table-based one when the number of states afaheeld DFA is large, say
more than 1000. We believe this will also apply to the casefolidarning. Nevertheless,
in our current experiments, most of the time is spent in ansgequivalence queries.
One possible direction to improve the scale of the expeririseto use a PAC (proba-
bly approximately correct) BA teacher [8] instead of an éxae, so the equivalence
gueries can be answered faster because the BA equivalatiog isill be replaced with
a bunch of BA membership testings.

There are several avenues for future works. We believe tharithim and library
of learning BAs should be an interesting tool for the comrtybéecause it enables the
possibility of many applications. For the next step, we WmNlestigate the possibility of
applying BA learning to the problem of reactive system sgsit, which is known to
be a very dificult problem and learning-based approach has not beerytted

There are learning algorithms for residual NFA1[11], whicha more compact
canonical representation of regular languages than DFAth& maybe one can
also generalize the learning algorithm for family of DFAsfamily of residual NFAs
(FRNFA). To do this, one needs to show FRNFAs also recognizegular language
and finds the corresponding right congruences.
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Appendix

In this section, we first show that although our acceptanaodition defined in Se€l2 is
different from the original one defined in]10], but the ultimpateériodic words of the
FDFA will be preserved. Then, we give the refinement for thagpess trees of syntactic
and recurrent FDFAs in Sdc] B. In S&d. C, we present the paddfse lemmas given
in Sec[®. In Se€. D, we provide the constructions for the Bjg, D1 andD, as well
as the correctness proof of counterexample analysis. \Wegals the correctness proof
and complexity of the tree-based learning algorithm in [ec.

A Language Preservation under Dfferent Acceptance Conditions

Recall that the original acceptance condition for perideélXFA in [10] is that (,V)

is accepted by if v e L(AY) whered = M(u). While the original acceptance condi-
tions for syntactic and recurrent FDFA in |10] are the saméasone defined in this
paper. More specificallyu(Vv) is accepted by if M(uv) = M(u) andv € L(AMW),
The set of ultimately periodic words of an FDFA is defined adJP(¥) = {uw’ |
(u,V) is accepted by}. The acceptance condition for periodic FDFA used in this pa-
per is diferent from the original one ir_[10]. We prove that the acceptacondition
does not change the ultimately periodic words of the peci&@FAS.

Lemma 6. LetF be a periodic (syntactic, recurrenDFA under the acceptance con-
dition in [10], then UR¥F) is preserved under the acceptance condition defined in this

paper.

Proof. We only need to prove the preservation of ultimately pedadbrds for the pe-
riodic FDFAs. Given a periodic FDF&, the original acceptance condition of periodic
FDFA requires thaty(, v) is accepted by if v e L(A") whered = M(u). Clearly, the
acceptance condition defined in this paper implies themaigicceptance condition for
the periodic FDFA. Therefore, we only need prove thatifvj satisfies the original
acceptance condition, then there exists some decompoéitig) of w-word uv which
satisfies our acceptance condition. To achieve this, wdificsa normalized formaliza-
tion (x,y) of (u, v) such thai = uv,y = vl andxy v xfor somei > 0, j > 1 according
to [10]. Further, it is known that periodic FDFA saturatedin the sense that under the
original acceptance condition, ifi(v) is accepted by, then every decomposition of
uv is accepted by. Therefore we have thax,y) is accepted by, which means that
y € L(A¥) wherex'= M(X). It follows that (x, y) is accepted by under our acceptance
condition. ]

We remark that in[1/0], they also define an acceptance comdithllednormalized
acceptance conditigrwhich is able to make the syntactic and recurrent FDFAs-satu
rated in the sense that ifi(v) is accepted by the FDFA, then every decomposition of
uv is accepted by the FDFA. Since our goal is to learn a BA in thisqp, we do not
require the saturation property for all decompositionsozeptedo-word. Thus, we do
not use the normalized acceptance condition.



B Refinement of the Progress Trees

Supposeau™ v ¢ UP(L) for negative counterexample,{), we thus need refine the
progress tre€. Let|v = nandh = 55, - - - S, be the corresponding run gfover Al
At the beginning, we havey = € ands, = ¥ wherev' = Al(v) andV'is an accepting
state inA”, which implies thatu{V)® € UP(L). Our job here is to find the smallest
jel[l---n]suchthafTE(sj-1,V[j---n]) # TE(s;,v[j + 1---n]) so that we can use the
experimene = V[j + 1.--n] to differentiatepa = s;_1V[j] andq = s; since currently
5j = 8(s;-1, M jl).

Afterwards, the progress trég, can be refined by replacing the terminal node la-
beled withs; by a tree such that (i) its root is labeled by= v[j + 1---n], (ii) its
TE(sj, V[j+1: - -n])-subtree is a terminal node labeleddyand (iii) itsTE(sj-1V[ j], V[ j+
1...n])-subtree is a terminal node labeled §y; V[ j].

In order to establish above result, we have to prove &Sy, V) # TE(S, €) to
ensure that there exists some [1---n] such thatTE(sj_1, V[j---n]) # TE(s},V[j +
1---n]). The proof is as follows.

— For periodic FDFA, we hav@E (e, v) = F sincelie - v} ¢ UP(L). SinceV'is an
accepting state, we havd (V,¢€) = T.

— For syntactic FDFA, we notice that the counterexample meguiv -~ u, that is,
0 = M(uv) = M(u) = M(Tv).
First, we haveTE(e,v) = (M(T- €),B) = (0, B), where B is obtained here since
0= M(0-e-v) andu(e - v)* ¢ UP(L) according to the definition ofE in syntactic
FDFA.
SinceV'is an accepting state in syntactic FDFA, it follows that"M(0V) and
G(W)* e L according to Defl2. Thus, we haveE(V,e) = (M(TV),A) = (0, A)
where A is obtained sinae= M(0 - V- €) andu(V- €)“ € UP(L).

— For recurrent FDFA, similar as in syntactic FDFA, we haMé(e,v) = F and
TE@,€) =T.

We remark that, if the target is syntactic or recurrent FD&#\|ong as the leading
automatonM changes, we need to initialize the classification ffgeagain for every
stateu in leading automaton since the labels on the edges dependroentleading
automatori.

C Proofs of Lem.[3, Lem4 and Lenib

Lemma 4. Given anFDFA ¥ = (M, {A"}), and Bthe BA constructed from by Def[4.
If (u,v¥) is accepted by for every k> 1, then u¢ € UP(L(B)).

Proof. From the assumption, we haue® —y uandv® e L(AY) for anyk > 1 where
i = M(u). It must be the case that some accepting state,fsayAl, will be visited
twice after we read" from initial state for soma > |A% with f = AY(V") sinceA” is a
finite automaton. In other words, there is a loop in the rua"adver A, Without loss
of generality, suppose there exisf > 1 withi + j = nsuch thatf = A%(V) = AY(V+)).

In the following, our goal is to find some accepting stétesuch thatf’ = A¥(V¥) =
AY(v*¥) for somek > 1. Fig.[8 depicts how to find the accepting statealong the loop
path in following two cases.



— j>i. Letk=].
— j<i.Letk=1x jsuchthak > i with the smallest > 1.

startH@L StartH@L

Fig. 8. FindingV . If j > i, we letk = |, otherwise let = (I - j —i)%j > O wherek = | - j > i for
somel > 1

Itis easy to check that®(V¥) = A%(v) since progress automatéfi is deterministic
and the correspondinfj is an accepting state. o
It follows thatv¥ is accepted by the produet; ;,, of three automatd/y , (A")T and

(AG)I: wheres; is the initial state oA". In other wordsw-word uv” will be accepted in
Bsinceu- (V) € LIMF) - (L(Pg,))*- m

Lemma 5. Given anw-word w e UP(L(B)), there exists a decompositi¢n, v) of w
andn> 1suchthatv=vi-Vo---vaandforallie [1---n], v € LAMYW) and uy ~y u.

Proof. Here we only consider ultimately periodiswords inB, so everyw-word can
be given by a decomposition.

SinceUP(L(B)) = Uueq.per, LIMP) - (L(Pwup))“, supposav-word w = uv’ €
UP(L(B)), thenw can be given by a decomposition, {) such thatu € L(Mg") and
Ve (L(I3(g,p)))+ for somep € Fy whered'= M(u). Thus, we have = v; - - - v, for some
n > 1suchthat; € L(P(,p) for every 1< i < n. In addition, sincég ) = MIx (A%,
we conclude thativ -~y uandy, € L((AG)EJ) for every 1< i < nwheres; is the initial
state inA,

Observe thap is the only accepting state oAf)y and @AY)3' is obtained fromA®
by settingp € Fy as its only accepting state, we have that (A")g'(vi) = A%(v;) for
every 1< i < nandpis an accepting state "

The remaining job is how to find the accepting stptie A". Suppose we have the
counterexamplav’ given by the decompositiomi(v), from which we construct the FA
Dusv by the method in Se€.D.1. The number of state®jg, is in O(v|(Iv| + |u])). In
addition, we can construct an FA such that (A) = Uueq per, LIMP) - $ - (L(MY x
(A)))* wheres, is the initial state ofA". By fixing u and p, we getL(Awp) =
L(MP) - $- (LMY x (ADZ))* = LIMP) - $ - (L(Pwp))*- We get the corresponding
and p such thatL(Ay,p X Dugy) # 0. There must exist such and p otherwiseuv”
will not be accepted byg. To get all the fragment wordsg from v, one only needs to
run the finite wordv overﬁ(u,p). The time and space complexity of this procedure are
in O(nk(n + nk) - (IVI(IV| + |ul))) andO((n + nkK) - (IVi(Iv] + |u]))) respectively whera is
the number of states in the leading automatonlatite number of states in the largest
progress automaton. Thus we complete the proof. ]



Lemma 3 (Sizes and Languages dB and B). Let # be an FDFA and BB be the
BAs constructed front by Def[4. Let n and k be the numbers of states in the leading
automaton and the largest progress automatoffofThe number of states of&d B

are in O(n?k%) andO(nk?), respectively. Moreover, UB(B)) € UP(¥) < UP(L(B))

and we have UR.(B)) = UP(¥) when¥ is a canonicaFDFA.

Proof. In the following, we prove the lemma by following cases.

— Sizes ofB andB. In the under approximation construction, for every staie M,
there is a progress automatéh of size at mosk. It is easy to conclude that the
automatorP,, , is of sizenk’ for everyv € Fy, soB s of sizen+nk-nk* € O(n’k®).

The over-approximation methodftérs in the construction of the automatBp.)
from the under-approximation method. It is easy to conclind¢ the automaton
Py is of sizenk for everyv e Fy, soBiis of sizen + nk- nk e O(n?k?).

— UP(L(B)) € UP(¥). Suppose ultimately periodic-wordw is accepted b, there
must be an accepting runBin form of g — 15 Sgy — fy— f/ < Suy---. Then
thew-wordw can be divided into the form af- € -v1 - € - €- V2 - - - by e-transitions.
According to the construction d, we haveu € L(MP) andv; € L(Pg,)) for any
i > 1. Moreover, sincé,, is the product of three automaigl, (A% and @A)
wheres; is the initial state inA". It follows thatL(M°) - (L(P@))* = L(M) and
(L(P@w))™ = L(P@y)- _

By Lem.5 in [14], there exist two words € L(Mg") andy € L(Pagy) such that
w = X-y“. In other words, we have = M(X), xy -y x andy € L(AY) , which
implies thatw is accepted by .

— UP(F) € UP(L(B)). Suppose an-wordw € UP(¥), then there exists a decom-
position {, v) of w such thatuv « u andv'is an accepting state whewe="M(u)
andv = A%(v). It follows thatv € L(Py) according to Def4. In addition, we have
u € L(Mg), which follows that - v € L(MZ") - (L(P@g))* = UP(L(B)).

— UP(L(B)) = UP(¥) if ¥ is a canonical FDFA. For any FDFA, we haveJ P(L(B)) <
UP(¥). Thus, the remaining job is to prove thdP(¥) ¢ UP(L(B)) if ¥ is a
canonical FDFA, which follows from Prop] 1 and Lelnh. 4. Thug eomplete the
proof.

We present Profa] 1, which follows from DEF. 2 of the canonkaFAs.

Proposition 1. Let L be anw-regular language# = (M, {A"}) the corresponding pe-
riodic (syntactic, recurrentfFDFA and uv € 2*. We have that ifu, v) is accepted by
¥ then(u, V¥ is also accepted by for any k> 1.

Proof. Let( = M(u) andvk = A%(\¥) , then we have thak ~ vk for everyk > 1 where
K € {P,S,R}. This is because = At(V) = Al(\¥) which makes/ in the equivalence
class {4]. Our goal is to prove tha V¥) is also accepted by, that is,u «y uand
VK is an accepting state for eveky> 1. Since-y and-_ is consistent in the three
canonical FDFAs, so from the fact that ¢) is accepted by, we have thativ -~y u,
i.e.,uv - u. It follows thatu¥ — u for everyk > 1. Thus, the remaining proof is to
prove thatX is an accepting state for eveky> 1 in the three canonical FDFAs.



— For periodic FDFA, sincey V) is accepted by, i.e, Vis an accepting state i,
then we havei(V)* € L according to Def12. By definition o2 and the fact that
S ~“ Vv, we have thau("v)‘“ e L,i.e., 0 )® e L for everyk > 1 Similarly, since
u(vk)‘” € L andvk =8 vk, we conclude thai(vk)~ € L, which means that the state
Vis an accepting state W for everyk > 1.

— By the definition of~&, if x ~% vy, then We haveiX — G AlX e L = iy
UAby” el foranyxy e 2. Sincex ~g yimpliesx ~ y, we also have above
result if x ~S y. In the following,~} can be replaced by” and~
For syntactic FDFA and recurrent FDFA, if,{) is accepted by—‘ thendv -~ 0
andu(®“ € L according to Defl 2. By the fact thatzfli v, if we setx = v and
y = ¥, then we have thatv'—_ @i andu(v)® € L, which implies thau¥ —_ @i and
()« e L for everyk > 1.

Similarly, asv¢ ~ vk, if we setx = VK andy = \X, we have thatvk — @i and
U(v)® € L, which foIIows thatk is an accepting state i’ for everyk > 1. ]

D Finite Automaton Construction and Correctness for
Counterexample Analysis

D.1 Construction for Dyg,

In [14], they presented a canonical representatips {udv | ue X2*,ve Z* uvw € L}
for a regulaw-languagd.. Theoretically, we can apply their method to obtain g,
automaton for anu-word uv’ where the number of states g, is in O(2U*M). In
this section, we introduce a moré&exctive way to build an automataf,s, such that
L(Dupy) = {udv | u € 2*,v € 2%, uw = w} for a givenw-word w with the number
of states inO(vi(jv| + |u[)). A similar construction fotD.g, has been proposed in [20],
which first computes the regular expression to represepbabible decompositions of
uv and then constructs a DFA from the regular expression. lgéction, we give a
direct construction fofD,g, of uv as well as the complexity of the construction.

Fig.[9 depicts an example automatfig, for w-word (ab)*. From the example,
we can find that both decompositiorabg ba) and @bababababg have the same
periodic word ba)®, which means that the second finite word of a decompositian ca
be simplified as long as we do not change the periodic word.

SSONONOR0O
[cBoR0s0

Fig. 9. Dy for w-word (aba ba)




Formally, we give the definition of amallest periodn an w-word w given by its
decompositiony, v) wherev € X*. To that end, we need more notations. We usev
to represent that there exists sofne 1 such thauu = v[1---j], and we say is a
prefix of v. We useu <« vif u<vandu # v.

Definition 6 (Smallest period).For anyw-word w given byu, v), we say r is the small-
est period ofu,v) if r <v,r¥ = v¥ and for any ta r, we havet # rv.

Take thew-word (ab)® as an exampl@bandbaare the smallest periods of decomposi-
tion (ab, ab) and @ba ba) respectively. It is interesting to see thalh| = |ba) andabcan

be transformed tda by shift the first letter ofb to its tail. In general, givew-word

w, the length of the smallest period is fixed no matter veve decomposed which is
justified by Lem[¥.

Lemma 7. Given anw-word w, (u,Vv) and(x, y) are djferent decompositions of w and
their corresponding smallest periods are r and t, resp&dyivThen|r| = |t| = n and
either there exists  2suchthatr=t[j---n] -t[1---j—1]orr =t.

Proof. According to Def[Bw = uv’ = ur® = xy” = xt“. We prove it by contradiction.
Without loss of generality, suppogé > [t|. If |u| = |X|, thenr® = t“, we then conclude
thatr is not a smallest period ofi(v) sincet <« r. Otherwise iflu| # |x, we can either
prove that =t or find somej > 2 suchthaz =t[j---n] -t[1---j—1] <r andz® =r®
in following cases.

— |ul > |¥. Letk = (Ju| — [X))%]t| + 1. If k = 1, thenz = t, otherwisg] = k;
— x| > |u|. Letk = (Jr| = (IX| — [u])%]r])%l]t| + 1. If k = 1, thenz = t, otherwisgj = k;

We depict the situation whete| > |X| in the following.

(u,r) u[1]u2] ---u[kuk + 1] ---u[m] -r - r -1 - -
() XUxX2] K] - 1]z 2z 2

From the assumptioft| < |r|, we have that < r. However, since” = r¢, we
conclude that is not the smallest period ofi(v). Contradiction. Thus we complete the
proof. [

Lem.[7 shows that if the size of the smallest period ofsaword w is n, then there
are exactlyn different smallest periods fav. In the following, we define the shortest
form for a decomposition of at@-word.

Lemma 8. For any decompositiofu, v) of an w-word w, and y is its corresponding
smallest period, then we can rewrite=uxy and v=y! for some i> 0, j > 1 such that
for any X < u with u= x'y* for some0 < k < i, we have %= xy . We say suclx, y)

is theshortest fornfor (u, v).

Proof. This can be proved by Ddf] 6 and the fact tigat= v, which can be further
illustrated by the procedure of constructingy(). To find the shortest form ofu(v),
we need to first find the smallest perigf (u,v), which is illustrated by following
procedure. At first we initializ& = 1.



— Step 1. Lety = v[1---K], we recursively check whether there exists soje 1
such thaw = yi. If there exists sucly, we returry as the smallest period. Otherwise
we go to Step 2.

— Step 2. We increadeby 1 and go to Step 1.

Sincek starts at 1, theg must be the smallest period af, {) such thav” = y~.
We find the above of the shortest form in the following procedure.

— Step 1. Letx = u. If X = ¢, or x = y then we returre. Otherwise we check whether
there exists somle> 1 such thak = x[1---K]-x[k+1---|[x]andy = x[k+1---|x]].
If there is no suclk, we returnx as the final result. Otherwise we go to Step 2.

— Step 2. We seti = X[1---K].

One can easily conclude thatis the shortest prefix afi such thatu = xy for some
i >0. ]

Following corollary is straightforward.

Corollary 1. Giventwo decompositiorfs,, v1) and(uy, v2) of uv”. If (ug, vi) and(uy, v2)
share the smallest period y, then they also have the saméeshdorm(x,y) where
u; = Xy, Up = xy! forsomejj > 0.

Proof (Sketch)If we assume they haveftiérent shortest forms, they should not be two
decompositions of the sameword. ]

By Coro.[1, we can represent all decompositions ofvarord w which share the
same smallest periogwith (xy,y’) with somei > 0, > 1. In addition, since the
number of diferent smallest periods|ig, we can thus denote all the decompositions of
w by the setU (%, yp) | i = 0, ] = 1) where &, &) is thek-th shortest form ofv.
Therefore, we provide the construction®fg, as follows.

Construction of D5, Now we are ready to give the construction®fg, for a single
w-wordw given by {1, v). SupposexX, y) is the shortest form ofg v), then we construct
Dysv as follows. Letk = 1, n = |y|, and we first construct an automatba such that

L(Dy1) = xy"$y*.

— Step 1. Ifk = n, then we construct th@®g, such thatL(Dy,) = UL, L(Di),
otherwise, we go to Step 2.

— Step 2. We first increadeby 1. Letu’ = x- y[1] andy = y[2---n] - y[1]. We then
get the shortest formx(, y’) of (U, y’) where the second elementfssincey’ is the
smallest period ofu(, y’) according to Len.]7. We then construct an automaign
such thal (D) = Xy*$y'" and letx = X,y = y and go to Step 1.

Supposéx| = mand|y| = n, the DFAA that acceptxy"$y* can be constructed as
follows.

— If m = 0, then we construct a DFA = (X, {do, " ,0zn}, o, {Tzn}, §) Where we
have that(gk-1, Y[K]) = gk when 1< k < n—1, 6(Qn-1, Y[N]) = 0o, 6(0o, $) = U,
6(On-1+k» YIK]) = On+k When 1< k < n, ands(dan, Y[1]) = Ons1-



— Otherwisem > 1, then we construct a DFA = (2, {qo, - - , Q2n+m}> Jo> {Om+2n}» 6)
where we have that(gx_1, X[K]) = gk when 1< k < m, 6(Qm-1+k, YIKI) = Omwk When
l<k<n- 1, 6(Qm+n—l» y[n]) = Om, 6(Qm» $) = Om+ns 6(qm+n+k—1» y[k]) = Om+n+k
when 1< k < n, andé(gme2n, Y[1]) = Omens1-

One can validate thaf{A) = xy*$y* and the number of statesAis at mostx|+2]y|+1.

Proposition 2. Let Dy, be the DFA constructed from the decompositfoyv) of w-
word uv, then (Dyg,) = UV | U € 2",V € 2+, UVY = uw}.

Proof.

C. This direction is easy sindgDg) = UL, L(Di), we only need to prove that for any
1<i<nifu$v e UL, L(D;), thenu'v® = uv. Supposéd.(D;) = xy'$y/, thus for
anyu'$v € L(D;), we haveu’ = xy! andv’ = y& for somej > 0,k > 1. It follows that
UV = uv’ sincexyy’ = uv’.

2. For any decompositioru(, v') of uv’, we can get its shortest fornx’(y’) wherey’

is the smallest period ofi(, V') according to Len(.]8. Supposg {) is the first shortest
form used in theDg, construction. By Lenl.]7, we prowé3$v’ is accepted by g, as
follows.

—y =Y. We have thatr = xy andv =yl for somei > 0, > 1, thusu$v e
L(D1) € L(Dwsy)-

-y =Vy[j---nyl---j - 1] for somej > 2. We conclude thal(Dj) = Xy*$y*
since the shortest form is unique if we fix the smallest petigdCoro.[1, which
follows thatu'$v’ € L(Dj) € L(Dwsv)-

Therefore, we complete the proof. ]

Proposition 3. Given anw-word w given by(u, v), then the automatom,g, has at
mostO(|v|(Jul + |v|) of states.

For every automatoB; such that_(D;) = xy*$y*, the number of states iD; is at
most|u| + 2|r| + 2 wherer is the smallest period ofi(Vv), thus the number of states in
Dygy is INO(Ir] x (Ir] + [ul)) € O(M(Jul + V).

D.2 Construction of D1 and D,

In this section, given an FDFA = (M, {A"}), we provide the constructions fdp;
and D,. To ease the construction, we define two autontand N, which will be
used in the construction for every statén the leading automatoll. Assume that we
have M}, the corresponding progress automatsh= (2, Q", s',F!Y,6") and a DFA
A= (2, QY s, QU\ FY, 6Y) built from A" such that_(AY) = 2* \ L(AY). Note that the
transitions" is complete in the sense th#{(s, a) is defined for everge Q',ac 2.

— For D1, we haveN, = M x AY. Intuitively, we only keep the finite words which
start atu and can go back ta in the leading automaton. In other wordgN,) =
{veX* |uvey u,ve LAY}

— ForD,, we haveN, = MY x AU, Similarly, we haveL(Ny) = {v e Z* | uv—y u,v ¢
L(A"}.



More precisely, The construction is as follows.

Definition 7. LetF = {M, {A"}} be anFDFA where we have M= (X, Q, do, 6) and for
every ue Q, the corresponding progress automatoh A (2, QY, s, FY,6"). Let N,
(andNy) be given by(Z, Qu, su, Fu, 6u). The DFAD; (and D,) is defined as the tuple
(E U {$}, QU Qaco Qo, F, 0 U daccU 6$) where

Qacc = U Quand F= U Fuanddacc = U Oy

ueQ ueQ ueQ
05 ={(u$ s) lue Q}
where$ is a fresh symbol.
In Fig.[10, we depict the DFAD,; andD, constructed fron¥ in Fig.[1.

D]_ a a Dz a a
a,b a,b
startH $ .—» start—s $ .—»
b b
b b

Fig. 10.D; and D, for ¥ in Fig.[

Proposition 4. Given anFDFA ¥ = (M, {A"}) and D defined in Def7, then(lD;) =
{UBv | ue X*,ve Z*, uv—y u, i = M(U),v e L(AY))}.

Proof. By Def.[4, it is easy to conclude that for anye 2*, then we havei= M(u) =
D1(u). For anyu,v € 2*, we have thalNy(v) = D1(u$v) whered = M(u) sinceD;
is a DFA. By acceptance conditiory, {) is accepted by iff we haveuv -~y u and
v € L(AY) whered’ = M(u). Thus we just need to prove that {) is accepted by iff
u$v is accepted byD;.

2. (u,v) is accepted by, thenu$v € L(D1). By uv —~y uandv € L(A"), we have that
v € L(Ng), which follows thatNg(v) is an accepting state. Sindg(v) = D;(u$v), we
have thatD;(udv) is an accepting state. Therefoudy € L(D;).

C. First, we have thak(D;) C 2*$2* by Def.[1. For any,v € 2*, if u$v € L(D1),
then D;(u$v) is an accepting state. It follows thate L(Ng) with O = M(u). Since
Ng = M x A% we have thav € L(M{) andv e L(A"), which implies thauv ~y uand
v € L(A"). Thus, we conclude thati(v) is accepted by . ]

Proposition 5. Given anFDFA ¥ and D, the corresponding deterministic automaton,
then (D) = {U$v|ue X", ve X , uv—y u, i = M(u),v ¢ L(AY)}.

Proof. By Def.[7, it is easy to conclude that for anye 2*, then we haver= M(u) =
D,(u). For anyu, v € 2*, we have thaNg(v) = D,(u$v) whered'= M(u) sinceD- is a
DFA.



D. Assume that we havev —y uandv ¢ L(AY) whered = M(u). By uv —y u, we
have thav € L(MY). Further, fromv ¢ L(A"), we have thav € L(AY). It follows that
Nz(V) is an accepting state. SinB&(v) = D,(u$v), thenD,(udv) is an accepting state.
Thereforeu$v € L(Dy,).

C. First, we have thak(D,) ¢ 2*$2* by Def.[1. For any,v € 2*, if u$v € L(Dy),
then D,(u$v) is an accepting state. It follows thate L(Ng) with i = M(u). Since
Nz = MY x AT, we have thav € L(MY) andv € L(AT), which implies thauv -~y u and
vé¢ L(AY). |

Proposition 6. The numbers of states #; and D, are both inO(n + n?k).

Supposen is the number of states iM andk is the number of states in the largest
progress automaton, then the number of stated;iDy,) is in O(n + n?k).

D.3 Correctness of Counterexample Analysis for FDFA Teache

Given the counterexamplav” for the FDFA teacher, we prove the decomposition
(u,Vv) is a counterexample for FDFA learner defined in Dé&f. 3 byofwlhg cases:

— uw € UP(L) Auw ¢ UP(¥F). By Def.[3, we know thativ’ is a positive counterex-
ample and we return a counterexample ') such that/$v' € L(Dyg) N L(D2).
We first need to prove thadt(D.g,) N L(D-) is not empty. Sinceiv’ ¢ UP(F),
then any decomposition of/’, say (I, v), is not accepted bf . SinceM is a DFA,
we can always find a decompositian= uv andy = vi from somei > 0,j > 1
such thatxy -~y x according to[[10]. Thereforex(y) is also a decomposition of
uv and it is not accepted by, that is,y ¢ L(A¥X) wherex’= M(x). It follows that
x$y € L(D,) according to Thni15. Thus, we conclude théDyg,) N L(D-) is not
empty. We let = xandv' =y, and it is easy to validate that’(v') is a positive
counterexample for FDFA learner. This case is applied feed#l and O1.

—uvw € UP(L) A uw e UP(¥). In this caseuv is a spurious positive coun-
terexample, which happens when we use the under-appraaimmaethod to con-
struct the Buchi automaton. Here we also return a courdgnele (1, V') such that
UV € L(Dyg) N L(D5). Sinceuvw e UP(F), then there exists some decom-
position ofuv, say (i, Vv), is accepted by. We observe thatv ¢ UP(L(B)),
which follows that there exists sonke> 1 such that g, \¥) is not accepted by
by Lem.[3. Byuv «~y u, we also have thatv* —y u sinceM is a DFA. It fol-
lows thatu$v® € L(D»). Therefore, we conclude tha{Dg,) N L(D-) is not empty
and for every finite wordr$v' € L(Dyg) N L(D2), we have (', V') is a positive
counterexample for FDFA learner. This case is applied far U3

—uvw ¢ UP(L) A uv e UP(F). In this caseuv is a negative counterexample,
one has to return a counterexamplg {') such thau’$v' € L(Dygy) N L(D1). We
first need to prove that(Dyg,) N L(D;) is not empty. Sincaiv € UP(F), then
there exists some decompositiar, () of uv is accepted byr. It follows that
u$v e L(D;1) by Thm.[4. Thus we conclude tha{D.g,) N L(D1) is not empty.
Moreover, it is easy to validate that' (V') is a negative counterexample for FDFA
learner. This case is applied for U2 and O2.



— uw ¢ UP(L) Auv ¢ UP(F). In this caseyv” is a spurious negative counterexam-
ple, which happens when we use the over-approximation rddthoonstruct the
Buchi automaton. It is possible that we cannot find a validoteposition ¢/, V')
to refine#. According to the proof of Leni]5, one can construct a decsition
(u,v) of uv’ andn > 1 such thav = v3-v,---vpandforalli € [1---n], v; € L(AMW)
anduy; «~y u. If we find somd > 1 such thativ’ ¢ UP(L), then we le” = uand
V' =V, Clearly, (1, V') is a negative counterexample for FDFA learner. This case is
applied for O3.

E Correctness and Termination of Tree-based Algorithm

In the following, we need the notion called normalized faization introduced in [10].
Recall that given a decomposition, {/) of w-word uv’ and the leading automatawi,
we can get its normalized factorization ) with respect tal such thaix = uv,y = v/
andM(xy) = M(x) for some smallest> 0, j > 1 sinceM is finite.

E.1 Correctness of Tree-based Algorithm for FDFA

Lem.[9 establishes the correctness of our tree-based @hgofior periodic FDFA.

Lemma 9. For the leading tree in all threEDFAs and the progress trees in the periodic
FDFA, the tree-based algorithm will never classify two finite dgwhich are in the
same equivalence class into twgfeient terminal nodes.

Proof. We prove by contradiction. Suppose there are two finite werd, € 2* which
are in the same equivalence class but they are currentbifidasinto diferent terminal
nodes in classification treg.

— 7 is the leading tree. We assume that -~ X;. Supposex; and x, have been
assigned to terminal nodésandt, respectively witht; # t,. Therefore, we can
find the least common ancestofrom 7, whereL,(n) = (y, V) is supposed to be
an experiment to diierentiatex; andx,. Without loss of generality, we assume that
t; andt, are in the left and right subtrees ofrespectively. Therefore, we have
TE(X1, (Y,V)) = F andTE(Xz, (y,V)) = T. It follows that x;(yw)* ¢ UP(L) and
x2(yv)® € UP(L), which implies that; 4. x,. Contradiction.

— 7 = 7y is a progress tree in periodic FDFA. We assume #jaty x. Similarly,
supposex; and x, have been assigned to terminal nodeandt, of 7, respec-
tively with t; # t,. Therefore, we can find the least common ancestoom 7,
whereLp(n) = vis supposed to be an experiment tffelientiatex; andx,. Without
loss of generality, we assume thatandt, are in the left and right subtrees of
respectively. Therefore, we ha¥é& (x;,v) = F andTE(x, V) = T. It follows that
u(x1v)® ¢ UP(L) andu(xv)® € UP(L), which implies thatx; #} x,. Contradic-
tion.



Lem.[9 cannot apply to the progress trees in syntactic andnexet FDFAs as the
progress trees heavily rely on the current leading automé#tdhe following, we prove
the correctness of syntactic and recurrent FDFA. We sayeadihg automato is
consistent with~ iff for any x;, xo € 2*, we haveM(x1) = M(X2) & X1 —L Xo.

Lemma 10. For the progress trees in the syntactic and recurfebfA, the tree-based
algorithm will never classify two finite words which are iretkame equivalence class
into two djferent terminal nodes if the leading automaton M is constsistin | .

If the tree-based algorithm classifies two finite words wigighin the same equiva-
lence class into two gerent terminal nodes, then M is not consistent withcurrently.

Proof. Intuitively, the progress treeg, in syntactic and recurrent FDFAs are con-
structed with respect to the current leading automaton.\egthe lemmain following
cases.

— 7Tuis a progress tree in syntactic FDFA. We assumethatl x,. Suppose; and
X2 have been assigned to terminal nadandt, of 7, respectively. Therefore, we
can find the least common ancestdirom 7, whereL,(n) = v is supposed to be
an experiment to dlierentiatex; andx,. Thus, by the definition of E in syntactic
FDFA, we can assume thdt := TE(xy, V) = (M(ux), my) andd; := TE(Xg,V) =
(M(ux2), mp) wheremy, mp € {A, B, C}. Sincet; andt; are in diferent subtrees of
n, we thus havel; # d,, that is,M(uxy) # M(uxz) or my # m.

1) First we assume thad is consistent with-| .

e M(ux)) # M(ux). Sincex; ~4 X, we haveux; -~ Ux, which implies that
M(ux.) = M(uxp). Contradiction.

e My # Mp. Sincex; ~4 Xz, we haveux; ~ ux, which follows thatM(ux;) =
M(ux) since M is consistent with~ . Moreover, we have thatl(uxv) =
M(uxVv) sinceM is deterministic. We discuss the valuesnof andm, in the
following.

x U = M(uxv). It follows thatuxv —~_ u sinceM is consistent with~|,
which implies thau(x;v)* € UP(L) < u(xv)* € UP(L). Moreover, we
haveu = M(uxV) sinceux; -~ ux. Therefore, we conclude that, m, €
{A, B} by the definition ofTE. Without loss of generality, we lety = A
andm, = B, which implies thau(x;v)® € UP(L) while u(xav)® ¢ UP(L).
Contradiction.

x U # M(uxV). Thus, we havey, = mp = C, which follows thatd; = dy
sinceM(ux;) = M(ux). Contradiction.

Thereforef; andt, cannot be dferent terminal nodes.
2) In this caseM is not necessarily consistent with .

e M(ux) # M(ux). Lets; = M(ux) ands, = M(ux). We have that; ands,
are classified into dlierent terminal nodes in the leading tr€esinces; # S
and they are two labels of the terminal nodes. It follows that, s, by Lem[9.
By x1 = X2, we haveux; —~ ux, which implies thats; 4L ux Or s, AL Ux,
otherwise we ges; ~ . Without loss of generality, supposge /4. ux,
then there exists some experimey to differentiate them. Howeveauny is
currently assigned into the equivalence class ginces; = M(ux). It follows
thatM is not consistent witk- .



e M # Nb.
1) We assume thatxv — u, then we haveixv —| U sinceux; - ux by
X1 ~& X2, which implies thatu(x;v)” € UP(L) < u(xov)® € UP(L). If
M is consistent with~_, we conclude thatn, = m, = Aornmy = np, = B.
Contradiction. Thereforéyl is not consistent with-| .
2) We assume thatx;v /| u, then we can find some experiments) to differ-
entiate them. It follows thatxv 4. usincex; & X2 andux, . Ux. Assume
thatM is consistent with- , then we have that # M(uxv) andu # M(uxV),
which implies thatm = mp = C. Contradiction. Thus\M is not consistent with
L.

— Ju is a progress tree in recurrent FDFA. The analysis is sinaiathe syntactic
FDFA. We assume thag ~% X;. Suppose; andx; have been assigned to terminal
nodet; andt; of 7, respectively. Therefore, we can find the least common apicest
n from 7, whereLn(n) = v is supposed to be an experiment téfelientiatex;
and xz. Thus, we can assume that := TE(X3,V) andd; := TE(x, V) where
di, d, € {F, T}. Sincet; andt, are in diferent subtrees af, we thus havel; # ds.

1) We assume tha¥l is consistent with~ . Without loss of generality, suppose
d; = Fandd, = T. Sinced, = T, we have thati = M(uxV) andu(x;v)® € UP(L).

It follows thatuxv -~ u sinceM is consistent with~_. Moreover, we conclude
thatu = M(uxv) andu(x,v)” € UP(L) by the fact thak; ~% x,. By the definition
of TE, we haved; = T. Contradiction. Thereford; andt, cannot be dierent
terminal nodes.

2) M is not necessarily consistent with . Without loss of generality, suppose
d; = Fandd, = T. Sinced, = T, we have thati = M(uxV) andu(x;v)® € UP(L).
Assume thatM is consistent with-, it follows thatuxv -~ u. Moreover, we
conclude thati = M(uxyv) andu(x;v)” € UP(L) by the fact thaix; ~3 x.. By the
definition of TE, we haved; = T. Contradiction. Thereforayl is not consistent
with L.

Once two finite words which are in the same equivalence clags been classified
into two terminal nodes in the progress tree, we can alwayeethat the leading au-
tomaton is not consistent with, . Therefore, the FDFA teacher is able to return some
counterexample to refine the leading automaton. If the tepdutomaton changes, the
FDFA learner should learn all progress automata from sierafth respect to current
leading automaton. At a certain point, the leading automitawill be consistent with
~L since it will be added a new state after every refinement. Tliasonclude that the
equivalence classes in the progress trees will finally besdlad correctly.

Proposition 7. Given the=DFAteacher that is able to answer membership and equiva-
lence queries foFDFA, the tree-base8DFA learning algorithm can correctly classify
all finite words.

E.2 Complexity for Tree-based FDFA Learning Algorithm

The counterexample guided refinementfoshows that:



Corollary 2. Given a counterexampl@l, v) for FDFA learner, the tree-baseBDFA
learner will either add a new state to the leading automatoroiMhe corresponding
progress automaton‘A

Corollary.[2 is a critical property for the termination oktlree-based FDFA learning
algorithm since each time we either make progress for thdingaautomaton or the
corresponding progress automaton.

In Lem.[I0, we encounter a situation where the progress tegectassify two finite
words which are in the same equivalence class into two teimindes ifM is not con-
sistent with- . One may worry that if the FDFA teacher chooses to refine tbhgness
automaton continually, the refinement may not terminaten.(El shows that it will ter-
minate since the number of equivalence classes of the pegreomata with respect to
M is finite. More precisely, if we fix the leading automatwl we are actually learning
a DFA induced by the right congruenge-2, yiff M(ux) = M(uy) and for every € 2™,
if M(uxy) = u, thenu(xv)* € L &= u(xv)* € L. One can easily verify that~{, yis a
right congruence. We remark thatf is consistent with-, thenx =4, y is equivalent
tox=3y.

Lemma 11. Given then leading automaton M, then for every state u in djnidex of
~¢, is bounded byQ) - | ~{ | where Q is the state set of M.

Proof. We prove the lemma by giving the upper bou@l- | =} | of the index of~Y,.
We useq; to denote the state which can be reachediligr 1 < i < nwhereniis the
number of states reachable byWe classify any € 2* into a equivalence class ef,
as follows.

We first findg; = M(ux). Since for every € X~* with g = M(uy), we haveM(uxy) =
M(uyV), thus those experimense 2* with M(ux\y) # u are not able to dierentiatex
andy. In other words, the value d¥l(uxy) = u is not necessary here. Therefore, if we
only considerx, y € 2* with g = M(uxX) = M(uy), the criterion to decide wheth&rand
y are in the same equivalence class is to judge whether fov any*, u(xv)* € L <
u(yv) € L, which is exactly the same definition fe. Thus, we can find the notation
(a1, [x]~4) to uniquely represent the equivalence clags.[. Therefore, the index of the
right congruenced, isn- |~ | <[Q|-| = . ]

Similarly, if we fix the leading automatoM and learn recurrent FDFA, we are
actually learning DFA induced by the right congruencey, y iff for everyv € 2*,
M(uxy) = uAu(xv)” € L < M(uyy) = uA u(yv)” € L. Sincex ~¢, yimpliesx =} v,
it follows that| ~}, | is smaller than ~¢, |.

The implication fromx ~¢, y to x ~5 y can be easily established by assuming
x ~4, y and then for anw € 2*, we have thauyv -y u A u(yy)” € L if uxv «m
u A u(xv)” € L. First, assuming thaixv -y u A u(xv)* € L andx ~¢, y, one can
easily conclude that(yv)* € L. In addition, one can combine the resutt -y uyfrom
X =4, y and assumptiooxv -~y u together to provelyv -y usinceM is deterministic
and-y is an equivalence relation.

Lemma 12. Given the leading automaton M, then for every state u in Mjridex of
~pg is bounded byQ| - | =3 | where Q is the state set of M.



Assume tha# = (M, {AY}) is the corresponding periodic FDFA recognizingd et
n be the number of states M of # andk be the number of states in the largest progress
automaton off.

Theorem 2 (Query Complexity). Let (u,Vv) be the longest counterexample returned
from theFDFA teacher. The number of equivalence queries needed forekebised
FDFA learning algorithm to learn the periodiEDFA of L is in O(n + nk), while the
number of membership queries isAi(n + nk) - (Ju| + |V + (n + K) - [2])).

For the syntactic and recurref@DFAs, the number of equivalence queries needed
for the tree-base@DFA learning algorithm is inO(n + n®k), while the number of mem-
bership queries is iO((n + n°K) - (Ju] + V| + (N + nK) - |Z])).

Proof. Thm.[2 can be concluded from Lef. 9, Cdrb. 2, LEn. 11, and [&rStippose
F = (M, {AY} is the corresponding periodic FDFA recognizingl he number of states
in M is n andk is the number of the largest progress automatgf.in

Given a counterexample(v), the number of membership queries is at mjojsif
we refine the leading automaton and is at njgsif we refine the progress automa-
ton. Therefore, the number of membership queries used ilyzng counterexample
is bounded byu| + |v|. One can also use binary search to reduce the number of mem-
bership queries used by counterexample analysis tduleg(v|). Moreover, when the
classification tree has been refined, we need to construcbthesponding/ or AMU)
again. Suppose the new added terminal node is labelqa the terminal node which
needs to refined is labelled loyand the experiment is We only need to compute the
successors gb and update the successors of the predecessaqrs of

— Computing the successorspfs to calculat&(p, a) for everya € 2, which requires
|21 - h membership queries whehds the height of the classification tree.

— Updating the successors of the predecessogsi®to calculateTE (s, €) for every
state labek anda € X such that currently we havis, a) = g, which requires at

most|X| - m membership queries wheneis the number of states in currelt or
AM(U).

Since the height of the classification tree is at mosthus the number of membership
queries needed for constructing the conjectured DFA is atrdom - |X]. It follows
that for the tree-based algorithm, the number of membergidpies used in the coun-
terexample guided refinement is boundedujy [v| + 2m- |X]. We remark that in the
table-based algorithm, the number of membership queried imsthe counterexample
guided refinement is bounded fy + [v| + m+ |X] - m+ |X].

We give the complexity of the tree-based algorithm as fatlow

— For periodic FDFA. During the learning procedure, when réog a counterex-
ample for FDFA learner, the tree-based algorithm eithesaddew state into the
leading automaton or into the corresponding progress attimThus, the number
of the equivalence queries is boundedrby nk since the number of states in the
target periodic FDFA is bounded loy+ nk. In periodic FDFA, we haven < n+ k
since every time we either refine the leading automaton oogrpss automaton.
Therefore, the number of membership queries needed fotdgbetam is bounded
by (n+nk) - (Jul + V| + 2(n+ K) - |2]) € O((n + nK) - (Ju| + [v] + (N + K) - |2])) in the
worst case.



— For syntactic and recurrent FDFA, when receiving a courtergle for FDFA
learner, the tree-based algorithm will first decide whetbeaefine the leading au-
tomaton or the progress automaton. If it decides to refindethéing automaton,
we need to initialize all progress trees with a single nobellad bye again, so the
number of states in the progress automata of the FDFA magdserat that point,
otherwise it refines the progress automaton and the numistates in FDFA will
increase by one.

In the worst case, the learner will try to learn the progragemata as much as
possible. In other words, if current leading automaton imestates, the number
of states in every progress automaton is at nmesk according to Lem 11 and
Lem.[I2. When all progress trees cannot be refined any maheyr éhe learning
task finishes or the FDFA teacher returns a counterexampdéit@ current leading
automaton. For the latter case, the number of states in #unig automaton will
increase by one, that is1+1, and we need to redo the learning work for all progress
trees. The number of states in all progress automata in tivé-D¢-A is bounded
by (m+ 1)? - k. Therefore, the number of equivalence queries neededdertased
algorithmis bounded by (1-1-k)+(1+2-2-K)+---(L+(n-1)-(n—-1)-k) +
(L+n-n-k) € O(n+ n3k). Similarly, in syntactic and recurrent FDFAs, we have
thatm < n + nk since the number of states in a progress automaton is bounyded
nk. It follows that the number of membership queries needethialgorithm is in
Oo((n+n%K) - (Jul + [Vl + 2(n + nK) - |2)) € O((n+ n3K) - (Ju| + [V| + (N + nk) - |])) in

the worst case.

Theorem 3 (Space Complexity)For all tree-based algorithms, the space required to
learn the leading automaton is @(n). For learning periodid-DFA, the space required
for each progress automaton is @(k), while for syntactic and recurreriDFAs, the
space required is i@(nk). For all table-based algorithms, the space required to fear
the leading automaton is i@((n + n- |2]) - n). For learning periodicFDFA, the space
required for each progress automaton is@f(k + k - |21) - k), while for syntactic and
recurrentFDFAs, the space required is ((nk+ nk- |X]) - nK).

Proof. As we mentioned in SeEl 4, the FDFA learner can be viewed aaradecon-
sisting of many component DFA learners. For a component ainler, suppose the
number of the states in the target DFAns for table-based component DFA learner,
the size of the observation table isd(m+ m-|2]) - m) since there aren+ m- |X| rows
and at most columns in the observation table in the worst case. In ceptfar the
tree-based component DFA learner, the number of nodes icldksification tree is in
O(m) since the number of terminal nodes in the classificatioa isen and the number
of internal nodes is at most — 1.

— For the periodic FDFA, the number of states in the FDFA willrgase after each
refinement step. Thus, it is easy to conclude that the spgcéreel for the leading
automaton is ir0(n) if we use tree-based learning algorithm and the spacenestjui
by the table-based algorithm is@((n + n - |2]) - n). Similarly, the space required
by tree-based learning algorithm to learn each progressaaion is inO(k), while
for table-based algorithm, the space required @(itk + k - 12]) - k).



— For the syntactic and recurrent FDFA. The learning procedar the leading au-
tomaton is the same as periodic automaton. Thus the spadieag gy table-based
and tree-based algorithm remain the same.

For learning progress automaton, the number of states inpragress automaton is
at mostnkaccording to Leni. 11 and Lein.112. Therefore, for table-batgmtithm,
the space required is @((nk + nk- |2]) - nk). While for tree-based algorithm, the
space required to learn each progress automatoraéniky.

Proposition 8. In FDFA teacher, suppose n is the number of states in the leading au-
tomaton and k is the number of states in the largest progressnaaton in the input
FDFA ¥ and the returned counterexample“uvas a decompositiofu, v). Then

— the time and space complexity for building the BAarl B are in O(n?k®) and
0(n?k?) respectively, and

— for the under approximation method, the time and space cexitplfor analyzing
the counterexample thare inO(n?k- (Jvi(Iv+|u])), while for the over approximation
method, the time and space complexity for analyzing theteoeample uv are
in O(n?k? - ((VI(IM + |ul)) and inO(nk(Jvi(IV] + |ul)) respectively.

Proof. Suppose the FDFA teacher currently needs to answer theadeoe query for
FDFA ¥ = (M, {A"}). Then the number of statesBYB) is in O(n+ n?k%) (respectively,
O(n+n2k?)). In addition, the number of states in B3 andD, are both inO(n+n%k) and

the number of states i) g, is at mostv|(|v| + |u[) given that (i, v) is a decomposition

of the returned counterexample”, which can be applied to the under and the over
approximation except for case O3 in the over approximatghen we analyze the
spurious negative counterexample, the time and space eaityphre inO(nk(n + nk) -
(IM(v+ [ul))) andO((n+ nk) - (Ivi(Ivl + |ul))) according to Lend15. Therefore, we complete
the proof. ]

Theorem 4 (Correctness and Termination).The BA learning algorithm based on the
under-approximation method always terminates and retarB\ recognizing the un-
knownw-regular language L in polynomial time. If the BA learningafithm based on
the over-approximation method terminates without repgrtan error, it returns a BA
recognizing L.

Proof. If we use the under-approximation method to construct thehBautomaton,
then the BA learning algorithm will need to first learn a caisahFDFA to get the final
Buichi automaton in the worst case. This theorem is justifielem.[2 and Leni.]3.m
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