
A Self-Stabilizing Hashed Patricia Trie∗

Till Knollmann1 and Christian Scheideler2

1 Heinz Nixdorf Institute & Computer Science Department,
Paderborn University, Germany
tillk@mail.upb.de
https://www.hni.uni-paderborn.de/alg/

2 Computer Science Department, Paderborn University, Paderborn, Germany
scheideler@upb.de
https://cs.uni-paderborn.de/ti/

Abstract
While a lot of research in distributed computing has covered solutions for self-stabilizing com-
puting and topologies, there is far less work on self-stabilization for distributed data structures.
Considering crashing peers in peer-to-peer networks, it should not be taken for granted that
a distributed data structure remains intact. In this work, we present a self-stabilizing proto-
col for a distributed data structure called the hashed Patricia Trie (Kniesburges and Scheideler
WALCOM’11) that enables efficient prefix search on a set of keys. The data structure has a
wide area of applications including string matching problems while offering low overhead and
efficient operations when embedded on top of a distributed hash table. Especially, longest prefix
matching for x can be done in O(log |x|) hash table read accesses. We show how to maintain the
structure in a self-stabilizing way. Our protocol assures low overhead in a legal state and a total
(asymptotically optimal) memory demand of Θ(d) bits, where d is the number of bits needed for
storing all keys.

Keywords and phrases Self-Stabilizing, Prefix Search, Distributed Data Structure

1 Introduction

We consider the problem of maintaining a distributed data structure for efficient Longest
Prefix Matching in peer-to-peer (P2P) systems. We focus on the hashed Patricia Trie (HPT)
introduced in [14] and present an algorithm rendering a self-stabilizing version of this data
structure when applied on top of any reliable distributed hash table (DHT).

I Definition 1. (Longest Prefix Matching) Consider a set of binary strings called keys and
a binary string x. The task of Longest Prefix Matching is to find a key y sharing the longest
common prefix with x. A prefix of a binary string is a substring beginning with the first
bit. We denote the longest common prefix of x and y by `cp(x, y).

We denote a prefix p of x by p v x. p is a proper prefix of x (p @ x) if p is a prefix of x
and |p| < |x|, where |p| is the length of p. Longest Prefix Matching is an old problem with
applications in various areas including string matching problems and IP lookup in Internet
routers. To solve it efficiently in a distributed P2P system, the HPT has been introduced
[14]. The HPT is a distributed data structure applied to any common DHT which allows
efficient prefix search for x in O(log |x|) read accesses to the hash table, i.e., solely based on
the length of the search word x. The costs for an insertion of x is in O(log |x|) read accesses

∗ This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center ’On-The-Fly Computing’ (SFB 901).

ar
X

iv
:1

80
9.

04
92

3v
3

 [
cs

.D
C

]
 9

 O
ct

 2
01

8

mailto:tillk@mail.upb.de
https://www.hni.uni-paderborn.de/alg/
mailto:scheideler@upb.de
https://cs.uni-paderborn.de/ti/

2 A Self-Stabilizing Hashed Patricia Trie

and O(1) write accesses, while deletion can be done in O(1) accesses. The memory space
used is asymptotically optimal in Θ(sum of all key lengths). Moreover, Suffix Trees can be
implemented efficiently using Patricia Tries and thus also hashed Patrica Tries (called PAT
Trees [10]). This allows us to efficiently decide if a given string x is a substring of a text in
a runtime only depending on the length of x.

The usefulness of Patricia Tries motivates us to investigate how a HPT can be maintained
in a P2P system where nodes may enter/leave or even fail. While a lot of research has
considered the design of self-stabilizing computation or topologies (See Section 1.2), to the
best of our knowledge there are far fewer results concerning self-stabilizing distributed data
structures. However, considering failures of peers, the stability of any distributed data
structure can also be affected. Therefore, we consider the problem of finding an efficient
distributed protocol to rebuild the HPT in a self-stabilizing way.

1.1 Model

We assume the existence of a self-stabilizing distributed hash table (DHT) which provides
the operations DHT-Insert(x) to insert data and DHT-Search(x) to retrieve data. These
operations are carried out reliably on the stored data, i.e., no operation is ever canceled. We
assume the existence of a collision-free hash function which maps binary strings to positions
in [0, 1) to store data in the DHT. The function is available locally at every peer. Each peer
has a unique identifier, manages local variables and maintains a channel. When a peer sends
a message m to peer p, it puts m in the channel of p. A channel has unbounded capacity
and messages never get lost. If a peer processes a message in its channel, the message is
removed from the channel afterwards.

We distinguish between two types of actions: The first one is for standard procedures
and has the form 〈label〉(〈parameters〉) : 〈command〉 where label is the name of the action,
parameters define the set of parameters and command defines the statements that are exe-
cuted when calling the action. It may be executed locally or remotely. The second type has
the form 〈label〉 : (〈guard〉) → 〈command〉 where label and command are defined as above
and guard is a predicate over local variables. An action at peer p can only be executed if
its guard is true or a message in the channel of p requests to call it. We call such an action
enabled. The guard of our protocol routine Timeout is always true.

A state of the system is defined by the assignment of variables at every peer, the data
items and their values stored at every peer and all messages in channels of peers. The system
can transform from a state s to another state s′ by execution of an enabled action at a peer.
An infinite sequence of states (s1, s2, . . .) is a computation if si+1 can be reached by execution
of an action enabled in si for all i ≥ 1. The state s1 is called initial state. We assume fair
message receipt, i.e., every message contained in a channel is eventually processed. Also, we
assume weakly fair action execution such that any action that is enabled in all but finitely
many states is executed infinitely often. This especially applies to the Timeout procedure.
Most importantly, our protocol is self-stabilizing. We call a protocol self-stabilizing, if it
fulfills Convergence and Closure. Convergence means that starting from an arbitrary initial
state, the protocol transforms the system to a legal state in finite time. Closure denotes
that starting from a legal state, the protocol only transforms the system to consecutive legal
states. Our goal is to reach a state in which the HPT provided by the system is in a legal
state. We define the legal state of a HPT later in Section 4.1.

T. Knollmann and C. Scheideler 3

1.2 Related Work
The basic data structure we consider here is the Patricia Trie. This compressed tree structure
has been introduced by Morrison in [15]. It was extended to the hashed Patricia Trie by
Kniesburges and Scheideler in [14]. In [10], Gonnet et al. presented PAT Trees which are
essentially Patricia Tries for special suffixes (sistrings) of a text. This widens the applications
of Patricia Tries to general string problems such as deciding if a word or sentence is contained
in a text [10]. The work on self-stabilization started with the research of Dijkstra in [7] where
he analyzed self-stabilization in a token ring scenario. Since then, research has covered wide
areas including self-stabilizing computation [3, 5] and coordination [1, 2, 7, 9]. Furthermore,
with the rise of P2P systems [17, 19], self-stabilizing topologies in the sense of overlay
networks gained attraction [4, 6, 8, 11, 12, 13, 18]. We use approaches originally presented
for topological self-stabilization. This includes a technique called Linearization presented by
Onus et al. in [16]. A common approach for storing data in overlay networks is a distributed
hash table (DHT) like Chord [19]. Using hashing, data items, as well as network peers, are
mapped to the [0, 1) interval such that a mapping between them is established. There are
various results on self-stabilizing DHTs in the literature (for example [13]). Further, most
(self-stabilizing) overlay networks can easily be extended to a DHT given sortable unique
identifiers for the peers which is a common assumption.

1.3 Our Contribution
We present a self-stabilizing protocol called SHPT to maintain a slightly modified version of
the HPT as presented in [14]. Whenever we refer to HPT, we implicitly mean the modified
version. The HPT and our modification are briefly introduced in Section 2. Afterwards,
Section 3 gives a high-level description of the most important mechanisms of our protocol.
We only require for an initial state that the underlying DHT is in a legal state and that a set
of unique keys is stored at DHT nodes. In Section 4, we show that our protocol stabilizes a
HPT in finite time out of any initial state. When the HPT is in a legal state, our protocol
guarantees a low overhead of a constant amount of hash table read accesses and messages
generated at each DHT node per call of the protocol routine. Furthermore, we can bound
the total memory consumption in a legal state to Θ(d) bits if d is the number of bits needed
to store all keys. To improve readability, we deferred the Pseudocode to Appendix A and
the full proofs concerning correctness and overhead to Appendix B and Appendix C.

2 Hashed Patricia Trie

We consider a data structure called the hashed Patricia Trie (HPT) as presented in [14].
The HPT is an extended Patricia Trie that is distributed in a P2P System by using a DHT.
We briefly describe the construction. For details, we refer to [14]. The Patricia Trie is a
compressed trie which was proposed by Morrison in [15]. Suppose we are given a key set
KEYS consisting of strings. A trie is a tree structure that consists of labeled nodes and
labeled edges. The root node is labeled by the empty string and every edge is labeled by
one character. The label of a node is the concatenation of all edge labels of edges traversed
on the unique path from the root to the node. For each k ∈ KEYS there is a node labeled
by k (see Figure 1). The Patricia Trie introduces compression by allowing edge labels to
be strings such that inner nodes with a single child, which do not represent a key, can be
avoided. Similar to [14], we restrict ourselves to keys represented by binary strings. We
store the Patricia Trie in a DHT by hashing all nodes by their label resulting in the hashed

4 A Self-Stabilizing Hashed Patricia Trie

Patricia Trie. Our notation is close to the one of [14] and can be seen in Figure 2.

𝑤

c

a

r t

car cat

ca

c

Figure 1 Example of
a classical Trie contain-
ing the keys "car" and
"cat".

𝑣

𝑝0(𝑣) 𝑝1(𝑣)

𝑝−(𝑣)

𝑤
𝑘𝑒𝑦2(𝑣)

𝑟(𝑤)

𝑢

𝑚

b(𝑣)

𝑘𝑒𝑦(𝑤)

𝑤

0

1

Figure 2 Values stored at nodes of the HPT from the perspective
of v. Nodes are stored by hashing their label to [0, 1) in combination
with a DHT. White nodes denote Patricia nodes while Msd nodes
are depicted in gray.

Every Patrica node v has a label denoted by b(v) and stores three edges. The root node
stores the empty string b(root) = ε. p−(v) is the parent edge of v pointing to the parent
node u such that b(u) ◦ p−(v) = b(v). We denote by ◦ the concatenation of strings. By
px(v) we denote the child edge of v starting with the value x for x ∈ {0, 1}. If b(w) ∈ KEYS
for a Patricia node w, we set key(w) = b(w). Additionally, an inner Patricia node stores a
key2(v) = k, where k is a key with b(v) v k. For efficient updates, the node w storing k
has a field r(w) = b(v). These key2 values allow returning a valid result for a prefix search
when stopping at any Patricia node. It is possible to assure that every inner Patricia node
with two children has a key2 pointing to a leaf node in its subtree.

To allow efficient prefix search, the Patricia Trie has been extended in [14]. Between
every pair of directly connected Patricia nodes, Msd nodes (from Most Significant Digit)
are added. Their length is chosen in a way that those nodes are hit by a binary search first.
More specifically, Msd nodes are inserted between Patricia nodes such that their length is
considered first by the binary search before the Patricia nodes around them are considered.
We only give a short definition of the calculation of an Msd label in Theorem 2. In the
special case that an Msd label equals the label of a surrounding Patricia node, no Msd
node is needed at that position. For details on how Msd nodes improve the prefix search
operation, see [14].

I Definition 2 (Msd Label). Let a = (am, . . . , a0) and b = (bm, . . . , b0) be two binary strings
of the same length. Possibly, one of them is filled up with leading zeros to have length m+1.
We define msd(a, b) to be the position j where aj 6= bj and ai = bi for all i > j. That means,
msd(a, b) is the most significant bit (digit) at which a and b differ.
Consider the binary labels b(u) and b(v) of two nodes u, v. Let `u = |b(u)| and `v = |b(v)|
and without loss of generality let `u < `v. We define the Msd label b(m) between u and v
to be the prefix of v of length

∑blog `vc+1
i=msd(`u,`v)(`v)i · 2i.

For example, consider u, v with b(u) = 10 and b(v) = 100101, where `u = |b(u)| = (10)2
and `v = |b(v)| = (110)2. Then msd(`u, `v) = msd((010)2, (110)2) = 2, such that an Msd
node m between u and v has label b(m) = 1001 @ b(v) of length 22 = 4.

T. Knollmann and C. Scheideler 5

The HPT supports operations PrefixSearch(x) and Insert(x) for a binary string x
in O(log |x|) read accesses on the hash table. Insertion takes additional O(1) write accesses
and Delete(x) is supported in constant hash table accesses. Furthermore, the memory
space usage is in Θ

(∑
k∈KEYS |k|

)
.

Modification. We modify the HPT to simplify the stabilization technique. Consider Fig-
ure 3. The original HPT has a structure as shown on the left side. The Msd node m is
in between the Patricia nodes u and w such that u and w point to m and m points to u
(parent) and w (child). We modify this structure by having u and w point to each other
and not to m. By this, deletions of Msd nodes do not concern the connectivity between
Patricia nodes while the advantages of Msd nodes are still present. The crucial property of
Msd nodes is that they point to Patricia nodes. Edges towards Msd nodes are not needed
for the efficient operations introduced in [14]. For the rest of this paper, when we refer to
the HPT, we mean the HPT with this small modification.

𝑤

𝑚 𝑚

𝑢 𝑢

𝑣 𝑣

Figure 3 Modified HPT

Next, we introduce some common terms that are used
throughout the paper. HPT is the set of all data nodes of
the HPT. This includes PAT as the set of nodes used in the
original Patricia Trie and MSD which are the Msd nodes. By
definition HPT = PAT ∪MSD. We denote by KEYS the set
of keys stored by the HPT and by MSG the set of all messages
currently existing. Let u, v ∈ HPT with b(u) @ b(v). In this
case we say, u is above v while v is below u. Let w ∈ HPT
such that b(u) @ b(w) @ b(v). Then w is in between u and v.
If for two u, v ∈ HPT with b(u) @ b(v) there is no w ∈ HPT
with b(u) @ b(w) @ b(v), then u and v are closest to each other. We say a child edge e of
v ∈ HPT is valid, if there exists a node w ∈ HPT with b(v) ◦ e = b(w). Similar, a parent
edge e of v ∈ HPT is valid, if there exists a node w ∈ HPT with b(w) ◦ e = b(v). Consider
two nodes v, u ∈ HPT, where u has an edge pointing to v and vice versa. We then speak of
a bidirectional edge.

3 The SHPT Protocol

In the following, we present SHPT, our self-stabilizing protocol for maintaining a HPT.
The corrections of SHPT can be divided into several parts. We present our assumptions
concerning the underlying DHT first. Afterwards, we give an intuition on the different types
of repairs our protocol performs. We often speak about actions executed by a HPT node v.
This translates to actions that are executed by the corresponding DHT node storing v. For
detailed Pseudocode, we refer to Appendix A.

3.1 Properties of the DHT
We assume that the underlying DHT is in a legal state, i.e., it provides the actions DHT-
Search(x) and DHT-Insert(x) which are carried out reliably on the stored data. Deletion
of data is only done locally by our protocol. Stability of the DHT is crucial as our protocol
relies on finding/manipulating nodes of the HPT solely based on their hash value given by
their label. There are a lot of different self-stabilizing DHTs presented in the literature.
Some of them are mentioned in Section 1.2.

6 A Self-Stabilizing Hashed Patricia Trie

Our main demand on the DHT is that at some point nodes are stored such that they
can always be retrieved by their labels. HPT nodes are essentially data-items. Every DHT
node regularly checks if all its stored data is at the correct peer based on the hashing. If
data is stored incorrectly, it is sent towards the correct DHT node. When a data item i is
inserted at a DHT node n, n checks if i is already present. If yes, i is only inserted if it does
not collide with an already stored Patricia node that stores a key. If a HPT node v has been
inserted, a presentation method is triggered for v and v is directly presented to the nodes
referred to by p−(v), p0(v) and p1(v). The presentation mechanism is presented later. This
assumption assures that keys are preserved while insertion is not blocked and every HPT
node is presented at least once.

3.2 Correcting Edge Information
One general problem for self-stabilizing solutions is that every stored information can be
corrupted. Thus, our protocol regularly checks information stored in a HPT node. Consider
a node v ∈ HPT. We refer to the information provided by the fields p−(v), p1(v) and p0(v)
as well as key2(v) and r(v) as edge information. Edge information can be checked rather
simply as it allows reconstruction of a node’s label b(w). The label can be used to query
the DHT for an (incomplete) copy of w. v can then compare the information stored at w
with its own and decide for corrections. Some inconsistencies in the local structure can also
be checked without querying the DHT. In general, when checking an edge e at node v, we
distinguish three cases:
a) e has a wrong form. For example, if p1(v) = (0 . . .) or p−(v) is not a suffix of b(v). In

this case, the edge is considered corrupted and is cleared.
b) The node w that e points to does not exist. Again, e is not correct and is cleared.
c) The node w ∈ HPT that e points to does exist, but the edge provided by w which should

point to v does not match e. Several sub-cases arise here. The protocol may have to
simply present v to w, or a new node may need to be inserted.

𝑤

a) b) c) 𝑤
𝑒

𝑣

𝑤
𝑒

𝑣

𝑒

𝑣10010

11

𝑣

Figure 4 Examples for the cases of wrong edge information.

Additionally, every node avoids edges pointing to Msd nodes. Such edges are treated as
if they pointed to a non-existing node. A node v can check the values of p−(v), key2(v) and
r(v) by calculating if the prefix relation between itself and the respective nodes fulfills the
definition of the hashed Patricia Trie. To prevent the spreading of incorrect information,
new edges are only stored if they comply with the definition of the hashed Patricia Trie
from the local perspective of v. We will go into detail on the creation of new edges and the
insertion of nodes later.

3.3 Maintaining Connections
Our goal to stabilize the Patricia nodes of a HPT can also be formulated using Branch Sets
as described in Theorem 3. A Branch Set consists of all Patricia nodes on a branch from

T. Knollmann and C. Scheideler 7

the root to a leaf node (see Figure 5). When the HPT is in a legal state, there are as many
Branch Sets as there are leaf nodes.

I Definition 3 (Branch Set). Consider a set of Patricia nodes with maximum cardinality S
such that u,w ∈ S implies b(u) @ b(w) or b(w) @ b(u) and the Patricia node v ∈ S with
maximum label length stores a key k. We call this set the Branch Set of k.

𝑤

S

𝑘

𝜀

Figure 5 Branch Set S from the root
(ε) to a leaf node (k) is the set of nodes
in a branch of the hashed Patricia Trie
in a legal state.

We apply a technique called Linearization [16]
to all Patricia nodes to create a list sorted by label
length for all Branch Sets in finite time. It is impor-
tant to exclude Msd nodes from the Linearization.
Msd nodes are not presented nor do they delegate
presentation messages. Due to deletion of a Patricia
node, an Msd node might still be presented acciden-
tally. However, we limit this problem by carefully
handling deletions and insertions as described later.
For the Linearization to work, we need to make sure
that all nodes in a Branch Set are brought into and
kept in a weakly connected state.

A Patricia node v with an empty parent edge tries
to recreate connectivity by doing a modified Pre-
fixSearch(b(v)) similar to the one presented in [14].
The procedure we call BinaryPrefixSearch(b(v))
does not search for b(v) itself and only consists of the
binary search phase of the PrefixSearch(x) of [14], re-
turning a copy of a Patricia node w with b(w) @ b(v).
If no such node exists, we conclude that the root node
is non-existent and trigger a construction of it.

Further, we let every Patricia node present its own label to its parent and its two children
using a presentation message. A message presenting v is delegated to the Patricia node w
closest to v. Delegation happens only by using edges and intermediate nodes sharing a
Branch Set with v. All nodes maintain connections to labels which are closest to them while
delegating presentations of other labels. This behavior resembles the Linearization approach
presented in [16], allowing our protocol to form a sorted list for all branches of the HPT.

There is still an important issue we need to resolve. Consider a Branch Set S of nodes.
We can end up in situations where nodes exist that do not contribute to the hashed Patricia
Trie. Such nodes can be Patricia nodes not storing a key. To reduce memory demands, we are
interested in removing unneeded nodes. In principle, deletion without harming connectivity
can be done since the root node is always known implicitly. However, deletion increases
distances. In addition, our protocol must provide the ability to create and integrate new
Patricia nodes. When inserting and deleting nodes, we need to make sure that no loops are
possible in which the system may take forever to stabilize. We will explain how to avoid
such loops in the following.

3.4 Removal/Creation of Nodes
Due to the implicitly known root node, deletion is possible and should be considered to
reduce memory demands. We distinguish between Msd nodes and Patricia nodes. Our
modification allows us to handle Msd nodes in a simple and efficient way. We try to avoid
any edges pointing to Msd nodes such that eventually, deletion and creation of Msd nodes

8 A Self-Stabilizing Hashed Patricia Trie

does not influence the Patricia nodes and their structure. Only if there are two Patricia
nodes u, w connected via a bidirectional edge, an Msd node between them might be inserted.
Fortunately, Msd labels can be calculated locally and a corresponding Msd node can easily
be accessed by querying the DHT. Any Msd node which is not between such two Patricia
nodes, or has an incorrect label, is deleted.

A Patricia node v (except for the root) is unnecessary if key(v) = nil and there are no
two Patricia nodes u,w, both storing a key, such that b(v) = `cp(b(u), b(w)), i.e., u should
be in a different subtree than w below v. From a global point of view, we can easily decide
if v is unnecessary solely based on information about the situation below v. From a local
perspective, v cannot decide but only assume to be unnecessary if it lacks child edges. We
make the local protocol aggressive by deleting any node that lacks child edges and assumes
to be unnecessary. This also introduces deletion of necessary Patricia nodes. Therefore, we
always trigger a creation of new HPT nodes by Patricia nodes below the new ones. This
avoids loops of creation and deletion of nodes, because newly created nodes inherently have
valid children and, thus, do not assume to be unnecessary. Patricia nodes storing a key
essentially form a stable starting point, because they are never deleted. The need to insert
a Patricia node is detected by comparing a node’s parent edge with the corresponding edge
provided by the parent.

3.5 Distribution of References to Keys
In addition, SHPT tries to achieve the following. Every inner Patricia node v with two
children should store a key2(v) = b(w) which points to a leaf node w storing a key such that
b(v) @ b(w). The respective leaf node w stores an r(w) value pointing to v. This property is
helpful for efficient prefix search. No matter at which Patricia node the prefix search stops,
there is a key referenced having the node’s label as a prefix. This key is a valid result for
the search query. We call all inner Patricia nodes with two children and the root node key2
nodes. Due to the resemblance of the hashed Patricia Trie with a binary tree, Fact 1 holds.
I Fact 1. Let L be the number of leaf nodes. Let I be the number of key2 nodes. When
the HPT is in a legal state, it holds I ≤ L ≤ I + 1. L = I, if the root has one child and
L = I + 1 if it has two.

To assure that every leaf node is referenced by a key2 node, we allow the root to store up
to two key2 values. This reduces the number of hash table accesses created by our protocol,
when the HPT is in a legal state.

If we naively assign leaf nodes to key2 nodes, this may lead to situations in which a key2
node cannot get a key2 value. For an example, consider Figure 6. The critical observation
is that key2 nodes with a shorter label, in general, have more possible leaf nodes they can
point to than key2 nodes with a longer label. Therefore, our protocol aims at prioritizing
key2 nodes which are closer to leaf nodes.

We divide the protocol into three parts. First, all nodes continuously check if they should
store a key2 or r value and whether such a value points to a leaf node, respectively key2
node. Second, if a leaf node v does not store a value in r(v), it presents its label upwards in
the HPT by sending a message crossing only parent edges. The first key2 node w without a
key2 receiving the message sets key2(w) = b(v). Third, a key2 node v repairs in the following
way. If key2(v) points to leaf node w with b(v) @ b(w), there are two cases.

a) b(v) @ r(w): Then key2(v) is set to nil since there may already be some key2 node with
longer label pointing at w.

T. Knollmann and C. Scheideler 9

𝑤

𝑘 𝑘′

𝑣

𝑤

𝑘 𝑘′

𝑣

𝑤

Figure 6 Example where v cannot
get a key2 (left). The leaf nodes k and
k′ storing a key are already associated
to Patricia nodes above v. The blocking
of v is resolved as v takes over the key2

of w (right).

b) Else, v has either longer label than r(w) or r(w) = nil. The protocol sets r(w) = b(v).

If key2(v) = nil, a message is sent upwards in the HPT and the first key2 node w with
b(v) @ key2(w) responds to v. Then, key2(v) is set to key2(w). Eventually, v takes over the
key2 value of w, because w executes case a).

Intuitively, key2 nodes without a key2 pull values from nodes with shorter label. Simul-
taneously, leaf nodes without an r value present their label towards the root.

4 Protocol Analysis

In this section, we show that SHPT is self-stabilizing and transforms the HPT in finite time
to a legal state. Furthermore, we present results concerning memory usage and the number
of hash table accesses and messages when the HPT is in a legal state.

4.1 Correctness
We begin by showing the correctness of our self-stabilizing protocol. We use a commonly
known technique introduced by Dijkstra in [7]. Our goal is to show Theorem 4. For that we
consider a sequence of intermediate states that are reached consecutively until the HPT is
in a legal state. For every state we show convergence towards the state and closure within
it, i.e., the properties of the state are kept by our protocol.

I Theorem 4. The algorithm creates in finite time a hashed Patricia Trie in a legal state
out of any initial state in which the DHT is in a legal state and there is a set of unique keys
stored at DHT nodes.

In the following, we briefly sketch the main proof by presenting a sequence of main
lemmas that roughly reflect the states the system reaches. Each main lemma thereby consists
of multiple properties that are proven by a set of lemmas on its own. The full proof consisting
of all lemmas, their respective proofs, and the complete definition of a legal state of the HPT
can be found in Appendix B.

To prove the correctness captured in Theorem 4, we first need to formally define a legal
state of the HPT. At this point, we only give an intuitive definition. For the complete
definition, see Appendix B Theorem 7. Intuitively, the HPT is in a legal state if we have
as few HPT nodes as possible in the system, all keys are stored correctly, the structure is
consistent to the (modified) definition presented in Section 2, and the references to keys in
key2 nodes are existing and stored at correct nodes.

Initially, we only assume that a set of unique keys is stored at DHT nodes. The first
lemma states that general repair mechanisms assure correctly stored keys and Patricia nodes.

10 A Self-Stabilizing Hashed Patricia Trie

I Lemma 1. In finite time it holds: Every key k is stored in a node v ∈ PAT with b(v) = k.
Furthermore, every node is stored at the DHT node responsible for it. Consider any v ∈ HPT
that is deleted. As long as v is not reconstructed, in finite time it holds:
a) There is no presentation message for b(v).
b) There is no edge pointing towards b(v) in the system.

From now on, the proof consists of three phases. In a first phase, all Patricia nodes
which are not needed for the final structure are removed. The second phase considers the
reconstruction of the binary tree structure of the HPT and corrects the sets of Patricia nodes
and Msd nodes. In the third and last phase, information stored in key2 and r fields is made
consistent.

4.1.1 Phase I – Deletion of Patricia nodes
In this phase, the protocol makes sure that all Patricia nodes which are not needed in
the final structure are removed. Initially, information stored at HPT nodes that directly
contradicts the definition of the HPT is cleared. This can be information such as a parent
edge at v ∈ HPT that is no suffix of b(v). After that, Patricia nodes and Msd nodes in
unnecessary subtrees, i.e., subtrees not containing a key, and unnecessary inner Patricia
nodes are gradually removed. Every leaf node in an unnecessary subtree detects in finite
time that it has no valid children and is deleted.

I Lemma 2. In finite time, every unnecessary Patricia node is removed. A Patricia node
v is unnecessary if there are no two keys k1 and k2 with b(v) = `cp(k1, k2).

𝑘

Unnecessary
Subtree Unnecessary

Patricia-Node

𝑤

𝑘

Figure 7 Node k stores
a key. Msd nodes are
sketched in grey. First,
unnecessary subtrees are
deleted (left), then remain-
ing unnecessary Patricia
nodes are removed (right).

Patricia nodes which are necessary may still be deleted because of their local perspective.
However, this deletion is limited and stops after finitely many deletions. This holds, because
Patricia nodes are only deleted due to incorrect child edges. If a new Patricia node with
a long label is inserted, its child edges are initially valid and stay valid. There cannot be
infinitely many deletions triggered, because the structure stabilizes bottom-up.

I Lemma 3. In finite time, every Patricia node has valid child edges pointing to Patricia
nodes and no further Patricia node is deleted.

4.1.2 Phase II – Reconstruction
In the second phase, SHPT reconstructs the HPT by rebuilding missing Patricia nodes
and repairing connections. Since every node tries to create a parent edge pointing to a
Patricia node with shorter label, eventually all missing Patricia nodes are detected and can
be inserted. The process works in a bottom-up fashion, i.e., Patricia nodes with longer labels

T. Knollmann and C. Scheideler 11

reconstruct missing nodes with shorter ones. The Patricia nodes storing a key as well as the
root node act as fixed points in this case, because they are never deleted once constructed.

I Lemma 4. In finite time, the root node exists and no Patricia node points to an Msd
node. Furthermore, missing Patricia nodes are reconstructed. Also, every Patricia node has
valid edges pointing only to existing Patricia nodes, i.e., there is a path from every Patricia
node to the root and there is a path from the root to every Patricia node.

It is crucial that no Patricia node points to an Msd node, because edges to Msd nodes
are effectively treated as corrupt ones. This property assures that Msd nodes are eventually
excluded from the Linearization procedure. Linearization then allows us to show that every
Branch Set (see Theorem 3) of Patricia nodes eventually forms a stable sorted list. Incorrect
Msd nodes are removed without affecting the rest of the HPT and missing Msd nodes are
inserted. Further, correct Msd nodes are not deleted, because the two Patricia nodes closest
to a correct Msd node are not deleted and do not change their edges any more. All these
properties are reflected in Lemma 5. For completeness, we refer to the definition of incorrect
and missing Msd nodes in the full proof in Appendix B.

I Lemma 5. In finite time for every Branch Set S it holds: Between every pair of closest
Patricia nodes u, w ∈ S there is a bidirectional edge. Furthermore, every incorrect Msd
node is removed and all missing Msd nodes are inserted.

4.1.3 Phase III – Consistency
In the final phase the information stored in key2 and r fields is corrected to be consistent.
Due to Fact 1, we know that this can be achieved. The root is allowed to store up to two
key2 values. Therefore, there is always a way to store all keys of leaf nodes in key2 nodes.
First, we show that nodes which should not store a key2 value remove any such stored value.
Further, references in key2 and r fields are deleted when they contradict the relationship
r(key2(v)) = b(v), where v is a key2 nodes and key2(v) references a leaf node.

I Lemma 6. In finite time, only key2 nodes store a key2 and only leaf nodes store an r

value. Every key2 value stored at a Patricia node v points to a leaf w with b(v) @ b(w) and
every r value stored at a Patricia node w points to a key2 node v with b(v) @ b(w).

From now on, key2 nodes not storing a key2 try to acquire the key2 of a key2 node above
them. Leaf nodes lacking a reference in r present themselves to key2 nodes above them.
Therefore, the length of the longest label of a key2 node not storing a staying key2 reduces
over time. As this length is finite, the process terminates. Thereafter, the r values of leaf
nodes are corrected, because the key2 values do not change any more.

I Lemma 7. In finite time, all key2 nodes store a stable key2 and all leaf nodes store a
stable r value. For every key2 node v, the node w with b(w) = key2(v) is a leaf node with
r(w) = b(v).

Finally, our protocol is correct as all unnecessary nodes are removed, missing nodes are
inserted, Patricia nodes are connected by bidirectional edges, and the information stored in
key2 and r fields is consistent such that the HPT is is in a legal state in finite time.

4.2 Overhead
Assume, the HPT is in a legal state. We give results for the complexity in terms of hash table
accesses and messages and the memory overhead of our solution. We refer to Appendix C

12 A Self-Stabilizing Hashed Patricia Trie

for the proofs of the following theorems. When a DHT node executes SHPT by calling its
Timeout Method, exactly one HPT node is checked. Thereby, at most a constant number
of other HPT nodes may be partially acquired or notified and Theorem 5 holds.

I Theorem 5. When the HPT is in a legal state, SHPT creates a constant number of hash
table (read) accesses and messages per call of Timeout at each DHT node.

Unnecessary Patricia nodes and incorrect Msd nodes are removed by SHPT. Therefore,
the HPT nodes are the same as presented in the construction in Section 2 and Theorem 6
holds.

I Theorem 6. Let d be the number of bits needed to store all keys. The total memory used
by a HPT in a legal state is in Θ(d) bits.

References
1 Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self stabilizing protocols

for general networks. In Proceedings of the 4th International Workshop on Distributed
Algorithms, pages 15–28. Springer, 1990.

2 Anish Arora and Mohamed Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026–1038, September 1994.

3 Baruch Awerbuch and George Varghese. Distributed program checking: a paradigm for
building self-stabilizing distributed protocols. In Proceedings 32nd Annual Symposium of
Foundations of Computer Science, pages 258–267. IEEE, October 1991.

4 Thomas Clouser, Mikhail Nesterenko, and Christian Scheideler. Tiara: A Self-stabilizing
Deterministic Skip List and Skip Graph. Theoretical Computer Science, 428:18–35, April
2012.

5 Zeev Collin and Shlomi Dolev. Self-stabilizing Depth-first Search. Information Processing
Letters, 49(6):297–301, March 1994.

6 Curt Cramer and Thomas Fuhrmann. Self-stabilizing Ring Networks on connected Graphs.
Technical report, University of Karlsruhe, 2005.

7 Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Communica-
tions of the ACM, 17(11):643–644, November 1974.

8 Shlomi Dolev and Ronen I. Kat. HyperTree for Self-Stabilizing Peer-to-Peer Systems. In
Proceedings of the Network Computing and Applications, 3rd IEEE International Sympo-
sium, NCA ’04, pages 25–32, Washington, DC, USA, 2004. IEEE Computer Society.

9 Mitchell Flatebo and Ajoy Kumar Datta. Two-state self-stabilizing algorithms for token
rings. IEEE Transactions on Software Engineering, 20(6):500–504, June 1994.

10 Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text: PAT
Trees and PAT arrays. In William B. Frakes and Ricardo Baeza-Yates, editors, Information
Retrieval, chapter New Indices for Text: PAT Trees and PAT Arrays, pages 66–82. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

11 Riko Jacob, Andrea Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. SKIP+:
A Self-Stabilizing Skip Graph. Journal of the ACM, 61(6), December 2014.

12 Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. A Self-stabilizing
and Local Delaunay Graph Construction. In Proceedings of the 20th International Sympo-
sium on Algorithms and Computation, pages 771–780. Springer, December 2009.

13 Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. Re-Chord: A Self-
stabilizing Chord Overlay Network. In Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’11, pages 235–244, New York, NY,
USA, 2011. ACM.

T. Knollmann and C. Scheideler 13

14 Sebastian Kniesburges and Christian Scheideler. Hashed Patricia Trie: Efficient Longest
Prefix Matching in Peer-to-Peer Systems. In Naoki Katoh and Amit Kumar, editors,
WALCOM: Algorithms and Computation, pages 170–181, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

15 Donald R. Morrison. PATRICIA – Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM, 15(4):514–534, October 1968.

16 Melih Onus, Andrea Richa, and Christian Scheideler. Linearization: Locally Self-stabilizing
Sorting in Graphs. In Proceedings of the Meeting on Algorithm Engineering & Expermi-
ments, pages 99–108, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

17 Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Loca-
tion, and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware ’01,
pages 329–350, London, UK, UK, 2001. Springer-Verlag.

18 Ayman Shaker and Douglas S. Reeves. Self-Stabilizing Structured Ring Topology P2P Sys-
tems. In Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing,
pages 39–46. IEEE, August 2005.

19 Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications. IEEE/ACM Transactions on Networking, 11(1):17–32, February
2003.

14 A Self-Stabilizing Hashed Patricia Trie

A Pseudocode

In the following, we present the Pseudocode for SHPT. For simplicity, we assume the
following functions to exist.

Function Name Effect when called

DHT-Search(x ∈ {0, 1}∗) Returns a copy of the HPT node v with b(v) = x.

DHT-Insert(x) Stores the data-item x in the DHT.

Parent(v ∈ HPT) Provides the bit string x such that x ◦ p−(v) = b(v).

Children(v ∈ HPT) Returns the number of children of v.

Edge(w ∈ HPT, v ∈ HPT) Provides the bit string of the edge e of w that should
point to v if v was w′s child node.

MsdMissing(w ∈ PAT, v ∈ PAT) Returns true if there is a missing Msd node between w

and v.

BinaryPrefixSearch(x ∈ {0, 1}∗) Executes the binary search phase of the PrefixSearch(x)
algorithm provided by [14] and returns a copy of the
found Patricia node w with b(w) @ x.

MsdChildEdge(v ∈ MSD) Provides the only child edge of an Msd node. Returns
nil if v has more than one child. An ordinary Msd node
only has one child edge.

MsdLabel(x ∈ {0, 1}∗, y ∈ {0, 1}∗) Returns a valid Msd label between the labels x and y.

Bidirectional(v ∈ HPT, w ∈ HPT) Returns true if there is a bidirectional edge between v

and u.

Table 1 Assumed existing functions

T. Knollmann and C. Scheideler 15

Algorithm 1 The DHT protocol → executed at DHT node n
1: procedure Timeout
2: K ← set of keys not in Patricia nodes stored at n
3: if K 6= ∅ then . Integrate keys
4: Insert Patricia node v for every key k ∈ K with b(v) = k

5: v ← next HPT node stored at n
6: if n not responsible for b(v) then . Check position in DHT
7: delegate v towards the correct DHT node
8: CheckNodeInfo(v) . Consistency of stored information
9: CheckParentEdgeInfo(v) . Check parent edge
10: CheckChildEdgeInfo(v) . Check child edges
11: CheckValidity(v) . Check if node is needed
12: CheckKey2Info(v) . Check key2 information
13: LinearizeTimeout(v) . Do Linearization

Algorithm 1 calls different checks for one HPT node v on a regular basis.

Line(s) Affected Lemmas

2− 4 Lemma 8

6− 7 Lemma 9

Table 2 Lemmas affected by Algorithm 1

16 A Self-Stabilizing Hashed Patricia Trie

Algorithm 2 Checking information stored directly at a HPT node
1: procedure CheckNodeInfo(v ∈ HPT)
2: if p−(v) is not suffix of b(v) then . Parent edge violates definition
3: p−(v)← nil

4: if p0(v) does not comply 0(0|1)∗ then . Child edge violates definition
5: p0(v)← nil

6: if p1(v) does not comply 1(0|1)∗ then . Child edge violates definition
7: p1(v)← nil

8: if v /∈ MSD then
9: if key(v) 6= nil and b(v) 6= key(v) then . Wrong label
10: w ← new Patricia node
11: key(w)← key(v)
12: delete v
13: DHT-Insert(w)
14: else
15: if key2 6= nil then
16: if b(v) 6v key2(v) or (Children(v) < 2 and v 6= root) then
17: key2(v)← nil . v not a key2 node
18: if r(v) 6= nil and r(v) 6@ b(v) then
19: r(v)← nil . Wrong reference
20: if r(v) 6= nil and (p0(v) 6= nil or p1(v) 6= nil) then
21: r(v)← nil . v not a leaf node

Algorithm 2 locally checks if the information stored at HPT node v is consistent. The algo-
rithm removes information at v which cannot be correct.

Line(s) Affected Lemmas

2− 3 Lemma 11

4− 5 Lemma 11

6− 7 Lemma 11

8− 13 Lemma 8, Lemma 15

15− 17 Lemma 11, Lemma 24, Lemma 25

18− 19 Lemma 11, Lemma 24, Lemma 25

20− 21 Lemma 24

Table 3 Lemmas affected by Algorithm 2

T. Knollmann and C. Scheideler 17

Algorithm 3 Checking parent edge of v ∈ HPT
1: procedure CheckParentEdgeInfo(v ∈ HPT)
2: if p−(v) = nil and b(v) 6= ε and v /∈ MSD then
3: w ← BinaryPrefixSearch(b(v))
4: if w = nil then . Root does not exist
5: root← new Patricia node
6: b(root)← ε

7: DHT-Insert(root)
8: else
9: p−(v)← x [s.t. b(w) ◦ x = b(v)] . New parent
10: else if b(v) 6= ε and v /∈ MSD then
11: par ← DHT-Search(Parent(v)) . Acquire parent
12: if par = nil or par ∈ MSD then
13: p−(v)← nil

14: else . Compare edges
15: epar ← Edge(par, v)
16: if epar 6= p−(v) and epar 6v p−(v) and p−(v) 6v epar then
17: n← new Patricia node
18: b(n)← `cp(b(v), b(par) ◦ epar) . Node between v and its parent
19: n′ ← DHT-Search(b(n))
20: if n 6= nil and n /∈ MSD then
21: n′ ← Linearize(v) . Present v
22: else
23: n←MultiLinearize({v, par, par ◦ epar}) . Create n in DHT
24: DHT-Insert(n)
25: else
26: if v, par ∈ PAT and epar = p−(v) then
27: if MsdMissing(v, par) then
28: m← new Msd node . Insert Msd node
29: b(m)←MsdLabel(par, v)
30: m←MultiLinearize({v, par})
31: m′ ← DHT-Search(b(m))
32: if m′ = nil or (m′ has different edges than m
33: and m′ ∈ MSD) then
34: DHT-Insert(m) . Overwrite with correct Msd node

Algorithm 3 checks if the parent edge of the HPT node v is correct. If necessary, the edge
is corrected, a root is created or new nodes are inserted.

18 A Self-Stabilizing Hashed Patricia Trie

Line(s) Affected Lemmas

4− 7 Lemma 16

8− 9 Lemma 17

12− 13 Lemma 10, Lemma 16, Lemma 17, Lemma 18

16− 24 Lemma 13, Lemma 17, Lemma 19

26− 34 Lemma 22, Lemma 23

Table 4 Lemmas affected by Algorithm 3

Algorithm 4 Checking child edges of v ∈ HPT
1: procedure CheckChildEdgeInfo(v ∈ HPT) . Check each child
2: if v ∈ PAT then
3: CheckChild(v, DHT-Search(b(v) ◦ p0(v)), 0)
4: CheckChild(v, DHT-Search(b(v) ◦ p1(v)), 1)
5: procedure CheckChild(v, c ∈ HPT, x ∈ {0, 1})
6: if c = nil or c ∈ MSD then
7: px(v) = nil . Child non-existing or Msd node

Algorithm 4 checks if the child edges of v point to valid Patricia nodes.

Line(s) Affected Lemmas

6− 7 Lemma 10, Lemma 14, Lemma 18

Table 5 Lemmas affected by Algorithm 4

T. Knollmann and C. Scheideler 19

Algorithm 5 Checking whether v ∈ HPT should exist
1: procedure CheckValidity(v ∈ HPT)
2: if v ∈ MSD then
3: if p−(v) 6= nil and MsdChildEdge(v) 6= nil then
4: p← DHT-Search(Parent(v))
5: c← DHT-Search(b(v) ◦MsdChildEdge(v))
6: if not (Bidirectional(p, c) and p, c ∈ PAT
7: and b(v) = MsdLabel(b(p), b(c))) then
8: delete v . Incorrect Msd node
9: else
10: delete v . No parent edge or not one child edge
11: else
12: if key(v) = nil and Children(v) < 2 and v 6= root then
13: delete v . Unnecessary Patricia node

Algorithm 5 checks if v should exist at all. In case that v lacks child edges, it is removed.

Line(s) Affected Lemmas

3− 8 Lemma 15, Lemma 22, Lemma 23

9− 10 Lemma 12, Lemma 15, Lemma 22, Lemma 23

12− 13 Lemma 12, Lemma 13, Lemma 14, Lemma 15, Lemma 16

Table 6 Lemmas affected by Algorithm 5

20 A Self-Stabilizing Hashed Patricia Trie

Algorithm 6 Checking if v ∈ HPT has valid key2 information
1: procedure CheckKey2Info(v ∈ HPT)
2: if v ∈ PAT then
3: if Children(v) = 2 then . Inner node
4: if key2(v) 6= nil then
5: k ← DHT-Search(key2(v))
6: if k = nil or k ∈ MSD or Children(k) > 0 or b(v) @ r(k) then
7: key2(v)← nil . v should not store k
8: else if r(k) = nil or r(k) @ b(v) then
9: r(k)← b(v) . v references k
10: if key2(v) = nil then
11: k ← next Patricia node above v such that b(v) @ key2(k)
12: key2(v)← key2(k)
13: else if Children(v) = 0 then . leaf node
14: if r(v) 6= nil then
15: k ← DHT-Search(r(v))
16: if k = nil or Children(k) < 2 or key2(k) 6= b(v) then
17: r(v)← nil . k not suitable
18: else if key2(k) = nil then
19: key2(k)← b(v) . Repair reference
20: else
21: k ← w ∈ PAT with Children(w) = 2, key2(w) ∈ {nil, b(v)}
22: above v with |b(w)| maximal
23: r(v)← k . Find node for r(v)
24: key2(k)← b(v)

Algorithm 6 checks if the key2/r information stored at v is valid. If necessary, a new key2
or r value is obtained.

Line(s) Affected Lemmas

6− 7 Lemma 25, Lemma 26

8− 9 Lemma 24, Lemma 26

10− 12 Lemma 25, Lemma 26

16− 17 Lemma 25, Lemma 27

18− 19 Lemma 24, Lemma 25

20− 24 Lemma 24, Lemma 26

Table 7 Lemmas affected by Algorithm 6

T. Knollmann and C. Scheideler 21

For better readability, we denote by v ← Linearize(u) a call of Linearize(v, u) at the DHT
node responsible for v. Similar, v ←MultiLinearize(U) translates to MultiLinearize(v, U)
at the DHT node responsible for v.

Algorithm 7 Linearization methods at DHT node n
1: procedure LinearizeTimeout(v ∈ HPT)
2: if v ∈ PAT then
3: Parent(v)← Linearize(b(v))
4: b(v) ◦ p0(v)← Linearize(v)
5: b(v) ◦ p1(v)← Linearize(v)
6: procedure MultiLinearize(v ∈ HPT, U ∈ HPT∗)
7: for each u ∈ U do
8: Linearize(v, u)
9: procedure Linearize(v, u ∈ HPT) . Present u to v
10: if not (v ∈ MSD or u ∈ MSD) and v 6= u then
11: if |`cp(b(u), b(v))| < |b(v)| then
12: if p−(v) = nil and b(u) v b(v) then . u above v
13: p−(v)← x [where b(u) ◦ x = b(v)]
14: else
15: if Parent(v) 6= b(u) then
16: Parent(v)← Linearize(u)
17: if Parent(v) @ b(u) and b(u) @ b(v) then . u in between
18: p−(v)← x [where b(u) ◦ x = b(v)]
19: else if b(v) @ b(u) then . v above u
20: x← b(u) at position |b(v)|+ 1
21: c← b(v) ◦ px(v) . Respective child edge
22: if px(v) = nil then
23: px(v)← y [where b(v) ◦ y = b(u)]
24: else
25: if b(c) @ b(u) then . c above u
26: c← Linearize(u)
27: else if b(u) @ b(c) then . c below u

28: px(v)← y [where b(v) ◦ y = b(u)]
29: c← Linearize(u)
30: else . Common parent for c, u needed
31: u← Linearize(v)

Algorithm 7 denotes the Linearization procedure of our protocol. A Patricia node v tries to
maintain connections to the closest Patricia nodes of the form w where either b(v) @ b(w)
or b(w) @ b(v). Presentations of other Patricia nodes are delegated and Msd nodes are not
presented nor do they delegate messages.

22 A Self-Stabilizing Hashed Patricia Trie

B Correctness Proof

In the following, a complete correctness proof follows. Assuming that the underlying DHT
is in a legal state, we show that our protocol converges the system to a state in which the
hashed Patricia Trie is in a legal state with respect to Theorem 7 and our modification as
presented in Section 2. Further, once such a legal state for the HPT is reached, closure holds
and the HPT stays legal in consecutive states. For this, we show a sequence of lemmas, each
representing properties that the system converges to and that are preserved.

In the proofs, we often define potential functions. We denote by a potential function a
function depending on the current system state of which the value decreases over time, i.e.,
in following states, and is not increased. Often, our potential functions depend on a set of
elements. For convenience, we assume that as soon as the corresponding set is empty, the
function is defined to be zero. In some cases, there may be messages in the system that
present a non-existent HPT node. These messages may temporarily increase our potential
functions. However, on the long term, they are removed from the system. Therefore, we
often implicitly assume in our arguments that this has happened and ignore temporary
increases of potential functions. We aim at proving Theorem 4 with respect to the complete
definition of a legal state of the HPT below.

I Theorem 4. The algorithm creates in finite time a hashed Patricia Trie in a legal state
out of any initial state in which the DHT is in a legal state and there is a set of unique keys
stored at DHT nodes.

I Definition 7 (Legal state of the HPT). We say a HPT is in a legal state, if the following
holds. Only Patricia nodes given by the following conditions exist. Every k ∈ KEYS is
stored in a Patricia node v with b(v) = k. For every pair of keys k1, k2, there exists an
inner Patricia node v with b(v) = `cp(k1, k2). Only Msd nodes given by the following exist:
Between every pair u, v of closest Patricia nodes, there is exactly one Msd nodem (if needed)
with b(m) as given by Theorem 2, if b(u) @ b(m) @ b(v). m has a parent edge to u and
exactly one child edge to v. In general, no HPT node v exists with key(v) = nil and there
is no k ∈ KEYS such that b(v) v k. Also, every HPT node is stored at the DHT node
responsible for it.

The edges of the HPT need to be correct as defined in the following. For every Branch
Set S, there are bidirectional valid edges between every pair of closest Patricia nodes of
S. Every leaf node v ∈ PAT stores r(v) = w for a w ∈ PAT with two children, such that
key2(w) = v and b(w) v b(v). No other nodes than those affected by this statement store a
value in r or key2.

I Lemma 1. In finite time it holds: Every key k is stored in a node v ∈ PAT with b(v) = k.
Furthermore, every node is stored at the DHT node responsible for it. Consider any v ∈ HPT
that is deleted. As long as v is not reconstructed, in finite time it holds:
a) There is no presentation message for b(v).
b) There is no edge pointing towards b(v) in the system.

Proof. The proof of the lemma is given by the proofs of Lemma 8, Lemma 9, Theorem 8
and Lemma 10. J

I Lemma 8. Let φ1 = |{k ∈ KEYS | k is not stored in a v ∈ PAT, or b(v) 6= k}| be the
number of keys which are stored by a Patricia node of wrong label. φ1 is a potential function.

T. Knollmann and C. Scheideler 23

Proof. Consider any key k not stored in a Patricia node. In finite time, k is detected and
stored as a Patricia node by the respective DHT node n (see Algorithm 1 Line 4). Let
k ∈ KEYS be a key stored at v ∈ PAT with b(v) 6= k. In finite time our algorithm performs
a check of v detecting that b(v) 6= k. As a result, k is reinserted in a node w ∈ PAT with
b(w) = k such that φ1 is reduced (see Algorithm 2 Line 9). Our protocol does not insert a
key k at node v where b(v) 6= k. Hence, φ1 cannot increase. J

We call a HPT node searchable if it is stored at the DHT node responsible for it and can
be retrieved by DHT-Search.

I Lemma 9. In finite time every HPT node is searchable.

Proof. Consider any node v ∈ HPT stored at a DHT node n which is not responsible for
v. In finite time, our protocol checks if v is stored correctly in the DHT (see Algorithm 1
Line 7). As this is not the case, v is moved to the corresponding DHT node and becomes
searchable. J

From Lemma 8 and Lemma 9 it directly follows:

I Corollary 8. In finite time, every k ∈ KEYS is searchable.

I Lemma 10. Consider any v ∈ HPT that is deleted. As long as v is not reconstructed, in
finite time it holds:
a) There is no presentation message for b(v).
b) There is no edge pointing towards b(v) in the system.

Proof.
a) Since v does not exist and is not reconstructed, no new presentation messages for b(v) are
generated. Since the DHT is in a legal state, every message containing b(v) eventually arrives
at its destination DHT node. Furthermore, a delegation in the HPT only happens finitely
often, because there is only a finite number of nodes and a presentation is not delegated
in circles. This directly follows from the applied Linearization procedure. For details on
Linearization, we refer to [16]. Eventually, a presentation is processed and perhaps a new
edge towards v in the HPT is created. In any case the number of messages is reduced.
b) From a) it follows that in finite time no presentation messages concerning b(v) are present.
Let w ∈ HPT be a node pointing to v. In finite time, w checks the corresponding edge and
determines that v is non-existing (see Algorithm 3 Line 12 and Algorithm 4 Line 6). The
edge is deleted and will never be rebuilt, because there are no more presentation messages
concerning v. J

Phase I – Deletion of Patricia nodes

I Lemma 2. In finite time, every unnecessary Patricia node is removed. A Patricia node
v is unnecessary if there are no two keys k1 and k2 with b(v) = `cp(k1, k2).

Proof. The lemma is correct by Lemma 11, Lemma 12 and Lemma 13. J

24 A Self-Stabilizing Hashed Patricia Trie

I Lemma 11. Consider the number of initially wrong reference information

φ2 =|{v ∈ HPT |@x ∈ {0, 1}∗ such that x ◦ p−(v) = b(v)}|
+ |{v ∈ HPT | p0(v) does not comply 0(0|1)∗}|
+ |{v ∈ HPT | p1(v) does not comply 1(0|1)∗}|
+ |{v ∈ PAT | r(v) 6= nil and r(v) 6v b(v)}|
+ |{v ∈ PAT | key2 6= nil and b(v) 6v key2(v)}|.

φ2 is a potential function.

Proof. All the information types gathered in φ2 are checked locally and without acquiring
other nodes. When some of the types appear, the corresponding edges are set to nil, reducing
φ2 (see Algorithm 2 Line 2, Line 4, Line 6, Line 16, Line 18). The protocol never stores
information in a way as defined by φ2, such that closure holds. J

I Lemma 12. Let φ3 = maxv∈U |b(v)|, where:

U = {v ∈ HPT | key(v) = nil and @w ∈ PAT
with key(w) 6= nil and b(v) v b(w)}.

U is the set of all HPT nodes in subtrees that can safely be deleted. φ3 is a potential function.

Proof. Let T = {v ∈ U | |b(v)| = φ3}. We show that |T | is reduced and never increased as
long as φ3 stays the same. When |T | reaches zero, φ3 is reduced and T changes. We show
that φ3 does not increase and follow that φ3 is a potential function.

Consider a v ∈ T . If v ∈ MSD, then v has no existing child. Else, the child of v would
have a longer label than v, such that v /∈ T . v will be deleted in finite time by the protocol
(see Algorithm 5 Line 10). In the other case, let v ∈ PAT. Again, v has no existing child
since |b(v)| = φ3 and any child would be a member of U with a longer label. According to
Lemma 10, any child edge of v will be deleted in finite time. Afterwards, v deletes itself since
key(v) = nil (see Algorithm 5 Line 12). In any case, |T | is reduced. Also, |T | and φ3 will
never be increased, because a node u can only be created by a node w where b(u) @ b(w).
The existence of w would contradict the maximality of T concerning φ3. J

I Lemma 13. Let φ4 = | F |, where

F = {v ∈ PAT | key(v) = nil and @u, w ∈ PAT
with key(u), key(w) 6= nil

and b(v) = `cp(b(u), b(w))}.

F is the set of all remaining Patricia nodes that are not needed in the HPT. φ4 is a potential
function.

Proof. Consider a node v ∈ F . We have that v /∈ U as U is empty in finite time due
to Lemma 12. Hence, v has at least one non-existing child node w which will never be
created. This holds, because by definition there is no u ∈ PAT with key(u) 6= nil and
b(w) v b(u). According to Lemma 10, the edge to w will be deleted at v in finite time such
that v deletes itself resulting in a reduction of φ4 (see Algorithm 5 Line 12). A new Patricia
node v is only created if there are two Patricia nodes u, w with key(u), key(w) 6= nil and
b(v) = `cp(b(u), b(w)) (see Algorithm 3). This results in v /∈ F and therefore, φ4 is not
increased. J

T. Knollmann and C. Scheideler 25

I Lemma 3. In finite time, every Patricia node has valid child edges pointing to Patricia
nodes and no further Patricia node is deleted.

Proof. The lemma holds due to the correctness of Lemma 14 and Lemma 15. J

I Lemma 14. Let N be the set of nodes, defined by their labels, which do not exist in the
HPT. Let φ5 = maxv∈D |b(v)|, where

D ={v ∈ MSD ∪N | there is a v ∈ PAT with b(w) v b(v) that points to v}
∪ {m ∈ MSG | b(m) = b(v), v ∈ MSD ∪N ∪ L} ∪ L

L ={v ∈ PAT | key(v) = nil and p0(v) = nil or p1(v) = nil}

L is the set of Patricia nodes that are unnecessary in their local perspective. D is the set
of nodes and messages that may result in a deletion of a Patricia node. φ5 is a potential
function.

Proof. Similar to the proof of Lemma 12, we define T = {e ∈ D | |b(e)| = φ5} to be the set
of all elements in D of longest label. We will show that as long as φ5 stays the same, |T | is
reduced and never increases. When |T | reaches zero, φ5 is decreased and T contains a new
set of elements. We also show that φ5 is never increased and follow that φ5 is a potential
function. For e ∈ S, we distinguish the following cases:
a) e ∈ MSD∪N and there is a finite set A of Patricia nodes which have a child edge pointing

to e. Consider any Patricia node v out of this set. Either e is overwritten by a Patricia
node, v is presented a Patricia node (see Algorithm 7) or v′s respective child edge px(v)
is checked in finite time. In the first case, e is no longer in T such that |T | reduced. In
the other two cases, px(v) is set to nil (see Algorithm 4 Line 6). As |b(v)| < |b(e)| and
|A| is finite, this implies a reduction of |T | in finite time.

b) e ∈ MSG with b(e) = b(v) for some node v which does not exist or is an Msd node. If a
new Patricia node v is created, we argue below that this node is not in T . Further, e is
no longer in T in this case such that |T | reduced. Else, due to Lemma 10, e vanishes in
finite time and may only result in one element in T for which case a) applies.

c) e ∈ MSG with b(e) = b(v) and v is a Patricia node in L. Then v ∈ T and case d) applies
to v.

d) e ∈ L. Either e is presented an existing Patricia node (see Algorithm 7), or e does not
contribute to the system in its local view. If e is presented an existing Patricia node, |T |
reduces and all messages presenting e are no longer in T . If e does not contribute to the
system in its local view, it will be deleted in finite time (see Algorithm 5 Line 12) and
|T | reduces.

In all cases |T | is eventually reduced. It is left to show that φ5 is not increased and |T | is
not increased. Both could be increased if a Patricia node changes its child edge, if a node is
inserted or if a Patricia node is deleted.

Assume a node v ∈ PAT changes its child edge such that φ5 or |T | increases. If v deletes
its child edge, the edge pointed to a node n which was either non-existing or an Msd node. As
the deletion increased φ5 or |T |, |b(n)| was greater than φ5 which is a contradiction because
n ∈ D. If v changes its edge, let m be the responsible message presenting |b(w)| ≥ φ5. It
holds m ∈ D. As m was processed when v′s child edge was created, |T | did not increase.
An increase of φ5 poses a contradiction, because m was already in D.

Consider the insertion of a node. Assume the creation of an Msd node m with |b(m)| ≥
φ5. Msd nodes are not presented and no Patricia node is overwritten by an Msd node.

26 A Self-Stabilizing Hashed Patricia Trie

Hence, the existence of a node v ∈ PAT above m that has a child edge to m implies that v
previously had a child edge to a non-existing node n with |b(n)| = |b(m)|. If φ5 increased
due to m, this poses a contradiction. Also, |T | was not increased because n does not count
towards |T | after insertion of m.

Assume the creation of a Patricia node v with |b(v)| ≥ φ5. v has been created, because
there are two Patricia nodes u, w with b(v) = `cp(b(u), b(w)). By definition u, w /∈ T since
their labels are longer than |b(v)| ≥ φ5. Assume w created v. Then w is a Patricia node.
v could only be in D if there was a Patricia node above v having a child edge pointing
to a node m ∈ MSD ∪ N . v has in this case both m and w as initial children such that
|b(m)| > |b(v)|. Since m ∈ D this implies that |b(v)| < φ5 resulting in a contradiction.

Consider the deletion of a node v. The deletion of an Msd node does not influence φ5
or |T |, therefore assume v ∈ PAT. If v ∈ D, then |b(v)| ≤ φ5 and the deletion of v does not
increase φ5 or |T |. Assuming that φ5 or |T | increased, v /∈ D. Thus, v either stores a key or
has two existing nodes as children. This implies that v is not deleted posing a contradiction
(see Algorithm 5 Line 12).

Hence, φ5 and |T | do not increase and decreases over time which proves the lemma. J

I Lemma 15. In finite time no further Patricia nodes will be deleted during stabilization
and all messages concerning non-existing Patricia nodes vanished.

Proof. Due to Lemma 14, in finite time every Patricia node falls in one of the following
categories:
a) Leaf nodes storing a key.
b) Inner Patricia nodes storing a key.
c) Inner Patricia nodes with two existing Patricia nodes as child nodes.
For each of these categories it holds, that the conditions leading to deletion are not fulfilled
(deletions happen in Algorithm 2 Line 9 and Algorithm 5 Line 8, Line 10, Line 12). Fur-
thermore, no Patricia nodes which do not fall into one of the categories will be created by
the protocol, because we proved closure of the state of Lemma 14. Lemma 10 assures that
all messages concerning non-existing nodes vanish in finite time. J

Phase II – Reconstruction
I Lemma 4. In finite time, the root node exists and no Patricia node points to an Msd
node. Furthermore, missing Patricia nodes are reconstructed. Also, every Patricia node has
valid edges pointing only to existing Patricia nodes, i.e., there is a path from every Patricia
node to the root and there is a path from the root to every Patricia node.

Proof. We prove the lemma by proving Lemma 16, Lemma 17, Theorem 9, Lemma 18,
Lemma 19 and Lemma 20. J

I Lemma 16. In finite time, a root node exists.

Proof. Assume that there is no root node. Our first observation is, that there must be a
node v ∈ PAT with shortest label. Hence, either p−(v) = nil or v has a parent node w
which is non-existent or an Msd node. In the latter case, the edge p−(v) is checked and
set to nil in finite time (see Algorithm 3 Line 12). If p−(v) = nil, v checks in finite time
for a parent using BinaryPrefixSearch. The resulting node is nil, such that v restores
the root node (see Algorithm 3 Line 4). Furthermore, the root node is never deleted (see
Algorithm 5 Line 12). J

T. Knollmann and C. Scheideler 27

I Lemma 17. Let φ6 = maxk∈KEYS |k| −minv∈P |b(v)|, where:

P = {v ∈ PAT | p−(v) = nil or @u ∈ PAT, b(u) ◦ p−(v) = b(v)}.

P is the set of all Patricia nodes which do not have an existing Patricia node as parent node.
φ6 is a potential function, i.e., in finite time every Patricia node has a parent edge to an
existing Patricia node.

Proof. First we observe that maxk∈KEYS |k| ≥ |b(v)| for all v ∈ PAT such that φ6 ≥ 0. We
define T = {v ∈ P | maxk∈KEYS |k| − |b(v)| = φ6}. We will show that |T | decreases and
never increases as long as φ6 stays the same. When |T | reaches zero, φ6 is reduced. φ6 is
never increased and it follows that φ6 is a potential function.

Consider a Patricia node v ∈ T . If the node u with b(u) ◦ p−(v) = b(v) does not exist or
is an Msd node, the value of p−(v) is deleted in finite time by the protocol (see Algorithm 3
Line 12). If p−(v) = nil, v will be presented a Patricia node w with b(w) @ b(v) either due
to a presentation message or due to a check of v (see Algorithm 7 and Algorithm 3 Line 9),
because at least the root node exists as stated in Lemma 16. In any case, |T | has reduced.

Furthermore, |T | and φ6 do not increase. Consider any Patricia node v with maxk∈KEYS |k|−
|b(v)| ≥ φ6. If the edge p−(v) changes, v received a presentation message from an existing
Patricia node w with b(w) @ b(v). This holds as non-existing nodes and Msd nodes are not
presented and, due to Lemma 15, no Patricia node is deleted any more.

If a new Patricia node v is created it node is initialized with edges provided by a Patricia
node w with b(v) @ b(w) (see Algorithm 3 Line 16). v /∈ P holds, because w only creates a
node if it has an existing Patricia node as parent such that w /∈ P holds.

Hence, φ6 does not increase and is reduced over time. J

I Corollary 9. In finite time, there exists a path from every node to the root.

The corollary follows from Lemma 17 and Lemma 15.

I Lemma 18. In finite time, no Patricia node has an edge pointing to an Msd node.

Proof. Due to Lemma 15, no Patricia node v not storing a key which has a child edge point-
ing to an Msd node exists. Else, v would delete itself which is a contradiction. Lemma 17
assures that no Patricia node has a parent edge pointing to an Msd node. Furthermore,
every Patricia node storing a key which points to an Msd node will delete the respective
edge in finite time (see Algorithm 3 Line 12 and Algorithm 4 Line 6). Patricia nodes do not
create edges pointing to Msd nodes (see Algorithm 7). When a Patricia node v is created, it
is inserted between u ∈ PAT and w ∈ PAT with initial edges to u and w. Additionally, v has
another child node p which was formerly a child of u and is thus no Msd node. Therefore,
newly inserted Patricia nodes do not point to Msd nodes as well. J

I Lemma 19. In finite time, every Patricia node can be reached over a path starting at the
root.

Proof. We already know that every Patricia node has a path to the root node in finite time.
The correctness of Lemma 19 follows as we use a technique called Linearization [16]. In
[16], the authors show that their technique creates in finite time a sorted list. We apply
Linearization for every path consisting of Patricia nodes from the root to a Patricia node
storing a key. If Patricia nodes are missing at positions where two Branch Sets collide,
such nodes are inserted (see Algorithm 3 Line 16). As stated in Lemma 18, no Patricia node

28 A Self-Stabilizing Hashed Patricia Trie

points to an Msd node, so we can ignore Msd nodes when considering Linearization. It is left
to show that insertion of Patricia nodes does not harm the Linearization process. Consider
the case when a Patricia node v is inserted between u ∈ PAT and w ∈ PAT. Initially, v has
valid edges to u and w such that the connectivity between them is not destroyed. J

I Lemma 20. Let φ7 = |M| where:

M = {v ∈ PAT |@ v and ∃u, w ∈ PAT
with key(u), key(w) 6= nil

and b(v) = `cp(b(u), b(w))}.

M denotes the set of all Patricia nodes that are needed in the HPT but currently non-
existing. φ7 is a potential function.

Proof. Assume that there are paths from every node to the root and from the root to every
node as stated in Theorem 9 and Lemma 19. Additionally, let φ7 > 0. Consider a node
v ∈ M. For the nodes u, w ∈ PAT with key(u), key(w) 6= nil and b(v) = `cp(b(u), b(w))
it holds that they can be reached over a path starting from the root and the root can be
reached over a path starting at u or w. This implies either the existence of v or an edge
at a Patricia node pointing to a non-existent node or an Msd node. In all cases we have a
contradiction.

According to Lemma 15, no deletions happen any more. Hence, φ7 is not increased. J

I Lemma 5. In finite time for every Branch Set S it holds: Between every pair of closest
Patricia nodes u, w ∈ S there is a bidirectional edge. Furthermore, every incorrect Msd
node is removed and all missing Msd nodes are inserted.

Proof. The lemma holds by the correctness of Lemma 21, Lemma 22, Lemma 23 and The-
orem 11. J

I Lemma 21. In finite time for every Branch Set S it holds: Between every pair of closest
Patricia nodes u, w ∈ S there is a bidirectional edge.

Proof. Consider any Branch Set S. Lemma 19 and Theorem 9 assure that a weak connectiv-
ity is given for the set of Patricia nodes in S. Observe that due to Lemma 18, Msd nodes do
not influence the stabilization of S. Furthermore, Lemma 15 and Lemma 20 assure that no
more Patricia nodes are deleted or created such that S does not change. All Patricia nodes
in S perform a Linearization procedure derived from the proposition in [16]. Therefore, in
finite time, a sorted list is created for all nodes in S. This implies the lemma. J

I Lemma 22. We call an Msd node m incorrect, if m does not have a parent edge to
u ∈ PAT, m does not have a child edge to w ∈ PAT, u and w are not connected by a
bidirectional edge, or b(m) has incorrect length (see Theorem 2). Let I be the set of incorrect
Msd nodes in the system. φ8 = |I| is a potential function.

Proof. We observe that the set of incorrect Msd nodes does not increase after every Branch
Set consists of bidirectional edges. This holds as new Msd nodes are only created if there is
a bidirectional edge between two Patricia nodes u, w (see Algorithm 3 Line 27). If such an
edge exists, then an inserted Msd node m is correct by the correctness of the creation. If
m became incorrect, this would mean a Patricia node was inserted between u and v. This

T. Knollmann and C. Scheideler 29

is a contradiction to the assumption that the Branch Set of u and w only had bidirectional
edges when m was created.

Consider an Msd node m ∈ I. m is checked in finite time and is determined to be
incorrect (see Algorithm 5 Line 8, Line 10) and deleted. Thus, |I| is reduced.

As the set of incorrect Msd nodes is finite, it follows that all incorrect Msd nodes are
removed in finite time. J

I Definition 10. Consider u, w ∈ PAT with b(u) @ b(w) and @ v ∈ PAT such that b(u) @
b(v) @ b(w). We call an Msd node m of correct form (as given by Theorem 2) between u
and w missing if m does not exist.

I Lemma 23. In finite time all missing Msd nodes are created.

Proof. Consider two Patricia nodes u, w ∈ PAT with b(u) @ b(w) where an Msd node m
is missing. This means that there is no v ∈ PAT between u and w. Due to Lemma 21,
there is a bidirectional edge between u and w. When w is checked, it inserts m in finite
time (see Algorithm 3 Line 27). According to Lemma 15, no more deletions happen. In
addition, m has a parent edge to u ∈ PAT and a child edge to w ∈ PAT, the edge between
u and w is bidirectional and b(m) has correct length. Therefore, m is not deleted (see
Algorithm 5 Line 8, Line 10), the number of missing Msd nodes does not increase and
Lemma 23 follows. J

I Corollary 11. In finite time the structure of the HPT is rebuilt.

Theorem 11 follows directly as Patricia nodes are connected by bidirectional edges, no
incorrect Msd nodes or unnecessary Patricia nodes exist, and all missing Msd nodes have
been created.

Phase III – Consistency
I Lemma 6. In finite time, only key2 nodes store a key2 and only leaf nodes store an r

value. Every key2 value stored at a Patricia node v points to a leaf w with b(v) @ b(w) and
every r value stored at a Patricia node w points to a key2 node v with b(v) @ b(w).

Proof. The lemma is correct by the correctness of Lemma 24 and Lemma 25. J

I Lemma 24. In finite time, only key2 nodes store a key2 and only leaf nodes store an r

value.

Proof. Consider a Patricia node v which is no key2 node but stores a key2. In finite time,
v is checked and sets key2(v) = nil (see Algorithm 2 Line 16). No v ∈ PAT which is not a
key2 node starts to store a key2 due to our protocol (see Algorithm 6 Line 18, Line 22).

Consider a Patricia node v which is not a leaf node but stores an r value. v sets r(v) = nil

in finite time (see Algorithm 2 Line 18, Line 20). No inner node stores an r value based on
the protocol (see Algorithm 6 Line 8, Line 13). J

I Lemma 25. In finite time, every key2 value stored at v ∈ PAT refers to a leaf node below
v and every r value stored at w ∈ PAT refers to a key2 node above w.

30 A Self-Stabilizing Hashed Patricia Trie

Proof. According to Lemma 24, in finite time only inner nodes with two children store key2
values and only leaf nodes store r values. When a node v ∈ PAT detects that key2(v) is not
the label of a leaf node below it, such a reference is deleted (see Algorithm 2 Line 16 and
Algorithm 6 Line 6). Also, when a leaf node v detects that r(v) is not the label of a key2
node above it, r(v) is set to nil (see Algorithm 2 Line 18 and Algorithm 6 Line 16). Nodes
which are not key2 nodes are not considered when propagating keys and only labels of leaf
nodes are propagated using parent edges only (see Algorithm 6 Line 13, Line 18). Also,
key2 nodes only acquire key2 values that point to leaf nodes below them (see Algorithm 6
Line 10). Therefore, the state described in the lemma is reached. J

I Lemma 7. In finite time, all key2 nodes store a stable key2 and all leaf nodes store a
stable r value. For every key2 node v, the node w with b(w) = key2(v) is a leaf node with
r(w) = b(v).

Proof. The lemma follows from Lemma 26 and Lemma 27. J

I Lemma 26. Let φ9 = maxv∈K |b(v)|, where:

K ={v ∈ PAT |Children(v) = 2 or v = root}
∩ {v ∈ PAT | key2(v) = nil or ∃w ∈ PAT : key2(w) = key2(v), b(v) @ b(w)}.

K is the set of all key2 nodes not storing a key2 that stays. φ9 is a potential function.

Proof. Let T = {v ∈ K | |b(v)| = φ9}. We will show that |T | is reduced and never increases
as long as φ9 stays the same. Further, φ9 does not increase. When |T | reaches zero, φ9 is
reduced. As a result, the lemma follows.

Consider v ∈ T . If key2(v) 6= nil, then there has to be a node w with key2(w) = key2(v)
and b(v) @ b(w). Since v ∈ T , exactly one such node w exists. In finite time, w checks
u := key2(w) and sets r(u) = w (see Algorithm 6 Line 8). Afterwards, v detects that
b(v) @ r(u) and sets key2(v) = nil (see Algorithm 6 Line 6). So, assume key2(v) = nil.
Due to Fact 1, there is a leaf node u below v, such that either (a) no inner node stores
b(u) as a key2, or (b) some key2 node w with b(w) @ b(v) has key2(w) = b(u). Let w be
maximal considering |b(w)|. In (a) it holds that b(u) is in finite time presented to v, because
b(v) @ b(u) and every node between v and u already stores a key2 (see Algorithm 6 Line 22).
In (b) b(w) @ b(v) @ b(u) holds and a message from v reaches w in finite time such that v
sets b(u) as key2 (see Algorithm 6 Line 10). In any case, |T | reduces.

No node v with |b(v)| > φ9 deletes its key2(v), because this only happens if there is
a node w with b(v) @ b(w) and key2(w) = key2(v) which is not the case by definition.
Therefore, φ9 is never increased. Since no node with a legitimate key2 drops this value, no
deletions happen (Lemma 15), and there is no node v ∈ K with |b(v)| > φ9, |T | is never
increased until it reaches zero. Hence, the lemma follows. J

I Lemma 27. Let φ10 = |R|, where:

R = {v ∈ PAT |Children(v) = 0, r(v) = nil or key2(r(v)) 6= b(v)} \ {root}.

R denotes the set of leaf nodes without an r value that stays stable. φ10 is a potential
function.

T. Knollmann and C. Scheideler 31

Proof. Assume that we reached a state where every inner node has a stable key2 (Lemma 26).
Consider a node v ∈ R. If r(v) 6= nil and key2(r(v)) 6= b(v), then v sets r(v) = nil in fi-
nite time (see Algorithm 6 Line 16). If r(v) = nil, then there must be a node w with
key2(w) = b(v). This node will correct r(v) in finite time to r(v) = w leading to a reduction
of φ10 (see Algorithm 6 Line 16). Furthermore, no node v ∈ PAT with Children(v) = 0 and
key2(r(v)) = b(v) will delete r(v) and the key2 values stay fixed according to the closure of
Lemma 26. Hence, φ10 is never increases. Fact 1 assures that R is empty in finite time. J

32 A Self-Stabilizing Hashed Patricia Trie

C Overhead Proof

I Theorem 5. When the HPT is in a legal state, SHPT creates a constant number of hash
table (read) accesses and messages per call of Timeout at each DHT node.

Proof. On a call of Timeout, exactly one HPT node is checked per DHT node. This
HPT node v has at most three edges provided by p−(v), p0(v) and p1(v), and one reference
provided by either key2(v) or r(v). In total, no more than four nodes may be (partially)
acquired using the DHT. Furthermore, Linearization presents v to at most three other
nodes. When the HPT is in a legal state, no reinsertion, no presenting of b(v) as a key2
value and no searching of other key2 values is done. Hence, we have Θ(1) created hash table
accesses and messages at a DHT node. J

I Theorem 6. Let d be the number of bits needed to store all keys. The total memory used
by a HPT in a legal state is in Θ(d) bits.

Proof. In [14] it was mentioned that the HPT needs Θ(d) memory space if d =
∑

k∈KEYS |k|
is the number of bits needed to store all keys. The modifications we made do not change
the number of Patricia nodes and Msd nodes. Our protocol rebuilds the structure of the
HPT and deletes every unnecessary Patricia node as well as every incorrect Msd node (see
Lemma 13 and Lemma 22). Thus, the rebuilt HPT has an asymptotically optimal memory
demand of Θ(d) bits. J

	1 Introduction
	1.1 Model
	1.2 Related Work
	1.3 Our Contribution

	2 Hashed Patricia Trie
	3 The SHPT Protocol
	3.1 Properties of the DHT
	3.2 Correcting Edge Information
	3.3 Maintaining Connections
	3.4 Removal/Creation of Nodes
	3.5 Distribution of References to Keys

	4 Protocol Analysis
	4.1 Correctness
	4.1.1 Phase I – Deletion of Patricia nodes
	4.1.2 Phase II – Reconstruction
	4.1.3 Phase III – Consistency

	4.2 Overhead

	A Pseudocode
	B Correctness Proof
	C Overhead Proof

