
Weighted Parsing for
Grammar-Based Language Models

over Multioperator Monoids

Richard Mörbitz and Heiko Vogler
Technische Universität Dresden, Germany

November 18, 2019

We develop a general framework for weighted parsing which is built on top of grammar-
based language models and employs multioperator monoids as weight algebras. It generalizes
previous work in that area (semiring parsing, weighted deductive parsing) and also covers
applications outside the classical scope of parsing, e.g., algebraic dynamic programming. We
show an algorithm for weighted parsing and, for a large class of weighted grammar-based
language models, we prove formally that it terminates and is correct.

1

ar
X

iv
:1

91
1.

06
58

5v
1

 [
cs

.F
L

]
 1

5
N

ov
 2

01
9

Contents

1. Introduction 4

2. Preliminaries 8
2.1. Basic mathematical notions . 8
2.2. Universal algebra . 10
2.3. Monoids, semirings, and M-monoids . 13
2.4. Regular tree grammars . 16

3. Weighted RTG-based language models and the M-monoid parsing problem 16
3.1. Weighted RTG-based language models . 16
3.2. M-monoid parsing problem . 17
3.3. Comparison with interpreted regular tree grammars (IRTG) 20

4. Classes of weighted RTG-based language models 21
4.1. Classes of RTG-based language models . 22

4.1.1. The CFG-algebras and context-free grammars 22
4.1.2. The LCFRS-algebras and linear context-free rewriting systems 23
4.1.3. TAG-algebras and tree-adjoining grammars . 24
4.1.4. Yield-algebras and yield grammars . 28
4.1.5. Further classes of RTG-based language models 28
4.1.6. Summary of considered classes of RTG-LMs . 28

4.2. Classes of weight algebras . 28
4.2.1. M-monoids that are associated with semirings 29
4.2.2. Superior M-monoids . 30
4.2.3. Further classes of complete M-monoids . 31
4.2.4. Summary of considered classes of M-monoids . 31

4.3. Closed weighted RTG-based language models . 31
4.3.1. Definition of closed weighted RTG-based language models 32
4.3.2. Properties of closed weighted RTG-based language models 33

5. Two particular M-monoid parsing problems 34
5.1. Intersection of a grammar and a syntactic object . 34
5.2. Algebraic dynamic programming . 35

6. M-monoid parsing algorithm 39
6.1. Weighted deduction systems . 39
6.2. Value computation algorithm . 44

7. Termination and correctness of the M-monoid parsing algorithm 44
7.1. Properties of the value computation algorithm . 45

7.1.1. Termination of the value computation algorithm 46
7.1.2. Correctness of the value computation algorithm 48

7.2. Properties of the M-monoid parsing algorithm . 49

8. Application scenarios 50
8.1. Value computation algorithm . 50
8.2. M-monoid parsing algorithm . 51
8.3. Complexity . 52

List of abbreviations 54

2

Index 55

References 57

A. Additional proofs 60
A.1. Proofs of statements from the preliminaries . 60
A.2. Superior M-monoids . 62
A.3. Best derivation M-monoid is distributive and d-complete 63
A.4. N-best M-monoid is distributive and d-complete . 64
A.5. Definition of closed weighted RTG-based language models 65
A.6. Properties of closed weighted RTG-based language models 66
A.7. Intersection is an instance of the M-monoid parsing problem 70
A.8. ADP algebra is a d-complete and distributive M-monoid 72
A.9. ADP is an instance of the M-monoid parsing problem 76
A.10. Each weight-preserving weighted deduction system is sound and complete 77
A.11. The canonical weighted deduction system is weight-preserving 78
A.12. Applying the canonical weighted deduction system to nonlooping wRTG-LMs yields

acyclic wRTG-LMs . 78
A.13. General statements about Algorithm 6.1 . 79
A.14. Termination of Algorithm 6.1 . 80
A.15. Correctness of Algorithm 6.1 . 82
A.16. Termination and correctness of the M-monoid parsing algorithm 83
A.17. Application scenarios employ closed wRTG-LMs . 84
A.18. Restriction of best derivation M-monoid is necessary 88

3

1. Introduction

In natural language processing (NLP), parsing is the syntactic analysis of sentences. Given a sentence
a from some natural language L, e.g.,

a = fruit flies like bananas ,

the goal is to produce some syntactic description of a. This syntactic description can reflect three differ-
ent kinds of relationships between words occurring in a: sequence, dependency, and constituency [HS92].

Parsing is usually performed using some language model. Here we will focus on that branch of con-
stituency parsing in which the language models are provided by some kind of formal grammar, like
context-free grammars (CFG) [Cho63], linear context-free rewriting systems (LCFRS) [VWJ87], mul-
tiple context-free grammars (MCFG) [SMFK91], or tree-adjoining grammars (TAG) [JS97]. Formally,
each sentence a from the natural language L is mapped to an element of the set H of constituent trees
of some given grammar G:

parse:L →H . (constituent parsing)

In many NLP applications, it is also desirable to obtain information about a given sentence which is
different from its constituent tree. We refer to the quantity which is to be computed as parsing objective,
and we call the mapping from L to the set of parsing objectives a parsing problem. In the following,
we give some examples of parsing problems (cf. [Goo99]). First, it can be the case that some sentence
a is not grammatical according to G and therefore no constituent tree exists for it. We can answer the
question whether a sentence is grammatical or not by mapping each sentence to an element of the set
B = {tt, ff} of Boolean truth values:

parse:L → B . (recognition)

Second, natural languages are ambiguous and hence a sentence can have several constituent trees,
each representing a different meaning (cf. Figure 1). We can tell how many constituent trees there are
for some sentence by mapping it to a natural number:

parse:L → N . (number of derivations)

S

NP

NN

fruit

NNS

flies

VP

VBP

like

NP

NNS

bananas

S

NP

NN

fruit

VP

VBZ

flies

PP

IN

like

NP

NNS

bananas

Figure 1: Two constituent trees for the sentence a = fruit flies like bananas.

Our original idea to parsing is addressed by assigning to each sentence a a set of constituent trees,
i.e., an element of P(H), the powerset of H . This set is empty if a is not grammatical and otherwise
contains all constituent trees for a:

parse:L → P(H) . (set of derivations)

We note that, since H is usually infinite, a sentence can be mapped to an infinite set.

4

Third, it is usually unfeasible to work with all constituent trees of a sentence. Instead, we want
to restrict ourselves to the “most suitable” ones. This is usually done by employing a probabilistic
language model, e.g., a probabilistic context-free grammar (PCFG). With a PCFG, we can assign to
each constituent tree a probability, i.e., a value in R1

0 (the interval of real numbers between 0 and 1).
Then we can map each sentence a to the highest probability among every constituent tree for a:

parse:L → R1
0 . (best probability)

The best parse of a sentence a is the combination of the constituent tree for a having the highest
probability and this probability value. Since several constituent trees can have the same probability, it
is necessary to return a set of constituent trees:

parse:L → R1
0 × P(H) . (best derivation)

The elements of parse(a) are commonly called Viterbi parses of a. In an obvious way, one can also
compute a set of best constituent trees (best n derivations).

Instead of best probabilities, one can be interested in mapping a sentence a to the sum of the
probabilities of each constituent tree of a. The resulting value is an element of R+, the set of non-
negative real numbers.

parse:L → R+ . (string probability)

The central idea of Goodman [Goo99] is to abstract from the particular parsing problems from above
by considering the parsing problem

parse:L → K

for any complete semiring K, which he called semiring parsing problem. By choosing appropriate semir-
ings, Goodman showed that the particular parsing problems from above are instances of the semiring
parsing problem [Goo99, Figure 5]. More precisely, a complete semiring is an algebra (K,⊕,⊗, 0, 1,∑⊕),
where ⊕ (addition) and ⊗ (multiplication) are binary operations on K and

∑⊕ is an extension of ⊕
to infinitely many arguments (where ⊕, ⊗, and

∑⊕ satisfy certain algebraic laws). For the semiring
parsing problem, we assume that each rule of the grammar G (modeling L) is assigned an element of
K, called its weight. Then, for each sentence a, the value parse(a) is the addition of the weights of all
abstract syntax trees of a (using

∑⊕ if a has infinitely many abstract syntax trees); the weight of a
single abstract syntax tree is the multiplication of the weights of all occurrences of rules in that tree.

In this paper, we introduce weighted RTG-based language models (wRTG-LMs) as a new framework
for weighted parsing (where RTG stands for regular tree grammar) and define the M-monoid parsing
problem (cf. Section 3). In the following, we briefly explain these two concepts.

A wRTG-LM is as a tuple

G =
(

(G, (L, φ)), (K,⊕, 0, Ω,∑⊕), wt
)

where

• G is an RTG [Bra69] and (L, φ) is a language algebra,

• (K,⊕, 0, Ω,∑⊕) is a complete M-monoid [Kui99], called weight algebra, and

• wt maps each rule of G to an operation from Ω.

Let us explain these components.
We call the tuple (G, (L, φ)) RTG-based language model (RTG-LM) and its meaning is based on the

initial algebra semantics approach of Goguen, Thatcher, Wagner, and Wright [GTWW77] as follows.
The RTG G generates a set of trees. Each generated tree is evaluated in the language algebra (L, φ)
to a syntactic object a, i.e., an element of the modeled language L; in this sense, the tree describes
the grammatical structure of a. For instance, if L is a natural language, then its sentences (if viewed
as sequences of words) are the yields of such trees. As another example, L could be a set of trees or
a set graphs, and then each tree generated by G represents the structures of such a syntactic object.

5

Moreover, each grammar of the above mentioned classes (e.g., CFG, LCFRS, MCFG, and TAG) can
be formalized as an RTG-LM.

Complete M-monoids can be understood as a generalization of complete semirings in the sense that
the multiplication ⊗ is replaced by a set Ω of finitary operations. Then each rule r of G is assigned
an operation wt(r) ∈ Ω, and the weight of an abstract syntax tree of G is obtained by evaluating the
corresponding term over operations in the M-monoid (similar to the evaluation of arithmetic expres-
sions). For example, each complete semiring can be viewed as a complete M-monoid by embedding the
multiplication into Ω. Moreover, complete M-monoids can be used for parsing objectives beyond the
above mentioned ones. For instance, the intersection of a fixed CFG and a sentence a from a corpus is
used in EM training [DLR77] of PCFGs [Bak79; LY90; NS08], and this intersection may be viewed as a
parsing objective. Thus, the set K of parsing objectives is a set of CFGs and the set Ω contains opera-
tions which combine a number of CFGs into a single CFG (according to the construction of Bar-Hillel,
Perles, and Shamir [BPS61]). As another example, the objectives of an algebraic dynamic programming
(ADP) [GMS04] problem can be viewed as parsing objectives. Then the operations of the corresponding
complete M-monoid combine partial solutions to solutions of larger subproblems. Examples of ADP
problems are computing the minimum edit distance or optimal matrix chain multiplication. Hence
complete M-monoids form a very flexible class of weight algebras.

Now we turn to the second concept: the M-monoid parsing problem. It is defined as follows.

Given:

(i) a wRTG-LM
(
(G, (L, φ)), (K,⊕, 0, Ω, ψ,∑⊕),wt

)
and

(ii) an a ∈ L,

Compute: parse(a) =
∑⊕

d∈AST(G,a)

wt(d)K .

where

• AST(G, a) is the set of all abstract syntax trees (AST) generated by G that evaluate in the
language algebra (L, φ) to a,

• wt(d) is the tree over operations obtained from d by replacing each occurrence of a rule by wt(r),

• wt(d)K is the evaluation of wt(d) in the weight algebra (K,⊕, 0, Ω, ψ,∑⊕).

By our considerations from above, the semiring parsing problem is an instance of the M-monoid
parsing problem (cf. Section 4.2.1). This holds also true for the computation of the intersection of a
gammar and a sentence (cf. Section 5.1) and each ADP problem (cf. Section 5.2).

We also propose an algorithm to solve the M-monoid parsing problem under certain conditions, and
we call our algorithm the M-monoid parsing algorithm (cf. Section 6). Here we are faced with the
difficulty that the sum ∑⊕

d∈AST(G,a)

wt(d)K

can have infinitely many summands (infinite sum). Clearly, this cannot be done by a naive terminating
algorithm. Hence the applicability of our M-monoid parsing problem is restricted to cases in which the
infinite sum coincides with some finite sum (cf. Theorem 4.13). In the literature on weighted parsing,
a few algorithms which are limited to specific weighted parsing problems have been investigated.

• The semiring parsing algorithm has been proposed by Goodman [Goo99] to solve the semiring
parsing problem. It is a pipeline with two phases. The first phase takes as input a context-free
grammar, a deduction system [SSP95], and a syntactic object a and computes a context-free
grammar G′ (using a construction idea of [BPS61]). The second phase takes G′ as input and
attempts to calculate parse(a) (see above). Since, in general, parse(a) is an infinite sum, this
only succeeds if G′ is acyclic. Goodman states that in applications, this computation needs to be
replaced by instructions specific to the used semiring.

6

- wRTG-LM
((𝐺, ℒ), 𝕂, wt)

- 𝑎 ∈ ℒ

canonical
weighted
deduction
system

wRTG-LM
((𝐺′, CFG∅), 𝕂, wt′)

value
computation
algorithm

𝑉 (𝐴′
0) =

∑⊕

𝑑∈AST(𝐺′)

wt′(𝑑)𝕂 parse(𝑎)=

M-monoid parsing algorithm

Figure 2: Two-phase pipeline for solving the M-monoid parsing problem (A′0 is the initial nonterminal
of G′).

• The weighted deductive parsing algorithm by Nederhof [Ned03] addresses this problem by restrict-
ing itself to weighted parsing problems where the weight algebra is superior (cf. Section 4.2.2).
Nederhof’s algorithm is a two-phase pipeline, too, where the first phase is the same as in Good-
man’s approach (but allowing more flexible deduction systems). In the second phase, he em-
ploys the algorithm of Knuth [Knu77], which is a generalization of Dijkstra’s shortest path algo-
rithm [Dij59]. This also works in cases where G′ is cyclic.

• The single source shortest distance algorithm by Mohri [Moh02] is applicable to graphs of which the
edges are weighted with elements of some semirings that is closed for the graph (cf. Section 4.3.1).
This is a much weaker restriction than acyclicity or superiority. While Mohri’s algorithm is not
a parsing algorithm, it can be used in the second phase as an alternative to Knuth’s algorithm if
the CFG G′ is non-branching, i.e., a linear grammar [Kha74, Def. 1].

In the same way as the algorithms of Goodman and Nederhof, our M-monoid parsing algorithm is
also a two-phase pipeline (cf. Figure 2). The inputs are a wRTG-LM G and a syntactic object a. In
the first phase, we use the canonical weighted deduction system to compute a new wRTG-LM G′ (cf.
Section 6.1). This is similar to the first phases of Goodman and Nederhof, but our deduction system
always reflects the CYK algorithm instead of being an additional input. In the second phase, we employ
our value computation algorithm (cf. Section 6.2). It is a generalization of Mohri’s algorithm, which
is in spirit of Knuth’s generalization of Dijkstra’s algorithm. Thus the M-monoid parsing algorithm is
applicable to every closed wRTG-LM, which includes the cases in which the algorithms of Goodman
and Nederhof are applicable.

In this paper, we formally prove the following results concerning the M-monoid parsing algorithm.

• The value computation algorithm terminates for every closed wRTG-LM as input (Theorem 7.6).

• The value computation algorithm is correct for every closed wRTG-LM as input (Corollary 7.9).

• The M-monoid parsing algorithm terminates and is correct for every closed wRTG-LM with finitely
decomposable language algebra and for every nonlooping wRTG-LM with finitely decomposable
language algebra as input (Theorem 7.11).

These proofs are based on two fundamental results on closed wRTG-LMs (Theorem 4.11 and Theo-
rem 4.13). Moreover, we prove that several classes of wRTG-LMs are closed (Theorems 8.1 and 8.2).
We show that the two advanced parsing problems from above are indeed instances of the M-monoid
parsing problem:

• Computing the intersection of a grammar and a syntactic object is an M-monoid parsing problem
(Theorem 5.1).

• Every ADP problem is an M-monoid parsing problem (Theorem 5.5).

Finally, we prove that the M-monoid parsing algorithm is applicable to six particular classes of wRTG-
LMs (Corollary 8.3).

The key ideas and main results of this article were presented at FSMNLP 2019 [MV19]. This paper
is self-contained in the sense that we recall all necessary definitions and we provide full proofs of each
result. These characteristics are the reason for the length of the paper. Those readers who are familiar
with universal algebra and regular tree grammars may skip the preliminaries on first reading and consult
them on demand. With a few exceptions, we have placed the proofs of the statements into appendices;
so, for those readers who are not so much interested in them can read more smoothly through the text.

7

2. Preliminaries

2.1. Basic mathematical notions

Number sets. We denote the set of natural numbers including 0 by N and the set of real numbers by R.
The usual addition and multiplication on N and R are denoted by + and ·, respectively. Furthermore,
we define the following sets:

• N+ = N \ {0} (the set of natural numbers without 0),

• R+ = {x ∈ R | x ≥ 0} (the set of non-negative real numbers),

• R1
0 = {x | x ∈ R and 0 ≤ x ≤ 1} (the set of real numbers between 0 and 1), and

• R∞0 = {x | x ∈ R and x ≥ 0} ∪ {∞} (the set of non-negative real numbers with infinity), where
we extend the usual addition and multiplication in the following way to operate with ∞:

r +∞ =∞ (for every r ∈ R∞0)

r · ∞ =∞ (for every r ∈ R∞0 \ {0})
∞ · 0 = 0 .

For every j, k ∈ N, we denote the set {j, . . . , k} ⊆ N by [j, k]. Furthermore, we write [k] rather than [1, k].

Boolean set. Let tt denote true and ff denote false. We define B = {tt, ff} (the Boolean set).

Sets, binary relations, orders, and families. In the following let A, B, and C be sets. We denote the
cardinality of A by |A|. The power set of A is denoted by P(A). If A contains exactly one element,
then we identify A with its element. We say that C is the disjoint union of A and B, denoted by
C = A ∪̇B, if C = A ∪B and A ∩B = ∅.

A binary relation on A and B is a subset R of A× B. Let a ∈ A and b ∈ B. We write aRb instead
of (a1, a2) ∈ R. For each A′ ⊆ A we define R(A′) = {b ∈ B | a ∈ A′, aRb}. The inverse relation of R is
the relation R−1 = {(b, a) | aRb} on B and A.

We call R right-unique (and functional), if |{b | aRb}| ≤ 1 (resp., |{b | aRb}| = 1) for every a ∈ A.
Usually, a right-unique relation (and a functional relation) on A and B is called partial function (resp.,
mapping) and it is denoted by f :A →p B (resp., f :A → B). Since we identify a set with one element
with this element, we write f(a) = b rather than f({a}) = {b} for a mapping f . A mapping f :A→ B
is

• injective, if |f−1(b)| ≤ 1 for every b ∈ B,

• surjective, if |f−1(b)| ≥ 1 for every b ∈ B, and

• bijective, if it is both injective and surjective.

Let k ∈ N, A1, . . . , Ak be sets and g:A1 × · · · ×Ak → A be a mapping. The extension of g to sets is
the mapping ĝ:P(A1)× · · · × P(Ak)→ P(A), which is defined for every F1 ⊆ A1, . . . , Fk ⊆ Ak as

ĝ(F1, . . . , Fk) = {g(a1, . . . , ak) | a1 ∈ F1, . . . , ak ∈ Fk} .

In the sequel, we will denote the extension also by g.
An endorelation on A is a binary relation on A and A. The identity relation on A, denoted by id(A),

is the endorelation on A which is defined as id(A) = {(a, a) | a ∈ A}. Let a, b ∈ A and k ∈ N. We
write aRkb if there are a1, . . . , ak ∈ A such that aRa1, a1Ra2, . . . , ak−1Rak, akRb. In particular, aR0a
for every a ∈ A.

In the following let R ⊆ A×A be an endorelation on A. We call R

• reflexive, if id(A) ⊆ R,

• transitive, if a1Ra2 and a2Ra3 implies a1Ra3 for every a1, a2, a3 ∈ A,

• antisymmetric, if a1Ra2 and a2Ra1 implies a1 = a2 for every a1, a2 ∈ A,

8

• total, if a1Ra2 or a2Ra1 for every a1, a2 ∈ A, and

• well-founded, if for each non-empty subset B ⊆ A there is an element b ∈ B such that for each
element b′ ∈ B it is not true that b′Rb holds.

The transitive closure of R, denoted by R+, is the smallest transitive endorelation R′ on A such
that R ⊆ R′. The reflexive and transitive closure of R, denoted by R∗, is the smallest reflexive and
transitive endorelation R′ on A such that R ⊆ R′.

We call (A,R)

• a partial order, if R is reflexive, antisymmetric, and transitive.

• a total order, if (A,R) is a partial order and R is total.

In the following, if we deal with a partial order, then we will use the symbol � rather than R.
Moreover, as a convention, we denote �−1 by �.

In the following let (A,�) be a partial order. The strict ordering relation induced by � is the binary
relation ≺ = � \ id(A).

We say that (A,�) is

• a well-partial order, if (A,�) is a partial order and the strict ordering relation induced by � is
well-founded.

• a well-order, if (A,�) is a total and well-partial order.

Example 2.1. The natural order on pairs of natural numbers, ≤ ⊆ N2, is defined as follows: for every
(a1, b1), (a2, b2) ∈ N2, (a1, b1) ≤ (a2, b2) if one of the following holds:

(i) a1 < a2, or

(ii) a1 = a2 and b1 ≤ b2.

We point out that (N2,≤) is a well-order. This statement is proved in Appendix A.1. �

Lemma 2.2. For every partial order (A,�), n ∈ N, and a1, . . . , an ∈ A the following holds: if a1 �
· · · � an and a1 = an, then a1 = · · · = an.

Proof. For the proof of Lemma 2.2, we refer to Appendix A.1. �

In the following let (A,�) be a partial order and let X ⊆ A. If there is an a ∈ A such that for every
b ∈ X we have a � b, then a is a lower bound of X. If, additionally, for every lower bound a′ of X it
holds that a′ � a, then a is the infimum of X, denoted by inf�X. If inf�X ∈ X, then inf�X is the
minimum of X, denoted by min�X.

Dually, if there is an a ∈ A such that for every b ∈ X we have b � a, then a is an upper bound of X.
If, additionally, for every upper bound a′ of X it holds that a � a′, then a is the supremum of X,
denoted by sup�X. If sup�X ∈ X, then sup�X is the maximum of X, denoted by max�X.

Let B be a set, X ⊆ B, and f :B → A be a mapping. We define

arg min�
a∈X

f(a) = {a ∈ X | f(a) � f(a′) for every a′ ∈ X}

arg max�
a∈X

f(a) = {a ∈ X | f(a′) � f(a) for every a′ ∈ X} .

If the partial order (A,�) is clear from the context, then we will drop � from inf�, sup�, min�, max�,
arg min�, and arg max� and we will simply write inf, sup, min, max, arg min, and arg max, respectively.
If A = {ι1, ι2} for two arbitrary elements ι1 and ι2, then we write min(ι1, ι2) and max(ι1, ι2) rather
than min{ι1, ι2} and max{ι1, ι2}, respectively.

In the following let I be a countable set (index set) and A be a set. An I-indexed family over A
(or: family over A) is a mapping f : I → A. As usual, we represent each I-indexed family f over A
by (f(i) | i ∈ I) and abbreviate f(i) by fi. The set of all I-indexed families over A is denoted by AI .
Let J be a countable index set. A J-partition of I is a J-indexed family (Ij | j ∈ J) over P(I), where
(i)
⋃
j∈J Ij = I, and (ii) Ij ∩ Ij′ = ∅ for every j, j′ ∈ J with j 6= j′.

9

Strings and formal languages. In the following let A be a set and k ∈ N. The set of strings of length k
over A is the set Ak = {a1 . . . ak | a1, . . . , ak ∈ A}. In particular, A0 = {ε}, where ε denotes the empty
string. The set of strings over A is the set A∗ =

⋃
i∈NA

i.
Note that in our notation, we make no difference between the set of strings of length k over A and

the k-fold Cartesian product A× · · · ×A︸ ︷︷ ︸
k times

, which is also denoted by Ak. Thus, for k = 0, we identify ε

and ().
Let w ∈ A∗ with w = w1 . . . wk, for some k ∈ N and wi ∈ A for every i ∈ [k]. The length of w,

denoted by |w|, is k, i.e., |w| = k. For every i, j ∈ [k] we denote the (i, j)-slice of w by wi..j = wi . . . wj .
Let w′ ∈ A∗ be another string such that w′ = w′1 . . . w

′
k′ for some k′ ∈ N and w′1, . . . , w

′
k′ ∈ A. The

concatenation of w and w′, denoted by w ◦ w′, is the string w1 . . . wkw
′
1 . . . w

′
k′ . We usually leave out

the operation symbol and just write ww′ rather than w ◦ w′.
Let w,w′ ∈ A∗. If there are u, v ∈ A∗ such that w = uw′v, then w′ is a substring of w, u is a prefix

of w, which we denote by u�pref w, and v is a suffix of w.
If the set A is nonempty and finite, then we call it alphabet. If A is an alphabet, then each subset

of A∗ is called formal language over A. Let L,L′ ⊆ A∗. The concatenation of L and L′ is the formal
language

L ◦ L′ = {ww′ | w ∈ L and w′ ∈ L′} .

2.2. Universal algebra

Sorts and signatures. Let S be a set (sorts). An S-sorted set is a tuple (A, sort), where A is a set
and sort:A→ S is a mapping. Let s ∈ S, then we denote the set sort−1(s) by As.

We call (A, sort) empty (respectively, nonempty, finite, and infinite) if A is so. An S-sorted alphabet
is a nonempty and finite S-sorted set. An S-sorted set (B, sort′) is a subset of (A, sort), if B ⊆ A
and sort′(b) = sort(b) for every b ∈ B. Let (A, sort) and (B, sort′) be two S-sorted sets. A mapping
f : A→ B is called sort-preserving if f(As) ⊆ Bs for each s ∈ S. Moreover, let (A1, sort1) be a subset
of (A, sort). The restriction of f to A1 is the mapping f |A1 : A1 → B such that f |A1(a) = f(a) for each
a ∈ A1.

A ranked set is an N-sorted set. By convention, we call its mapping rk rather than sort, i.e., rk:A→ N.
Each (S∗ × S)-sorted set (Σ, sort) can be viewed as the ranked set (Σ, rk) where for every k ∈ N,
s, s1, . . . , sk ∈ S, and σ ∈ Σ(s1...sk,s) we define rk(σ) = k. On the other hand, every ranked set (A, rk)
can be considered as an (S∗ × S)-sorted set for some set S of sorts with |S| = 1. A ranked alphabet is
a nonempty and finite ranked set.

For each (S∗×S)-sorted set Σ we define a mapping trg:Σ → S such that trg(σ) = s if σ ∈ Σ(s1...sk,s).
Moreover, for each s ∈ S, we denote the set trg−1(s) by Σs.

We often denote an S-sorted set (A, sort) and a ranked set (A, rk) only by A; then the mappings will
be denoted by sortA and rkA, respectively.

In the rest of this paper, if S and Σ are unspecified, then they stand for an arbitrary set of
sorts and an arbitrary (S∗ × S)-sorted set, respectively. Moreover, for the sake of brevity,
whenever we write “σ ∈ Σ(s1...sk,s)”, then we mean that k ∈ N and s, s1, . . . , sk ∈ S.

S-sorted algebras and S-sorted Σ-homomorphisms. Sorted algebras have been introduced by [Hig63].
We use the notation of [GM85] and also refer to [GTWW77].

An S-sorted Σ-algebra (or: algebra) is a pair (A, φ), where A is an S-sorted set (carrier set) and φ
is a mapping from Σ to operations on A (interpretation mapping) such that the following condition
holds: for every σ ∈ Σ(s1...sk,s) we have φ(σ) : As1 × · · · × Ask → As. If |S| = 1, then we call (A, φ)
simply Σ-algebra. For every a ∈ A we let

factors(a) = {b ∈ A | b(<factor)
∗a}

10

where for every a, b ∈ A, b <factor a (b is a factor of a) if there are a k ∈ N and a σ ∈ Σk such
that b occurs in some tuple (b1, . . . , bk) with φ(σ)(b1, . . . , bk) = a. We call (A, φ) finitely decompos-
able [Kla84, Def. 1.15] if factors(a) is finite for every a ∈ A. We note that, in particular, for every
finitely decomposable S-sorted Σ-algebra (A, φ), σ ∈ Σ, and a ∈ L, the set φ(σ)−1(a) is finite.

Let (A, φ) and (B, ψ) be S-sorted Σ-algebras. Moreover, let h : A → B be a sort-preserving mapping.
We call h an S-sorted Σ-homomorphism (from (A, φ) to (B, ψ)), if for every σ ∈ Σ(s1...sk,s) and a1 ∈
As1 , . . . , ak ∈ Ask it holds that

h(φ(σ)(a1, . . . , ak)) = ψ(σ)(h(a1), . . . , h(ak)) .

If we write h : (A, φ) → (B, ψ), then we mean that h is an S-sorted Σ-homomorphism from (A, φ) to
(B, ψ).

S-sorted Σ-term algebra. In the following let X be a countable S-sorted set. The set of trees over Σ
and X, denoted by TΣ(X), is the smallest S-sorted set T such that

(i) Xs ⊆ Ts for every s ∈ S, and

(ii) for every σ ∈ Σ(s1...sk,s) and t1 ∈ Ts1 , . . . , tk ∈ Tsk we have σ(t1, . . . , tk) ∈ Ts.
If X = ∅, we write TΣ instead of TΣ(X). If σ ∈ Σ with rk(σ) = 0, then we abbreviate the tree σ()
by σ.

In the rest of this paper, if we write “t has the form σ(t1, . . . , tk)”, then we mean that there
are σ ∈ Σ(s1...sk,s) and t1 ∈ TΣ(X)s1 , . . . , tk ∈ TΣ(X)sk such that t = σ(t1, . . . , tk).

We note that for each t ∈ TΣ(X) the choices of k ∈ N, s, s1, . . . , sk ∈ S, σ ∈ Σ(s1...sk,s), and t1 ∈
Ts1 , . . . , tk ∈ Tsk such that t = σ(t1, . . . , tk) are unique.

The S-sorted Σ-term algebra over X is the S-sorted Σ-algebra (TΣ(X), φΣ), where for every σ ∈
Σ(s1...sk,s) and ti ∈ (TΣ(X))si with i ∈ [k] we define φΣ(σ)(t1, . . . , tk) = σ(t1, . . . , tk).

Theorem 2.3 (cf. [GTWW77, Prop. 2.6]). Let (A, φ) be an S-sorted Σ-algebra. If h : X → A is

a sort-preserving mapping, then there exists a unique S-sorted Σ-homomorphism h̃ : (TΣ(X), φΣ) →
(A, φ) extending h, i.e., such that h̃|X = h. Thus, in particular, there exists a unique S-sorted Σ-
homomorphism g : (TΣ , φΣ)→ (A, φ).

For a string u = s1 . . . sn with n ∈ N and si ∈ S we let Xu = {x1,s1 , . . . , xn,sn} be a set of variables.
The set Xu can be viewed as an S-sorted set with (Xu)s = {xi,si | si = s}. Let (A, φ) be an S-sorted Σ-
algebra and t ∈ TΣ(Xu)s for some s ∈ S. The t-derived operation on A, denoted by tA, is the operation

tA:As1 × . . .×Asn → As defined by tA(a1, . . . , an) = h̃(t) where h:Xu → A with h(xi,si) = ai.
Obviously, for each t ∈ TΣ(Xε)s (i.e., t ∈ (TΣ)s), tA: {()} → As. We abbreviate tA() by tA. Then

tA = g(t) where g : (TΣ , φΣ)→ (A, φ) is the unique Σ-homomorphism.

Observation 2.4 (cf. [GTWW77, Prop. 2.5]). Let (A, φ) be a Σ-algebra. Then for every k ∈ N,
t ∈ TΣ(Xk), and t1, . . . , tk ∈ TΣ it holds that

(tTΣ (t1, . . . , tk))A = tA
(
(t1)A, . . . , (tk)A

)
.

We remark that an extension of this result to S-sorted Σ-algebras is straightforward.
Now let ∆ be another (S∗ × S)-sorted set. Moreover, we let h:Σ → T∆(X) such that, for each

σ ∈ Σ(s1...sk,s), we have h(σ) ∈ T∆(Xu)s with u = s1 . . . sk. Then we define the Σ-algebra (T∆, φh)
such that for every σ ∈ Σ(s1...sk,s) we let φh(σ) = h(σ)(T∆,φ∆), i.e., the h(σ)-derived operation on the
∆-term algebra (T∆, φ∆). Then we call the unique Σ-homomorphism from (TΣ , φΣ) to (T∆, φh) the
S-sorted tree homomorphism induced by h.

In the particular case that for every σ ∈ Σ(s1...sk,s) there is a δ ∈ ∆(s1...sk,s) such that h(σ) =
δ(x1,s1 , . . . , xk,sk), we call the S-sorted tree homomorphism induced by h the S-sorted tree relabeling
induced by h.

If |S| = 1, then we call an S-sorted tree homomorphism (S-sorted tree relabeling) simply tree homo-
morphism (tree relabeling, respectively).

11

Useful functions on trees. Let t ∈ TΣ(X). The set pos(t) ⊆ N∗ is inductively defined as follows:

pos(t) =

{
{ε} if t ∈ X
{ε} ∪

⋃k
i=1{i} ◦ pos(ti) if t has the form σ(t1, . . . , tk).

Let p ∈ pos(t). We call p a leaf if there is no k ∈ N with pk ∈ pos(t).
In order to formalize manipulations (e.g. rewriting) of trees, we introduce the following functions.

Let t ∈ TΣ(X) and p ∈ pos(t). Moreover, let s ∈ TΣ(X). We define

• the subtree of t at position p, denoted by t|p,
• the tree obtained by replacing the subtree of t at position p by s, denoted by t[s]p,

• the label of t at position p, denoted by t(p), and

• the label sequence of t from root to position p, denoted by seq(t, p),

by structural induction as follows:

• For every h ∈ X, h|ε = h, h[s]ε = s, h(ε) = h, and seq(h, ε) = h.

• If t = σ(t1, . . . , tk), then t|ε = t, t[s]ε = s, σ(t1, . . . , tk)(ε) = σ, and seq(σ(t1, . . . , tk), ε) = σ.

Moreover, for every 1 ≤ i ≤ k and p′ ∈ pos(ti), we define t|ip′ = ti|p′ ,

t[s]ip′ = σ(t1, . . . , ti−1, ti[s]p′ , ti+1, . . . , tk) ,

σ(t1, . . . , tk)(ip′) = ti(p
′), and seq(σ(t1, . . . , tk), ip′) = σ seq(ti, p

′).

Let t ∈ TΣ(X) and p, p′ ∈ pos(t) such that p�pref p
′. We define the label sequence of t from position p

to position p′, denoted by seq(t, p, p′), and the slice of t from position p to position p′, denoted by t[p, p′],
as follows:

seq(t, p, p′) = seq(t|p, p′′)
t[p, p′] = (t|p)[σ(x1,s1 , . . . , xk,sk)]p′′ ,

where p′′ ∈ pos(t) such that pp′′ = p′ and t(p′) = σ with σ ∈ Σ(s1...sk,s). Let t1 ∈ (TΣ)s1 , . . . , tk ∈
(TΣ)sk . We write t[p, p′](t1, . . . , tk) rather than (t[p, p′])TΣ (t1, . . . , tk).

We define the mapping height: TΣ(X)→ N inductively as follows:

height(t) =

{
0 if t ∈ X ∪Σ
1 + max{height(t1), . . . ,height(tk)} if t has the form σ(t1, . . . , tk) and k > 0.

Lemma 2.5. Let Σ be a ranked set and k = max{rk(σ) | σ ∈ Σ} such that k > 0. Then for each

h ∈ N it holds that |{t ∈ TΣ | height(t) ≤ h}| ≤ |Σ|(
∑h
i=0 k

i). In particular, {t ∈ TΣ | height(t) ≤ h} is
finite.

Proof. For the proof of Lemma 2.5, we refer to Appendix A.1. �

For each ∆ ⊆ Σ ∪X, we define the mapping yield∆: TΣ(X) → ∆∗ for each t ∈ TΣ(X) of the form
σ(t1, . . . , tk) as follows:

yield∆(t) =

σ if k = 0 and σ ∈ ∆
ε if k = 0 and σ 6∈ ∆
yield∆(t1) . . . yield∆(tk) if k > 0.

If ∆ = Σ ∪X, then we simply write yield rather than yield∆.

12

Cycles in trees. Let R be a ranked set and ρ ∈ R∗. We call ρ

• cyclic, if there are i, j ∈ [|ρ|] such that i < j and wi = wj ,

• acyclic, if ρ is not cyclic,

• a cycle, if |ρ| > 1 and ρ1 = ρ|ρ|,

• an elementary cycle, if ρ is a cycle and both ρ1 . . . ρ|ρ|−1 and ρ2 . . . ρ|ρ| are acyclic.

Let c ∈ N and ρ, w ∈ R∗ such that w is an elementary cycle. We say that ρ is (c, w)-cyclic if there are
v0, . . . , vc ∈ R∗ such that ρ = v0wv1 . . . wvc and for every i ∈ [0, c], w is not a substring of vi. Thus,
intuitively, ρ is (c, w)-cyclic if w repeats exactly c times in ρ. We say that ρ is c-cyclic if there is a
w ∈ R∗ such that ρ is (c, w)-cyclic and for every w′ ∈ R∗ and c′ ∈ N with c′ > c, ρ is not (c′, w′)-cyclic.

Let c ∈ N, d ∈ TR, and p1, p2, p ∈ pos(d) such that p1�pref p2�pref p and p is a leaf. We let
seq(d, p1, p2) = w. We say that p is cyclic (acyclic, (c, w)-cyclic, c-cyclic), if seq(d, p) is cyclic (resp.
acyclic, (c, w)-cyclic, c-cyclic). We say that d is acyclic, if every leaf p ∈ pos(d) is acyclic. Furthermore,
we say that d is c-cyclic, if there is a leaf p ∈ pos(d) such that p is c-cyclic and for every leaf p ∈ pos(d)
and c′ ∈ N with c′ > c, p is not c′-cyclic. For every c ∈ N, we denote the set {d ∈ TR | c′ ∈ N, c′ ≤
c, and d is c′-cyclic} by T

(c)
R .

Observation 2.6. For every c ∈ N it holds that T
(c)
R ⊆ T

(c+1)
R . Furthermore, TR =

⋃
i∈N T

(i)
R .

2.3. Monoids, semirings, and M-monoids

A monoid is a tuple (K,⊕, 0), where

• K is a set (carrier set),

• ⊕:K × K → K is a mapping such that for every k1, k2, k3 ∈ K it holds that (k1 ⊕ k2) ⊕ k3 =
k1 ⊕ (k2 ⊕ k3) (associativity), and

• 0 ∈ K such that for every k ∈ K it holds that 0⊕ k = k = k ⊕ 0 (identity element).

We call (K,⊕, 0) commutative if for every k1, k2 ∈ K it holds that k1 ⊕ k2 = k2 ⊕ k1. We call (K,⊕, 0)
idempotent if for every k ∈ K it holds that k ⊕ k = k.

We define the binary relation �⊆ K × K for every k1, k2 ∈ K as follows: k1 � k2 if there is a k ∈ K

such that k1 ⊕ k = k2.

Lemma 2.7. For every monoid (K,⊕, 0), the binary relation � on K is reflexive and transitive.

Proof. For the proof of Lemma 2.7, we refer to Appendix A.1. �

We call (K,⊕, 0) naturally ordered if � is a partial order.

Lemma 2.8. Let (K,⊕, 0) be a monoid. Then K is naturally ordered if and only if for every k1, k2, k3 ∈
K with k1 = k1 ⊕ k2 ⊕ k3 it holds that k1 = k1 ⊕ k2.

Proof. For the proof of Lemma 2.8, we refer to Appendix A.1. �

An infinitary sum operation on K is a family (
∑⊕

I
| I is a countable index set) of mappings

∑⊕
I
:KI →

K. Instead of
∑⊕

I
(ki | i ∈ I) we write

∑⊕
i∈I ki. If I is finite, then we denote

∑⊕
i∈I ki by

⊕
i∈I ki.

A complete monoid (cf. [Eil74, p. 124–125]; [Gol99, p. 247–248]; [FV18, p. 5]) is a tuple (K,⊕, 0,∑⊕),
where (K,⊕, 0) is a commutative monoid and

∑⊕ is an infinitary sum operation on K such that for
each I-indexed family (ki | i ∈ I) over K the following axioms hold:

• If I = ∅, then
∑⊕

i∈∅ ki = 0,

• If I = {j}, then
∑⊕

i∈{j} ki = kj ,

• If I = {j, j′}, then
∑⊕

i∈{j,j′} ki = kj + kj′ ,

• ∑⊕
i∈I ki =

∑⊕
j∈J

(∑⊕
i∈Ij

ki
)

for every I-indexed family (ki | i ∈ I) over K and J-partition

of I.

13

Intuitively,
∑⊕ extends ⊕ while preserving the properties of associativity, commutativity, and the

identity element 0 of ⊕. However, using the above definition of complete, certain convergence properties
of finite sums need not necessarily apply to infinite sums as well. We solve this problem by requiring
an additional property of

∑⊕ as follows.
Let (K,⊕, 0,∑⊕) be a complete commutative monoid. We call K d-complete (cf. [Kar92]), if for

every k ∈ K and family (ki | i ∈ N) of elements of K the following holds: if there is an n0 ∈ N such that
for every n ∈ N with n ≥ n0,

∑⊕
i∈N:
i≤n

ki = k, then
∑⊕

i∈N ki = k.

Lemma 2.9 (cf. [Kar92, Proposition 3.1]). Let (K,⊕, 0,∑⊕) be a complete commutative monoid.
Then the following statements are equivalent:

(i) K is d-complete,

(ii) for every k ∈ K and family (ki | i ∈ N), if k ⊕ ki = k for every i ∈ N, then

k ⊕
∑⊕
i∈N

ki = k ,

and

(iii) for every countable set I, family (ki | i ∈ I) of elements of K, and finite subset E of I the following
holds: if for every finite set F with E ⊆ F ⊆ I it holds that∑⊕

i∈E

ki =
∑⊕
i∈F

ki ,

then ∑⊕
i∈E

ki =
∑⊕
i∈I

ki .

Instead of giving a proof here, we refer the reader to [Kar92]. Although he stated this lemma for
complete semirings rather than monoids, only the properties of the semiring’s underlying monoid were
used. Thus the same proof is applicable to our lemma.

Lemma 2.10. Every d-complete monoid is naturally ordered.

Proof. For the proof of Lemma 2.10, we refer to Appendix A.1. �

A complete monoid (K,⊕, 0,∑⊕) is completely idempotent [DV14] if for every k ∈ K and index set
I we have

∑⊕
i∈I k = k.

Lemma 2.11. Every completely idempotent monoid is d-complete.

Proof. For the proof of Lemma 2.11, we refer to Appendix A.1. �

A semiring is tuple (K,⊕,⊗, 0, 1) such that

• (K,⊕, 0) is a commutative monoid and (K,⊗, 1) is a monoid,

• for every k1, k2, k3 ∈ K it holds that k1 ⊗ (k2 ⊕ k3) = (k1 ⊗ k2)⊕ (k1 ⊗ k3) and (k1 ⊕ k2)⊗ k3 =
(k1 ⊗ k3)⊕ (k2 ⊗ k3) (distributivity of ⊗ over ⊕), and

• for every k ∈ K it holds that k ⊗ 0 = 0 = 0⊗ k (absorbing element).

We call (K,⊕,⊗, 0, 1) commutative, if ⊗ is commutative. We call (K,⊕,⊗, 0, 1) naturally ordered, if
(K,⊕, 0) is naturally ordered, and idempotent, if (K,⊕, 0) is idempotent. We call ⊕ addition and ⊗
multiplication.

Example 2.12. We consider the Boolean semiring (B,∨,∧, ff, tt), where ∨ is logical disjunction and ∧
is logical conjunction. It is easy to see that B is commutative and idempotent.

Let
∑∨ be the infinitary sum operation on K defined as follows: for every countable set I and family

(ki | i ∈ I) of elements of K, if there is an i ∈ I such that ai = tt, then
∑∨

i∈I ai = tt and otherwise

14

∑∨
i∈I ai = ff. It is easy to see that (B,∨, ff,∑∨) is completely idempotent. Thus, by Lemma 2.11, K

is d-complete.
Following [Kar92, Example 3.1], we extend the Boolean semiring by∞, i.e., we consider the semiring

(B(∞),∨,∧, ff, tt), where B(∞) = B ∪ {∞} and ∨ and ∧ are extended as follows to operate with ∞:

K ∨∞ =∞ for every k ∈ B ∪ {∞}
K ∧∞ =∞ for every k ∈ {tt,∞}
k ∧ ff = ff .

We define this semiring to be commutative as well, thus its operations are fully specified. We define
the infinitary sum operation

∑∨′ such that for every family (ki | i ∈ I) over B(∞)

∑∨′
i∈I

ki =

{⊕
i∈I:ki 6=ff ki if {i ∈ I | ki 6= ff} is finite

∞ otherwise .

Then (B(∞),∨, ff,∑∨′) is complete, but not d-complete. The latter can be seen using the family

(tt | i ∈ I) over B(∞) for some infinite and countable set I. While
∑∨′

i∈E tt = tt for every finite

and nonempty subset E of I, we have that
∑∨′

i∈I tt = ∞. (In particular, B(∞) is not completely

idempotent.) �

A complete semiring (cf. [Eil74, p. 124–125]; [Gol99, p. 247–248]; [FV18, p. 5]) is a tuple
(K,⊕,⊗, 0, 1,∑⊕), where (K,⊕,⊗, 0, 1) is a semiring, (K,⊕, 0,∑⊕) is a complete monoid, and

k ⊗
(∑⊕

i∈I

ki
)

=
∑⊕
i∈I

(
k ⊗ ki

)
and

(∑⊕
i∈I

ki
)
⊗ k =

∑⊕
i∈I

(
ki ⊗ k

)
hold for every k ∈ K, countable index set I, and I-indexed family (ki | i ∈ I) over K.

A multioperator monoid (for short: M-monoid, cf. [Kui99]) is a tuple (K,⊕, 0, Ω, ψ) such that

• (K,⊕, 0) is a commutative monoid,

• (K, ψ) is an Ω-algebra for some ranked set Ω, and

• 0k ∈ Ω for every k ∈ N, where ψ(0k):Kk → K such that ψ(0k)(k1, . . . , kk) = 0 for every
k1, . . . , kk ∈ K. We call the operation 0k a null operation.

The M-monoid (K,⊕, 0, Ω, ψ) is distributive if for each ω ∈ Ω, k ∈ N, i ∈ [k], and k, k1, . . . , kk ∈ K,
the operation ψ(ω) distributes over ⊕, i.e.,

ψ(ω)(k1, . . . , ki−1, ki ⊕ k, ki+1, . . . , kk)

= ψ(ω)(k1, . . . , ki−1, ki, ki+1, . . . , kk)⊕ ψ(ω)(k1, . . . , ki−1, k, ki+1, . . . , kk)

and 0 is absorbing, i.e., ψ(ω)(k1, . . . , kk) = 0 if 0 ∈ {k1, . . . , kk}. We call (K,⊕, 0, Ω, ψ) naturally
ordered, if (K,⊕, 0) is naturally ordered, and idempotent, if (K,⊕, 0) is idempotent.

In the following, we will often identify ω ∈ Ω with ψ(ω). Then we will omit the mapping ψ from the
tuple (K,⊕, 0, Ω, ψ) and simply write (K,⊕, 0, Ω). Also, for the sake of convenience, we will omit in
examples and constructions the explicit specification of the null operations 0k in the definition of Ω.

A complete M-monoid is a tuple (K,⊕, 0, Ω,∑⊕), where (K,⊕, 0, Ω) is an M-monoid and
(K,⊕, 0,∑⊕) is a complete monoid. A complete M-monoid (K,⊕, 0, Ω) is d-complete (completely
idempotent) if (K,⊕, 0,∑⊕) is d-complete (completely idempotent).

As usual, we will identify any algebra defined in this section with its carrier set K, whenever
the type of the algebra is clear from the context.

15

2.4. Regular tree grammars

An S-sorted regular tree grammar (for short: S-sorted RTG) is a tuple G = (N,Σ,A0, R), where

• N is an S-sorted alphabet (nonterminals)

• Σ is an (S∗ × S)-sorted alphabet such that N ∩Σ = ∅ (terminals),

• A0 ∈ N (initial nonterminal), and

• R is a finite (N∗ ×N)-sorted set (set of rules) such that R ⊆ (N ×TΣ(N)) and for every k ∈ N,
A,A1, . . . , Ak ∈ N the following holds: if (B, t) ∈ R(A1...Ak,A), then B = A, yieldN (t) = A1 . . . Ak,
and sortS(A) = sortS(t).

For each rule (A, t), we call A the left-hand side and t the right-hand side of that rule and denote them
by lhs(r) and rhs(r), respectively. The maximal rank of G is defined as maxrk(G) = max{rkR(ρ) | ρ ∈
R} where R is viewed as a finite ranked set. If the right-hand side of each rule contains exactly one
terminal, then G is called in normal form. If |S| = 1, then an S-sorted RTG is a classical regular tree
grammar (cf. [Bra69]). We usually denote an element (A, t) of R as A → t. For better readability, we
show a list A1 → t1 . . . A→ tk of rules with the same left-hand side in the form A→ t1 + · · ·+ tk.

The set of abstract syntax trees (over R) is the set AST(G) = (TR)A0
. We can retrieve from each

abstract syntax tree d the tree in TΣ which is represented by d. For this we view R as (S∗×S)-sorted set
by defining the mapping sort:R→ S as follows: for every r = (A→ t) in R with yieldN (t) = A1 . . . An,
we let sort(r) = (sort(A1) . . . sort(An), sort(A)). Moreover, we define the mapping h:R → TΣ(X) for
each r ∈ R as follows. If r = (A → t) with yieldN (t) = A1 . . . An, then h(r) is obtained from t by
replacing the i-th occurrence of a nonterminal in t (counted from left-to-right) by the variable xi,sort(Ai)

for every i ∈ [n]. Clearly, h(r) ∈ TΣ(Xu) with u = s1 . . . sn. Then we denote the S-sorted tree
homomorphism induced by h by πΣ . We note that πΣ : TR → TΣ and we can say that πΣ(d) retrieves
from each d ∈ TR the tree in TΣ which is represented by d.

It is obvious that each abstract syntax tree corresponds to a left derivation of the RTG and vice
versa.

For every A ∈ N , the (formal) tree language generated by G from A is the set

L(G,A) = {πΣ(d) | d ∈ (TR)A} .

We note that, if A ∈ Ns for some s ∈ S, then L(G,A) ⊆ (TΣ)s. The (formal) tree language generated
by G is the set L(G) = L(G,A0). We call G unambiguous if for each t ∈ L(G) there is a unique
d ∈ (TR)A0

such that πΣ(d) = t.
It was proved in [Bra69, Theorem 3.16] (also cf. [Eng15, Theorem 3.22]) that for each regular tree

grammar G there is a regular tree grammar G′ such that G′ is in normal form and L(G) = L(G′). In a
straightforward way, this result can be lifted to S-sorted RTG.

3. Weighted RTG-based language models and the M-monoid
parsing problem

In this section we introduce our framework of weighted RTG-based language models and use it do define
the M-monoid parsing problem. We compare our approach to interpreted regular tree grammars [KK11],
a similar framework which makes use of the initial algebra semantics [GTWW77], too.

3.1. Weighted RTG-based language models

We approach an algebraic definition of weighted grammars in two steps. First we define RTG-based
language models as an expressive grammar formalism and then we extend this definition by a weight
component.

The idea behind RTG-based language models is to specify both the syntax of a language and the lan-
guage itself within one formalism. This is based on the initial algebra semantics [GTWW77, Sect. 3.1].

16

Here we use RTGs to describe the syntax and we use language algebras to generate the modeled language
from these syntactic descriptions.

Formally, an RTG-based language model (RTG-LM) is a tuple (G, (L, φ)) where

• G = (N,Σ,A0, R) is an S-sorted RTG for some set S of sorts and

• (L, φ) is an S-sorted Γ -algebra (language algebra) such that Σ ⊆ Γ (as (S∗ × S)-sorted set).

The language generated by (G, (L, φ)), denoted by L(G)L, is defined as

L(G)L = {πΣ(d)L | d ∈ AST(G)} .

We note that L(G)L ⊆ Lsort(A0). We call the elements of L syntactic objects. For each a ∈ L, we
define the set of trees which evaluate to a as AST(G, a) = {d ∈ AST(G) | πΣ(d)L = a}. We call
(G, (L, φ)) ambiguous if there are d1, d2 ∈ AST(G) such that πΣ(d1)L = πΣ(d2)L and d2 6= d2. We
note that there are two characteristics of ambiguity.

(i) There are a syntactic object a ∈ L and two trees t1, t2 ∈ TΣ such that (t1)L = (t2)L = a and
t1 6= t2. This mirrors semantic ambiguity in the modeled language. For instance, if L is a string
language and a a sentence, then t1 and t2 represent different groupings of the words in a into
constituents (cf. Figure 1).

(ii) There are d1, d2 ∈ AST(G) and a t ∈ TΣ such that πΣ(d1) = πΣ(d2) = t and d1 6= d2. Then d1

and d2 represent the same syntactic description of the syntactic object tL, but that description
may be obtained using different rules of the RTG G. This kind of ambiguity is called spurious
ambiguity and it is often not wanted.

In the rest of this section, we will not differentiate between different kinds of ambiguity. Methods for
deciding or removing spurious ambiguity are beyond the scope of this paper.

Now we enrich RTG-LMs by a weight component. This consists of an M-monoid (the weight algebra)
for computing the weights of ASTs and a mapping that assigns to each rule of the RTG G an M-monoid
operation.

A weighted RTG-based language model (wRTG-LM) is a tuple

G =
(
(G, (L, φ)), (K,⊕, 0, Ω, ψ,∑⊕), wt

)
,

where

• (G, (L, φ)) is an RTG-LM; we assume that R is the set of rules of G,

• (K,⊕, 0, Ω, ψ,∑⊕) is a complete M-monoid, and

• wt:R→ Ω is mapping such that for each r ∈ R the operation wt(r) has arity rkR(r) (viewing R
as a ranked set). The tree relabeling induced by wt by is the mapping w̃t: TR → TΩ . We denote
w̃t by wt, too.

We call

• (L, φ) the language algebra of G,

• (G, (L, φ)) the RTG-LM of G, and

• (K,⊕, 0, Ω, ψ,∑⊕) the weight algebra of G.

If we abbreviate the two involved algebras by their respective carrier sets, then a wRTG-LM is specified
by a tuple ((G,L),K,wt).

Intuitively, each wRTG-LM consists of two components: a syntax component and a weight compo-
nent. The syntax component is defined by the Σ-algebra (L, φ) and the mapping πΣ : TR → TΣ . The
weight component is defined by the Ω-algebra (K, ψ) and the mapping wt: TR → TΩ .

3.2. M-monoid parsing problem

In the previous subsection we have introduced wRTG-LMs as the formal foundation of our approach
to weighted parsing. Now we will develop the weighted parsing problem that naturally emerges from
wRTG-LMs. We call this problem M-monoid parsing problem.

17

trees generating 𝑎
AST(𝐺, 𝑎) ⊆ (T𝑅)𝐴0

subset of T𝛴

𝜋𝛴(AST(𝐺, 𝑎)) ⊆ 𝐿(𝐺, 𝐴0) ⊆ T𝛴

family over T𝛺

(wt(𝑑) ∣ 𝑑 ∈ AST(𝐺, 𝑎))

syntactic object
{𝑎} = 𝜋𝛴(AST(𝐺, 𝑎))

ℒ
∈ 𝐿(𝐺, 𝐴0)ℒ ⊆ ℒsort 𝐴0

family over 𝕂
(wt(𝑑)𝕂 ∣ 𝑑 ∈ AST(𝐺, 𝑎))

parse(𝑎) = ∑⊕

𝑑∈AST(𝐺,𝑎)

wt(𝑑)𝕂

𝜋𝛴 wt

(.)ℒ (.)𝕂

parse ∑⊕

computations in the
syntax component

computations in the
weight component

Figure 3: Overview of the M-monoid parsing problem for a wRTG-LM
(
(G,L), (K,⊕, Ω,∑⊕),wt

)
and

a syntactic object a.

Given a wRTG-LM
(
(G,L), (K,⊕, 0, Ω,∑⊕),wt

)
and a syntactic object a, the relevant syntactic

descriptions for parsing a are the elements of the set AST(G, a), i.e., the set of ASTs of G which
evaluate to a. We can map each tree from this set to a weight by first applying the tree relabeling wt to
it and then evaluating the resulting tree over TΩ using the unique homomorphism (.)K. Thus we obtain
an AST(G, a)-indexed family of elements of K. We note that since several ASTs can be evaluated to
the same weight, it is not appropriate to use a set rather than a family here. We accumulate this family
of weights to a single element of K using the infinitary sum operation

∑⊕.
Formally, the M-monoid parsing problem is the following problem.

Given:

(i) a wRTG-LM
(
(G, (L, φ)), (K,⊕, 0, Ω, ψ,∑⊕),wt

)
and

(ii) an a ∈ Lsort(A0),

Compute: parse(G,L)(a) =
∑⊕

d∈AST(G,a)

wt(d)K . (1)

We note that for finite index sets,
∑⊕ can be replaced by

⊕
. Whenever (G,L) is clear from the

context, we will just write parse rather than parse(G,L).
In Figure 3 we illustrate how the syntax component and the weight component of the input wRTG-LM

of the M-monoid parsing problem play together.

Example 3.1. In the introduction we have mentioned the best parsing problem. Given a grammar
G and a sentence a, the goal was to compute the highest probability p among all constituent trees
of a in G and the set of all constituent trees with probability p. Here we show that the best parsing
problem is an instance of the M-monoid parsing problem. For this, we slightly modify the best parsing
problem: instead of constituent trees, we compute ASTs. Due to our choice of the underlying RTG –
the nonterminals correspond to syntactic categories – we can obtain from each AST one of the desired
constituent trees. We note that this approach is common in practical applications of parsing and

18

⟨𝑥1𝑥2⟩

⟨𝑥1𝑥2⟩

⟨fruit⟩ ⟨flies⟩

⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

S →

NP →

NN → NNS →

VP →

VBP → NP →

NNS →

(NP, VP)

(NN, NNS) (VBP, NP)

(NNS)

𝑑 ∈ AST(𝐺)

⟨𝑥1𝑥2⟩

⟨𝑥1𝑥2⟩

⟨fruit⟩ ⟨flies⟩

⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

𝑡 ∈ T𝛴

tc1.0,𝑟1

tc0.5,𝑟3

tc1.0,𝑟8
tc0.4,𝑟9

tc0.6,𝑟6

tc1.0,𝑟12
tc0.3,𝑟4

tc0.6,𝑟10

in T𝛺

(0.0216, {𝑟1(𝑟3(𝑟8, 𝑟9), 𝑟6(𝑟12, 𝑟4(𝑟10)))})

(0.0144, {𝑟1(𝑟2(𝑟8), 𝑟5(𝑟11, 𝑟7(𝑟13, 𝑟4(𝑟10))))})

max𝔹𝔻𝑎 = fruit flies like bananas

wt(𝑑′) ∈ T𝛺𝑑′ ∈ AST(𝐺)𝜋𝛴(𝑑′) ∈ T𝛴

𝜋𝛴 wt

(.)CFG𝛥

(.)𝔹𝔻

(.)𝔹𝔻
wt𝜋𝛴

(.)CFG𝛥

parse

Figure 4: Illustration of the M-monoid parsing problem for the wRTG-LM
(
(G,CFG∆),BD,wt

)
and

the syntactic element a = fruit flies like bananas of ∆∗.

furthermore, we could directly compute constituent trees by employing a different weight algebra. Since
ASTs correspond to derivations, our problem is called best derivation problem (cf. [Goo99, Figure 5]).

In this example we define a wRTG-LM G for computing the best derivations of a grammar whose
language contains, among others, the sentence fruit flies like bananas. We start by giving the syntax
component which represents this particular grammar. Later we introduce the general best deriva-
tion M-monoid and use it in the weight component. In the end, we compute the best derivation of
fruit flies like bananas.

We consider the S-sorted RTG G = (N,Σ,S, R) with a singleton set of sorts (e.g., S = {ι}). It is
defined as follows.

• N = Nι = {S,NP,VP,PP,NN,NNS,VBZ,VBP, IN},
• Σ = Σ(ιι,ι)∪Σ(ι,ι)∪Σ(ε,ι) and Σ(ιι,ι) = {σ}, Σ(ι,ι) = {γ}, and Σ(ε,ι) = {αfruit, αflies, αlike, αbananas},

and

• R contains the rules (ignoring the numbers above the arrows for the time being):

r1: S
1.0−→ σ(NP,VP) r6: VP

0.6−→ σ(VBP,NP) r11: VBZ
1.0−→ αflies

r2: NP
0.2−→ γ(NN) r7: PP

1.0−→ σ(IN,NP) r12: VBP
1.0−→ αlike

r3: NP
0.5−→ σ(NN,NNS) r8: NN

1.0−→ αfruit r13: IN
1.0−→ αlike

r4: NP
0.3−→ γ(NNS) r9: NNS

0.4−→ αflies

r5: VP
0.4−→ σ(VBZ,PP) r10: NNS

0.6−→ αbananas .

We define the language algebra (L, φ) as a Σ-algebra with L = {fruit, flies, like, bananas}∗ and

φ(σ)(a1, a2) = a1a2 for every a1, a2 ∈ L
φ(γ)(a) = a for every a ∈ L
φ(αa) = a for every a ∈ {fruit, flies, like, bananas}.

Intuitively, L is a string algebra with the following capabilities. It can produce each of the
syntactic objects fruit, flies, like, and bananas using a constant operation (i.e., αa for every a ∈

19

{fruit, flies, like, bananas}). Furthermore, it can concatenate two syntactic objects (using σ) and con-
tains an identity mapping (cf. γ).

We proceed to the definition of the best derivation M-monoid. We want to use this single M-monoid
to describe the computation of the best derivation of every RTG-LM. For this we choose as carrier set
an artificially large set and assume that it contains every rule of every RTG.

Let R∞ be a ranked set such that (R∞)k is infinite for each k ∈ N. We define the best derivation
M-monoid to be the complete M-monoid(

BD, maxBD, (0, ∅), ΩBD,
∑maxBD

)
,

where

• BD = R1
0 × P(TR∞),

• for every (p1, D1), (p2, D2) ∈ BD,

maxBD

(
(p1, D1), (p2, D2)

)
=

(p1, D1) if p1 > p2

(p2, D2) if p1 < p2

(p1, D1 ∪D2) otherwise,

• ΩBD = {tcp,r | p ∈ R1
0 and r ∈ R∞}, where for each p ∈ R1

0, k ∈ N, and r ∈ (R∞)k, we define
tcp,r:BD

k → BD (tc abbreviates top concatenation) such that for every (p1, D1), . . . , (pk, Dk) ∈
BD,

tcp,r
(
(p1, D1), . . . , (pk, Dk)

)
= (p′, D′)

where p′ = p · p1 · . . . · pk and D′ = {r(d1, . . . , dk) | di ∈ Di, 1 ≤ i ≤ k}, and

• for every family ((pi, Di) | i ∈ I) over BD, we define
∑maxBD

i∈I (pi, Di) = (p,D), where p =
sup{pi | i ∈ I} and D =

⋃
i∈I:pi=pDi. (We note that this supremum exists because 1 is an upper

bound of every subset of R1
0 and every bounded subset of R has a supremum.)

We finish the definition of the weight component of G by defining the mapping wt:R→ ΩBD. Since
R∞ is infinite, we can assume that Rk ⊆ (R∞)k for every k ∈ N. We let wt(r) = tcp,r for every r ∈ R,
where p is shown above the arrow of r. Intuitively, wt associates with each rule a pair where the first
component is a number in R1

0 and the second component is a singleton set which contains the rule itself.
We have shown an AST d ∈ AST(G, fruit flies like bananas) in the center of the upper row of Figure 4.

To its left we have illustrated its evaluation to the syntactic object a = fruit flies like bananas in the
syntactic component. We obtain πΣ(d) by dropping the non-highlighted parts of d. The application of
the homomorphism (.)L: TΣ → L∗ to πΣ(d) yields a. To the right of d it can be seen how it is evaluated
to
(
0.0216, {r1(r3(r8, r9), r6(r12, r4(r10)))}

)
in the weight component. The probability of d (i.e., the real

number 0.0216) is obtained as the product of the numbers which are associated to the rules occurring
in d. The set of ASTs of a with this probability consists only of d. This holds for every d ∈ AST(G, a).

In the lower row of Figure 4 we have indicated that there is a second AST d′ which is evaluated to a,
too. We obtain

wt(d′)BD = (0.0144, {r1(r2(r8), r5(r11, r7(r13, r4(r10))))}) .

Thus maxBD

(
wt(d)BD,wt(d′)BD

)
= wt(d)BD. As one might expect, it is more likely that a refers to the

preferences (to like bananas) of certain insects (fruit flies). �

3.3. Comparison with interpreted regular tree grammars (IRTG)

We compare our framework of wRTG-LMs with interpreted regular tree grammars (IRTGs, [KK11]).
For this, we briefly recall the basic notions of IRTGs. An IRTG G consists of an RTG G = (N,Σ,A0, R)
and several interpretations. Each interpretation is a pair (h,A), where h: TΣ → T∆ is a tree homomor-
phism and A is a ∆-algebra. The language generated by G is the set of all tuples which are obtained

20

wRTG-LM IRTG

G =
(
(G,L), (K,⊕, 0, Ω,

∑⊕),wt) G = (G, I1, I2)
RTG G = (N,Σ,A0, R) RTG G = (N,Σ,A0, R)
•abstract syntax trees AST(G) •tree language L(G)

syntax component weight component interpretation Ii = (hi,Ai) (i ∈ [2])
•tree relabeling πΣ : TR → TΣ •tree relabeling wt: TR → TΩ •tree homomorphism hi: TΣ → T∆i
•Γ -algebra L (Σ ⊆ Γ) •complete M-monoid K •∆i-algebra Ai
•evaluation (.)L: TΣ → L •evaluation (.)K : TR → K •evaluation (.)Ai : T∆i → Ai
L(G)L = {πΣ(d)L | d ∈ AST(G)} L(G) = {(h1(t)A1 , h2(t)A2) | t ∈ L(G)}

Table 1: Comparison of a wRTG-LM to an IRTG with two interpretations.

by interpreting trees of L(G) in the several algebras. Formally, if G consists of the interpretations
(h1,A1), . . . , (hn,An) with n ∈ N, then the language generated by G is the set

L(G) = {(h1(t)A1 , . . . , hn(t)An) | t ∈ L(G)} .

In the right column of Table 1, we illustrate the concept of IRTGs for the special case of two interpre-
tations (i.e., n = 2).

In our comparison of wRTG-LMs and IRTGs, we consider wRTG-LMs as IRTGs with two Σ-inter-
pretations. We view each wRTG-LM

(
(G,L), (K,⊕, 0, Ω,∑⊕),wt

)
as the IRTG

(
G, (πΣ ,L), (wt,K)

)
.

This is done as shown in Table 1:

• the wRTG-LM and the IRTG consist of the same RTG G = (N,Σ,A0, R),

• the syntax component corresponds to the first interpretation I1, and

• the weight component corresponds to the second interpretation I2.

We point out that this view of wRTG-LMs as IRTGs does not conform to the definition of IRTGs.
While the core component of a wRTG-LM is the set AST(G) of abstract syntax trees, the core component
of an IRTG is the tree language L(G). A second, minor difference is that the language of an IRTG
consists of tuples of interpreted trees, while the language of a wRTG-LM consists of syntactic objects
(i.e., trees evaluated in the language algebra).

Finally, we compare the M-monoid parsing problem to the decoding problem of IRTGs. Decoding
is motivated by modeling translation between natural languages using synchronous grammars. It is
defined as follows. Given an IRTG G =

(
G, (h1,A1), (h2,A2)

)
and a syntactic object a, compute the

set
decodes(a) = {h2(t)A2

| t ∈ L(G) ∧ h1(t)A1
= a} .

Compared to the M-monoid parsing problem, we consider the language algebra L as the input language
and the weight algebra K as the output language of our translation. We can derive the M-monoid
parsing problem from the IRTG decoding problem by applying two changes. First, we need to compute
a family of elements of A2 rather than a set. This is because in the M-monoid parsing problem, if
several abstract syntax trees have the same weight, then this weight contributes to the value of parse(a)
multiple times. Second, we map this family to a single element of A2 using the infinitary sum operation.
The application of these transformations yields Equation (1).

4. Classes of weighted RTG-based language models

In this section we define several subclasses of wRTG-LMs. For this, we use two parameters:

(i) a subclass G of the class of all RTG-LMs Gall and

(ii) a subclass K of the class of all complete M-monoids Kall.

21

Now let G ⊆ Gall and K ⊆ Kall. Then a (G,K)-LM is a wRTG-LM
(
(G, (L, φ)), (K,⊕, 0, Ω,∑⊕), wt

)
such that

(i) its RTG-LM (G, (L, φ)) is in G and

(ii) its weight algebra (K,⊕, 0, Ω,∑⊕) is in K.

We denote the class of all (G,K)-LMs by W(G,K).
Moreover, we will introduce the subclass Wclosed(G,K) which imposes an additional restriction on

wRTG-LMs. This class is central to the termination and correctness of the M-monoid parsing algorithm.

4.1. Classes of RTG-based language models

In this subsection we recall four particular classes of RTG-LMs: context-free grammars, linear context-
free rewriting systems, tree-adjoining grammars, and yield-grammars. We mention that also context-free
hypergraph grammars [BC87; HK87] can be viewed as RTG-LMs [Cou91] (also cf. [DGV16]). Each of
these classes is determined by a particular class of language algebras. Additionally, in Subsection 4.1.5,
we define three more classes of RTG-LMs which are determined by (a) particular subclasses of regular
tree grammars and (b) by an interplay between the involved RTG and the language algebra.

4.1.1. The CFG-algebras and context-free grammars

It was suggested in [GTWW77, Sect. 3.1] to consider context-free languages as initial many-sorted
algebra semantics of context-free grammars. The context-free grammars are here replaced by RTG.

Let ∆ be a finite set and S = {ι} be a set of sorts (for some arbitrary but fixed ι). We let X =
{x1, x2, . . .} be a set of variables. These variables will be used to denote strings over ∆. For each k ∈ N,
we let Xk = {x1, . . . , xk}.

We define the ({ι}∗ × {ι})-sorted set ΓCFG,∆ such that for each k ≥ 0:

(ΓCFG,∆)(ιk,ι) = {〈w〉 | w = v0x1v1 . . . xkvk for some v0, . . . , vk ∈ ∆∗} .

We define the CFG-algebra over ∆ to be the {ι}-sorted ΓCFG,∆-algebra (CFG∆, φ) with

• CFG∆ = (CFG∆)ι = ∆∗.

• For every k ∈ N, 〈w〉 ∈ (ΓCFG,∆)(ιk,ι), and u1, . . . , uk ∈ ∆∗ we define

φ(〈w〉)(u1, . . . , uk) = w′

where w′ is obtained from w by replacing each xi by ui for each i ∈ [k].

A context-free grammar over ∆ is an RTG-based LM

(G, (CFG∆, φ))

where the S-sorted RTG G is in normal form. A context-free language is the formal language generated
by some context-free grammar.

We note that the language L(G)CFG∆ generated by this context-free grammar is a formal language
over ∆. We also note that, by definition of RTG-LMs, the terminal set Σ of G is a ({ι}∗ × {ι})-sorted
subset of ΓCFG,∆. Thus, for the specification of a particular context-free grammar, we only have to
specify the ∆ and an RTG. We denote the class of all context-free grammars by GCFG.

Indeed, classical context-free grammars and those which are defined here are in the following, easy one-
to-one correspondence. Let G = (N,∆,A0, R) be a usual context-free grammar and let (G′, (CFG∆, φ)
be a context-free grammar (as defined here) whereG′ = (N,Σ,A0, R

′). We say thatG andG′ correspond
to each other if the following two statements are equivalent for every k ∈ N, A1, . . . , Ak ∈ N , and
v0, . . . , vk ∈ ∆∗:

(i) A→ v0A1v1 . . . Akvk is in R.

(ii) A→ σ(A1, . . . , Ak) is in R′ with σ = 〈v0x1v1 . . . xkvk〉.

22

⟨𝑥1𝑥2⟩

⟨𝑥1𝑥2⟩

⟨fruit⟩ ⟨flies⟩

⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

S →

NP →

NN → NNS →

VP →

VBP → NP →

NNS →

(NP, VP)

(NN, NNS) (VBP, NP)

(NNS)

⟨𝑥1𝑥2⟩

⟨𝑥1𝑥2⟩

⟨fruit⟩ ⟨flies⟩

⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

⟨𝑥1𝑥2⟩

⟨𝑥1⟩

⟨fruit⟩

⟨𝑥1𝑥2⟩

⟨flies⟩ ⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

S →

NP →

NN →

VP →

VBZ → PP →

IN → NP →

NNS →

(NP, VP)

(NN) (VBZ, PP)

(IN, NP)

(NNS)

⟨𝑥1𝑥2⟩

⟨𝑥1⟩

⟨fruit⟩

⟨𝑥1𝑥2⟩

⟨flies⟩ ⟨𝑥1𝑥2⟩

⟨like⟩ ⟨𝑥1⟩

⟨bananas⟩

𝑑 ∈ AST(𝐺)

𝑑′ ∈ AST(𝐺)

𝑡 ∈ T𝛴

𝑡′ ∈ T𝛴

𝑎 = fruit flies like bananas

𝜋𝛴

(.)CFG𝛥

𝜋𝛴

(.)CFG𝛥

Figure 5: Two abstract syntax trees for the syntactic object a = fruit flies like bananas in the RTG-LM
(G,CFG∆) and their evaluation in the CFG∆-algebra, see Example 4.1.

Then, clearly, the languages generated by G and (G′, (CFG∆, φ)) are the same.

Example 4.1. We let ∆ = {Fruit, flies, like, bananas}. We consider the {ι}-sorted RTG G = (N,Σ,S, R)
and the language algebra (L, φ) from Example 3.1. We observe that

(
G, (L, φ)

)
is a context-free gram-

mar. This can be seen by letting σ = 〈x1x2〉, γ = 〈x1〉, and αa = 〈a〉 for every a ∈ ∆. Then
(L, φ) = CFG∆.

In Figure 5 we have again illustrated the ASTs d and d′ from Figure 4 and their evaluation in the
syntactic component. This time we have used the notions of CFG∆ and also shown d′ and πΣ(d′)
entirely. The AST d in the top row expresses that certain insects (fruit flies) like something (bananas).
The AST d′ in the bottom row expresses how fruit performs a certain activity (to fly like bananas).
Hence this RTG-LM is ambiguous. �

4.1.2. The LCFRS-algebras and linear context-free rewriting systems

The formalization of context-free grammars using the initial algebra semantics can be generalized to
(string) linear context-free rewriting systems in a straightforward way. A formal definition was given
by Kallmeyer [Kal10, Def. 6.2+6.3]. Here we will embed it into our framework of wRTG-LM.

Let ∆ be an alphabet and S = N be a set of sorts. In this section it is convenient to use a doubly
indexed set of variables. Let k ∈ N and l1, . . . , lk ∈ N. We denote by Xl1,...,lk the set

Xl1,...,lk = {x(i)
j | i ∈ [k], j ∈ [li]} .

Intuitively, each x
(i)
j denotes a string and each x(i) represents an li-tuple of strings.

We define the (N∗ × N)-sorted set ΓLCFRS,∆ such that for each k, n, l1, . . . , lk ∈ N:

(ΓLCFRS,∆)(l1...lk,n) = {〈w1, . . . , wn〉 | wi ∈ (∆ ∪Xl1,...,lk)∗ and each variable

x
(i)
j ∈ Xl1,...,lk occurs exactly once in w1 . . . wn} .

23

We define the LCFRS-algebra over ∆ to be the N-sorted ΓLCFRS,∆-algebra (LCFRS∆, φ) with

• LCFRS∆ =
⋃
n∈N(LCFRS∆)n where (LCFRS∆)n = (∆∗)n.

• For every 〈w1, . . . , wn〉 ∈ (ΓLCFRS,∆)(l1...lk,n) and u
(1)
1 , . . . , u

(1)
l1
, . . . , u

(k)
1 , . . . , u

(k)
lk
∈ ∆∗ we define

φ(〈w1, . . . , wn〉)((u(1)
1 , . . . , u

(1)
l1

), . . . , (u
(k)
1 , . . . , u

(k)
lk

)) = (w′1, . . . , w
′
n)

where w′κ (κ ∈ [n]) is obtained from wκ by replacing each x
(i)
j by u

(i)
j (i ∈ [k], j ∈ [li]).

A linear context-free rewriting system over ∆ is an RTG-LM

(G, (LCFRS∆, φ))

where the N-sorted RTG G = (N,Σ,A0, R) is in normal form and A0 ∈ N1. We note that the language
L(G)LCFRS∆ generated by this linear context-free rewriting system is a formal language over ∆.

For each l ∈ N and A ∈ Nl we call l the fan-out of A; the fan-out of G is the maximal fan-out of all
nonterminals in N .

We denote the class of all linear context-free rewriting systems by GLCFRS.
Intuitively it is clear that, for each context-free grammar (G, (CFG∆, φ)) over ∆ there is an linear

context-free rewriting system (G′, (LCFRS∆, φ)) over ∆ in which each nonterminal has fan-out 1, which
generates the same language as (G, (CFG∆, φ)). In fact, if we identify the sort ι of G with the sort 1
of G′, then G = G′. This also holds the other way around if the variables in the Σ-symbol of each rule

occur in the order x
(1)
1 , x

(2)
1 , . . . , x

(k)
1 .

Example 4.2. We consider the set ∆ = {zag, helpen, lezen, Jan,Piet,Marie} and the following N-sorted
RTG G = (N,Σ, root, R) with

• N = N1 ∪N2 and N1 = {root,nsub} and N2 = {dobj},
• Σ = Σ(12,1) ∪Σ(12,2) ∪Σ(1,2) ∪Σ(ε,1) where

Σ(12,1) = {〈x(1)
1 x

(2)
1 zag x

(2)
2 〉}

Σ(12,2) = {〈x(1)
1 x

(2)
1 , helpen x

(2)
2 〉}

Σ(1,2) = {〈x(1)
1 , lezen〉}

Σ(ε,1) = {〈Jan〉, 〈Piet〉, 〈Marie〉}.

(We note that Σ is an (N∗ × N)-sorted subset of ΓLCFRS,∆.)

• R is the following set of rules:

r1: root→ 〈x(1)
1 x

(2)
1 zag x

(2)
2 〉(nsub,dobj) r2: nsub→ 〈Jan〉

r3: dobj→ 〈x(1)
1 x

(2)
1 , helpen x

(2)
2 〉(nsub,dobj) r4: nsub→ 〈Piet〉

r5: dobj→ 〈x(1)
1 , lezen〉(nsub) r6: nsub→ 〈Marie〉

Then d = r1(r4, r2(r5, r3(r6))) is an example of an abstract syntax tree in TR. We have illustrated d
and πΣ(d) in Figure 6. Clearly, πΣ(d)LCFRS∆ = Jan Piet Marie zag helpen lezen. �

4.1.3. TAG-algebras and tree-adjoining grammars

We consider a slight extension of tree-adjoining grammars [JS97] in which we allow nonterminals (or:
states) as in [BNV11; BNV12]. Here we restrict ourselves to tree-adjoining grammars generating ranked
trees. Our presentation is essentially the one of [BNV11; BNV12]. We also refer to [KK12] for a
formalization of tree-adjoining grammars as interpreted regular tree grammars (IRTG).

Let S = {ι} be a set with one sort ι. Let ∆ be a finite (S∗×S)-sorted set (of terminal symbols). Let X
be an S-sorted set of variables and Z be an (S×S)-sorted set of variables (i.e., for each z ∈ Z, we have

24

⟨𝑥(1)
1 𝑥(2)

1 zag 𝑥(2)
2 ⟩

⟨Jan⟩ ⟨𝑥(1)
1 𝑥(2)

1 , helpen 𝑥(2)
2 ⟩

Piet ⟨𝑥(1)
1 , lezen⟩

Marie

root →

dobj →

dobj →

nsub →

nsub →

nsub →

(nsub, dobj)

(nsub, dobj)

(nsub)

⟨𝑥(1)
1 𝑥(2)

1 zag 𝑥(2)
2 ⟩

⟨Jan⟩ ⟨𝑥(1)
1 𝑥(2)

1 , helpen 𝑥(2)
2 ⟩

Piet ⟨𝑥(1)
1 , lezen⟩

Marie

𝑎 = Jan Piet Marie zag helpen lezen

𝜋𝛴

(.)LCFRS𝛥

𝑑 ∈ AST(𝐺) 𝑡 ∈ T𝛴

Figure 6: An abstract syntax tree d for the syntactic object a = Jan Piet Marie zag helpen lezen in the
RTG-LM (G,LCFRS∆) and its evaluation in the LCFRS∆-algebra, see Example 4.2.

sort(z) = (ι, ι)). We assume that ∆, X, and Z are pairwise disjoint. Then ∆ ∪Z is an (S∗ × S)-sorted
set. Moreover, we let ∗ be a symbol (foot node) not in ∆ ∪X ∪ Z; we let sort(∗) = ι.

For every m, l ∈ N, we define the S-sorted set Xm = {x1,ι, . . . , xm,ι} of variables where Xm ⊆ X and
sort(xi,ι) = ι (substitution sites) and the set Zl = {z1,(ι,ι), . . . , zl,(ι,ι)} of variables where Zl ⊆ Z and
sort(zj,(ι,ι)) = (ι, ι) (adjoining sites); with i ∈ [m] and j ∈ [l].

We say that ζ ∈ T∆∪Zl(Xm) is linear, nondeleting in Xm ∪ Zl if each element in Xm ∪ Zl occurs
exactly once in ζ. We say that ζ ∈ T∆∪Zl(Xm ∪ {∗}) is linear, nondeleting in Xm ∪ Zl ∪ {∗} if each
element in Xm ∪ Zl ∪ {∗} occurs exactly once in ζ.

We define the ({ι, (ι, ι)}∗ × {ι, (ι, ι)})-sorted set ΓTAG,∆ such that (ΓTAG,∆)(w,y) = ∅ for every
w 6∈ {ι}∗ ◦ {(ι, ι)}∗ and y ∈ {ι, (ι, ι)}. For every m, l ∈ N we define

(ΓTAG,∆)(ιm(ι,ι)l,ι) = {〈ζ〉 | ζ ∈ T∆∪Zl(Xm) linear, nondeleting in Xm ∪ Zl}
(ΓTAG,∆)(ιm(ι,ι)l,(ι,ι)) = {〈ζ〉 | ζ ∈ T∆∪Zl(Xm ∪ {∗}) linear, nondeleting in Xm ∪ Zl ∪ {∗}}

We define the TAG-algebra over ∆ to be the {ι, (ι, ι)}-sorted ΓTAG,∆-algebra (TAG∆, φ) with

• TAG∆ = (TAG∆)ι ∪ (TAG∆)(ι,ι) with

(TAG∆)ι = T∆ and (TAG∆)(ι,ι) = {t ∈ T∆({∗}) | ∗ occurs exactly once in t} and

• for every 〈ζ〉 ∈ (ΓTAG,∆)(ιm(ι,ι)l,ι), t1, . . . , tm ∈ (TAG∆)ι, and t′1, . . . , t
′
l ∈ (TAG∆)(ι,ι) we define

φ(〈ζ〉)(t1, . . . , tm, t′1, . . . , t′l) = h̃(ζ)

were h̃ is the S-sorted tree homomorphism induced by the mapping h : ∆ ∪ Xm ∪ Zl → T∆(X)
defined by

h(δ) = δ(x1,s1 , . . . , xk,sk) for each δ ∈ ∆ with rk∆(δ) = k

h(xi,ι) = ti for each i ∈ [m]

h(zj,(ι,ι)) = t′′j for each j ∈ [l] and t′′j is obtained from t′j by replacing ∗ by x1,ι;

• for every 〈ζ〉 ∈ (ΓTAG,∆)(ιl(ι,ι)m,(ι,ι)), t1, . . . , tm ∈ (TAG∆)ι, and t′1, . . . , t
′
l ∈ (TAG∆)(ι,ι) we define

φ(〈ζ〉)(t1, . . . , tm, t′1, . . . , t′l) = h̃′(ζ) were h′ : ∆ ∪Xm ∪ Zl ∪ {∗} → T∆(X) is defined in the same
way as h but additionally we let h′(∗) = ∗.

A tree-adjoining grammar over ∆ is an RTG-LM

(G, (TAG∆, φ))

25

r1 : A0 →
〈

𝑧1

S

𝑥1 VP

V

saw

𝑥2 〉
(A1,A1,F) r2 : A1 →

〈
NP

N

Mary
〉

r3 : A1 →
〈

NP

𝑥1 N

man
〉

(A2)

r4 : A2 →
〈 D

a
〉

r5 : F→
〈

S

Adv

yesterday

∗ 〉

Figure 7: Example of a TAG (following [JS97] and [BNV12, Fig. 1]) where A0 is the initial nonterminal
and z1,(ι,ι), x1,ι, and x2,ι are abbreviated by z1, x1, and x2, respectively.

where the {ι, (ι, ι)}-sorted RTG G = (N,Σ,A0, R) is in normal form and A0 ∈ Nι. We note that the
language L(G)TAG∆ generated by this tree-adjoining grammar is a formal tree language over ∆. We
denote the class of all tree-adjoining grammars by GTAG.

Example 4.3 (cf. [JS97] and [BNV12, Fig. 1]). We consider the set

∆ = {S,V,VP,N,NP,D,Adv, saw,Mary, a,man, yesterday}

of terminal symbols. In order to keep notations short, we assume that ∆ is turned into a finite, non-
empty ranked set by adding (implicitly) to each symbol of ∆ a finite number of ranks (like (NP, 2) and
(NP, 1)); however, in trees over ∆ we drop again this rank information as in Figure 7.

In Figure 7 we show a tree-adjoining grammar (G, (TAG∆, φ)) where the RTG G has the nonterminals
A0,A1,A2,F and five rules. One possible abstract syntax tree of the RTG G is

d = r1(r2, r3(r4), r5) .

In Figure 8 we have shown d, πΣ(d), and its evaluation in the TAG∆-algebra, i.e., the syntactic object
a. Unlike in the previous examples, a is not a string, but a tree. In particular, it results from evaluating

φ

(〈

𝑧1

S

𝑥1 VP

V

saw

𝑥2 〉)(
NP

N

Mary ,

NP

D

a

N

man ,

S

Adv

yesterday

*)

in the TAG∆-algebra. �

By dropping from TAG-algebras everything which refers to adjoining (the sort (ι, ι), the variables
in Zl), we might define RTG-algebras and define a regular tree grammar as an S-sorted RTG-LM
(G, (RTG∆)). This initial algebra presentation of RTG might seem technically exaggerated, because
G already is a regular tree grammar. However, if we stay with the property that the RTG G in the
RTG-LM is in normal form, then we have to deal with right-hand sides that do not contain exactly one
terminal symbol. The initial algebra approach above offers one possibility for handling this.

26

⟨

𝑧1

S

𝑥1 VP

V

saw

𝑥2

⟩

⟨

NP

N

Mary

⟩ ⟨
NP

𝑥1 N

man

⟩

⟨ D

a
⟩

⟨

S

Adv

yesterday

∗ ⟩

A0 →

A1 → A1 →

A2 →

F →

(A1, A1, F)

(A2)

⟨

𝑧1

S

𝑥1 VP

V

saw

𝑥2

⟩

⟨

NP

N

Mary

⟩ ⟨
NP

𝑥1 N

man

⟩

⟨ D

a
⟩

⟨

S

Adv

yesterday

∗ ⟩

S

Adv

yesterday

S

NP

N

Mary

VP

V

saw

NP

D

a

N

man

𝑎 =

𝜋𝛴

(.)TAG𝛥

𝑑 ∈ AST(𝐺) 𝑡 ∈ T𝛴

Figure 8: An abstract syntax tree d in the RTG-LM (G,TAG∆) and its evaluation in the TAG∆-algebra,
see Example 4.3.

27

4.1.4. Yield-algebras and yield grammars

Giegerich, Meyer, and Steffen [GMS04] use yield grammars as a main component of algebraic dynamic
programming. Here we show that yield grammars are a particular subclass of Gall. Let S be a set (of
sorts) and ∆ be an (S∗ × S)-sorted alphabet. We denote by ∆0 the set

⋃
s∈S ∆(ε,s).

We define the S-yield-algebra over ∆ to be the S-sorted ∆-algebra (YIELD∆, φ) with

• YIELD∆ =
⋃
s∈S(YIELD∆)s where (YIELD∆)s = {〈w, s〉 | w ∈ (∆0)∗}, and

• for every k ∈ N, δ ∈ ∆(s1...sk,s), and 〈w1, s1〉 ∈ (YIELD∆)s1 , . . . , 〈wk, sk〉 ∈ (YIELD∆)sk we define

φ(δ)(〈w1, s1〉, . . . , 〈wk, sk〉) =

{
〈δ, s〉 if k = 0

〈w1 . . . wk, s〉 otherwise.

We note that the carrier set of YIELD∆ consists of tuples and the second component of each such tuple
is a sort. This has technical reasons, because otherwise there would be no mapping sort: YIELD∆ → S.
We can easily see this by letting S = {a, b} and ∆ = ∆(ε,a) ∪ ∆(aa,a) ∪ ∆(aaa,b) with ∆(ε,a) = {a},
∆(aa,a) = {α}, and ∆(aaa,b) = {β}. Then t1 = α(a, α(a, a)) is in (T∆)a and t2 = β(a, a, a) is in (T∆)b,
but yield∆0

(t1) = yield∆0
(t2) = aaa. We also observe that the unique ∆-homomorphism from (T∆, φ∆)

to (YIELD∆, φ) is the mapping f : T∆ → (∆∗ × S), where f(t) = (yield∆0
(t), sort(t)) for every t ∈ T∆.

An S-sorted yield grammar over ∆ (yield-grammar) is an RTG-LM

(G, (YIELD∆, φ))

where G is an S-sorted RTG. We denote the class of all yield-grammars by GYIELD.

4.1.5. Further classes of RTG-based language models

We introduce three classes of RTG-LMs which are not defined by a particular language algebra (such
as GCFG), but rather by imposing restrictions on the involved RTGs. An RTG-LM

(
(N,Σ,A0, R),L)

)
is

• acyclic, if every d ∈ TR is acyclic,

• monadic, if for every r ∈ R it holds that | rk(r)| ≤ 1, and

• nonlooping, if for every d ∈ TR and p ∈ pos(d) \ {ε} the following holds: if πΣ(d)L = πΣ(d|p)L,
then d(ε) 6= d(p).

We denote the class of all acyclic RTG-LMs by Gacyc, the class of all monadic RTG-LMs by Gmon,
the class of all nonlooping RTG-LMs by Gnl, and the class of all RTG-LMs with finitely decompos-
able language algebra by Gfin-dc. The CFG-algebras, LCFRS-algebras, and TAG-algebras are finitely
decomposable, i.e., GCFG ⊆ Gfin-dc, GLCFRS ⊆ Gfin-dc, and GTAG ⊆ Gfin-dc.

4.1.6. Summary of considered classes of RTG-LMs

We summarize all classes of RTG-LMs introduced in this subsection in Table 2.

4.2. Classes of weight algebras

In this subsection we first show that the weight algebras used by Goodman [Goo99] and Nederhof
[Ned03] are subclasses of Kall, i.e., the class of all complete M-monoids. We then define additional
subclasses of Kall which will allow us to investigate particular M-monoid parsing problems of this paper
with respect to their algorithmic solvability.

28

Notation Description: the class of all . . .

GCFG context-free grammars
GLCFRS linear context-free rewriting systems
GTAG tree-adjoining grammars
GYIELD yield-grammars
Gacyc acyclic RTG-LMs
Gmon monadic RTG-LMs
Gnl nonlooping RTG-LMs
Gfin-dc RTG-LMs with finitely decomposable language algebra

Table 2: Classes of RTG-LMs introduced in Section 4.1.

4.2.1. M-monoids that are associated with semirings

Let (K,⊕,⊗, 0, 1,∑⊕) be a complete semiring. The M-monoid associated with K (cf. [FMV09, Def-
inition 8.5]) is defined as the M-monoid M(K) = (K,⊕, 0, Ω⊗,

∑⊕) where Ω⊗ =
⋃
k≥0(Ω⊗)k and

(Ω⊗)k = {mul
(k)
k | k ∈ K} for every k ∈ N. For every k ∈ N and k, k1, . . . , kk ∈ K we define

mul
(k)
k (k1, . . . , kk) = k ⊗ k1 ⊗ · · · ⊗ kk .

In particular, mul
(0)
k () = k for every k ∈ K. Note that 1 = mul

(0)
1 (). Clearly, the M-monoid M(K) is

complete and distributive.
Goodman [Goo99] modeled several classic parsing problems by specifying for each of these problems

a complete semiring which encapsulates the computation of the problem’s solution. Using the approach
from above, we can for each of these semirings define a weight algebra of a wRTG-LM which is associated
with that semiring. In the following, we will do this for some semirings which we find particularly
interesting. We denote the class of all M-monoids that are associated with complete semirings by Ksr.

Example 4.4. The tropical semiring is the complete semiring (R∞0 ,min,+,∞, 0, inf) with the usual
binary minimum operation on the reals. The tropical M-monoid is the M-monoid associated with the
tropical semiring, i.e., the M-monoid T = (R∞0 ,min,∞, Ω+, inf). �

Example 4.5. The Viterbi semiring is the complete semiring (R1
0,max, ·, 0, 1, sup) with the usual

binary maximum operation on reals. The Viterbi M-monoid is the M-monoid V = (R1
0,max, 0, Ω·, sup)

(with · as index of Ω). �

Example 4.6. Recall the definition of the best derivation M-monoid BD from Example 3.1. It is a d-
complete and distributive M-monoid and furthermore, (0, ∅) is absorptive. The proof of this statement
is given in Appendix A.3. �

Example 4.7. We define an M-monoid which describes the computation of the probabilities of the n
best derivations of a syntactic object (where n ∈ N+). This M-monoid is (up to notation) associated
with the Viterbi-n-best semiring [Goo99, Figure 5].

Let n ∈ N+. In the following, we will denote a family f : [n]→ R1
0 as (f1, . . . , fn) and let

pref(N, n) =
⋃
n′∈N:
n′≥n

{[n′]} ∪ {N} .

We define the set nBST = {f : [n]→ R1
0 | for every i ∈ [n− 1]: f(i) ≥ f(i+ 1)}. Furthermore, we define

the mapping takenbest: (R1
0)pref(N,n) → nBST such that for every I ∈ pref(N, n) and family (fi | i ∈ I)

of elements of R1
0

takenbest((fi | i ∈ I)) = (g1, . . . , gn) ,

where g ∈ nBST as follows:

29

(i) If I is finite, then for every i ∈ [n], gi = f(v(i)), where v: [n]→ I is recursively defined such that
for every i ∈ [n]

v(i) = an arbitrary j ∈ arg max
j′∈I\v|i

fj′ ,

where for every i ∈ [n], we let v|i = {v(j) | j ∈ [n] and j < i}.
(ii) Otherwise, we define the mapping v: [n] → I ∪ {⊥}, where ⊥ is a new element, recursively for

every i ∈ [n] such that

v(i) =

⊥ if i > 1 and v(i− 1) = ⊥
an arbitrary j ∈ arg max

j′∈I\v|i
fj′ if there is such a j

⊥ otherwise,

where for every i ∈ [n], we let v|i = {v(j) | j ∈ [n] and j < i}. Then for every i ∈ [n]

gi =

{
f(v(i)) if v(i) 6= ⊥
sup{fi | i ∈ I \ v|i} otherwise.

(We note, again, that this supremum exists because 1 is an upper bound of every subset of R1
0

and every bounded subset of R has a supremum.)

Moreover, we define the mapping ·nBST : (R1
0)[n] × (R1

0)[n] → (R1
0)[n] such that for every

(a1, . . . , an), (b1, . . . , bn) ∈ nBST

(a1, . . . , an) ·n (b1, . . . , bn) = takenbest
((
a(bi/nc+ 1) · b(i mod n+ 1)

∣∣ i ∈ [0, n2 − 1]
))

.

The n-best M-monoid is the complete M-monoid (nBST ,maxn, (0, . . . , 0︸ ︷︷ ︸
n times

), Ωn,
∑maxn), where

• for every (a1, . . . , an), (b1, . . . , bn) ∈ nBST ,

maxn
(
(a1, . . . , an), (b1, . . . , bn)

)
= takenbest

(
(a1, . . . , an, b1, . . . , bn)

)
,

• Ωn = {muln
(k)
k | k ∈ N and k ∈ nBST}, where for each k ∈ N and k ∈ nBST , muln

(k)
k :nBST k →

nBST such that for each k1, . . . , kk ∈ nBST

muln
(k)
k (k1, . . . , kk) = (k, 0, . . . , 0︸ ︷︷ ︸

n−1 times

) ·n k1 ·n . . . ·n kk ,

• for every nonempty I-indexed family (ki | i ∈ I) over nBST ,∑maxn

i∈I
ki = takenbest((fi | i ∈ N)) ,

where for every i ∈ N, fi = kbi/nc+1(i mod n+ 1).

The n-best M-monoid is a d-complete and distributive M-monoid. Furthermore, (0, . . . , 0︸ ︷︷ ︸
n times

) is absorp-

tive. The proof of this statement is given in Appendix A.4. �

4.2.2. Superior M-monoids

The weight algebras of Nederhof [Ned03] are superior, a notion defined by Knuth [Knu77]. They are
essentially complete and distributive M-monoids of the form (K,min, 0, Ω, inf), where (K,�) is a total
order, inf(K) ∈ K, and Ω is a set of superior functions, i.e., for each k ∈ N, ω ∈ Ωk, i ∈ [k], and
k1, . . . , kk ∈ K it holds that

30

(i) if k � ki, then ω(k1, . . . , ki−1, k, ki+1, . . . ,k) � ω(k1, . . . , ki−1, ki, ki+1, . . . , kk), and

(ii) max{k1, . . . , kk} � ω(k1, . . . , kk).

We will call such M-monoids superior M-monoids and denote the class of all superior M-monoids by
Ksup.

It is easy to see that every superior M-monoid is completely idempotent and thus, by Lemma 2.11,
also d-complete.

The tropical M-monoid and the Viterbi M-monoid from Example 4.4 and 4.5, respectively, are supe-
rior. For the proofs of this statement, we refer to Appendix A.2.

4.2.3. Further classes of complete M-monoids

We denote the class of all d-complete M-monoids by Kd-comp and the class of all complete and distribu-
tive M-monoids by Kdist.

We define Kfin,id,� to be the class of all M-monoids (K,⊕, 0, Ω,∑⊕) in Kdist for which (i) K is finite,
(ii) (K,⊕, 0,∑⊕) is completely idempotent, and (iii) there is a partial order (K,�) such that for every
k ∈ N, ω ∈ Ωk, and k1, . . . , kk ∈ K, max�{k1, . . . , kk} � ω(k1, . . . , kk). Since this third condition looks
similar to the second condition on superior M-monoids, we point out the following subtle differences.
First, the carrier set of an M-monoid in Kfin,id,� is finite, which is not necessarily the case for superior
M-monoids. Second, for M-monoids in Kfin,id,�, (K,�) is an arbitrary partial order which is not related
to ⊕ at all, while for a superior M-monoid, (K,�) is the same total order with respect to which min is
defined. By Lemma 2.11, Kfin,id,� ⊆ Kd-comp.

4.2.4. Summary of considered classes of M-monoids

We summarize all classes of M-monoids introduced in this subsection in Table 3. Note that we have
written singleton classes of M-monoids without curly braces, e.g., BD rather than {BD}.

Notation Description: the class of all . . .

Ksr M-monoids associated with semirings
Ksup superior M-monoids
Kd-comp d-complete M-monoids
Kdist distributive M-monoids
Kfin,id,� finite and idempotent M-monoids with a certain monotonicity property

Specific M-monoids

T the tropical M-monoid
V the Viterbi M-monoid
BD the best derivation M-monoid
nBST the n-best M-monoid

Table 3: Classes of M-monoids introduced in Section 4.2.

4.3. Closed weighted RTG-based language models

Although superior M-monoids are common weight structures in weighted parsing, they are not general
enough to cover all parsing problems (cf., e.g., computing the intersection and ADP in Section 5).
Hence we would like to determine a class W of wRTG-LMs that properly includes W(Gall,Ksup) and can
describe both (a) computing the intersection of a grammar and a syntactic object and (b) the problems
of ADP. Furthermore, we recall that Goodman’s semiring parsing algorithm only terminates if the input
grammar does not contain cyclic derivations. We would like W to properly include all wRTG-LMs with
that property, too.

31

If we think of an algorithmic computation of the mapping parse in the M-monoid parsing problem,
then we encounter the following problem: the index set of

∑⊕ can be infinite. However, an algorithm
cannot compute an infinite sum and terminate at the same time. Clearly, if the index set of

∑⊕ is finite
for some input, then an algorithm may compute parse on this input. Hence, if for every input with set
of abstract syntax trees D over which

∑⊕ is computed there exists a finite subset E of D such that∑⊕
d∈D

wt(d)K =
⊕
d∈E

wt(d)K ,

then an algorithm that correctly computes parse on every input may exist. Mohri [Moh02] implemented
this idea for graphs weighted with semirings. He gave an algorithm which solves a problem similar to
the M-monoid parsing problem if the input semiring is closed for the input graph. Here we extend this
notion to M-monoids that are closed for the input hypergraph. In order to stay within the domain of
parsing, we base our definitions on RTGs rather than on hypergraphs.

The rest of this subsection is structured as follows. In Section 4.3.1 we will define the class
Wclosed(Gall,Kall) of closed wRTG-LMs. In Section 4.3.2 we will show that for every wRTG-LM in
that class, the infinite sum of the M-monoid parsing problem can be computed by a finite sum.

4.3.1. Definition of closed weighted RTG-based language models

We note that our motivation for closed wRTG-LMs implies that the weight algebra K of each closed
wRTG-LM is d-complete (cf. Example 2.12). Moreover, our definition of closed will only involve a single
tree over the set of rules. In order to entail the desired statement about sets of all abstract syntax trees
from this definition, distributivity of K is needed. Thus, the weight algebra of any closed wRTG-LM is
in Kd-comp ∩Kdist.

In order to define closed wRTG-LMs, we first need a notion for cutting chunks out of trees.

In this section, we let R denote a ranked set.

Let w ∈ R∗ be an elementary cycle. We define the binary relation `w⊆ TR×TR such that for each
d, d′ ∈ TR, d `w d′ if there are p, p′ ∈ pos(d) with seq(d, p, p′) = w and d′ = d[d|p′]p. Furthermore, we
define the binary relation `⊆ TR×TR such that for each d, d′ ∈ TR, d ` d′ if there is an elementary
cycle w ∈ R∗ and d `w d′.
Lemma 4.8. The endorelation (`+)−1 on TR is well-founded.

Proof. For the proof of Lemma 4.8, we refer to Appendix A.5. �

For each elementary cycle w ∈ R∗, we define the set of w-cutout trees of d as

cutout(d,w) = {d′ ∈ TR | d `w+ d′} .

We note that d 6∈ cutout(d,w) and cutout(d,w) is finite. Moreover, we define the set of cutout trees
of d as

cutout(d) = {d′ ∈ TR | d `+ d} .
We note that d 6∈ cutout(d) either and cutout(d) is finite, too.

Lemma 4.9. For every d, d′ ∈ TR the following holds: if d `+ d′, then cutout(d′) ⊂ cutout(d).

Proof. For the proof of Lemma 4.9, we refer to Appendix A.5. �

Let c ∈ N and G =
(
(G,L), (K,⊕, 0, Ω),wt

)
be a (Gall,Kd-comp ∩ Kdist)-LM. We say that G is a

c-closed wRTG-LM, if for every d ∈ TR and elementary cycle w ∈ R∗ such that there is a leaf p ∈ pos(d)
which is (c+ 1, w)-cyclic the following holds:

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K =
⊕

d′∈cutout(d,w)

wt(d′)K . (2)

We say that G is a closed wRTG-LM if there is a c ∈ N such that G is a c-closed wRTG-LM.
We denote the class of all closed wRTG-LMs by Wclosed(Gall,Kd-comp ∩Kdist).

32

4.3.2. Properties of closed weighted RTG-based language models

For the rest of this section, we let c ∈ N and G ∈ Wclosed(Gall,Kd-comp ∩Kdist) with G =(
(G,L), (K,⊕, 0, Ω),wt

)
and G = (N,Σ,A0, R).

First we generalize the applicability of Equation (2) to trees that are more than (c+ 1)-cyclic.

Lemma 4.10. For every d ∈ (TR), c′ ∈ N with c′ ≥ c + 1, and elementary cycle w ∈ R∗ such that
there is a leaf p ∈ pos(d) which is (c′, w)-cyclic the following holds:

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K =
⊕

d′∈cutout(d,w)

wt(d′)K .

Proof. For the proof of Lemma 4.10, we refer to Appendix A.6. �

Recall that for every c ∈ N, the set T
(c)
R contains those trees over rules that are at most c-cyclic.

Formally, T
(c)
R = {d ∈ TR | c′ ∈ N, c′ ≤ c, and d is c′-cyclic}. The next theorem intuitively states the

following. For every summation over the weights of ASTs, we may remove an arbitrary finite set of
ASTs from the summation as long as their cutout trees which are at most c-cyclic remain in the index
set of the sum.

Theorem 4.11. For every l ∈ N, D ⊆ T
(c)
R , and D′ ⊆ TR \T

(c)
R the following holds: if⋃

d∈D′(cutout(d) ∩ T
(c)
R) ⊆ D, then for every B ⊆ D′ with |B| = l,⊕
d∈D

wt(d)K ⊕
∑⊕
d∈D′

wt(d)K =
⊕
d∈D

wt(d)K ⊕
∑⊕
d∈D′\B

wt(d)K .

Proof. For the proof of Theorem 4.11, we refer to Appendix A.6. �

Next we show that for every summation over the weights of a certain set of trees (namely those that
are at most c-cyclic), we may add an arbitrary finite set of trees to that summation.

Lemma 4.12. For every l ∈ N, A ∈ N , and B ⊆ (TR)A \ T
(c)
R with |B| = l the following holds:⊕

d∈(T
(c)
R)A

wt(d)K =
⊕

d∈(T
(c)
R)A∪B

wt(d)K .

Proof. For the proof of Lemma 4.12, we refer to Appendix A.6. �

Finally, we extend this result to adding arbitrary (in particular, infinite) set of trees to the summation.

Theorem 4.13. For every A ∈ N it holds that∑⊕
d∈(TR)A

wt(d)K =
⊕

d∈(T
(c)
R)A

wt(d)K .

Proof. Let A ∈ N . By Lemma 4.12, for every finite D ⊆ (TR)A with (T
(c)
R)A ⊆ D⊕

d∈D

wt(d)K =
⊕

d∈(T
(c)
R)A

wt(d)K .

Thus, by Lemma 2.9 (iii), ∑⊕
d∈(TR)A

wt(d)K =
⊕

d∈(T
(c)
R)A

wt(d)K . �

33

Theorem 4.13 shows that the sum over the (possibly infinite) set of ASTs of a closed wRTG-LM can
indeed be computed by the sum over a finite subset of that set. It will be essential in the proof of
correctness of the value computation algorithm (cf. Section 7.1.2).

5. Two particular M-monoid parsing problems

In this section, we consider two computational problems which are related more or less closely to
parsing, and we present them as instances of the M-monoid parsing problem. For this, we formalize
each of these problems using a particular class of wRTG-LMs. We start with computing the intersection
of a grammar and a syntactic object and then proceed with algebraic dynamic programming.

5.1. Intersection of a grammar and a syntactic object

Bar-Hillel, Perles, and Shamir [BPS61] have proven that context-free languages are closed under inter-
section with regular languages. They gave a constructive proof which, given a CFG G and a finite-state
automaton M (modeling the regular language), creates a new CFG, denoted by G BM , whose lan-
guage is the intersection of the languages of G and M . By choosing M such that its language is a
single sentence a, the derivations of GBM are exactly the derivations of a in G. In the following, we
restrict ourselves to this special case and write GB a rather than GBM . We will briefly describe two
applications of G B a in NLP and then formalize the construction of G B a (where G is not restricted
to CFG) as an instance of the M-monoid parsing problem.

A parse forest is a compact (in particular, finite) representation of the set of abstract syntax trees for
some syntactic object. Billot and Lang [BL89] (also cf. [Lan74]) have shown that the intersection of a
CFG G and a sentence a is precisely the parse forest of a in G. Their approach has later been referred
to as parsing as intersection and generalized to language models beyond CFG, e.g., TAG [Lan94].

In EM training [DLR77] of PCFGs the probabilistic weights of a CFG G are estimated with respect
to sentences from a training corpus [Bak79; LY90]. This is done by computing GB a for each training
sentence a. We note that the cited publications did not explicitly mention the intersection. This was
first done by Nederhof and Satta [NS08] (also cf. [NS03]). Drewes, Gebhardt, and Vogler [DGV16]
generalized the use of the intersection in EM training to language models beyond CFG.

We will now formally define the intersection of an RTG-LM (G,L) and a syntactic object a. We will
then show that computing GB a is an instance of the M-monoid parsing problem, given that L fulfils
a certain condition.

Let (G, (L, φ)) and (G′, (L, φ)) be RTG-LMs where G = (N,Σ,A0, R) and G′ = (N ′, Σ,A′0, R
′).

(i) Let ψ:N ′ → N be a mapping and let a ∈ Lsort(A0).

Then (G′, (L, φ)) is the ψ-intersection of G and a, denoted by GBψ a, if the following conditions
hold:

• L(G′)L = L(G)L ∩ {a}, and

• the mapping ψ̂ : AST(G′)→ AST(G, a) is bijective, where ψ̂ = ψ̂′|AST(G′) and ψ̂′: TR′ → TR
is defined inductively by

r′(d1, . . . , dk) 7→ ψ(r′)(ψ̂′(d1), . . . , ψ̂′(dk))

and ψ is extended in a natural way to rules.

(ii) We call (G′, (L, φ)) intersection of G and a if there is a mapping ψ as in (i) such that (G′, (L, φ))
is the ψ-intersection of G and a.

If the algebra (L, φ) is finitely decomposable, then the intersection can be constructed easily from the
result of a particular M-monoid parsing problem. We recall that the CFG-algebras, LCFRS-algebras,
and TAG-algebras are finitely decomposable.

Let (G, (L, φ)) be an RTG-LM such that G = (N,Σ,A0, R) is in normal form and (L, φ) is finitely
decomposable. Moreover, let a ∈ Lsort(A0). The intersection M-monoid of (G,L) and a is the finite and

34

complete M-monoid

K((G, (L, φ)), a) = (P(PR,a),∪, ∅, Ω,∑∪) ,

which we construct as follows.

• PR,a = {[A, b]→ σ([A1, a1], . . . , [Ak, ak]) | (A→ σ(A1, . . . , Ak)) ∈ R, b ∈ factors(a)sort(A), and

(a1, . . . , ak) ∈ φ(σ)−1(b)} ;
we note that PR,a is finite,

• Ω = {ωr | r ∈ R} where for each r = (A → σ(A1, . . . , Ak)) with sort(σ) = (s1 . . . sk, s), the
operation ωr is defined for every V1, . . . , Vk ∈ P(PR,a) by

ωr(V1, . . . , Vk) = V1 ∪ . . . ∪ Vk ∪ V

where

V = {[A, b]→ σ([A1, a1], . . . , [Ak, ak]) | (∀i ∈ [k]): [Ai, ai] ∈ lhs(Vi),

b = φ(σ)(a1, . . . , ak)}

and lhs(Vi) is the set of left-hand sides of all rules in Vi,

• for each family (Vi | i ∈ I) of elements of P(PR,a) we define∑∪
i∈I

Vi =
⋃
i∈I

Vi .

We note that
∑∪
i∈I Vi is a finite set.

We remark that the restriction of G to normal form is for simplicity. An extension of the definition
of the intersection M-monoid which allows arbitrary RTGs is possible in a straightforward way.

Theorem 5.1. For each RTG-LM with a finitely decomposable algebra and each syntactic object,
the construction of their intersection is an M-monoid parsing problem.
More precisely, let (G, (L, φ)) be an RTG-LM such that G = (N,Σ,A0, R) and (L, φ) is a finitely
decomposable language algebra. Moreover, let a ∈ Lsort(A0). We consider the M-monoid parsing
problem with the following input:

• the wRTG-LM ((G, (L, φ)),K((G, (L, φ)), a),wt) where wt(r) = ωr for each r ∈ R and

• a.

Then (G′, (L, φ)) is the ψ-intersection of (G, (L, φ)) and a, where

• G′ = (N ′, Σ, [A0, a],parse(a)) with N ′ = lhs(parse(a)) ∪ {[A0, a]} (we note that parse(a) is a
finite set) and

• ψ : N ′ → N is defined by ψ([A, b]) = A for each [A, b] ∈ N ′.

Proof. For the proof of Theorem 5.1, we refer to Appendix A.7. �

We denote the class of all intersection M-monoids K((G′,L′), a), where (G′,L′) is some RTG-LM and
a is some syntactic object, by Kint.

5.2. Algebraic dynamic programming

Algebraic dynamic programming (ADP) is a framework for modeling dynamic programming problems
which was originally developed by Giegerich, Meyer, and Steffen [GMS04]. They represented dynamic
programming problems using a yield grammar and a so-called evaluation algebra for each problem. In
this section, we will introduce a different formalization of ADP which uses only a single formalism:
wRTG-LMs. Moreover, we will show that each ADP problem is an instance of the M-monoid parsing
problem.

35

In this section we fix the following objects and sets. We let a be a sort representing “answers” and i
be a sort representing “input”. Moreover, we let S = {a, i} be a set of sorts and Σ be an (S∗×S)-sorted
set such that

(i) Σ(ε,a) = ∅ and

(ii) Σ(s1...sk,i) = ∅ for every k ∈ N+.

Intuitively, in every tree over Σ, the leaves are symbols with sort i and the inner nodes are symbols
with sort a.

In the following, we will formalize the concepts objective function and evaluation algebra of [GMS04]
using our own methodology. We note that we have used sets rather than lists in order to represent
multiple answers. This is motivated by the fact that sets are more commonly understood than lists.
Moreover, we do not want duplicate answers and information about order can be added to answers if
they are elements of a set, too. Thus the advantages lists provide over sets are not needed in our case.
We believe that [GMS04] chose lists over sets because of their choice to implement ADP in Haskell,
where lists are a widespread datastructure.

Let K be an S-sorted set. An objective function (for K) is a family (hs | s ∈ S) of mappings
hs:P(Ks)→ P(Ks) which fulfils the following requirements:

(i) hi = id,

(ii) ha maps each non-empty subset F of Ka to a non-empty subset of F ,

(iii) ha(∅) = ∅, and

(iv) ha is commutative and associative in the following sense: for every non-empty subset F of Ka and
every I-indexed family (Fi | i ∈ I) of elements Fi ⊆ F such that F =

⋃
i∈I Fi

ha(F) = ha(
⋃
i∈I

ha(Fi)) . (3)

In particular, by choosing I = {i} and Fi = F , we obtain that ha(ha(F)) = ha(F), i.e., ha is
idempotent.

We note that since hi = id, Equation 3 also holds if we replace a by i. Thus, in the following, we will
use Equation 3 for arbitrary s ∈ S and say that (hs | s ∈ S) is idempotent. Moreover, we will simply
write h rather than (hs | s ∈ S). We say that h is single-valued if |ha(F)| ≤ 1 for every F ⊆ Ka.

Let (K, ψ) be an S-sorted Σ-algebra and h be an objective function for K. We say that h satisfies
Bellman’s principle of optimality if for every k ∈ N+, s1, . . . , sk ∈ S, σ ∈ Σ(s1...sk,a), and for every
Fi ⊆ Ksi with i ∈ [k] the following holds:

ha

(
ψ(σ)(F1, . . . , Fk)

)
= ha

(
ψ(σ)

(
hs1(F1), . . . , hsk(Fk)

))
. (4)

Let (G, (YIELDΣ , φ)) be an S-sorted yield grammar over Σ, (K, ψ) an S-sorted Σ-algebra, and h an
objective function for K such that

(i) G = (N,Σ,A0, R) is unambiguous with A0 ∈ Na,

(ii) (G,YIELDΣ) ⊆ Gnl, and

(iii) h satisfies Bellman’s principle of optimality.

The ADP problem for (G, (YIELDΣ , φ)), K, and h is the problem of computing, for each w ∈ (Σ(ε,i))
∗,

the value
adp(w) = ha

(
{tK | t ∈ L(G) ∩ yield−1

Σ(ε,i)
(w)}

)
.

We remark that Giegerich, Meyer, and Steffen [GMS04, p. 235] do not explicitly require the yield gram-
mar to be unambiguous. However, they argue against using ambiguous grammars as follows [GMS04,
p. 235]: “The same candidate has two derivations in the tree grammar: This is bad, as the algorithm
will yield redundant answers when asking for more than one, and all counting and probabilistic scoring
will be meaningless.” Here a candidate is a t ∈ TΣ and a derivation of t is a d ∈ (TR)A0

with πΣ(d) = t.

36

Moreover, (ii) is a restriction we impose on G in order to disallow abstract syntax trees that are
evaluated in the same way as one of their proper subtrees. Since the syntactic objects of ADP represent
(sub-)problems which have to be solved, if (ii) did not hold, then the solution of a subproblem would
depend on itself, which contradicts dynamic programming.

Example 5.2. Given two strings u, v ∈ (Σ(ε,i))
∗, we can try to edit u into v by traversing u position

by position and, at each position p, applying one of the following three operations:

• delete the symbol of u at position p and advance p to p+ 1,

• insert a symbol into u in front of position p and remain at p, and

• replace the symbol of u at position p by some other symbol and advance p to p+ 1.

If the resulting string is v, then this edit was successful. For the given strings u, v there can be many
successful edits. In order to find out the “cheapest” successful edit, we associate a cost with each of the
three operations, e.g., delete and insert have the cost 1, replace has cost 0 if the replaced symbol and
the replacing symbol are equal, otherwise replace has cost 1. Then the cost of a successful edit is the
sum of the costs of each occurrence of an operation. The minimum edit distance problem is the task to
calculate, for two given strings u and v, the minimum edit distance between u and v, i.e., the minimum
of the costs of all successful edits. We denote this value by med(u, v).

Next we formulate the minimum edit distance problem as an ADP problem.

(i) We let Σ = Σ(ε,i) ∪Σ(i,a) ∪Σ(ia,a) ∪Σ(ai,a) ∪Σ(iai,a) with

Σ(ε,i) = {a, . . . , z} ∪ {$}, Σ(ε,a) = ∅,
Σ(i,a) = {nil}, Σ(ia,a) = {delete}, Σ(ai,a) = {insert}, and Σ(iai,a) = {replace}.

(ii) We define the S-sorted yield grammar (G, (YIELDΣ , φ)) with G = (N,Σ,A, R) and

• N = Na = {A} (where A stands for “alignment”), and

• R consists of the following rules:

A→ nil($)

A→ delete(δ,A) (for every δ ∈ Σ(ε,i) \ {$})
A→ insert(A, δ) (for every δ ∈ Σ(ε,i) \ {$})
A→ replace(δ,A, δ′) . (for every δ, δ′ ∈ Σ(ε,i) \ {$})

(iii) We define the S-sorted Σ-algebra (N∪Σ(ε,i), ψ) such that (N∪Σ(ε,i))a = N and (N∪Σ(ε,i))i = Σ(ε,i),
where for every n ∈ N and δ, δ1, δ2 ∈ Σ(ε,i)

ψ(δ) = δ

ψ(nil)(δ) = 0

ψ(delete)(δ, n) = n+ 1

ψ(insert)(n, δ) = n+ 1

ψ(replace)(δ1, n, δ2) =

{
n if δ1 = δ2

n+ 1 otherwise.

(iv) We let h be the objective function such that ha(F) = {minF} for every non-empty subset F of N.
Thus, h is single-valued.

Then med(u, v) = ha

(
{tK | t ∈ L(G)∩ yield−1

Σ(ε,i)
(u$v)}

)
. Hence, the calculation of med(u, v) is an ADP

problem. �

For each ADP problem, we will construct an associated instance of the M-monoid parsing problem as
follows. Let (K, ψ) be an S-sorted Σ-algebra and h be an objective function for K that satisfies Bellman’s
principle of optimality. We define the algebra associated with K and h as the tuple (K′,⊕, ∅, Σ′, ψ′,∑⊕)
such that

37

• K′ = {hs(F) | s ∈ S and F ⊆ Ks} ∪ {⊥} where ⊥ is a new element,1

• for every F1, F2 ∈ K′

F1 ⊕ F2 =

{
hs(F1 ∪ F2) if there is an s ∈ S such that F1, F2 ⊆ Ks

⊥ otherwise,

• Σ′ = TΣ(X) ∪ {0k | k ∈ N} where TΣ(X) =
⋃
s∈S,u∈S∗(TΣ(Xu))s is viewed as a ranked set and

each 0k has rank k (we note that for each σ ∈ Σ(s1...sk,s), σ(x1,s1 , . . . , xk,sk) ∈ (TΣ(Xs1...sk))s),

• for every k ∈ N and σ ∈ Σ′k we define the operation ψ′(σ): (K′)k → K′ for every F1, . . . , Fk ∈ K′

as follows:

– if σ = t with t ∈ (TΣ(Xs1...sk))s, then

ψ′(σ)(F1, . . . , Fk) =

{
hs(tK(F1, . . . , Fk)) if Fi ⊆ Ksi for every i ∈ [k]

⊥ otherwise,

– if σ = 0k, then ψ′(σ)(F1, . . . , Fk) = ∅, and

• ∑⊕ is defined for each I-indexed family (Fi | i ∈ I) of elements Fi ∈ K′ as∑⊕
i∈I

Fi =

{
hs

(⋃
i∈I Fi

)
if there is an s ∈ S such that Fi ⊆ Ks for every i ∈ I

⊥ otherwise.

Note that ∅ ⊆ Ks for every s ∈ S. Thus ∅ ∈ K′, but we cannot assign a sort from S to ∅. Hence K′ is
not an S-sorted set.

Observation 5.3. If h is single-valued or ha = id, then

ψ′(σ)(F1, . . . , Fk) = ψ(σ)(F1, . . . , Fk)

for every k ∈ N, s, s1, . . . , sk ∈ S, σ ∈ Σ(s1...sk,s), and Fi ⊆ Ksi for every i ∈ [k].

Lemma 5.4. The algebra associated with K and h is a d-complete and distributive M-monoid.

Proof. For the proof of Lemma 5.4, we refer to Appendix A.8. �

As a consequence of this lemma, we will refer to the algebra associated with K and h as the ADP
M-monoid over K and h.

Theorem 5.5. Each ADP problem is an instance of the M-monoid parsing problem. More precisely,
let (G, (YIELDΣ , φ)) with G = (N,Σ,A0, R) be a nonlooping RTG-LM. Moreover, let (K, ψ) be
an S-sorted Σ-algebra and h be an objective function for K that satisfies Bellman’s principle of
optimality. We consider the M-monoid parsing problem with the following input:

• the wRTG-LM
((G, (YIELDΣ , φ)), (K′,⊕, ∅, Σ′, ψ′,∑⊕),wt)

where (K′,⊕, ∅, Σ′, ψ′,∑⊕) is the ADP M-monoid over K and h. Moreover, for every k ∈ N

and r = (A → t) in Rk (viewing R as a ranked set) we define wt(r) = ψ′(t′), where t′ is
obtained from t by replacing the ith occurrence of a nonterminal by xi for every i ∈ [k].

• a ∈ (Σ(ε,i))
∗.

Then parse(a) = adp(a).

1⊥ helps to guarantee that ⊕ is associative, see the proof of Lemma 5.4.

38

Proof. For the proof, we refer to Appendix A.9. �

We denote by KADP the class of all ADP M-monoids over all algebras (K, ψ) and objective functions
h for ψ that satisfy Bellman’s principle of optimality. By Lemma 5.4, we have that W(GYIELD ∩ Gnl,
KADP) ⊆ W(Gall,Kd-comp∩Kdist). However, in general W(GYIELD∩Gnl,KADP) 6⊆ Wclosed(Gall,Kd-comp∩
Kdist). We will address this problem by the additional concepts which we develop in the following
sections. Thus we will be able to show that our M-monoid parsing algorithm can solve every ADP
problem (cf. Corollary 8.3).

Example 5.6 (Continuation of Example 5.2). We show how to compute the weight of each rule of the
wRTG-LM

(
(G,YIELD∆), (K′,⊕, ∅, ψ′,∑⊕),wt

)
, where (K′,⊕, ∅, ψ′,∑⊕) is the ADP M-monoid over

N ∪Σ(ε,i) and h and wt is defined as in Theorem 5.5.

wt(A→ nil($))() = h((nil′)K()) = h(nilK()) = h({0}) = {0}

wt(A→ delete(δ,A))(F) = h((delete(δ,A)′)K(F)) = h(delete(δ, x1)K(F))

= h({n+ 1 | n ∈ F}) = {1 + min(F)}

wt(A→ insert(A, δ))(F) = {1 + min(F)}

wt(A→ replace(δ,A, δ′))(F) =

{
{1 + min(F)} if δ 6= δ

{min(F)} otherwise

By Theorem 5.5, for every u, v ∈ (Σ(ε,i) \ {$})∗, we have that parse(u$v) = med(u, v). �

6. M-monoid parsing algorithm

The M-monoid parsing algorithm is supposed to solve the M-monoid parsing problem. As input, it
takes a wRTG-LM G and a syntactic object a. Its output is intended to be parse(a). The algorithm
is a pipeline with two phases (cf. Figure 2) and follows the modular approach of Goodman [Goo99]
and Nederhof [Ned03]. First, a canonical weighted deduction system computes from G and a a new
wRTG-LM G′ with the same weight structure as G, but a different RTG and the language algebra
CFG∅. Second, G′ is the input to the value computation algorithm (Algorithm 6.1), which computes
the value V (A′0); this is supposed to be

∑⊕
d∈AST(G′)

wt(d) = parse(a).

6.1. Weighted deduction systems

The concept of deduction systems is very useful to specify parsing algorithms for strings according to
some formal grammar [PW83; SSP95]. This concept was extended in [Goo99] and [Ned03] to weighted
deduction systems in which each inference rule is associated with an operation on some totally ordered
set.

A weighted deduction system consists of a goal item and a finite set of weighted inference rules. Each
inference rule has the form:

x1: I1, ..., xm: Im
ω(x1, . . . , xm): I0

{c1,...,cq (5)

where m ∈ N, ω is an m-ary operation (weight function), I0, . . . , Im are items, and c1, . . . , cp are side
conditions. Each item represents a Boolean-valued property (of some combination of nonterminals of
the formal grammar G and/or constituents of the string a = w). The meaning of an inference rule is:
given that I1, . . . , Im and c1, . . . , cp are true, I is true as well. Nederhof [Ned03] pointed out that “a
deduction system having a grammar G [...] and input string w in the side conditions can be seen as a
construction c of a context-free grammar c(G,w) [...]”.

Thus, conceptually, a weighted deduction system is a mapping c of which the argument-value relation-
ship is determined by the goal item and the weighted inference rules. The mapping c takes a grammar

39

G and a string a as arguments and delivers a system c(G, a) of (unconditional) inference rules, called
instantiation in [Ned03]. Then a parsing algorithm tries to generate the goal item by generating items
on demand using the inference rules of c(G, a); in particular, c(G, a) is not fully constructed before
applying the parsing algorithm.

Here we generalize the approach of [PW83; SSP95] in two ways: (1) instead of string-generating
grammars, we consider RTG-LMs over any finitely decomposable language algebra and (2) instead of
unweighted grammars as input, we consider wRTG-LMs (as in [Ned03]). For this,

in the sequel, we let (L, φ) be an arbitrary, but fixed finitely decomposable S-sorted Γ -algebra.

We denote the class of all RTG-LMs with language algebra L by GL. Let K and L be two complete
M-monoids. A (K,L)-weighted deduction system (or simply: weighted deduction system) is a mapping

wdsK,L: W(GL,K)× L → W(GCFG∅ ,L) ,

where the argument-value relationship of wdsK,L is determined by some goal item and some finite set
of weighted inference rules which may contain references to the arguments.2

We allow that the weight algebras K and L of the argument grammar and the resulting grammar are
different in order to enhance flexibility (cf., e.g., [Ned03, Fig. 3]).

In the literature, sound and complete are two important properties that deduction systems must
fulfill. In our context, they could be defined as follows.

We say that wdsK,L is

• sound if for each G = ((G,L),K,wt) in W(GL,K) and each a ∈ Lsort(A0) where A0 is the initial

nonterminal of G the following holds: if (G′,CFG∅) is the first component of wdsK,L(G, a) and
ε ∈ L(G′)CFG∅ , then a ∈ L(G)L.

• complete if for each G = ((G,L),K,wt) in W(GL,K) and each a ∈ Lsort(A0) where A0 is the initial

nonterminal of G the following holds: if a ∈ L(G)L, then ε ∈ L(G′)CFG∅ , where (G′,CFG∅) is the
first component of wdsK,L(G, a).

• unweighted if K = L and this M-monoid is the M-monoid associated with the Boolean semiring.

In our context, we need a stronger condition on weighted deduction systems. We call a weighted de-
duction system wdsK,K: W(GL,K)×L → W(GCFG∅ ,K) weight-preserving, if for each G = ((G,L),K,wt)

in W(GL,K) and a ∈ Lsort(A0) with G = (N,Σ,A0, R), wdsK,K(G, a) = ((G′,CFG∅),K,wt′), and
G′ = (N ′, Σ′, A′0, R

′) there is a bijective mapping

ψ: AST(G, a)→ AST(G′)

such that for every d ∈ AST(G, a) we have wt(d)K = wt(ψ(d))K.

Observation 6.1. Let G = ((G,L),K,wt) be a wRTG-LM with G = (N,Σ,A0, R), a ∈ Lsort(A0),
and wdsK,K: W(GL,K) × L → W(GCFG∅ ,K) be a weight-preserving weighted deduction system. If

wdsK,K(G, a) =
(
(G′,CFG∅),K,wt′

)
, then parse(G,L)(a) = parse(G′,CFG∅)(ε).

Lemma 6.2. Each weight-preserving weighted deduction system is sound and complete.

Proof. For the proof of Lemma 6.2, we refer to Appendix A.10. �

Next we define a particular weighted deduction system. It covers, e.g., the (unweighted) CYK de-
duction system [SSP95] and the deduction system for LCFRS of Kallmeyer [Kal10]. We will use this
particular weighted deduction system in our M-monoid parsing algorithm.

Let (K,⊕, 0, Ω,∑⊕) be a complete M-monoid such that id(K) ∈ Ω. The canonical K-weighted
deduction system is the weighted deduction system

cwds: W(GL,K)× L → W(GCFG∅ ,K)

2This definition can be compared to the definition of a function f :N × N → N by f(x, y) = x2 + 3y, in which the
argument-value relationship is expressed by an arithmetic expression with references to the arguments x and y.

40

such that for every G = ((G,L),K,wt) in W(GL,K) and a0 ∈ Lsort(A0), where A0 is the initial nonter-

minal of G, the wRTG-LM cwds(G, a0) is defined by

cwds(G, a0) = ((G′,CFG∅),K,wt′)

where G′ and wt′ are obtained from G and wt as follows. We let G = (N,Σ,A0, R) and define
rhs(R) = {t ∈ TΣ(N) | t is the right-hand side of some r ∈ R}. Then G′ = (N ′, Σ′, A′0, R

′) with

• N ′ = N × rhs(R)× factors(a0) ∪ {[A0, a0]} (set of items)

• A′0 = [A0, a0] (goal item)

• For every rule r = (A → t) in R and a, a1, . . . , ak ∈ factors(a0), let yieldN (t) = A1 . . . Ak with
k ∈ N (i.e., including k = 0) and A1, . . . , Ak ∈ N ; now, if t′L(a1, . . . , ak) = a, where t′ is obtained
from t by replacing the ith occurrence of a nonterminal by xi for every i ∈ [k], then each rule in
the set

instances(r) = {[A, t, a]→ 〈x1 . . . xk〉([A1, t1, a1], . . . , [Ak, tk, ak]) | k1, . . . , kk ∈ N and

t1, . . . , tk ∈ rhs(R) with sort(ti) = sort(Ai) for each i ∈ [k]}

is in R′. We define wt′(r′) = wt(r) for each r′ ∈ instances(r). Moreover, for each rule r = (A0 → t)
in R the rule

r′ = ([A0, a0]→ 〈x1〉([A0, t, a0]))

is in R′ and we let wt′(r′) = id(K).

• Σ′ = {〈x1 . . . xk〉 ∈ ΓCFG,∅ | 0 ≤ k ≤ maxrk(G)}.
We note that the requirement id(K) ∈ Ω is not a restriction, as the identity relation is defined on every

set and can therefore be added to K, if necessary. We also note that the nonterminals of cwds(G, a0)
contain syntactic objects and right-hand sides of rules. This is in contrast to the literature, where items
of deduction systems contain positions of a string [SSP95; Goo99; Ned03; Kal10]. This deviation is due
to two reasons. First, since cwds is defined for arbitrary finitely decomposable language algebras, string
positions are not general enough to represent the language algebra in the nonterminals of cwds(G, a),
but syntactic objects are. Second, if the nonterminals contained syntactic objects, but not right-hand
sides of rules, then we do not know how to compute cwds.

Lemma 6.3. The canonical K-weighted deduction system cwds is weight-preserving. Hence, cwds is
sound and complete.

Proof. For the proof of Lemma 6.3, we refer to Appendix A.11. �

Example 6.4. We consider the tropical M-monoid T = (R∞0 ,min,∞, Ω+, inf) (cf. Example 4.4) and
the alphabet ∆ from Example 4.2. We illustrate the canonical T -weighted deduction system

cwds: W(GLCFRS∆ , T)×∆∗ → W(GCFG∅ , T)

of which the argument-value relationship is determined by the inference rules discussed in [Kal10,
Chapter 7].

We apply cwds to the linear context-free rewriting system with G = (N,Σ,A0, R) from Example 4.2
and the string a = Jan Piet Marie zag helpen lezen. The weights of the rules of G in the tropical
M-monoid are shown in Table 4. Then cwds(G, a) is the wRTG-LM

cwds(G, a) =
(
(G′,CFG∅), (R∞0 ,min,∞, Ω+, inf), wt′

)
,

where

• G′ = (N ′, Σ′, A′0, R
′) is a {ι}-sorted RTG given by

41

– N ′ = N ′ι = {[A, t, v] | A ∈ {root,nsub,dobj}, t ∈ rhs(R), v ∈ factors(a)} ∪ {[root, a]}, where

rhs(R) = { 〈Jan〉, 〈Piet〉, 〈Marie〉, 〈x(1)
1 x

(2)
1 zag x

(2)
2 〉(nsub,dobj),

〈x(1)
1 x

(2)
1 , helpenx

(2)
2 〉(nsub,dobj), 〈x(1)

1 , lezen〉(nsub)};

first, we give an intuition for the computation of factors(a) by showing the factors of two
particular elements of LCFRS∆:
for Jan Piet Marie zag helpen lezen ∈ (LCFRS∆)1 we have

φ
(
〈x(1)

1 x
(2)
1 zag x

(2)
2 〉
)−1

(Jan Piet Marie zag helpen lezen) =

{ ε, (Jan Piet Marie, helpen lezen),

Jan, (Piet Marie, helpen lezen),

Jan Piet, (Marie, helpen lezen),

Jan Piet Marie, (ε, helpen lezen)}

and for (Piet Marie, helpen lezen) ∈ (LCFRS∆)2 we have

φ
(
〈x(1)

1 x
(2)
1 , helpen x

(2)
2 〉
)−1

(Piet Marie , helpen lezen) =

{ε, (Piet Marie, lezen),Piet, (Marie, lezen),Piet Marie, (ε, lezen)} .

In total, the set factors(a) is the set

factors(a) = { Jan Piet Marie zag helpen lezen,

(Jan Piet Marie, helpen lezen), (Piet Marie, helpen lezen),

(Marie, helpen lezen), (ε, helpen lezen),

ε, Jan, Jan Piet, Jan Piet Marie,

(Jan Piet Marie, lezen), (Piet Marie, lezen),

(Marie, lezen), (ε, lezen),

Piet,Piet Marie,Marie} .

– Σ′ = Σ′(ε,ι) ∪Σ
′
(ι,ι) ∪Σ

′
(ιι,ι) where

Σ′(ε,ι) = {〈ε〉} , Σ′(ι,ι) = {〈x1〉} , and Σ′(ιι,ι) = {〈x1x2〉} ,

– A′0 = [root, a], and

– the set of rules R′ is given in Figure 9,

and

• For every r ∈ R′ \R′A′0 with r = ([A, t, u]→ 〈x1 . . . xk〉([A1, t1, u1], . . . , [Ak, tk, uk])) and k ∈ N we

define wt′(r) = wt(A→ t) and for every r ∈ R′A′0 we let wt′(r) = mul
(1)
0 . �

We finish this section with a result which shows how the canonical weighted deduction system connects
two classes of RTG-LMs.

Lemma 6.5. For every G ∈ W(Gnl ∩ Gfin-dc,Kall) and syntactic object a it holds that cwds(G, a) ∈
W(Gacyc,Kall).

Proof. For the proof of Lemma 6.5, we refer to Appendix A.12. �

42

Rule r ∈ R wt(r)

root→ 〈x(1)
1 x

(2)
1 zag x

(2)
2 〉(nsub,dobj)

dobj→ 〈x(1)
1 x

(2)
1 , helpen x

(2)
2 〉(nsub,dobj)

dobj→ 〈x(1)
1 , lezen〉(nsub)

nsub→ 〈Jan〉
nsub→ 〈Piet〉
nsub→ 〈Marie〉

(k1, k2) 7→ 0 + k1 + k2

(k1, k2) 7→ 4 + k1 + k2

k 7→ 7 + k

() 7→ 3
() 7→ 5
() 7→ 12

Table 4: The linear context-free rewriting system from Example 4.2 weighted in the tropical M-monoid.
The numbers occurring in the definitions of wt(r) are chosen arbitrarily.

[root, a]→ 〈x1〉([root, 〈x(1)1 x
(2)
1 zag x

(2)
2 〉, a])

for every v1, v2 ∈ factors(a) with φ(〈x(1)1 x
(2)
1 zag x

(2)
2 〉)(v1, v2) ∈ factors(a),

t1 ∈ {〈Jan〉, 〈Piet〉, 〈Marie〉}, and t2 ∈ {〈x(1)1 x
(2)
1 , helpenx

(2)
2 〉(nsub, dobj), 〈x

(1)
1 , lezen 〉(nsub)}:

[root, 〈x(1)1 x
(2)
1 zag x

(2)
2 〉(nsub, dobj), φ(〈x

(1)
1 x

(2)
1 zag x

(2)
2 〉)(v1, v2)]→ 〈x1x2〉([nsub, t1, v1], [dobj, t2, v2])

for every v1, v2 ∈ factors(a) with φ(〈x(1)1 x
(2)
1 , helpenx

(2)
2 〉)(v1, v2) ∈ factors(a),

t1 ∈ {〈Jan〉, 〈Piet〉, 〈Marie〉}, and t2 ∈ {〈x(1)1 x
(2)
1 , helpenx

(2)
2 〉(nsub,dobj), 〈x

(1)
1 , lezen 〉(nsub)}:

[dobj, 〈x(1)1 x
(2)
1 , helpenx

(2)
2 〉(nsub, dobj), φ(〈x

(1)
1 x

(2)
1 , helpenx

(2)
2 〉)(v1, v2)]→ 〈x1x2〉([nsub, t1, v1], [dobj, t2, v2])

for every v1 ∈ factors(a) with φ(〈x(1)1 , lezen 〉)(v1) ∈ factors(a) and t1 ∈ {〈Jan〉, 〈Piet〉, 〈Marie〉}:

[dobj, 〈x(1)1 , lezen 〉(nsub), φ(〈x(1)1 , lezen 〉)(v1)]→ 〈x1〉([nsub, t1, v1])

[nsub, 〈Jan〉, Jan]→ 〈ε〉
[nsub, 〈Piet〉,Piet]→ 〈ε〉

[nsub, 〈Marie〉,Marie]→ 〈ε〉 .

Figure 9: Application of the canonical T -weighted deduction system to the grammar of Example 4.2
and the string a = Jan Piet Marie zag helpen lezen (only the rules are given).

43

6.2. Value computation algorithm

Algorithm 6.1 Value computation algorithm

Input: a (GCFG∅ ,Kall)-LM
(
(G′,CFG∅), (K,⊕, 0, Ω,∑⊕),wt′

)
with G′ = (N ′, Σ′, A′0, R

′)
Variables: V :N ′ → K, Vnew ∈ K . V:N ′ → P(TR′), Vnew ⊆ TR′

changed ∈ B

. select ∈ N ’
Output: V (A0)

1: for each A ∈ N ′ do
2: V (A)← 0 . V(A)← ∅

. n← 0
3: repeat
4: changed ← ff
5: for each A ∈ N ′ do . select ← A
6: Vnew ← 0 . Vnew ← ∅
7: for each r =

(
A→ σ(A1, . . . , Ak)

)
in R′ do

8: Vnew ← Vnew ⊕ wt′(r)
(
V (A1), . . . , V (Ak)

)
. Vnew ← Vnew ∪ {r(d1, . . . , dk) | d1 ∈ V(A1), . . . , dk ∈ V(Ak)}

9: if V (A) 6= Vnew then
10: changed ← tt

11: V (A)← Vnew . V(A)← Vnew; n← n+ 1

12: until changed = ff

The value computation algorithm is given as Algorithm 6.1. It takes as input a (GCFG∅ ,Kall)-LM(
(G′,CFG∅),K,wt′

)
with G′ = (N ′, Σ′, A′0, R

′) and outputs the value V (A′0) ∈ K, where V :N ′ → K

is a mapping it maintains. Furthermore, it maintains the Boolean variable changed. The algorithm
consists of two phases: In the first phase (lines 1–2), for every nonterminal A it lets V (A) be 0. In the
second phase (lines 3–12), a repeat-until loop is iterated until the variable changed has the value ff. This
variable is set to ff at the start of each iteration (line 4), but may be assigned the value tt in line 10. In
each iteration of the repeat-until loop, an inner for loop iterates over every nonterminal (lines 5–11).
For each nonterminal A, a value Vnew is computed (lines 6–8), where

Vnew(A) =
⊕
r∈R′:

r=(A→σ(A1,...,Ak))

wt′(r)
(
V (A1), . . . , V (Ak)

)
.

If this value differs from V (A), then the variable changed is set to tt. Finally, V (A) is set to Vnew

(lines 9–11).
Note that we have placed additional variables and statements behind the comment symbol .. These

are not part of the algorithm and can be ignored for the time being. They describe formal properties
of the algorithm which we will refer to in the next section.

7. Termination and correctness of the M-monoid parsing algorithm

We are interested in two formal properties of Algorithm 6.1 and of the M-monoid parsing algorithm
(Figure 2): termination and correctness.

Algorithm 6.1 computes the weights of the ASTs bottom-up and reuses the results of common subtrees
(as in dynamic programming); this requires distributivity of the weight algebra. Moreover, solving the
M-monoid parsing problem involves the computation of an infinite sum, which can only be done by
a terminating algorithm in special cases (cf. the start of Section 4.3). We have already shown (cf.
Theorem 4.13) that the class of closed wRTG-LMs is a good candidate for such a special case. Hence,
in the following, we will be concerned with inputs of that class.

44

7.1. Properties of the value computation algorithm

In the following, we will study formal properties of Algorithm 6.1. We are mainly interested in two
questions:

(a) Does the algorithm terminate for every input?

(b) Does V (A′0) =
∑⊕

d∈AST(G′)
wt′(d)K hold after termination?

For the analysis of Algorithm 6.1 we have introduced the additional variables V:N ′ → P(TR′),
Vnew ⊆ TR′ , select ∈ N ′, and n ∈ N, where

• V:N ′ → P(TR′) captures for each nonterminal A and each iteration of the inner for loop the
subset of (TR′)A which contributes to the computation of V (A) in that iteration,

• Vnew ⊆ TR′ is used to accumulate the set V(A) of abstract syntax trees,

• in each iteration of the inner for loop, select ∈ N ′ is the nonterminal of that iteration, and

• n ∈ N is used to count the iterations of the inner for loop.

We have placed these new variables and the statements which modify them behind the comment sym-
bol .. In the analysis we will treat this comments as if they were actual statements (auxiliary state-
ments).

For technical purposes, we formalize the sequences of values which are taken by V , V, select , and
changed during the iterations of the inner for loop as families.

We define the families (Vn | n ∈ N), (Vn | n ∈ N), (selectn | n ∈ N), and (changedn | n ∈ N) such that
for each n ∈ N, we have Vn:N ′ → K, Vn:N ′ → P(TR′), selectn ∈ N ′ ∪ {⊥}, changedn ∈ B, and the
following holds for every n ∈ N:

• if lines 6–11 have been executed n times, then after executing line 11, including the auxiliary
statements, the values of V , V, select , and changed are Vn, Vn, selectn, and changedn respectively,

• intuitively, we define the values of Vn, Vn, selectn, and changedn for those n which are beyond
termination of the algorithm by copying the corresponding values from the final iteration. For-
mally, if there is a k ∈ N such that k < n and changed |N ′|·bk/|N ′|c = ff, then we define Vn = Vk,
Vn = Vk, selectn = ⊥ and changedn = ff.

Thus, V0 and V0 denote the respective values after the execution of lines 1–2 and select0 is the non-
terminal chosen by the inner for loop when Algorithm 6.1 executes line 5 for the first time. We define
changed0 = tt.

Let n ∈ N. We say that the algorithm terminates after n iterations of the inner for loop if n is the
smallest number such that changed |N ′|·bn/|N ′|c = ff. We say that the algorithm still runs in the nth
iteration of the inner for loop if for every n′ ∈ N with n′ ≤ n it holds that changed |N ′|·bn′/|N ′|c = tt.
Let A ∈ N ′ and d ∈ (TR′)A. We say that d is first added to V(A) in the nth iteration of the inner for
loop if d ∈ Vn+1(A) and for every n′ ∈ N with n′ ≤ n, d 6∈ Vn′(A).

Observation 7.1. For every n ∈ N and A ∈ N ′ such that the algorithm still runs in the nth iteration
of the inner for loop the following holds: If selectn = A, then

Vn+1(A) =
⊕
r∈R′:

r=(A→σ(A1,...,Ak))

wt′(r)
(
Vn(A1), . . . , Vn(Ak)

)
and

Vn+1(A) =
⋃
r∈R′:

r=(A→σ(A1,...,Ak))

{r(d1, . . . , dk) | d1 ∈ Vn(A1), . . . , dk ∈ Vn(Ak)} .

If selectn 6= A, then Vn+1(A) = Vn(A) and Vn+1(A) = Vn(A).

Let W ⊆ W(Gall,Kall). Algorithm 6.1 is correct for W if for every G′ =
(
(G′,CFG∅),K,wt′

)
in W

with G′ = (N ′, Σ′, A′0, R
′) the following holds: if Algorithm 6.1 is executed with G′ as input, then

V (A′0) =
∑⊕

d∈AST(G′)
wt′(d)K after termination.

45

In the following subsections we show that Algorithm 6.1 terminates for every wRTG-LM in the class
Wclosed(GCFG∅ ,Kdist ∩Kd-comp) and that is correct for this class.

For the rest of this section, we let c ∈ N and G′ =
(
(G′,CFG∅), (K,⊕, 0, Ω),wt′

)
with

G′ = (N ′, Σ′, A′0, R
′) be a c-closed (GCFG∅ ,Kdist ∩Kd-comp)-LM.

We start with two general lemmas that are needed for both termination and correctness.

Lemma 7.2. For every n ∈ N and A ∈ N ′ it holds that Vn(A) =
⊕

d∈Vn(A) wt′(d)K.

Proof. For the proof of Lemma 7.2, we refer to Appendix A.13. �

Lemma 7.3. For every n ∈ N and A ∈ N ′ the following holds: for each n ∈ N with n′ > n, Vn(A) ⊆
Vn′(A).

Proof. For the proof of Lemma 7.3, we refer to Appendix A.13. �

7.1.1. Termination of the value computation algorithm

An important step in showing that Algorithm 6.1 terminates on every closed wRTG-LM is the following
Lemma.

Lemma 7.4. For every d ∈ TR′ , n ∈ N, and A ∈ N ′ the following holds: if d ∈ Vn(A), then cutout(d) ⊆
Vn(A).

Proof. For the proof of Lemma 7.4, we refer to Appendix A.14. �

For the rest of this subsection, for every n ∈ N and A ∈ N ′ we let ∆n(A) = Vn+1(A)\Vn(A).

From Lemma 7.4, we are able to conclude the following.

Lemma 7.5. For every n ∈ N and A ∈ N ′ the following holds: if Vn+1(A) 6= Vn(A), then Vn+1(A) ∩
T

(c)
R′ ⊃ Vn(A) ∩ T

(c)
R′ .

Proof. For the proof of Lemma 7.5, we refer to Appendix A.14. �

Theorem 7.6. For every wRTG-LM G in Wclosed(GCFG∅ ,Kd-comp ∩Kdist) the following holds: if
the value computation algorithm (Algorithm 6.1) is executed with G as input, then it terminates.

Proof. We define the mapping int:P(T
(c)
R′)× B→ N2 such that int(D, b) = (|T(c)

R′ | − |D|, δ(b)) for each
D ⊆ TR′ and b ∈ B, where δ(tt) = 1 and δ(ff) = 0. Then for each n ∈ N with∨

n′∈N:n·|N ′|<n′≤(n+1)·|N ′|

changedn′ = tt

46

we have

int

T
(c)
R′ ∩

⋃
A∈N ′

V(n+1)·|N ′|(A),
∨
n′∈N:

n·|N ′|<n′≤(n+1)·|N ′|

changedn′

=

|T(c)
R′ | −

∣∣∣∣∣T(c)
R′ ∩

⋃
A∈N ′

V(n+1)·|N ′|(A)

∣∣∣∣∣ , δ
 ∨

n′∈N:
n·|N ′|<n′≤(n+1)·|N ′|

changedn′

>

|T(c)
R′ | −

∣∣∣∣∣T(c)
R′ ∩

⋃
A∈N ′

V(n+2)·|N ′|(A)

∣∣∣∣∣ , δ
 ∨

n′∈N:
(n+1)·|N ′|<n′≤(n+2)·|N ′|

changedn′

 (*)

= int

T
(c)
R′ ∩

⋃
A∈N ′

V(n+2)·|N ′|(A),
∨
n′∈N:

(n+1)·|N ′|<n′≤(n+2)·|N ′|

changedn′

where “¡” is the strict ordering relation induced by ≤, the natural order on N2, and that (*) holds can
be seen as follows. First, for every A ∈ N ′, V(n+2)·|N ′|(A) ⊇ V(n+1)·|N ′|(A) by Lemma 7.3 and thus

T
(c)
R′ ∩V(n+2)·|N ′|(A) ⊇ T

(c)
R′ ∩V(n+1)·|N ′|(A). Then we distinguish two cases:

(i) If there is an A ∈ N ′ such that T
(c)
R′ ∩V(n+2)·|N ′|(A) ⊃ T

(c)
R′ ∩V(n+1)·|N ′|(A), then

T
(c)
R′ ∩

⋃
A′∈N ′

V(n+2)·|N ′| =
(

T
(c)
R′ ∩V(n+2)·|N ′|(A)

)
∪
(

T
(c)
R′ ∩

⋃
A′∈N ′\{A}

V(n+2)·|N ′|

)
⊃
(

T
(c)
R′ ∩V(n+1)·|N ′|(A)

)
∪
(

T
(c)
R′ ∩

⋃
A′∈N ′\{A}

V(n+2)·|N ′|

)
⊇
(

T
(c)
R′ ∩V(n+1)·|N ′|(A)

)
∪
(

T
(c)
R′ ∩

⋃
A′∈N ′\{A}

V(n+1)·|N ′|

)
= T

(c)
R′ ∩

⋃
A′∈N ′

V(n+1)·|N ′|

and thus

|T(c)
R′ | −

∣∣∣∣∣T(c)
R′ ∩

⋃
A′∈N ′

V(n+1)·|N ′|

∣∣∣∣∣ > |T(c)
R′ | −

∣∣∣∣∣T(c)
R′ ∩

⋃
A′∈N ′

V(n+2)·|N ′|

∣∣∣∣∣ .
(ii) Otherwise for every A ∈ N ′ we have that T

(c)
R′ ∩V(n+2)·|N ′|(A) = T

(c)
R′ ∩V(n+1)·|N ′|(A). Then for

every n′ ∈ N with (n+ 1) · |N ′| ≤ n′ < (n+ 2) · |N ′|, by Lemma 7.3

T
(c)
R′ ∩Vn′+1(A) ⊆ T

(c)
R′ ∩Vn′(A) ,

thus by Lemma 2.2

T
(c)
R′ ∩Vn′+1(A) = T

(c)
R′ ∩Vn′(A) ,

and by Lemma 7.5 Vn′+1(A) = Vn′(A). Thus
∨
n′∈N: (n+1)·|N ′|<n′≤(n+2)·|N ′| changedn′ = ff and

δ(tt) = 1 > 0 = δ(ff).

This proves (*).

47

Now we prove termination by contradiction. For this, we assume that∨
n′∈N:n·|N ′|<n′≤(n+1)·|N ′|

changedn′ = tt

for every n ∈ N. We define the set

I =

{
int(T

(c)
R′ ∩

⋃
A∈N ′

V(n+1)·|N ′|(A), tt)

∣∣∣∣∣n ∈ N

}
⊆ N2 .

Clearly I is nonempty. Since (N2, <) is well-founded, the set I has a minimal element. Thus there is
an m ∈ N such that for each n ∈ N,

int

(
T

(c)
R′ ∩

⋃
A∈N ′

V(m+1)·|N ′|(A), tt

)
≤ int

(
T

(c)
R′ ∩

⋃
A∈N ′

V(n+1)·|N ′|(A), tt

)

Thus, by choosing n = m+ 1, we obtain

int

(
T

(c)
R′ ∩

⋃
A∈N ′

V(m+1)·|N ′|(A), tt

)
≤ int

(
T

(c)
R′ ∩

⋃
A∈N ′

V(m+2)·|N ′|(A), tt

)

< int

(
T

(c)
R′ ∩

⋃
A∈N ′

V(m+1)·|N ′|(A), tt

)
(by *)

which is a contradiction. Thus, there is an n ∈ N such that
∨
n′∈N:n·|N ′|<n′≤(n+1)·|N ′| changedn′ = ff.

We let n0 be the smallest n ∈ N such that
∨
n′∈N:n0·|N ′|<n′≤(n0+1)·|N ′| changedn′ = ff. Then the

algorithm terminates after n0 executions of lines 6–11. �

7.1.2. Correctness of the value computation algorithm

Lemma 7.7. For every n ∈ N, d ∈ T
(c)
R′ of the form d = r(d1, . . . , dk) with r =

(
A → σ(A1, . . . , Ak)

)
,

k1, . . . , kk ∈ K, and I ⊆ [k] such that

(i) for every i ∈ [k] \ I, di ∈ Vn(Ai) and

(ii) for every i ∈ I, Vn(Ai) = Vn(Ai)⊕ ki

the following holds: if selectn = A, then Vn+1(A) = Vn+1(A)⊕ wt′(r)(l1, . . . , li), where

li =

{
ki if i ∈ I
wt′(di)K otherwise.

Proof. For the proof of Lemma 7.7, we refer to Appendix A.15. �

Theorem 7.8. For every wRTG-LMG =
(
(G′,CFG∅),K,wt′

)
in Wclosed(GCFG∅ ,Kd-comp∩Kdist) where

G′ = (N ′, Σ′, A′0, R
′) the following holds: if the value computation algorithm (Algorithm 6.1) is executed

with G as input, then after termination for every A ∈ N ′ it holds that V (A) =
∑⊕

d∈(TR′)A
wt′(d)K.

Proof. Let A ∈ N ′ and n ∈ N such that Algorithm 6.1 terminates after n executions of lines 6–11. By
Theorem 4.13 we have that

∑⊕
d∈(TR′)A

wt′(d)K =
⊕

d∈(T
(c)

R′)A
wt′(d)K. Furthermore

Vn+1(A) =
⊕

d∈Vn+1(A)

wt′(d)K (Lemma 7.2)

=
⊕

d∈V′n+1(A)

wt′(d)K , (Theorem 4.11)

48

where V ′n+1(A) = Vn+1(A) ∩ (T
(c)
R′)A. Hence it remains to show that Vn+1(A) =

⊕
d∈(T

(c)

R′)A
wt′(d)K,

which we do by an indirect proof.

Assume that Vn+1(A) 6=
⊕

d∈(T
(c)

R′)A
wt′(d)K. Then there is a d ∈ (T

(c)
R′)A \ Vn+1(A) such that

Vn+1(A) 6= Vn+1(A)⊕ wt′(d)K . (P1)

We choose A ∈ N ′ and d ∈ (T
(c)
R′)A\V ′n+1(A) such that d is the smallest tree (in height) in T

(c)
R′ with this

property. By Observation 7.1, {r ∈ R′ | lhs(r) = A and rk(r) = 0} ⊆ Vn+1(A), hence height(d) ≥ 1.
We let d = r(d1, . . . , dk) and r =

(
A → σ(A1, . . . , Ak)

)
with k > 0. Since d is the smallest tree with

property (P1), it cannot be the case for any i ∈ [k] that di ∈ (TR′)
(c)
Ai
\ V ′n+1(Ai) and Vn+1(Ai) 6=

Vn+1(Ai)⊕wt′(di)K. Hence for every i ∈ [k], either di ∈ V ′n+1(Ai) or Vn+1(Ai) = Vn+1(Ai)⊕wt′(di)K.
Now we distinguish two cases.

(i) If di ∈ VnA(Ai) for every i ∈ [k], where nA ∈ N is the greatest number such that selectnA = A,
then by Observation 7.1, d ∈ VnA+1(A). We note that nA ≤ n. Thus by Lemma 7.3, d ∈ Vn+1(A),
which contradicts the definition of d.

(ii) Otherwise, let nA ∈ N the greatest number such that selectnA = A. Then for every i ∈ [k],
Vn+1(Ai) = Vn+1(Ai)⊕ wt′(di)K, di ∈ VnA(Ai), or there is an n′ ∈ N with nA < n′ ≤ n+ 1 such
that di ∈ Vn′(Ai). For every i ∈ [k] such that only the latter holds, since the algorithm terminates
after n executions of lines 6–11, we have that Vni(Ai) = Vni+1(Ai), where ni ∈ N is the greatest
number such that selectni = Ai. Then by Lemma 7.2

Vni(Ai) = Vni(Ai)⊕
⊕

d′∈∆ni (Ai)

wt′(d′)K .

Thus, by Lemma 2.8 (which is applicable due to Lemma 2.10), Vni(Ai) = Vni(Ai) ⊕ wt′(di)K,
and by Observation 7.1, VnA(Ai) = VnA(Ai)⊕ wt′(di)K. By termination after n iterations of the
inner for loop and Observation 7.1, Vn+1(A) = VnA(A) for every A ∈ N ′. We let I = {i ∈ [k] |
VnA(Ai) = VnA(Ai)⊕ wt′(di)K}. Then by Lemma 7.7,

VnA+1(A) = VnA+1(A)⊕ wt′(r) (wt′(d1)K, . . . ,wt′(dk)K)

= VnA+1(A)⊕ wt′(d)K .

Thus Vn+1(A) = Vn+1(A)⊕ wt′(d)K, which contradicts the definition of d. �

Corollary 7.9. The value computation algorithm (Algorithm 6.1) is correct for the class
Wclosed(GCFG∅ ,Kd-comp ∩Kdist).

7.2. Properties of the M-monoid parsing algorithm

We say that the M-monoid parsing algorithm is correct for some class W of wRTG-LMs if it computes
parse(a) for every wRTG-LM in W and syntactic object a. We want to show that the M-monoid parsing
algorithm is correct for every wRTG-LM with finitely decomposable language algebra which is closed
or nonlooping.

Lemma 7.10. For every wRTG-LM G with finitely decomposable language algebra and syntactic
object a, the wRTG-LM cwds(G, a) is closed if

• G is closed or

• G is nonlooping and the weight algebra of G is in Kd-comp ∩Kdist.

Proof. For the proof of Lemma 7.10, we refer to Appendix A.16. �

49

Theorem 7.11. The M-monoid parsing algorithm is terminating and correct for every closed wRTG-
LM with finitely decomposable language algebra and for every nonlooping wRTG-LM with finitely
decomposable language algebra and weight algebra in Kd-comp ∩Kdist.

Proof. The M-monoid parsing algorithm terminates because (a) the computation of cwds is terminating
for every wRTG-LM with finitely decomposable language algebra and (b) Algorithm 6.1 is terminating
by Theorem 7.6, which we can be applied due to Lemma 7.10. The M-monoid parsing algorithm is
correct because (a) cwds is weight-preserving (Observation 6.1 and Lemma 6.3) and (b) Algorithm 6.1
is correct by Theorem 7.8 (which is applicable again due to Lemma 7.10), hence

parse(a)
(a)
=
∑⊕

d∈AST(G′)

wt′(d)K
(b)
= V (A′0) . �

8. Application scenarios

In this section we investigate the applicability of the value computation algorithm (Algorithm 6.1) and
of the M-monoid parsing algorithm. We say that an algorithm is applicable to a class of wRTG-LMs if
it is terminating and correct for every wRTG-LM in that class. We compare the variety of classes of
wRTG-LMs to which our algorithms are applicable to that of similar algorithms from the literature. In
the end we informally discuss complexity results of our algorithms.

8.1. Value computation algorithm

By Theorem 7.6 and Corollary 7.9, the value computation algorithm (Algorithm 6.1) is applicable to

every closed wRTG-LM with language algebra CFG∅, i.e., to every wRTG-LM in the class Wclosed(GCFG∅ ,
Kd-comp ∩Kdist). We start by identifying some classes of closed wRTG-LMs.

Theorem 8.1. Each wRTG-LM in each of the following three classes is closed: W(Gall,Kfin,id,�),
W(Gall,Ksup), and W(Gacyc,Kd-comp ∩Kdist).

Proof. For the proof, we refer to Appendix A.17. �

By Theorem 7.6, Corollary 7.9 and Theorem 8.1, the value computation algorithm (Algorithm 6.1)
is applicable to each class of wRTG-LMs that is mentioned in Theorem 8.1 if we restrict their language
algebra to CFG∅. We note that Kfin,id,� ⊆ Kd-comp ∩ Kdist and Ksup ⊆ Kd-comp ∩ Kdist by their
definition and Lemma 2.11.

Now we compare the applicability of the value computation algorithm (Algorithm 6.1) to the appli-
cabilities of (a) the second phase of the semiring parsing algorithm [Goo99, Figure 10], (b) Knuth’s
algorithm [Knu77, Section 3], and (c) Mohri’s algorithm [Moh02, Figure 2]. In order to have a basis
for a fair comparison, we understand the inputs of these algorithms as particular wRTG-LMs of the
form

(
(G′,CFG∅), (K,⊕, 0, Ω,∑⊕),wt′

)
with G′ = (N ′, Σ′, A′0, R

′). An algorithm is correct for such a
wRTG-LM if it computes

∑⊕
d∈AST(G′)

wt′(d)K. Thus the notion applicable is the same for the value

computation algorithm and the other ones.
Table 5 shows for each algorithm the class of inputs to which it is applicable. The algorithms (c) and

(d) are applicable to closed wRTG-LMs; moreover, (c) is applicable to a proper subset of the inputs of
(d). Each input to which (b) is applicable is in the class W(GCFG∅ ,Ksup) and thus, due to Theorem 8.1,
closed. The inputs to which (a) is applicable constitute the class W(GCFG∅ ∩ Gacyc,Ksr). However,
according to Theorem 8.1, only the class W(Gacyc,Kd-comp ∩ Kdist) is closed and Ksr 6⊆ Kd-comp in
general. We remark that for every wRTG-LM in W(GCFG∅ ∩Gacyc,Ksr) the set of ASTs is finite. Hence
only finite sums have to be computed and the restriction to d-complete M-monoids is not needed; thus

50

Algorithm Class of inputs Comment

(a) Goodman W(GCFG∅ ∩ Gacyc,Ksr) acyclic RTGs and complete semirings

(b) Knuth W(GCFG∅ ,Ksup) superior M-monoids

(c) Mohri Wclosed(GCFG∅ ∩ Gmon,Kcom. sr) monadic RTGs and commutative semirings

(d) Algorithm 6.1 Wclosed(GCFG∅ ,Kd-comp ∩Kdist) d-complete and distributive M-monoids

Table 5: Comparison of the value computation algorithm (d) to three similar algorithms. The second
column represents the class of wRTG-LMs to which the corresponding algorithm is applicable.

the value computation algorithm is applicable to W(GCFG∅ ∩Gacyc,Ksr). In summary, if one of the value
computation algorithms (a)–(c) is applicable, then Algorithm 6.1 is applicable too.

We conclude the investigation of the value computation algorithm by considering three classes
of wRTG-LMs whose weight algebra is a particular M-monoid: W(Gall,BD), W(Gall, nBST), and
W(Gall,Kint). It turns out that not every wRTG-LM in W(Gall,BD) is closed (for an example, cf.
Appendix A.18). Hence we first impose an additional restriction on this particular class.

We let W<1(Gall,KBD) be the class of all wRTG-LMs G =
(
(G,L),BD,wt

)
in W(Gall,BD) with

G = (N,Σ,A0, R) such that for every r ∈ R, wt(r) = tcp,r with p < 1. We remark that the condition
p < 1 is sufficient to ensure that each wRTG-LM in W<1(Gall,BD) is closed, but not necessary. There
may be weaker sufficient conditions which are more difficult to express, though.

Theorem 8.2. Each wRTG-LM in each of the following three classes is closed: W<1(Gall,BD),
W(Gall, nBST), and W(Gall,Kint).

Proof. For the proof, we refer to Appendix A.17. �

By Theorem 7.6, Corollary 7.9 and Theorem 8.2, the value computation algorithm (Algorithm 6.1)
is applicable to each class of wRTG-LMs that is mentioned in Theorem 8.2 if we restrict their language
algebra to CFG∅. We recall our comparison of algorithms in Table 5. Neither of algorithms (a)–(c) is
in general applicable to any of the wRTG-LMs of Theorem 8.2, but Algorithm 6.1 is applicable to each
of them.

8.2. M-monoid parsing algorithm

By Theorem 7.11, the M-monoid parsing algorithm is applicable to each class of wRTG-LMs that is
mentioned in Theorem 8.1 or Theorem 8.2 if we restrict them to finitely decomposable language algebras.

We continue to discuss two classes of nonlooping wRTG-LMs, each of which represents a particular
parsing problem. First we consider the class W(Gnl ∩Gfin-dc,Ksr). It contains exactly those wRTG-LMs
for which Goodman’s algorithm can solve the semiring parsing problem. By Theorem 7.11, the M-
monoid parsing algorithm is applicable to each wRTG-LM in the class W(Gnl ∩ Gfin-dc,Ksr ∩Kd-comp).
By the same argument as in the previous subsection we may extend this result to the class W(Gnl ∩
Gfin-dc,Ksr).

Second we consider the class W(GYIELD ∩ Gnl,KADP) of wRTG-LMs. It contains all those wRTG-
LMs which are specifications of ADP problems. Clearly GYIELD ⊆ Gfin-dc and by Lemma 5.4, KADP ⊆
Kdist∩Kd-comp. Thus, by Theorem 7.11, the M-monoid parsing algorithm is applicable to each wRTG-
LM in W(GYIELD ∩ Gnl,KADP).

In the end, we come to a more general view on nonlooping wRTG-LMs. By Theorem 7.11, the
M-monoid parsing algorithm is terminating and correct for every wRTG-LM whose language model is
in Gnl ∩ Gfin-dc if its weight algebra is in Kdist ∩ Kd-comp. Thus the M-monoid parsing algorithm is
applicable to the rather general class W(Gnl ∩ Gfin-dc,Kdist ∩Kd-comp) of wRTG-LMs.

The following statement summarizes the findings of this section.

51

Corollary 8.3. The M-monoid parsing algorithm is applicable to the following classes of wRTG-
LMs.

(1) W(Gnl∩Gfin-dc,Ksr) – this includes every input for which Goodman’s semiring parsing algorithm
terminates and is correct.

(2) W(Gfin-dc,Ksup) – this includes every input of Nederhof’s weighted deductive parsing algorithm.

(3) W<1(Gfin-dc,BD).

(4) W(Gfin-dc, nBST).

(5) W(Gfin-dc,Kint) – thus the M-monoid parsing algorithm can compute the intersection of a
grammar and a syntactic object.

(6) W(GYIELD∩Gnl,KADP) – thus the M-monoid parsing algorithm can solve every ADP problem.

Like the M-monoid parsing algorithm, the semiring parsing algorithm [Goo99] and the weighted
deductive parsing algorithm [Ned03] are only applicable if the language algebra of their input is finitely
decomposable. This is because they use a weighted deduction system in the first phase of their pipeline,
too. By (1) and (2) of Corollary 8.3, our approach subsumes semiring parsing and weighted deductive
parsing. The classes of (3) and (4) are essentially instances of the semiring parsing problem to which
the M-monoid parsing algorithm is applicable even if the RTG-LM is looping (i.e., not nonlooping).
Moreover, their weight algebras are not superior (in which case the weighted deductive parsing algorithm
would be applicable). Likewise (5) and (6) are in general outside the scope of both semiring parsing
and weighted deductive parsing.

8.3. Complexity

We only discuss the complexity of the second phase of the M-monoid parsing algorithm, i.e., the value
computation algorithm (Algorithm 6.1) because the first phase (canonical weighted deduction system)
is executed on demand. Thus the value computation algorithm is the main determinant of complexity
and the canonical weighted deduction system only adds a factor which depends on the language algebra
of the input. Since the weighted parsing algorithms of [Goo99; Ned03] are two-phase pipelines that use
a weighted deduction system in their first phase as well, we believe that abstracting from the first phase
yields the most significant statement on complexity.

Now we compare the complexity of the value computation algorithm to the complexity of the algo-
rithms of Mohri [Moh02], Knuth [Knu77] and the second phase of Goodman [Goo99]. We do this by
restricting the inputs of the value computation algorithm to the input scenarios of the other algorithms.
Since there is no complexity bound on the operations in the weight algebra of a wRTG-LM (they can
even be undecidable), it is not possible to give a general statement about the complexity of any of the
considered algorithms. Hence we abstract from the costs of these operations.

Mohri’s algorithm is applicable to every wRTG-LM in Wclosed(GCFG∅∩Gmon,Kcom. sr). Its complexity
is polynomial in the maximal number nmax of times the value of a nonterminal changes. Our value com-
putation algorithm has the same complexity if we restrict its inputs to Wclosed(GCFG∅ ∩Gmon,Kcom. sr).
We remark that nmax is in general not polynomial in the size of the input wRTG-LM. Mohri circum-
vents this problem by specifying the order in which nonterminals are processed for well-known classes
of inputs, e.g., acyclic graphs or superior weight algebras. We can adapt this idea by imposing such an
ordering on the iteration over the nonterminals in line 5.

Knuth’s algorithm is applicable to every wRTG-LM in W(GCFG∅ ,Ksup). Its complexity is in O
(
|N ′| ·

(|N ′| + |R′|)
)
. Our value computation algorithm has the same complexity if we restrict its inputs to

W(GCFG∅ ,Ksup) (assuming that |N ′| ≤ |R′|, which is usually the case). This is because in every iteration
of the repeat-until loop (lines 3–12), at least one nonterminal is assigned a weight which stays the same
across all future iterations (since the M-monoid is superior).

The second phase of Goodman’s semiring parsing algorithm is applicable to every wRTG-LM in
W(Gacyc ∩ GCFG∅ ,Ksr). It processes a topological ordering of its input and thus achieves a complexity
in O(|R′|). If we restrict the inputs of our value computation algorithm to W(Gacyc ∩GCFG∅ ,Ksr), then

52

its complexity is worse. We can, however, use the topological ordering of the input in line 5 of the value
computation algorithm; then we achieve the same complexity as Goodman. (Since Goodman requires
this ordering to be precomputed, we take the liberty of doing so as well.) Indeed, Mohri suggests to
process acyclic graphs in topological order, too.

Finally, we note that, although our value computation algorithm (Algorithm 6.1) – when restricted
to the respective inputs – has the same complexity as the other algorithms, in average performs more
computations than those. This is because in each iteration of lines 5–11, the values of all nonterminals
are recomputed. In particular, in the final iteration of the repeat-until loop (lines 3–12), the value of
every nonterminal is unchanged. We could avoid superfluous computations by using a direct general-
ization of Mohri’s algorithm to the branching case rather than Algorithm 6.1. However, the intricacies
of such a generalization would exceed the scope of this paper.

53

List of abbreviations

Notation Description Page

Language algebras

CFG∆ CFG algebra over ∆ 22

LCFRS∆ LCFRS algebra over ∆ 24

TAG∆ TAG algebra over ∆ 25

YIELD∆ YIELD algebra over ∆ 28

Classes of RTG-LMs

Gacyc class of acyclic RTG-LMs 28
Gall class of all RTG-LMs 21
GCFG class of RTG-LMs with language algebra CFG 22
Gfin-dc class of RTG-LMs with finitely decomposable lan-

guage algebra
28

GLCFRS class of RTG-LMs with language algebra LCFRS 24
Gmon class of monadic RTG-LMs 28
Gnl class of nonlooping RTG-LMs 28
GTAG class of RTG-LMs with language algebra TAG 26
GYIELD class of RTG-LMs with language algebra YIELD 28

Classes of M-monoids

KADP class of complete M-monoids 39
Kall class of complete M-monoids 21
BD best derivation M-monoid 20
Kd-comp class of d-complete M-monoids 31
Kdist class of distributive M-monoids 31
Kfin,id,� class of finite and idempotent M-monoids with a

certain monotonicity property
31

Kint class of intersection M-monoids 35
nBST n-best M-monoid 29
Ksr class of M-monoids associated with semirings 29
Ksup class of superior M-monoids 31
T tropical M-monoid 29
V Viterbi M-monoid 29

Classes of wRTG-LMs

W<1(Gall,KBD) class of best derivation wRTG-LMs 51
Wclosed(Gall,Kd-comp ∩Kdist) class of closed wRTG-LMs 32

54

Index

S-sorted tree relabeling, 11
AST(G), 16
AST(G, a), 17
arg max�, 9
arg min�, 9

abstract syntax tree, 16
acyclic, 13
ADP M-monoid over K and h, 37
ADP problem, 36
algebra, 10

carrier set, 10
interpretation mapping, 10

alphabet, 10

Bellman’s principle of optimality, 36
best derivation M-monoid, 20

canonical weighted deduction system, 40
CFG, 22
CFG-algebra over ∆, 22
closed, 32
context-free grammar, 22
context-free language, 22
cutout trees, 32
cycle, 13

elementary, 13
cyclic, 13

(c, w)-cyclic, 13
c-cyclic, 13

derivation, 16
derived operation, 11
disjoint union, 8

empty string, 10

factors, 10
family, 9
finitely decomposable, 11
formal language, 10

concatenation, 10

(G,K)-LM, 22
GBψ a, 34

homomorphism, 11

idempotent, 13
index set, 9
infimum, 9

infinitary sum operation, 13
intersection, 34
intersection M-monoid, 34

(K,L)-weighted deduction system, 40

L(G), 16
L(G)L, 17
L(G,A), 16
language algebra, 17
language generated by (G, (L, φ)), 17
LCFRS, 24

fan-out, 24
LCFRS-algebra over ∆, 24
linear context-free rewriting system, 24
lower bound, 9

M-monoid, 15
absorbing, 15
associated with semiring, 29
complete, 15
completely idempotent, 15
d-complete, 15
distributive, 15
naturally ordered, 15
superior, 31

M-monoid parsing algorithm, 39
applicable, 50
correct, 49

M-monoid parsing problem, 18
mapping, 8

bijective, 8
extension to sets, 8
injective, 8
surjective, 8

maximum, 9
minimum, 9
monoid, 13

commutative, 13
complete, 13
completely idempotent, 14
d-complete, 14
infinitary sum operation, 13
naturally ordered, 13

n-best M-monoid, 30
null operation, 15

objective function, 36
single-valued, 36

order

55

partial order, 9
strict ordering induced by, 9
total order, 9
well-order, 9
well-partial order, 9

πΣ , 16
partial function, 8
partition, 9

ranked alphabet, 10
ranked set, 10
reflexive and transitive closure, 9
regular tree grammar, 16

generated language, 16
relation, 8

antisymmetric, 8
binary, 8
endorelation, 8
functional, 8
identity relation, 8
reflexive, 8
reverse, 8
right-unique, 8
total, 8
transitive, 8
well-founded, 8

RTG, 16
maximal rank, 16
normal form, 16
unambiguous, 16

RTG-based language model, 17
RTG-LM, 17

ambiguous, 17
generated language, 17
language algebra, 17

S-sorted Σ-algebra, 10
S-sorted Σ-homomorphism, 11
S-sorted Σ-term algebra, 11
S-sorted alphabet, 10
S-sorted regular tree grammar, 16
S-sorted set, 10
S-sorted tree homomorphism, 11
semiring, 14

commutative, 14
complete, 15
idempotent, 14
naturally ordered, 14

sort, 10
sort-preserving, 10

restriction, 10
string, 10

concatenation, 10
length, 10
prefix, 10
set of strings, 10
slice, 10
substring, 10
suffix, 10

supremum, 9
syntactic object, 17
syntax component, 17

TAG, 25
TAG-algebra over ∆, 25
transitive closure, 9
tree, 11

label, 12
label sequence, 12
leaf, 12
position, 12
replacement, 12
slice, 12
subtree, 12
yield, 12

tree homomorphism, 11
tree relabeling, 11
tree-adjoining grammar, 25
trg, 10
tropical M-monoid, 29
tropical semiring, 29

∪̇, 8
upper bound, 9

value computation algorithm, 44
applicable, 50
correct, 46

Viterbi M-monoid, 29
Viterbi semiring, 29

W(G,K), 22
weight algebra, 17
weight component, 17
weighted deduction system, 40

weight-preserving, 40
weighted RTG-based language model, 17
wRTG-LM, 17

closed, 32
wt, 17

yield-algebra over ∆, 28
yield-grammar, 28

56

References

[Bak79] J. K. Baker. “Trainable grammars for speech recognition”. In: The Journal of the Acous-
tical Society of America 65.S1 (1979), S132–S132. doi: 10.1121/1.2017061.

[BC87] M. Bauderon and B. Courcelle. “Graph expressions and graph rewritings”. In: Mathemat-
ical Systems Theory 20 (1987).

[BL89] S. Billot and B. Lang. “The structure of shared forests in ambiguous parsing”. In: Proceed-
ings of the 27th annual meeting on Association for Computational Linguistics. Association
for Computational Linguistics. 1989, pp. 143–151.

[BNV11] M. Büchse, M.-J. Nederhof, and H. Vogler. “Tree Parsing with Synchronous Tree-adjoining
Grammars”. In: Proceedings of the 12th International Conference on Parsing Technolo-
gies. IWPT ’11. Dublin, Ireland: Association for Computational Linguistics, 2011, pp. 14–
25. isbn: 978-1-932432-04-6.

[BNV12] M. Büchse, M.-J. Nederhof, and H. Vogler. “Tree parsing for tree-adjoining machine
translation”. In: Journal of Logic and Computation 22(6) (2012).

[BPS61] Y. Bar-Hillel, M. Perles, and E. Shamir. “On Formal Properties of Simple Phrase Struc-
ture Grammars”. In: Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung 14 (1961). Reprinted in Y. Bar-Hillel. (1964). Language and Information: Se-
lected Essays on their Theory and Application, Addison-Wesley 1964, 116–150, pp. 143–
172. doi: 10.1524/stuf.1961.14.14.143.

[Bra69] W. S. Brainerd. “Tree generating regular systems”. In: (1969).

[Cho63] N. Chomsky. “Formal properties of grammars”. In: Handbook of Math. Psychology 2
(1963), pp. 328–418.

[Cou91] B. Courcelle. “The monadic second-order logic of graphs V: on closing the gap between
definability and recognizability”. In: Theoretical Computer Science 80 (1991), pp. 153–
202.

[DGV16] F. Drewes, K. Gebhardt, and H. Vogler. “EM-Training for Weighted Aligned Hypergraph
Bimorphisms”. In: Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted
Automata. Berlin, Germany: Association for Computational Linguistics, 2016, pp. 60–69.
doi: 10.18653/v1/W16-2407.

[Dij59] E. Dijkstra. “A note on two problems in connexion with graphs”. In: Numer. Math. 1
(1959), pp. 269–271.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete
data via the EM algorithm”. In: Journal of the Royal Statistical Society, Series B 39
(1977), pp. 1–38.

[DV14] M. Droste and H. Vogler. “The Chomsky-Schützenberger Theorem for quantitative
context-free languages”. In: International Journal of Foundations of Computer Science
25(8) (2014), pp. 955–969.

[Eil74] S. Eilenberg. Automata, languages, and machines. Academic press, 1974.

[Eng15] J. Engelfriet. “Tree automata and tree grammars”. In: arXiv preprint arXiv:1510.02036
(2015).

[FMV09] Z. Fülöp, A. Maletti, and H. Vogler. “A Kleene theorem for weighted tree automata
over distributive multioperator monoids”. In: Theory of Computing Systems 44.3 (2009),
pp. 455–499.

[FV18] Z. Fülöp and H. Vogler. “Weighted iterated linear control”. In: Acta Informatica (June
2018). issn: 1432-0525. doi: 10.1007/s00236-018-0325-x. url: https://doi.org/10.
1007/s00236-018-0325-x.

57

http://dx.doi.org/10.1121/1.2017061
http://dx.doi.org/10.1524/stuf.1961.14.14.143
http://dx.doi.org/10.18653/v1/W16-2407
http://dx.doi.org/10.1007/s00236-018-0325-x
https://doi.org/10.1007/s00236-018-0325-x
https://doi.org/10.1007/s00236-018-0325-x

[GM85] J. Goguen and J. Meseguer. “Completeness of many-sorted equational logic”. In: Houston
Journal of Mathematics 11.3 (1985), pp. 307–334.

[GMS04] R. Giegerich, C. Meyer, and P. Steffen. “A discipline of dynamic programming over se-
quence data”. In: Science of Computer Programming 51 (2004), pp. 215–263.

[Gol99] J. Golan. Semirings and their Applications. 1999. Kluwer Academic Publishers, Dor-
drecht, 1999.

[Goo99] J. Goodman. “Semiring parsing”. In: Computational Linguistics 25.4 (1999), pp. 573–605.

[GTWW77] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. “Initial algebra semantics
and continuous algebras”. In: Journal of the ACM (JACM) 24.1 (1977), pp. 68–95.

[Hig63] P. J. Higgins. “Algebras with a scheme of operators”. In: Mathematische Nachrichten
27.1-2 (1963), pp. 115–132.

[HK87] A. Habel and H.-J. Kreowski. “Some structural aspects of hypergraph languages gener-
ated by hyperedge replacement”. In: STACS 1987 Proceedings. Vol. 247. LNCS. Springer-
Verlag, 1987, pp. 207–219.

[HS92] W. Hutchins and H. Somers. An introduction to machine translation. ISBN: 0-12-362830-
X, http://www.hutchinsweb.me.uk/IntroMT-TOC.htm. London: Academic Press, 1992.

[JS97] A. K. Joshi and Y. Schabes. “Tree-Adjoining Grammars”. In: Handbook of Formal Lan-
guages. Springer, 1997, pp. 69–123.

[Kal10] L. Kallmeyer. Parsing beyond context-free grammars. Springer, 2010. doi: 10.1007/978-
3-642-14846-0.

[Kar92] G. Karner. “On limits in complete semirings”. In: Semigroup Forum 45.1 (Dec. 1992),
pp. 148–165. issn: 1432-2137. doi: 10.1007/BF03025757. url: https://doi.org/10.
1007/BF03025757.

[Kha74] N. A. Khabbaz. “Control sets on linear grammars”. In: Information and Control 25.3
(1974), pp. 206–221.

[KK11] A. Koller and M. Kuhlmann. “A generalized view on parsing and translation”. In: Pro-
ceedings of the 12th International Conference on Parsing Technologies (IWPT). Dublin,
2011.

[KK12] A. Koller and M. Kuhlmann. “Decomposing TAG algorithms using simple algebraiza-
tions”. In: Proceedings of the 11th TAG+ Workshop. Paris, 2012. url: http://www.

coli.uni-saarland.de/~koller/papers/tag-irtg.pdf.

[Kla84] H. Klaeren. “A constructive method for abstract algebraic software specification”. In:
Theoret. Comput. Sci. 30 (1984), pp. 139–204.

[Knu77] D. E. Knuth. “A Generalization of Dijkstra’s Algorithm”. In: Inform. Process. Lett. 6.1
(Feb. 1977), pp. 1–5.

[Kui99] W. Kuich. “Linear systems of equations and automata on distributive multioperator
monoids”. In: Contributions to general algebra 12 (1999), pp. 247–256.

[Lan74] B. Lang. “Deterministic Techniques for Efficient Non-Deterministic Parsers”. In: Au-
tomata, Languages and Programming. Ed. by J. Loeckx. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1974, pp. 255–269. isbn: 978-3-662-21545-6.

[Lan94] B. Lang. “Recognition can be harder than parsing”. In: Computational Intelligence 10.4
(1994), pp. 486–494.

[LY90] K. Lari and S. Young. “The estimation of stochastic context-free grammars using the
Inside-Outside algorithm”. In: Computer Speech and Language 4.1 (1990), pp. 35–56.
issn: 0885-2308. doi: http://dx.doi.org/10.1016/0885-2308(90)90022-X. url:
http://www.sciencedirect.com/science/article/pii/088523089090022X.

58

http://dx.doi.org/10.1007/978-3-642-14846-0
http://dx.doi.org/10.1007/978-3-642-14846-0
http://dx.doi.org/10.1007/BF03025757
https://doi.org/10.1007/BF03025757
https://doi.org/10.1007/BF03025757
http://www.coli.uni-saarland.de/~koller/papers/tag-irtg.pdf
http://www.coli.uni-saarland.de/~koller/papers/tag-irtg.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/0885-2308(90)90022-X
http://www.sciencedirect.com/science/article/pii/088523089090022X

[Moh02] M. Mohri. “Semiring frameworks and algorithms for shortest-distance problems”. In:
Journal of Automata, Languages and Combinatorics 7.3 (2002), pp. 321–350.

[MV19] R. Mörbitz and H. Vogler. “Weighted parsing for grammar-based language models”.
In: Proceedings of the 14th International Conference on Finite-State Methods and Natu-
ral Language Processing. Dresden, Germany: Association for Computational Linguistics,
2019, pp. 46–55. url: https://www.aclweb.org/anthology/W19-3108.

[Ned03] M.-J. Nederhof. “Squibs and Discussions: Weighted deductive parsing and Knuth’s algo-
rithm”. In: Computational Linguistics 29.1 (2003), pp. 135–143.

[NS03] M.-J. Nederhof and G. Satta. “Probabilistic parsing as intersection”. In: 8th International
Workshop on Parsing Technologies. 2003, pp. 137–148.

[NS08] M.-J. Nederhof and G. Satta. “Probabilistic Parsing”. In: New Developments in Formal
Languages and Applications. Ed. by G. Bel-Enguix, M. Jiménez-López, and C. Mart́ın-
Vide. Vol. 113. Studies in Computational Intelligence. Springer Berlin Heidelberg, 2008,
pp. 229–258. isbn: 978-3-540-78290-2. doi: 10.1007/978-3-540-78291-9_7.

[PW83] F. Pereira and D. Warren. “Parsing as deduction”. In: ACL ’83 Proceedings of the 21st
annual meeting on Association for Computational Linguistics. 1983, pp. 137–144.

[SMFK91] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. “On multiple context-free grammars”.
In: Theoretical Computer Science 88 (1991), pp. 191–229.

[SSP95] S. Shieber, Y. Schabes, and F. Pereira. “Principles and implementation of deductive
parsing”. In: The Journal of Logic Programming 24(1–2) (1995), pp. 3–36.

[VWJ87] K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. “Charaterizing structural descriptions pro-
duced by various grammatical formalisms”. In: Proceedings of the 25th Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics,
1987, pp. 104–111. doi: 10.3115/981175.981190.

59

https://www.aclweb.org/anthology/W19-3108
http://dx.doi.org/10.1007/978-3-540-78291-9_7
http://dx.doi.org/10.3115/981175.981190

A. Additional proofs

In this appendix we have placed full proofs of some of the lemmas and claims of the previous sections.

A.1. Proofs of statements from the preliminaries

We recall the definition of the natural order on pairs of natural numbers. For every (a1, b1), (a2, b2) ∈ N2

we have that (a1, b1) ≤ (a2, b2) if one of the following holds:

(i) a1 < a2, or

(ii) a1 = a2 and b1 ≤ b2.

Lemma A.1. (N2,≤) is a well-order.

Proof. We start with proving that (N2,≤) is a total order. Reflexivity follows directly from (ii). Now
let (a1, b1), (a2, b2), (a3, b3) ∈ N2. For transitivity let (a1, b1) ≤ (a2, b2) and (a2, b2) ≤ (a3, b3); there are
four cases in which this may hold:

(i) if a1 < a2 and a2 < a3, then by transitivity of (N, <) also a1 < a3, hence (a1, b1) ≤ (a3, b3),

(ii) if a1 < a2 and a2 = a3, then clearly a1 < a3 and hence (a1, b1) ≤ (a3, b3),

(iii) if a1 = a2 and a2 < a3, then clearly a1 < a3 and hence (a1, b1) ≤ (a3, b3), and

(iv) if a1 = a2 and a2 = a3, then a1 = a3 and furthermore, we have that b1 ≤ b2 and b2 ≤ b3 because
otherwise (a1, b1) ≤ (a2, b2) and (a2, b2) ≤ (a3, b3) would not hold. Now we obtain from the
transitivity of (N,≤) that b1 ≤ b3 and thus (a1, b1) ≤ (a3, b3).

For antisymmetry, let (a1, b1) ≤ (a2, b2) and (a2, b2) ≤ (a1, b1). Then we have to distinguish two cases:

(i) if a1 = a2, then b1 ≤ b2 and b2 ≤ b1, thus by antisymmetry of (N,≤) we obtain b1 = b2, and

(ii) otherwise, we have that a1 < a2 and a2 < a1 which is equivalent to a1 ≤ a2 ∧ a2 ≤ a1 ∧ a1 6= a2.
By antisymmetry of (N,≤), a1 ≤ a2 ∧ a2 ≤ a1 implies a1 = a2, but this is a contradiction.

For totality there are two cases as well:

(i) if a1 = a2, then by totality of (N,≤) either b1 ≤ b2 or b2 ≤ b1, thus either (a1, b1) ≤ (a2, b2) or
(a2, b2) ≤ (a1, b1), respectively, and

(ii) otherwise, by totality of (N, <) either a1 < a2 or a2 < a1, thus either (a1, b1) ≤ (a2, b2) or
(a2, b2) ≤ (a1, b1), respectively.

Since (N2,≤) is reflexive, transitive, antisymmetric, and total, we conclude that it is a total order.
It remains to show that (N2, <), where < is the strict total ordering induced by ≤, is well-founded.

For this, let I ⊆ N2 such that I 6= ∅. We define I1 = {a | (a, b) ∈ I}. Clearly I1 ⊆ N and I1 6= ∅,
thus by well-foundedness of (N, <) there is an a′ ∈ I1 such that a 6< a′ for every a ∈ I1. Now we define
I1,2 = {b | (a, b) ∈ I1} and by the same argumentation obtain that there is a b′ ∈ I1,2 such that b 6< b′

for every b ∈ I1,2. By definition of I1 and I1,2, (a′, b′) ∈ I and by definition of <, (a, b) 6< (a′, b′) for
every (a, b) ∈ I. Thus (N2, <) is well-founded. �

Lemma 2.2. For every partial order (A,�), n ∈ N, and a1, . . . , an ∈ A the following holds: if a1 �
· · · � an and a1 = an, then a1 = · · · = an.

Proof. Let (A,�) be a partial order, n ∈ N, and a1, . . . , an ∈ A such that a1 � · · · � an and a1 = an
We show that a1 = · · · = an by contradiction. For this, assume that there are i, j ∈ [n] such that
ai 6= aj . Without loss of generality, we assume that i < j. Then, by transitivity of �, ai � aj . Since
ai 6= aj , we have that ai ≺ aj . Then, by transitivity of ≺, a1 ≺ aj and thus a1 ≺ an. This contradicts
the fact that a1 = an. �

Lemma 2.5. Let Σ be a ranked set and k = max{rk(σ) | σ ∈ Σ} such that k > 0. Then for each

h ∈ N it holds that |{t ∈ TΣ | height(t) ≤ h}| ≤ |Σ|(
∑h
i=0 k

i). In particular, {t ∈ TΣ | height(t) ≤ h} is
finite.

60

Proof. The proof is done by induction on h. For the induction base let h = 0. Then

|{t ∈ TΣ | height(t) ≤ 0}| = |{σ ∈ Σ | rk(σ) = 0}| ≤ |Σ| .

For the induction step let h ∈ N. We assume (IH) that for every h′ ≤ h it holds that |{t ∈ TΣ |
height(t) ≤ h′}| ≤ |Σ|(

∑h′
i=0 k

i). Then

|{t ∈ TΣ | height(t) ≤ h+ 1}|
≤ |{σ(t1, . . . , tk) | σ ∈ Σ and for every i ∈ [k]: ti ∈ TΣ and height(ti) ≤ h}|
= |Σ| · |{(t1, . . . , tk) | for every i ∈ [k]: ti ∈ TΣ and height(ti) ≤ h}|
= |Σ| · |{t ∈ TΣ | height(t) ≤ h}|k

≤ |Σ| · (|Σ|(
∑h
i=0 k

i))k (IH)

= |Σ| · |Σ|(
∑h+1
i=1 k

i)

= |Σ|(
∑h+1
i=0 k

i) . �

Lemma 2.7. For every monoid (K,⊕, 0), the binary relation � on K is reflexive and transitive.

Proof. Let (K,⊕, 0) be a monoid. For reflexivity of �, let k ∈ K. Since 0 is the identity element, we
have that k⊕0 = k. Thus k � k. For transitivity of �, let k1, k2, k3 ∈ K such that k1 � k2 and k2 � k3.
Then there are k, k′ ∈ K such that k1 ⊕ k = k2 and k2 ⊕ k′ = k3. Thus k1 ⊕ k⊕ k′ = k2 ⊕ k′ = k3 and
hence k1 � k3. �

Lemma 2.8. Let (K,⊕, 0) be a monoid. Then K is naturally ordered if and only if for every k1, k2, k3 ∈
K with k1 = k1 ⊕ k2 ⊕ k3 it holds that k1 = k1 ⊕ k2.

Proof. Let (K,⊕, 0) be a monoid. First, we assume that K is naturally ordered. Let k1, k2, k3 ∈ K with
k1 = k1 ⊕ k2 ⊕ k3. Then by definition of �, k1 ⊕ k2 � k1 ⊕ k2 ⊕ k3 and k1 = k1 ⊕ k2 ⊕ k3 � k1 ⊕ k2.
Thus, as � is antisymmetric, k1 = k1 ⊕ k2.

Second, we assume that for every k1, k2, k3 ∈ K with k1 = k1 ⊕ k2 ⊕ k3 it holds that k1 = k1 ⊕ k2.
By Lemma 2.7, � is reflexive and transitive. For antisymmetry, let k1, k2 ∈ K such that k1 � k2 and
k2 � k1. Then there are k, k′ such that k1 ⊕ k = k2 and k2 ⊕ k′ = k1. Hence

k1 = k2 ⊕ k′ = k1 ⊕ k ⊕ k′

= k1 ⊕ k (by assumption)

= k2 .

Thus � is antisymmetric and K is naturally ordered. �

Lemma 2.10. Every d-complete monoid is naturally ordered.

Proof. Let (K,⊕, 0,∑⊕) be a d-complete monoid. Furthermore, we let k, l1, l2 ∈ K such that k⊕l1⊕l2 =
k. We define the family (ki | i ∈ N) of elements of K such that for every i ∈ N, ki = l1 ⊕ l2. Then, for
every i ∈ N, k ⊕ ki = k. Thus, by Lemma 2.9 (ii),

k ⊕
∑⊕
i∈N

ki = k . (6)

61

Hence

k = k ⊕
∑⊕
i∈N

ki (Eq. 6)

=k ⊕
∑⊕
i∈N

(l1 ⊕ l2) = k ⊕
∑⊕
i∈N

l1 ⊕
∑⊕
i∈N

l2 = k ⊕ l1 ⊕
∑⊕
i∈N\{0}

l1 ⊕
∑⊕
i∈N

l2

=k ⊕ l1 ⊕
∑⊕
i∈N

l1 ⊕
∑⊕
i∈N

l2 = k ⊕ l1 ⊕
∑⊕
i∈N

(l1 ⊕ l2) = k ⊕ l1 ⊕
∑⊕
i∈N

ki = k ⊕
∑⊕
i∈N

ki ⊕ l1

=k ⊕ l1 . (Eq. 6)

Thus, by Lemma 2.8, K is naturally ordered. �

Lemma 2.11. Every completely idempotent monoid is d-complete.

Proof. Let (K,⊕, 0,∑⊕) be a completely idempotent monoid. Furthermore, we let k ∈ K and (ki | i ∈
N) be a family of elements of K such that k ⊕ ki = k for every i ∈ N. Then

k ⊕
∑⊕
i∈N

ki =
∑⊕
i∈N

k ⊕
∑⊕
i∈N

ki =
∑⊕
i∈N

(k ⊕ ki) =
∑⊕
i∈N

k = k .

Thus, by Lemma 2.9 (ii), K is d-complete. �

A.2. Superior M-monoids

Lemma (cf. Section 4.2.2). The tropical M-monoid (R∞0 ,min,∞, Ω+, inf) is superior.

Proof. We show that for every c ∈ R1
0 and k ∈ N, mul(k)

c ∈ Ω+ is ≤-superior. Let k, i ∈ N and
a, a1, . . . , ak, c ∈ R∞0 .

(i) Assume that a ≤ ai. Then

mul(k)
c (a1, . . . , ai−1, a, ai+1, . . . , ak) = c+ a1 + . . .+ ai−1 + a+ ai+1 + . . .+ ak

≤ c+ a1 + . . .+ ai−1 + ai + ai+1 + . . .+ ak (*)

= mul(k)
c (a1, . . . , ai−1, ai, ai+1, . . . , ak) ,

where (*) holds because

c+ a1 + . . .+ ai−1 + a+ ai+1 + . . .+ ak ≤ c+ a1 + . . .+ ai−1 + ai + ai+1 + . . .+ ak

due to the monotonicity of +.

(ii) Observe that a′ ≤ a′ + b′ for every a′, b′ ∈ R∞0 . Hence max{c, a1, . . . , ak} ≤ c + a1 + . . . + ak.
Then

max{a1, . . . , ak} ≤ max{c, a1, . . . , ak} ≤ c+ a1 + . . .+ ak = mul(k)
c (a1, . . . , ak) . �

Lemma (cf. Section 4.2.2). The Viterbi M-monoid (R1
0,max, 0, Ω·, sup) is superior.

Proof. Since superior M-monoids are defined to be of the form (K,min, 0, Ω) for some total order K,
we have to refer to the inverse total order on R1

0, (R1
0,≥). We show that for every c ∈ R1

0 and k ∈ N,

mul(k)
c ∈ Ω· is ≥-superior. Let b, a, a1, . . . , ak ∈ R1

0.

(i) Assume that a ≥ ai. Then, by monotonicity of · in R1
0,

b · a1 · . . . · ai−1 · a · ai+1 · . . . · ak ≥ b · a1 · . . . · ai−1 · ai · ai+1 · . . . · ak ,

which proves the first condition.

(ii) Since 0 ≤ ai ≤ 1 for each ai and also 0 ≤ b ≤ 1, we have for each i ∈ [k] that b·a1·. . .·ai·. . .·ak ≤ ai.
Thus min{a1, . . . , ak} ≥ b · a1 · . . . · ai · . . . · ak which proves the second condition. �

62

A.3. Best derivation M-monoid is distributive and d-complete

Lemma (cf. Example 3.1). The best derivation M-monoid is d-complete and distributive. Furthermore,
(0, ∅) is absorptive.

Proof. Clearly the best derivation M-monoid is a complete M-monoid. In order to show distribu-
tivity of ΩBD over maxBD, we let p ∈ R1

0, r ∈ R with rk(r) = k, i ∈ [k], tcp,r ∈ ΩBD, and
(p′, D′), (p1, D1), . . . , (pk, Dk) ∈ R1

0 × P(TR). Then there are three cases:

(i) if pi < p′, then

tcp,r
(
(p1, D1), . . . , (pi−1, Di−1),maxBD

(
(pi, Di), (p

′, D′)
)
, (pi+1, Di+1), . . . , (pk, Dk)

)
= tcp,r

(
(p1, D1), . . . , (pi−1, Di−1), (p′, D′), (pi+1, Di+1), . . . , (pk, Dk)

)
and since by monotonicity of ·, p · p1 · . . . · pk < p · p1 · . . . · pi−1 · p′ · pi+1 · . . . · pk

= maxBD

(
tcp,r((p1, D1), . . . , (pk, Dk)),

tcp,r((p1, D1), . . . , (pi−1, Di−1), (p′, D′), (pi+1, Di+1), . . . , (pk, Dk))
)
.

(ii) if p′ < pi, then we obtain

tcp,r
(
(p1, D1), . . . , (pi−1, Di−1),maxBD

(
(pi, Di), (p

′, D′)
)
, (pi+1, Di+1), . . . , (pk, Dk)

)
= maxBD

(
tcp,r((p1, D1), . . . , (pk, Dk)),

tcp,r((p1, D1), . . . , (pi−1, Di−1), (p′, D′), (pi+1, Di+1), . . . , (pk, Dk))
)

analogously to the first case, and

(iii) if p′ = pi, then

tcp,r
(
(p1, D1), . . . , (pi−1, Di−1),maxBD

(
(pi, Di), (p

′, D′)
)
, (pi+1, Di+1), . . . , (pk, Dk)

)
= tcp,r

(
(p1, D1), . . . , (pi−1, Di−1), (pi, Di ∪D′), (pi+1, Di+1), . . . , (pk, Dk)

)
,

now p · p1 · . . . · pk = p · p1 · . . . · pi−1 · p′ · pi+1 · . . . pk, hence

= maxBD(tcp,r((p1, D1), . . . , (pk, Dk)),

tcp,r((p1, D1), . . . , (pi−1, Di−1), (p′, D′), (pi+1, Di+1), . . . , (pk, Dk))) .

For the last step we remark that

{r(d1, . . . dk) | d1 ∈ D1, . . . di−1 ∈ Di−1, di ∈ Di ∪D′, di+1 ∈ Di+1, . . . , dk ∈ Dk}
= {r(d1, . . . dk) | d1 ∈ D1, . . . dk ∈ Dk} ∪
{r(d1, . . . dk) | d1 ∈ D1, . . . di−1 ∈ Di−1, di ∈ D′, di+1 ∈ Di+1, . . . , dk ∈ Dk} .

In order to show that BD is d-complete, we show that it is completely idempotent. For this, let I be
a countable set and (p,D) ∈ R1

0. Then∑⊕
i∈I

(p,D) =
(

sup{p | i ∈ I},
⋃
i∈I:

p=sup{p|i∈I}

D
)

=
(
p,
⋃
i∈I

D
)

= (p,D) .

Thus, by Lemma 2.11, it is d-complete.

63

In order to show absorptivity of (0, ∅), we let p ∈ R1
0, r ∈ R with rk(r) = k, tcp,r ∈ ΩBD, and

(p1, D1), . . . , (pk, Dk) ∈ R1
0 × P(TR). Now, if there is an i ∈ [k] such that (pi, Di) = (0, ∅), then

p · p1 · . . . · pi−1 · 0 · pi+1 · . . . · pk = 0 by absorptivity of 0 and

{r(d1, . . . , dk) | d ∈ D1, . . . , di−1 ∈ Di−1, di ∈ ∅, di+1 ∈ Di+1, . . . , dk ∈ Dk} = ∅ ,

hence
tcp,r

(
(p1, D1), . . . , (pi−1, Di−1), (0, ∅), (pi+1, Di+1), . . . , (pk, Dk)

)
= (0, ∅) . �

A.4. N-best M-monoid is distributive and d-complete

Lemma (cf. Example 4.7). The n-best M-monoid is distributive and d-complete and (0, . . . , 0︸ ︷︷ ︸
n times

) is

absorptive.

Proof. Clearly the n-best M-monoid is a complete M-monoid. For distributivity of Ωn over maxn we first
show that ·n is commutative and distributive over maxn. Commutativity of ·n follows from the commuta-
tivity of · in R1

0 and for distributivity of ·n over maxn we let (a1, . . . , an), (b1, . . . , bn), (c1, . . . , cn) ∈ nBST
and f = takenbest

(
(a1, . . . , an, b1, . . . , bn)

)
. Then

maxn
(
(a1, . . . , an), (b1, . . . , bn)

)
·n (c1, . . . , cn)

= (f1, . . . , fn) ·n (c1, . . . , cn)

= takenbest
(
(f1 · c1, . . . , f1 · cn, . . . fn · c1, . . . , fn · cn)

)
and by monotonicity of · in R1

0

= takenbest
(
(a1 · c1, . . . , a1 · cn, . . . an · c1, . . . , an · cn, b1 · c1, . . . , b1 · cn, . . . bn · c1, . . . , bn · cn)

)
= maxn

(
(a1 · c1, . . . , a1 · cn, . . . an · c1, . . . , an · cn), (b1 · c1, . . . , b1 · cn, . . . bn · c1, . . . , bn · cn)

)
= maxn

(
takenbest((a1 · c1, . . . , a1 · cn, . . . an · c1, . . . , an · cn)),

takenbest((b1 · c1, . . . , b1 · cn, . . . bn · c1, . . . , bn · cn))
)

= maxn
(
(a1, . . . , an) ·n (c1, . . . , cn), (b1, . . . , bn) ·n (c1, . . . , cn)

)
.

We thus obtain for every k ∈ N, k ∈ nBST , muln
(k)
k ∈ Ωn, i ∈ [k], and

(a1, . . . , an), (a1,1, . . . , a1,n), . . . , (ak,1, . . . , ak,n) ∈ nBST

muln
(k)
k

(
(a1,1, . . . , a1,n), . . . , (ai−1,1 . . . , ai−1,n),

maxn((ai,1, . . . , ai,n), (a1, . . . , an)),

(ai+1,1, . . . , ai+1,n), . . . , (ak,1, . . . , ak,n)
)

= (k, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n (a1,1, . . . , a1,n) ·n . . . ·n (ai−1,1, . . . , ai−1,n)

·n maxn
(
(ai,1, . . . , ai,n), (a1, . . . , an)

)
·n (ai+1,1, . . . , ai+1,n) ·n . . . ·n (ak,1, . . . , ak,n)

and by commutativity of ·n

= maxn
(
(ai,1, . . . , ai,n), (a1, . . . , an)

)
·n (k, 0, . . . , 0︸ ︷︷ ︸

n− 1 times

)

·n (a1,1, . . . , a1,n) ·n . . . ·n (ai−1,1, . . . , ai−1,n)

·n (ai+1,1, . . . , ai+1,n) ·n . . . ·n (ak,1, . . . , ak,n)

64

and by distributivity of ·n over maxn

= maxn
(
(ai,1, . . . , ai,n) ·n (k, 0, . . . , 0︸ ︷︷ ︸

n− 1 times

)

·n (a1,1, . . . , a1,n) ·n . . . ·n (ai−1,1, . . . , ai−1,n)

·n (ai+1,1, . . . , ai+1,n) ·n . . . ·n (ak,1, . . . , ak,n),

(a1, . . . , an) ·n (k, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

)

·n (a1,1, . . . , a1,n) ·n . . . ·n (ai−1,1, . . . , ai−1,n)

·n (ai+1,1, . . . , ai+1,n) ·n . . . ·n (ak,1, . . . , ak,n)
)

and by commutativity of ·n

= maxn
(
(k, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n (a1,1, . . . , a1,n) ·n . . . ·n (ak,1, . . . , ak,n),

(k, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n (a1,1, . . . , a1,n) ·n . . . ·n (ai−1,1, . . . , ai−1,n)

·n (a1, . . . , an)

·n (ai+1,1, . . . , ai+1,n) ·n . . . ·n (ak,1, . . . , ak,n)
)

= maxn
(

muln
(k)
k ((a1,1, . . . , a1,n), . . . , (ak,1, . . . , ak,n)),

muln
(k)
k ((a1,1, . . . , a1,n), . . . , (ai−1,1, . . . , ai−1,n),

(a1, . . . , an),

(ai+1,1, . . . , ai+1,n), . . . , (ak,1, . . . , ak,n))
)
.

Now we show that the n-best M-monoid is d-complete. For this, let (a1, . . . , an) ∈ nBST and(
(ai,1, . . . , ai,n) | i ∈ I

)
be an I-indexed family over nBST such that for every i ∈ I, (a1, . . . , an) ⊕

(ai,1, . . . , ai,n) = (a1, . . . , an). Then for every i ∈ N we have that an ≥ ai,1. Thus an ≥ sup{ai,j | i ∈
I, j ∈ [n]}. Let ψ: J → N be a bijective mapping. We define the family (fi | i ∈ N) such that for each
i ∈ [n], fi = ai and for each i ∈ N\[n], fi = abi/nc,i mod n+1. Then takenbest((fi | i ∈ N)) = (a1, . . . , an).
Thus

(a1, . . . an)⊕
∑maxn

i∈I
(ai,1, . . . , ai,n) = (a1, . . . , an) .

Then, by Lemma 2.9 (ii), the n-best M-monoid is d-complete.
In order to show that (0, . . . , 0︸ ︷︷ ︸

n times

) is absorptive for Ωn, we first show that it is absorptive for ·n. For

this, we let (a1, . . . , an) ∈ nBST . Then

(a1, . . . , an) ·n (0, . . . , 0︸ ︷︷ ︸
n times

) = takenbest(a1 · 0, . . . , a1 · 0︸ ︷︷ ︸
n times

, . . . , an · 0, . . . , an · 0︸ ︷︷ ︸
n times

)

= takenbest(0, . . . , 0︸ ︷︷ ︸
n2 times

) (0 is absorptive for ·)

= (0, . . . , 0︸ ︷︷ ︸
n times

)

Now absorptivity of (0, . . . , 0︸ ︷︷ ︸
n times

) for Ωn is easy to see. �

A.5. Definition of closed weighted RTG-based language models

Lemma 4.8. The endorelation (`+)−1 on TR is well-founded.

65

Proof. Let D ⊆ TR with |D| 6= ∅. We define the set I = {height(d) | d ∈ TR}. Clearly I ⊆ N and
I 6= ∅. Thus, as (N, <) is well-founded, there is an i ∈ I such that for every i′ ∈ I, i′ 6< i. We choose an
arbitrary d ∈ D such that height(d) = i. We show that for every d′ ∈ D it does not hold that d′(`+)−1d
by contradiction. For this, assume that there is a d′ ∈ D such that d′(`+)−1d. Then d `+ d′ and thus
by definition of `, height(d′) < height(d) = i. This contradicts the fact that for every i′ ∈ I, i′ 6< i. �

Lemma 4.9. For every d, d′ ∈ TR the following holds: if d `+ d′, then cutout(d′) ⊂ cutout(d).

Proof. Let d, d′ ∈ TR such than d `+ d′. Then

cutout(d′) = {d′′ ∈ TR | d′ `+ d}
⊂ {d′′ ∈ TR | d′ `+ d′′} ∪ {d}

and as d `+ d′, by transitivity of `+

⊆ {d′′ ∈ TR | d `+ d′′}
= cutout(d) . �

A.6. Properties of closed weighted RTG-based language models

This subappendix contains the full proofs of Lemma 4.10, Theorem 4.11 and Lemma 4.12. We start
with several auxiliary statements.

Lemma A.2. For every c ∈ N there is an n ∈ N such that for each d ∈ T
(c)
R , height(d) < n.

Proof. We start with an auxiliary statement: for every ρ ∈ R∗ with |ρ| = |R| + 1 it holds that ρ is
cyclic. For this, let ρ ∈ R∗ with |ρ| = |R|+ 1. Since R is finite, there are i, j ∈ [|R|+ 1] with i 6= j such
that ρi = ρj , hence ρ is cyclic.

Next we show that for every c ∈ N, there is an n ∈ N such that for each c′ ∈ N with c′ ≤ c and ρ ∈ R∗
which is c′-cyclic it holds that |ρ| < n. Note that the number of strings ρ ∈ R∗ with |ρ| = |R| + 1 is
|R||R|+1; we denote this number by m. Now let n = (c + 1) ·m. We show that for every ρ ∈ R∗ with
|ρ| = n it holds that ρ is c′-cyclic for some c′ > c. Clearly such ρ is cyclic, hence we let c′ ∈ N with
c′ ≤ c and assume that there is a ρ ∈ R∗ such that |ρ| = n and ρ is c′-cyclic. We let

ρ = ρ1 . . . ρm . . . ρc·m+1 . . . ρ(c+1)·m ,

where ρi ∈ R∗ and |ρi| = |R| + 1 for every i ∈ [n]. Since n/m = c + 1, there is an i ∈ [n] such
that ρi occurs at least c + 1 times in ρ. Furthermore, since |ρi| = |R| + 1, ρi is cyclic. Thus there is
an elementary cycle which occurs at least c+ 1 times in ρ, which contradicts our assumption that ρ is
c′-cyclic for some c′ ≤ c. As the same argument can be made for any n′ ≥ n, we conclude that for every
ρ ∈ R∗ such that ρ is c′-cyclic it holds that |ρ| < n.

Then for every d ∈ T
(c)
R and p ∈ pos(d) it holds that |p| < n − 1 and thus height(d) < n − 1, which

proves the lemma. �

Lemma A.3. For every c ∈ N the set T
(c)
R is finite.

Proof. This follows directly from Lemmas A.2 and 2.5. �

Lemma 4.10. For every d ∈ (TR), c′ ∈ N with c′ ≥ c + 1, and elementary cycle w ∈ R∗ such that
there is a leaf p ∈ pos(d) which is (c′, w)-cyclic the following holds:

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K =
⊕

d′∈cutout(d,w)

wt(d′)K .

66

Proof. The proof is done by induction on c′. For the induction base, let c′ = c+ 1, then the statement
of the lemma holds by Equation (2). For the induction step, let c′ ≥ c + 1. We assume that for each
d′ ∈ (TR) and elementary cycle w′ ∈ R∗ such that there is a leaf p ∈ pos(d′) which is (c′, w′)-cyclic the
following holds (IH):

wt(d′)K ⊕
⊕

d′′∈cutout(d′,w′)

wt(d′′)K =
⊕

d′′∈cutout(d′,w′)

wt(d′′)K .

Now we let d ∈ (TR) and w ∈ R∗ be an elementary cycle such that there is a leaf p ∈ pos(d) which is
(c′ + 1, w)-cyclic. We let v0, . . . , vc′+1 ∈ R∗ such that seq(d, p) = v0wv1 . . . wvc′+1, w = r1 . . . rm with
ri ∈ R for every i ∈ [m], rm =

(
A→ σ(A1, . . . , Ak)

)
, n = |v0|+ |w|+ 1, s ∈ [k] such that pn = s, and

D = {d′ ∈ cutout(d,w) | d′[xs,As]p1..n
= d[xs,As]p1..n

} .

As d ⊆ cutout(d,w)

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K

= wt(d)K ⊕
⊕
d∈D

wt(d′)K ⊕
⊕

d′∈cutout(d,w)\D

wt(d′)K

and since Ω distributes over ⊕

= wt(d)[xs,As]p1..n

(
wt(d|pn)K ⊕

⊕
d′∈D

wt(d′|pn)K

)
K

⊕
⊕

d′∈cutout(d,w)\D

wt(d′)K

and since {d′|pn | d′ ∈ D} = cutout(d|pn , w), by IH

= wt(d)[xs,As]p1..n

(⊕
d′∈D

wt(d′|pn)K

)
K

⊕
⊕

d′∈cutout(d,w)\D

wt(d′)K

=
⊕
d∈D

wt(d′)K ⊕
⊕

d′∈cutout(d,w)\D

wt(d′)K

=
⊕

d′∈cutout(d,w)

wt(d′)K . �

Lemma A.4. For every d ∈ (TR) and c′ ∈ N with c′ ≥ c+ 1 such that d is c′-cyclic the following holds:

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K =
⊕

d′∈cutout(d,w)

wt(d′)K .

Proof. This is a consequence of Lemma 4.10. �

Lemma A.5. For every m ∈ N, d ∈ TR \T
(c)
R , and B ⊆ cutout(d) \ T

(c)
R with |B| = m the following

holds: ⊕
d′∈cutout(d)

wt(d′)K =
⊕

d′∈cutout(d)\B

wt(d′)K .

Proof. Let d ∈ TR and m ∈ N. The proof is done by induction on m. For the induction base, let m = 0.

Then B = ∅ and for every d ∈ T
(c)
R⊕

d′∈cutout(d)

wt(d′)K =
⊕

d′∈cutout(d)\∅

wt(d′)K .

67

For the induction step, let m ∈ N. We assume (IH) that for every d ∈ TR \T
(c)
R and B ⊆ cutout(d) \

T
(c)
R with |B| = m it holds that ⊕

d′∈cutout(d)

wt(d′)K =
⊕

d′∈cutout(d)\B

wt(d′)K .

Now let B ⊆ cutout(d) \ T
(c)
R such that |B| = m+ 1. Then, by Lemma 4.8, there is a d′ ∈ B such that

for every d′′ ∈ B it does not hold that d′′(`+)
−1
d′ and thus d′ 6 `+d′′. Then⊕

d′′∈cutout(d)\B

wt(d)K

=
⊕

d′′∈cutout(d′)\B

wt(d′′)K ⊕
⊕

d′′∈(cutout(d)\cutout(d′))\B

wt(d′′)K (Lemma 4.9)

and for every d′′ ∈ B, as d′ 6 `+d′′, we have that d′′ 6∈ cutout(d′); thus

=
⊕

d′′∈cutout(d′)

wt(d′′)K ⊕
⊕

d′′∈(cutout(d)\cutout(d′))\B

wt(d′′)K

=
⊕

d′′∈cutout(d′)

wt(d′′)K ⊕ wt(d′)K ⊕
⊕

d′′∈(cutout(d)\cutout(d′))\B

wt(d′′)K (Lemma A.4)

=
⊕

d′′∈cutout(d′)\(B\{d′})

wt(d′′)K ⊕
⊕

d′′∈(cutout(d)\cutout(d′))\(B\{d′})

wt(d′′)K

=
⊕

d′′∈cutout(d)\(B\{d′})

wt(d′′)K

=
⊕

d′′∈cutout(d)

wt(d′′)K . (IH) �

Lemma A.6. For every d ∈ TR \T
(c)
R the following holds:

wt(d)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K =
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K .

Proof. Let d ∈ TR \T
(c)
R . Then

wt(d)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K = wt(d)K ⊕
⊕

d′∈cutout(d)

wt(d′)K (Lemma A.5)

=
⊕

d′∈cutout(d)

wt(d′)K (Lemma A.4)

=
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K (Lemma A.5) �

Theorem 4.11. For every l ∈ N, D ⊆ T
(c)
R , andD′ ⊆ TR \T

(c)
R the following holds: if

⋃
d∈D′(cutout(d)∩

T
(c)
R) ⊆ D, then for every B ⊆ D′ with |B| = l,⊕

d∈D

wt(d)K ⊕
∑⊕
d∈D′

wt(d)K =
⊕
d∈D

wt(d)K ⊕
∑⊕
d∈D′\B

wt(d)K .

Proof. Let l ∈ N, D ⊆ T
(c)
R , and D′ ⊆ TR \T

(c)
R such that

⋃
d∈D′(cutout(d) ∩ T

(c)
R) ⊆ D. The proof is

done by induction on l. For the induction base, let l = 0. Then B = ∅ and the statement of the lemma
holds.

68

For the induction step, let l ∈ N. We assume that for every B ⊆ D′ with |B| = l,⊕
d∈D

wt(d)K ⊕
∑⊕
d∈D′

wt(d)K =
⊕
d∈D

wt(d)K ⊕
∑⊕
d∈D′\B

. (IH)

Now we let B ⊆ D′ such that |B| = l + 1 and d ∈ B. Then, as cutout(d) ∩ T
(c)
R ⊆ D⊕

d′∈D

wt(d′)K ⊕
∑⊕
d′∈D′\B

wt(d′)K

=
⊕

d′∈D\(cutout(d)∩T
(c)
R)

wt(d′)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K ⊕
∑⊕
d′∈D′\B

wt(d′)K

=
⊕

d′∈D\(cutout(d)∩T
(c)
R)

wt(d′)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K ⊕ wt(d)K ⊕
∑⊕
d′∈D′\B

wt(d′)K

(Lemma A.6, because d ∈ TR \T
(c)
R)

=
⊕

d′∈D\(cutout(d)∩T
(c)
R)

wt(d′)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K ⊕
∑⊕

d′∈D′\(B\{d})

wt(d′)K

=
⊕

d′∈D\(cutout(d)∩T
(c)
R)

wt(d′)K ⊕
⊕

d′∈cutout(d)∩T
(c)
R

wt(d′)K ⊕
∑⊕
d′∈D′

wt(d′)K (IH)

=
⊕
d′∈D

wt(d′)K ⊕
∑⊕
d′∈D′

wt(d′)K �

Lemma 4.12. For every l ∈ N, A ∈ N , and B ⊆ (TR)A \ T
(c)
R with |B| = l the following holds:⊕

d∈(T
(c)
R)A

wt(d)K =
⊕

d∈(T
(c)
R)A∪B

wt(d)K .

Proof. The proof is done by induction on l. For the induction base, let l = 0. Then B = ∅ and the
statement of the lemma holds for every A ∈ N .

For the induction step, let l ∈ N. We assume that for every A ∈ N and B ⊆ (TR)A \ T
(c)
R with

|B| = l, ⊕
d∈(T

(c)
R)A

wt(d)K =
⊕

d∈(T
(c)
R)A∪B

wt(d)K . (IH)

69

Now we let A ∈ N , B ⊆ (TR)A \ T
(c)
R such that |B| = l + 1, and d′ ∈ B. Then⊕

d∈(T
(c)
R)A∪B

wt(d)K =
⊕

d∈(T
(c)
R)A

⊕
⊕
d∈B

wt(d)K (B ∩ T
(c)
R = ∅)

=
⊕

d∈(T
(c)
R)A\(cutout(d′)∩T

(c)
R)

wt(d)K ⊕
⊕

d∈cutout(d′)∩T
(c)
R

wt(d)K ⊕
⊕
d∈B

wt(d)K

=
⊕

d∈(T
(c)
R)A\(cutout(d′)∩T

(c)
R)

wt(d)K ⊕
⊕

d∈cutout(d′)∩T
(c)
R

wt(d)K ⊕ wt(d′)K ⊕
⊕

d∈B\{d′}

wt(d)K

=
⊕

d∈(T
(c)
R)A\(cutout(d′)∩T

(c)
R)

wt(d)K ⊕
⊕

d∈cutout(d′)∩T
(c)
R

wt(d)K ⊕
⊕

d∈B\{d′}

wt(d)K

(Lemma A.6, because d ∈ TR \T
(c)
R)

=
⊕

d∈(T
(c)
R)A

wt(d)K ⊕
⊕

d∈B\{d′}

wt(d)K

=
⊕

d∈(T
(c)
R)A

wt(d)K . (IH) �

A.7. Intersection is an instance of the M-monoid parsing problem

In this subappendix we give a full proof of Theorem 5.1. For this, we let (G, (L, φ)) be an RTG-LM
such that G = (N,Σ,A0, R) and (L, φ) is a finitely decomposable language algebra. Moreover, we let
a ∈ Lsort(A0). We consider the M-monoid parsing problem with the following input:

• the wRTG-LM ((G, (L, φ)),K((G, (L, φ)), a),wt) where wt(r) = ωr for each r ∈ R and

• a.

We show that (G′, (L, φ)) is the ψ-intersection of (G, (L, φ)) and a, where

• G′ = (N ′, Σ, [A0, a], R′) with N ′ = lhs(parse(a))∪{[A0, a]} (we note that parse(a) is a finite set),
R′ = parse(a), and

• ψ : N ′ → N is defined by ψ([A, b]) = A for each [A, b] ∈ N ′.
We extend the mapping ψ̂: AST(G′) → AST(G, a) such that ψ̂: TR′ → TR. This is required for our

proofs by structural induction. Clearly, the extended mapping ψ̂ is not bijective in general and we will
only show bijectivity of ψ̂: AST(G′)→ AST(G, a).

Lemma A.7. For every d ∈ TR′ it holds that πΣ(d)L = b, where lhs(d(ε)) = [A, b] for some A ∈ N ′.

Proof. The proof is done by structural induction on d. We assume (IH) that for every k ∈ N, i ∈ [k],
and di ∈ TR′ it holds that πΣ(di)L = ai, where lhs(di(ε)) = [Ai, ai] for some Ai ∈ N ′. Then for every
r ∈ R′ with r =

(
[A, b]→ σ([A1, a1], . . . , [Ak, ak])

)
πΣ
(
r(d1, . . . , dk)

)
L = φ(σ)

(
πΣ(d1)L, . . . , πΣ(dk)L

)
= φ(σ)(a1, . . . , ak) (IH)

= b . (Definition of PR,a) �

Lemma A.8. For every d ∈ TR′ it holds that πΣ(d)L = πΣ(ψ̂(d))L.

Proof. The proof is done by structural induction on d. We assume (IH) that for every k ∈ N, i ∈ [k],

and di ∈ TR′ it holds that πΣ(di)L = πΣ(ψ̂(di))L. Then for every r ∈ R′ with r =
(
[A, b] →

70

σ([A1, a1] . . . , [Ak, ak])
)

we have

πΣ(r(d1, . . . , dk))L = φ(σ)
(
πΣ(d1)L, . . . , πΣ(dk)L

)
= φ(σ)

(
πΣ(ψ̂(d1))L, . . . , πΣ(ψ̂(dk))L

)
(IH)

= πΣ
(
ψ(r)(ψ̂(d1), . . . , ψ̂(dk))

)
L

= πΣ
(
ψ̂(r(d1, . . . , dk))

)
L . �

Lemma A.9. For every d ∈ TR it holds that |{d′ ∈ TR′ | ψ̂(d′) = d and πΣ(d′)L = πΣ(d)L}| ≤ 1.

Proof. The proof is done by structural induction on d. We assume (IH) that for every k ∈ N, i ∈ [k],

and di ∈ TR it holds that |{d′i ∈ TR′ | ψ̂(d′i) = di and πΣ(d′i)L = πΣ(di)L}| ≤ 1. Let r ∈ R with
r =

(
A→ σ(A1, . . . , Ak)

)
. Then

{d′ ∈ TR′ | ψ̂(d′) = r(d1, . . . , dk) and πΣ(d′)L = πΣ(r(d1, . . . , dk))L}

= {d′ ∈ TR′ | ψ̂(d′) = r(d1, . . . , dk), lhs(d′(ε)) = [A, πΣ(r(d1, . . . , dk))L], and

πΣ(d′)L = πΣ(r(d1, . . . , dk))L}
(Lemma A.7)

= {
(
[A, πΣ(r(d1, . . . , dk))L]→ σ([A1, a1], . . . , [Ak, ak])

)
(d′1, . . . , d

′
k) |

(a1, . . . , ak) ∈ φ(σ)−1(πΣ(r(d1, . . . , dk))L), d′1 ∈ (TR′)[A1,a1], . . . , d
′
k ∈ (TR′)[Ak,ak],

ψ̂(d′1) = d1, . . . , ψ̂(d′k) = dk, and πΣ(r′(d′1, . . . , d
′
k))L = πΣ(r(d1, . . . , dk))L}

(Definition of PR,a)

(where r′ =
(
[A, πΣ(r(d1, . . . , dk))L]→ σ([A1, a1], . . . , [Ak, ak])

)
)

= {
(
[A, πΣ(r(d1, . . . , dk))L]→ σ([A1, πΣ(d1)L], . . . , [Ak, πΣ(dk)L])

)
(d′1, . . . , d

′
k) |

d′1 ∈ (TR′)[A1,πΣ(d1)L], . . . , d
′
k ∈ (TR′)[Ak,πΣ(dk)L],

ψ̂(d′1) = d1, . . . , ψ̂(d′k) = dk, and πΣ(d′1)L = πΣ(d1)L, . . . , πΣ(d′k)L = πΣ(dk)L}

(Lemma A.8)

This set has at most one element as |{d′i ∈ (TR′)[Ai,πΣ(di)L] | ψ̂(d′i) = di and πΣ(d′i)L = πΣ(di)L}| ≤ 1
for every i ∈ [k] by (IH). �

For every d ∈ TR we let R′(d) = wt(d)K.

Lemma A.10. For every d ∈ AST(G, a) there is a d′ ∈ TR′(d) such that ψ̂(d′) = d.

Proof. The proof is done by induction on d. We assume (IH) that for every k ∈ N, i ∈ [k], and

di ∈ TR′ there is a d′i ∈ TR′(di) such that ψ̂(d′i) = di. We let r ∈ R with r =
(
A → σ(A1, . . . , Ak)

)
and d = r(d1, . . . , dk). Then by (IH) for every i ∈ [k] there is a d′i ∈ TR′(di) with ψ̂(d′i) = di. Then by

definition of ωr, r
′ ∈ R′(d) with r′ =

(
[A, b] → σ([A1, a1], . . . [Ak, ak])

)
, [Ai, ai] = lhs(d′i(ε)) for every

i ∈ [k] and b = φ(σ)(a1, . . . , ak). Moreover, d′1, . . . , d
′
k ∈ TR′(d). Thus r′(d′1, . . . , d

′
k) ∈ TR′(d). Clearly

ψ̂(r′(d′1, . . . , d
′
k)) = d. �

Theorem 5.1. For each RTG-LM with a finitely decomposable algebra and each syntactic object, the
construction of their intersection is an M-monoid parsing problem.

More precisely, let (G, (L, φ)) be an RTG-LM such that G = (N,Σ,A0, R) and (L, φ) is a finitely
decomposable language algebra. Moreover, let a ∈ Lsort(A0). We consider the M-monoid parsing
problem with the following input:

• the wRTG-LM ((G, (L, φ)),K((G, (L, φ)), a),wt) where wt(r) = ωr for each r ∈ R and

• a.

Then (G′, (L, φ)) is the ψ-intersection of (G, (L, φ)) and a, where

71

• G′ = (N ′, Σ, [A0, a],parse(a)) with N ′ = lhs(parse(a))∪{[A0, a]} (we note that parse(a) is a finite
set) and

• ψ : N ′ → N is defined by ψ([A, b]) = A for each [A, b] ∈ N ′.

Proof. First we show that ψ̂: AST(G′) → AST(G, a) is bijective by showing that it is injective and

surjective. For injectivity let d1, d2 ∈ AST(G′) such that ψ̂(d1) = ψ̂(d2). By Lemma A.7, πΣ(d1)L =

a = πΣ(d2)L. Then by Lemma A.8, there is a d ∈ AST(G, a) such that ψ̂(d1) = d = ψ̂(d2). Then by

Lemma A.9, d1 = d2; hence ψ̂: AST(G′)→ AST(G, a) is injective.

For surjectivity, let d ∈ AST(G, a). Then by Lemma A.10, there is a d′ ∈ TR′(d) such that ψ̂(d′) = d.

Since R′ =
⋃
d∈AST(G,a)R

′(d), it holds that d′ ∈ TR′ . Then by definition of ψ̂ and Lemma A.7,

lhs(d′(ε)) = [A0, a] and thus d′ ∈ AST(G); hence ψ̂: AST(G′)→ AST(G, a) is surjective.
Now we show that L(G′)L = L(G)L ∩ {a}. For this, we distinguish two cases.

(i) If a ∈ L(G)L,

L(G′)L = {πΣ(d)L | d ∈ AST(G)}
= {πΣ(d)L | d ∈ (TR′)[A0,a])}
= {a | d ∈ (TR′)[A0,a])} (Lemma A.7)

= {a}
= L(G)L ∩ {a} . (a ∈ L(G)L)

(ii) Otherwise a 6∈ L(G)L, then AST(G, a) = ∅. Thus, since ψ̂: AST(G′) → AST(G, a) is bijective,
AST(G′) = ∅ as well. Consequently

L(G′)L = ∅ = L(G)L ∩ {a} . �

A.8. ADP algebra is a d-complete and distributive M-monoid

Lemma 5.4. The algebra associated with K and h is a d-complete and distributive M-monoid.

Proof. Let (K′,⊕, ∅, Σ′, ψ′,∑⊕) be the algebra associated with K and h. We show that
(K′,⊕, ∅, Σ′, ψ′,∑⊕) is a d-complete and distributive M-monoid in three steps. We begin by prov-
ing that (K′,⊕, ∅, Σ′, ψ′) is an M-monoid. First, (K′,⊕, ∅) is a commutative monoid, as

• K′ is a set, and ⊕:K′ ⊗ K′ → K′, i.e., for every F1, F2 ∈ K′ it holds that F1 ⊕ F2 ∈ K′. For the
proof of this claim, let F1, F2 ∈ K′. Now we distinguish two cases:

(i) If there is an s ∈ S such that F1, F2 ⊆ Ks, then F1⊕F2 = hs(F1∪F2). Obviously F1∪F2 ⊆ Ks
and then by the definition of K′, hs(F1 ∪ F2) ∈ K′.

(ii) Otherwise F1 ⊕ F2 = ⊥ and ⊥ ∈ K′ by definition.

• Commutativity of ⊕ easily follows from the commutativity of ∪.

• We show that ⊕ is associative, i.e., for every F1, F2, F3 ∈ K′ it holds that (F1 ⊕ F2) ⊕ F3 =
F1 ⊕ (F2 ⊕ F3), by the following case analysis. Let F1, F2, F3 ∈ K′. Now either

(i) there is an s ∈ S such that F1, F2 ⊆ Ks, then,

a) if also F3 ⊆ Ks, then

(F1 ⊕ F2)⊕ F3 = hs(hs(F1 ∪ F2) ∪ F3)

= hs(hs(F1 ∪ F2) ∪ hs(F3)) (h is idempotent)

= hs((F1 ∪ F2) ∪ F3) (Equation 3)

= hs(F1 ∪ (F2 ∪ F3)) (∪ is associative)

= hs(F1 ∪ hs(F2 ∪ F3)) (h is idempotent)

= F1 ⊕ (F2 ⊕ F3) ,

72

or,

b) if F3 6⊆ Ks, then (F1 ⊕ F2)⊕ F3 = ⊥ = F2 ⊕ F3 = F1 ⊕ (F2 ⊕ F3),

or

(ii) there is no such s ∈ S and hence F1 ⊕ F2 = ⊥ = (F1 ⊕ F2) ⊕ F3. Now it may be that
there is an s′ ∈ S such that F2, F3 ⊆ Ks′ , then F2 ⊕ F3 ⊆ Ks′ , but F1 6⊆ Ks′ and hence
F1 ⊕ (F2 ⊕ F3) = ⊥. Otherwise F2 ⊕ F3 = ⊥ and hence F1 ⊕ (F2 ⊕ F3) = ⊥. (We note that,
if we had not added ⊥ to K′ and still chosen ∅ as the identity element, then in this case ⊕
would not be associative.)

• As ∅ ⊆ Ks for any s ∈ S, we have ∅ ∈ K′. We show that ∅ is the identity element by showing
that ∅ ⊕ F = F for every F ∈ K′. Then the other condition, F ⊕ ∅ = F , will follow from the
commutativity of ⊕. Let F ∈ K′. Again, we distinguish two cases:

(i) If F = ⊥, then ∅ ⊕ ⊥ = ⊥ by definition.

(ii) Otherwise there is an s ∈ S such that F ⊆ Ks. Since ∅ ⊆ Ks, we have that ∅ ⊕ F =
hs(∅ ∪ F) = hs(F) and as h is idempotent, hs(F) = F .

Second, (K′, ψ′) is a Σ′-algebra as Σ′ is a ranked set and ψ′(σ)(F1, . . . , Fk) ∈ K′ for every k ∈ N,
σ ∈ Σ′k, and F1, . . . , Fk ∈ K′ which we show by the following case analysis. Let k ∈ N, σ ∈ Σ′k, and
F1, . . . , Fk ∈ K′. Then:

(i) If σ = t with t ∈ (TΣ(Xs1...sk))s, then there are two possibilities:

a) If Fi ⊆ Ksi for every i ∈ [k], then

ψ′(σ)(F1, . . . , Fk) = hs(tK(F1, . . . , Fk))

= hs
(
{tK(a1, . . . , ak) | a1 ∈ F1, . . . , ak ∈ Fk}

)
and by definition of tK, tK(a1, . . . , ak) ∈ Ks for every a1 ∈ F1, . . . , ak ∈ Fk. Hence
tK(F1, . . . , Fk) ⊆ Ks and by definition of K′, hs

(
tK(F1, . . . , Fk)

)
∈ K′.

b) Otherwise ψ′(σ)(F1, . . . , Fk) = ⊥ ∈ K′.

(ii) If σ = 0k, then ψ′(σ)(F1, . . . , Fk) = ∅ ∈ K′.

Finally, 0k ∈ Σ′ and ψ′(0k)(F1, . . . , Fk) = ∅ for every k ∈ N and F1, . . . , Fk ∈ K′ by definition.
The operation

∑⊕ fulfils the axioms of an infinitary sum operation on K′, as the following case
analysis shows. Let (Fi | i ∈ I) be an I-indexed family over K′. Then:

• if I = ∅, then
∑⊕

i∈∅ Fi = ∅,
• if I = {n} and Fn ∈ K′, then it holds that either

(i) Fn = ⊥, then
∑⊕

i∈{n} Fi = ⊥, or

(ii) Fn ⊆ Ks for some s ∈ S, then
∑⊕

i∈{n} Fi = hs(Fn) = Fn,

• if I = {m,n} with m 6= n and Fm, Fn ∈ K′, then it holds that either

(i) there is an s ∈ S such that Fm, Fn ⊆ Ks, then∑⊕
i∈{m,n}

Fi = hs

(⋃
i∈{m,n}

Fi

)
= hs(Fm ∪ Fn) = Fm ⊕ Fn , or

(ii) otherwise
∑⊕

i∈{m,n} Fi = ⊥ = Fm ⊕ Fn,

• for every J-partition of I it holds that either

73

(i) there is an s ∈ S such that Fi ⊆ Ks for every i ∈ I, then∑⊕
i∈I

Fi = hs
(⋃
i∈I

Fi
)

= hs

(⋃
j∈J

(⋃
i∈Ij

Fi
))

= hs

(⋃
j∈J

hs
(⋃
i∈Ij

Fi
))

(Equation 3)

= hs

(⋃
j∈J

(∑⊕
i∈Ij

Fi
))

=
∑⊕
j∈J

(∑⊕
i∈Ij

Fi
)
, or

(ii) there is an i′ ∈ I such that Fi′ = ⊥; then there is a j′ ∈ J such that i′ ∈ Ij′ , hence∑⊕
i∈Ij′

Fi = ⊥ and thus ∑⊕
j∈J

(∑⊕
i∈Ij

Fi
)

= ⊥ =
∑⊕
i∈I

Fi , or

(iii) there are i1, i2 ∈ I such that Fi1 ⊆ Ks1 and Fi2 ⊆ Ks2 with s1, s2 ∈ S and s1 6= s2. Now we
have to distinguish two cases:

a) there is a j′ ∈ J such that i1, i2 ∈ Ij′ , then
∑⊕

i∈Ij′
Fi = ⊥ and hence∑⊕

j∈J

(∑⊕
i∈Ij

Fi
)

= ⊥ =
∑⊕
i∈I

Fi ,

b) i1 ∈ Ij1 and i2 ∈ Ij2 with j1, j2 ∈ J and j1 6= j2. Then there are F1 ⊆ Ks1 and F2 ⊆ Ks2
such that

∑⊕
i∈Ij1

Fi = F1 and
∑⊕

i∈Ij2
Fi = F2, but since s1 6= s2∑⊕

j∈J

(∑⊕
i∈Ij

Fi
)

= ⊥ =
∑⊕
i∈I

Fi .

In order to show that K′ is even d-complete, we let F ∈ k′ and (Fi | i ∈ I) be an I-indexed family
over K′ such that for every i ∈ I, F ⊕ Fi = F . Then, by definition of ⊕, we have to distinguish two
cases.

(i) If there is an s ∈ S such that F ⊆ Ks and for every i ∈ I, Fi ⊆ Ks, then for every i ∈ I,

74

hs(F ∪ Fi) = F . Thus

F ⊕
∑⊕
i∈I

Fi = hs

(
F ∪
∑⊕
i∈I

Fi

)

= hs

(
F ∪ hs

(⋃
i∈I

Fi

))

= hs

(
hs(F) ∪ hs

(⋃
i∈I

Fi

))
(F ∈ K′)

= hs

(
F ∪

⋃
i∈I

Fi

)
(Equation 3)

= hs

(⋃
i∈I

(F ∪ Fi)

)
(
⋃

is idempotent)

= hs

(⋃
i∈I

hs(F ∪ Fi)

)
(Equation 3)

= hs

(⋃
i∈I

F

)

= hs(F) (
⋃

is idempotent)

= F . (F ∈ K′)

(ii) Otherwise, there is an i ∈ I such that F ⊕ Fi = ⊥. But then also F = ⊥. Thus, by definition
of ⊕, F ⊕∑⊕

i∈I Fi = ⊥.

Distributivity of K′ is implied by the fact that h satisfies Bellman’s principle of optimality, which we
will show next. Let k ∈ N, s, s1, . . . , sk ∈ S, σ ∈ Σ′k, F1, . . . , Fk, F

′ ∈ K′, and i ∈ [k]. We consider two
cases; first, assume that σ = t with t ∈ (TΣ(Xs1...sk))s. Now there are two possibilities:

(i) If Fi′ ⊆ Ksi′ for every i′ ∈ [k] and F ′ ∈ Ksi , then

ψ′(σ)
(
F1, . . . , Fi−1, Fi ⊕ F ′, Fi+1, . . . , Fk

)
= ψ′(σ)

(
F1, . . . , Fi−1, hsi

(
Fi ∪ F ′

)
, Fi+1, . . . , Fk

)
= hs

(
tK
(
F1, . . . , Fi−1, hsi

(
Fi ∪ F ′

)
, Fi+1, . . . , Fk

))
= hs

(
tK
(
hs1(F1), . . . , hsi−1

(Fi−1), hsi
(
Fi ∪ F ′

)
, hsi+1

(Fi+1), . . . , hsk(Fk)
))

(h is idempotent)

= hs

(
tK
(
F1, . . . , Fi−1, Fi ∪ F ′, Fi+1, . . . , Fk

))
(Equation 4)

= hs

(
tK(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk) ∪ tK(F1, . . . , Fi−1, F

′, Fi+1, . . . , Fk)
)

= hs

(
hs
(
tK(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk)

)
∪ hs

(
tK(F1, . . . , Fi−1, F

′, Fi+1, . . . , Fk)
))

(Equation 3)

= hs

(
ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk) ∪ ψ′(σ)(F1, . . . , Fi−1, F

′, Fi+1, . . . , Fk)
)

= ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk)⊕ ψ′(σ)(F1, . . . , Fi−1, F
′, Fi+1, . . . , Fk) .

75

(ii) If there is an i′ ∈ [k] such that Fi′ 6⊆ Ksi′ or F ′ 6⊆ Ksi , then

ψ′(σ)
(
F1, . . . , Fi−1, Fi ⊕ F ′, Fi+1, . . . , Fk

)
= ⊥

and furthermore

ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk) = ⊥

or

ψ′(σ)(F1, . . . , Fi−1, F
′, Fi+1, . . . , Fk) = ⊥ .

Hence

ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk)⊕ ψ′(σ)(F1, . . . , Fi−1, F
′, Fi+1, . . . , Fk) = ⊥ .

Second, assume that σ = 0k. Then

ψ′(σ)
(
F1, . . . , Fi−1, Fi ⊕ F ′, Fi+1, . . . , Fk

)
= ∅ = ∅ ∪ ∅ = hs

(
∅ ∪ ∅

)
= hs

(
ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk) ∪ ψ′(σ)(F1, . . . , Fi−1, F

′, Fi+1, . . . , Fk)
)

= ψ′(σ)(F1, . . . , Fi−1, Fi, Fi+1, . . . , Fk)⊕ ψ′(σ)(F1, . . . , Fi−1, F
′, Fi+1, . . . , Fk) . �

A.9. ADP is an instance of the M-monoid parsing problem

This subappendix contains the full proof of Theorem 5.5. We start with an auxiliary statement.

Lemma A.11. For every d ∈ TR it holds that wt(d)K′ = {πΣ(d)K}.

Proof. We prove the statement of the lemma by structural induction over d.
For the induction base, let d = (A → t) in R. Then d ∈ R(ε,A) and hence t ∈ TΣ . (We recall that

TΣ = TΣ(Xε).) Now for both cases, t ∈ (TΣ)a or t ∈ (TΣ)i, the proof of wt(d)K′ = {πΣ(d)K} is the
same. Thus, for every s ∈ {i, a}, we have

wt(d)K′ = ψ′(t) = hs
(
{tK}

)
= {tK} = {πΣ(d)K} .

For the induction step, we let d ∈ TR be of the form r(d1, . . . , dk) for some k ∈ N with r = (A→ t)
in R. Then there are A1, . . . , Ak ∈ N such that r ∈ R(A1...Ak,A) and di ∈ (TR)Ai for each i ∈ [k].
We assume (IH) that for every i ∈ [k], wt(di)K′ = {πΣ(di)K}. Furthermore, let t′ be obtained from t
by replacing the ith occurrence of a nonterminal in t by xi for every i ∈ [k]. Again, for both cases,
t ∈ (TΣ(N))a or t ∈ (TΣ(N))i, the proof of wt(d)K′ = {πΣ(d)K} is the same. Thus, for every s ∈ {i, a},
we have

wt(r(d1, . . . , dk))K′ = ψ′(t′)(wt(d1)K′ , . . . ,wt(dk)K′) ,

now for every i ∈ [k] and r′ = (Ai → t′′) in R we have that sort(Ai) = sort(t′′); thus wt(di)K′ ⊆ Ksort(Ai)

and we can continue with:

= hs
(
t′K(wt(d1)K′ , . . . ,wt(dk)K′)

)
= hs

(
t′K({πΣ(d1)K}, . . . , {πΣ(dk)K})

)
(IH)

= {t′K(πΣ(d1)K, . . . , πΣ(dk)K)}
= {
(
t′TΣ (πΣ(d1), . . . , πΣ(dk))

)
K
} (Observation 2.4)

= {πΣ(r(d1, . . . , dk))K} . �

Now we are able to prove Theorem 5.5.

76

Theorem 5.5. Each ADP problem is an instance of the M-monoid parsing problem. More precisely,
let (G, (YIELDΣ , φ)) with G = (N,Σ,A0, R) be a nonlooping RTG-LM. Moreover, let (K, ψ) be an
S-sorted Σ-algebra and h be an objective function for K that satisfies Bellman’s principle of optimality.
We consider the M-monoid parsing problem with the following input:

• the wRTG-LM
((G, (YIELDΣ , φ)), (K′,⊕, ∅, Σ′, ψ′,∑⊕),wt)

where (K′,⊕, ∅, Σ′, ψ′,∑⊕) is the ADP M-monoid over K and h. Moreover, for every k ∈ N and
r = (A→ t) in Rk (viewing R as a ranked set) we define wt(r) = ψ′(t′), where t′ is obtained from
t by replacing the ith occurrence of a nonterminal by xi for every i ∈ [k].

• a ∈ (Σ(ε,i))
∗.

Then parse(a) = adp(a).

Proof. Let (G, (YIELDΣ , φ)) with G = (N,Σ,A0, R) be an S-sorted yield grammar over Σ, (K, ψ)
be an S-sorted Σ-algebra, and h be an objective function for K that satisfies Bellman’s principle of
optimality. Moreover, let

((G, (YIELDΣ , φ)), (K′,⊕, ∅, Σ′,
∑⊕),wt)

be the wRTG-LM constructed as in Theorem 5.5 and w ∈ (Σ(ε,i))
∗. In this proof, we write yield rather

than yieldΣ(ε,i)
for the sake of readability.

parse(w) =
∑⊕

d∈(TR)A0
:πΣ(d)YIELDΣ = 〈w,a〉

wt(d)K′

=
∑⊕

d∈(TR)A0
:yield(πΣ(d))=w

wt(d)K′

=
∑⊕

d∈π−1
Σ (L(G)∩yield−1(w))

wt(d)K′

=
∑⊕

t∈L(G)∩yield−1(w)

wt(π−1
Σ (t))K′ (G is unambiguous)

=
∑⊕

t∈L(G)∩yield−1(w)

{πΣ(π−1
Σ (t))K} (Lemma A.11)

=
∑⊕

t∈L(G)∩yield−1(w)

{tK}

= ha

 ⋃
t∈L(G)∩yield−1(w)

{tK}

 (sort(t) = a for every t ∈ L(G))

= adp(w) . �

A.10. Each weight-preserving weighted deduction system is sound and complete

Lemma 6.2. Each weight-preserving weighted deduction system is sound and complete.

Proof. Let G = ((G,L),K,wt) in W(GL,K) with G = (N,Σ,A0, R), a ∈ Lsort(A0), wdsK,K: W(GL,K)×
L → W(GCFG∅ ,K) be a weight-preserving weighted deduction system, and wdsK,K(G, a) =

((G′,CFG∅),K,wt′).
If ε ∈ L(G′)CFG∅ , then there is a d ∈ (TR′)A′0 such that πΣ(d)CFG∅ = ε. Then ψ−1(d) ∈ (TR)A0

and

πΣ(ψ−1(d))A = a. Thus a ∈ L(G)A and wdsK,K is sound. If a ∈ L(G)A, then there is a d ∈ (TR)A0

such that πΣ(d)A = a. Then ψ(d) ∈ (TR′)A′0 . Since L(G′)CFG∅ ⊆ {ε} we have that πΣ(d)CFG∅ = ε;
thus ε ∈ L(G′)CFG∅ and wdsK,K is complete. �

77

A.11. The canonical weighted deduction system is weight-preserving

Lemma 6.3. The canonical K-weighted deduction system cwds is weight-preserving. Hence, cwds is
sound and complete.

Proof. Let G = ((G,L),K,wt) in W(GL,K) with G = (N,Σ,A0, R), a ∈ Lsort(A0), and cwds(G, a) =

((G′,CFG∅),K,wt′) with G′ = (N ′, Σ′, A′0, R
′). Next we will define the mapping ψ: AST(G, a) →

AST(G′) according to the definition of weight-preserving mappings. For this, we first define the auxiliary
mapping

ψ′: {d ∈ TR | πΣ(d)L ∈ factors(a)} → TR′

by induction (which is not possible for ψ). Let d ∈ TR with πΣ(d)L ∈ factors(a). If

• d has the form r(d1, . . . , dk) with r = (A→ t) with yieldN (t) = A1 . . . Ak, k ∈ N and A1, . . . , Ak ∈
N ,

• for every i ∈ [k], we have ai = πΣ(di)L, and

• for every i ∈ [k] there is a ti ∈ TΣ(N) such that ti is the right-hand side of the rule di(ε),

then we let

ψ′(d) = r′(ψ′(d1), . . . , ψ′(dk)) , where

r′ = ([A, t, t′L(a1, . . . , ak)]→ 〈x1 . . . xk〉([A1, t1, a1], . . . , [Ak, tk, ak]))

and t′ is obtained from t by replacing the ith occurrence of a nonterminal by xi for every i ∈ [k].
It can be seen that, for every d ∈ TR with πΣ(d)L ∈ factors(a), the sets pos(d) and pos(ψ′(d)) are

equal, and that the mapping ψ′ is bijective.
Next we define the mapping

ψ: {d ∈ (TR)A0 | πΣ(d)L = a} → (TR′)A′0

for each d ∈ (TR)A0 of the form r(d1, . . . , dk) with r = (A0 → t) and πΣ(d)L = a by

ψ(d) =
(
[A0, a]→ 〈x1〉([A0, t, a])

)(
ψ′(d)

)
.

Then ψ is bijective, too, and we have that pos(ψ(d)) = {ε} ∪ {1} ◦ pos(d) for every d ∈ (TR)A0
with

πΣ(d)L = a.
By the definition of cwds, for every d ∈ (TR)A0

with πΣ(d′)L = a and for every p ∈ pos(d) it holds
that wt(d(p)) = wt(ψ(d)(1p)) and wt(ψ(d)(ε)) = id(K). Since pos(ψ(d)) = {ε} ∪ {1} ◦ pos(d), we
have that wt(d)K = wt(ψ(d))K. Thus cwds is weight-preserving. By Lemma 6.2 it is also sound and
complete. �

A.12. Applying the canonical weighted deduction system to nonlooping
wRTG-LMs yields acyclic wRTG-LMs

This subappendix contains the full proof of Lemma 6.5. We start with an auxiliary statement.

Lemma A.12. For every wRTG-LM G =
(
(G,L),K,wt

)
with G = (N,Σ,A0, R), a0 ∈ L,(

(G′,CFG∅),K,wt′
)

= cwds(G, a0) with G′ = (N ′, Σ′, A′0, R
′), and d ∈ TR′ of the form r(d1, . . . , dk)

with r =
(
[A, t, b]→ 〈x1 . . . xk〉([A1, t1, a1], . . . , [Ak, tk, ak])

)
the following holds: ψ−1(d)L = b, where ψ

is defined as in the proof of Lemma 6.3.

Proof. Let G =
(
(G,L),K,wt

)
with G = (N,Σ,A0, R) be a wRTG-LM, a0 ∈ L,

(
(G′,CFG∅),K,wt′

)
=

cwds(G, a0) with G′ = (N ′, Σ′, A′0, R
′), and d ∈ TR′ of the form r(d1, . . . , dk) with r = ([A, t, b] →

〈x1 . . . xk〉([A1, t1, a1], . . . , [Ak, tk, ak])). We show the statement of the lemma by structural induction
on d. For the induction step, assume that for every i ∈ [k] and di ∈ TR′ of the form ri(di,1, . . . , di,ki) with

78

ri = ([Ai, ti, ai]→ 〈x1 . . . xki〉([Ai,1, ti,1, ai,1], . . . , [Ai,ki , ti,ki , ai,ki])) the following holds: ψ−1(di)L = ai.
Then

ψ−1(d)L = t′L(ψ−1(d1)L, . . . , ψ
−1(dk)L)

= t′L(a1, . . . , ak) (IH)

= b , (definition of cwds)

where t′ is obtained from t by replacing the ith occurrence of a nonterminal by xi for every i ∈ [k]. �

Lemma 6.5. For every G ∈ W(Gnl ∩ Gfin-dc,Kall) and syntactic object a it holds that cwds(G, a) ∈
W(Gacyc,Kall).

Proof. Let G =
(
(G,L),K,wt

)
in W(Gnl ∩ Gfin-dc,Kall) with G = (N,Σ,A0, R). Then for every d ∈

TR and p, p′ ∈ pos(d) it holds that d(p) = d(p′) and (d|p)L = (d|p′)L imply p = p′. We give an
indirect proof for the lemma. For this, let a0 ∈ L and assume that cwds(G, a0) 6∈ W(Gacyc,Kall). Let

cwds(G, a0) =
(
(G′,CFG∅),K,wt′

)
with G′ = (N ′, Σ′, A′0, R

′). Then there is a d ∈ TR′ which is not
acyclic, i.e., there is a leaf p ∈ pos(d) such that p is cyclic. Thus there is are i, j ∈ [|p|] with i < j
such that d(pi) = d(pj). By definition of cwds, [A0, a0] does not occur in the right-hand side of any
rule in R′, hence pi 6= ε and lhs(d(pi)) = [A, t, a] for some A ∈ N ′, t ∈ TΣ′(N

′), and a ∈ L. Then,
by Lemma A.12, ψ−1(d|pi)L = ψ−1(d|pj)L = a, where ψ is defined as in the proof of Lemma 6.3. Let
d′ = ψ−1(d); we remark that d′ ∈ TR. Now there are p, p′ ∈ pos(d′) such that p 6= p′, d′(p) = d′(p′),
and (d′|p)L = (d′|p′)L, which contradicts the definition of G. �

A.13. General statements about Algorithm 6.1

Lemma 7.2. For every n ∈ N and A ∈ N ′ it holds that Vn(A) =
⊕

d∈Vn(A) wt′(d)K.

Proof. The proof is done by induction on n. For the induction base let n = 0. Then for every A ∈ N ′
we have that

V0(A)
Line 2

= 0 =
⊕
d∈∅

wt′(d)K
Line 2

=
⊕

d∈V0(A)

wt′(d)K .

For the induction step, let n ∈ N. We assume (IH) that for every A ∈ N ′ it holds that Vn(A) =⊕
d∈Vn(A) wt′(d)K. Then for selectn = A,

Vn+1(A) =
⊕
r∈R:

r=(A→σ(A1,...,Ak))

wt′(r)
(
Vn(A1), . . . , Vn(Ak)

)
(Observation 7.1)

=
⊕
r∈R:

r=(A→σ(A1,...,Ak))

wt′(r)

 ⊕
d1∈Vn(A1)

wt′(d1)K, . . . ,
⊕

dk∈Vn(Ak)

wt′(dk)K

 (IH)

=
⊕
r∈R:

r=(A→σ(A1,...,Ak))

⊕
d1∈Vn(A1),...,dk∈Vn(Ak)

wt′(r) (wt′(d1)K, . . . ,wt′(dk)K)

(wt′(r) distributes over ⊕)

=
⊕
r∈R:

r=(A→σ(A1,...,Ak))
d1∈Vn(A1),...,dk∈Vn(Ak),

d=r(d1,...,dk)

wt′(d)K

=
⊕

d∈Vn+1(A)

wt′(d)K , (Observation 7.1)

79

and for every A′ ∈ N ′ \ {A},

Vn+1(A′) = Vn(A′) (Observation 7.1)

=
⊕

d∈Vn(A′)

wt′(d)K (IH)

=
⊕

d∈Vn+1(A′)

wt′(d)K . (Observation 7.1) �

Lemma 7.3. For every n ∈ N and A ∈ N ′ the following holds: for each n ∈ N with n′ > n, Vn(A) ⊆
Vn′(A).

Proof. Let n ∈ N, A ∈ N ′, and d ∈ Vn(A). We show that d ∈ Vn′(A) for each n ∈ N with n′ > n by
structural induction on d. For the induction base let d ∈ R′, then by lines 6–8 and 11 we have that
d ∈ Vn(lhs(d)) for every n ∈ N+. Furthermore, by line 2, V0(A) = ∅ for every A ∈ N ′. Therefore the
implication holds.

For the induction step, let d = r(d1, . . . , dk) and r =
(
A → σ(A1, . . . , Ak)

)
with k > 0. We assume

(IH) that for every i ∈ [k], n, n′ ∈ N, and di ∈ (TR′)Ai with n′ > n the following holds: if di ∈ Vn(Ai),
then di ∈ Vn′(Ai). Now, if d ∈ Vn(A), then there is an n0 < n such that d is first added to V(A) in the
n0th iteration of the inner for loop. Then by Observation 7.1, di ∈ Vn0+1(Ai) for every i ∈ [k]. Then
by (IH), for every i ∈ [k] and n′0 ∈ N with n′0 > n0 it holds that di ∈ Vn′0(Ai). Thus for every n′ ≥ n,
by Observation 7.1, d ∈ Vn′+1(A). �

A.14. Termination of Algorithm 6.1

Lemma A.13. For every d ∈ TR′ , n ∈ N, and A ∈ N ′ the following holds: if d ∈ Vn(A), then for every
p ∈ pos(d): d|p ∈ Vn(lhs(d(p))).

Proof. Let n ∈ N, A ∈ N ′, and d ∈ Vn(A). We show that d|p ∈ Vn(A) for each p ∈ pos(d) by structural
induction on d. For the induction base, let d ∈ R′; then pos(d) = {ε} and d|ε = d ∈ Vn(A). For the
induction step, let d = r(d1, . . . , dk) and r =

(
A → σ(A1, . . . , Ak)

)
with k > 0. We assume (IH) that

for every i ∈ [k], n ∈ N, and di ∈ (TR′)Ai the following holds: if di ∈ Vn(Ai), then for every p ∈ pos(di):
di|p ∈ Vn(lhs(di(p))). Now if d ∈ Vn(A), then there is an n0 < n such that d is first added to V(A)
in the n0th iteration of the inner for loop. Then by Observation 7.1, di ∈ Vn0+1(Ai) for every i ∈ [k].
Furthermore, by Lemma 7.3, di ∈ Vn(Ai) for every i ∈ [k]. Now for every p ∈ pos(d) with p = ip′ for
some i ∈ [k], the statement of the lemma follows from (IH), and for p = ε it trivially holds. �

Lemma A.14. For every d ∈ TR′ , n, l ∈ N, and elementary cycle w ∈ (R′)∗ the following holds: if
there are p, p′ ∈ pos(d) such that p�pref p

′, seq(d, p, p′) = w, and d|p1..|p|−l ∈ Vn(lhs(d|p1..|p|−l(ε))), then
(d[d|p′]p)|p1..|p|−l ∈ Vn(lhs(d|p1..|p|−l(ε))).

Proof. Let d ∈ TR′ , n, l ∈ N, w ∈ (R′)∗ be an elementary cycle, and p, p′ ∈ pos(d) such that
p�pref p

′, seq(d, p, p′) = w, and d|p1..|p|−l ∈ Vn(lhs(d|p1..|p|−l(ε))) We show that (d[d|p′]p)|p1..|p|−l ∈
Vn(lhs(d|p1..|p|−l(ε))) by induction on l. For the induction base, let l = 0. We remark that d(p) = d(p′).
Then, since d|p1..|p|−l = d|p ∈ Vn(lhs(d(p))), we have that (d[d|p′]p)|p1..|p|−l = d|p′ ∈ Vn(lhs(d(p))) by
Lemma A.13.

For the induction step, let l ∈ N. We assume (IH) that for every n ∈ N the following holds: if
d|p1..|p|−l ∈ Vn(lhs(d|p1..|p|−l(ε))), then (d[d|p′]p)|p1..|p|−l ∈ Vn(lhs(d|p1..|p|−l(ε))). Now we distinguish two
cases.

(i) If l ≥ |p|, then d|p1..|p|−l = d = d|p1..|p|−(l+1)
. Thus d|p1..|p|−(l+1)

∈ Vn(lhs(d|p1..|p|−(l+1)
(ε))) implies

(d[d|p′]p)|p1..|p|−(l+1)
∈ Vn(lhs(d|p1..|p|−(l+1)

(ε))) by (IH).

(ii) Otherwise, we let n0 ∈ N such that d|p1..|p|−(l+1)
is first added to V(lhs(d|p1..|p|−(l+1)

(ε))) in the
n0th iteration of the inner for loop. If d|p1..|p|−(l+1)

∈ Vn(lhs(d|p1..|p|−(l+1)
(ε))), then n0 < n.

Then by Lemma A.13, d|p1..|p|−l ∈ Vn0+1(lhs(d|p1..|p|−l(ε))). Then by (IH), (d[d|p′]p)|p1..|p|−l ∈

80

Vn0+1(lhs(d|p1..|p|−l(ε))) and by Observation 7.1, (d[d|p′]p)|p1..|p|−(l+1)
∈ Vn0+1(lhs(d|p1..|p|−(l+1)

(ε))).
Finally, by Lemma 7.3, (d[d|p′]p)|p1..|p|−(l+1)

∈ Vn(lhs(d|p1..|p|−(l+1)
(ε))). �

Lemma A.15. For every d ∈ TR′ , n ∈ N, A ∈ N ′, and elementary cycle w ∈ (R′)∗ the following
holds: if d ∈ Vn(A) and there are p, p′ ∈ pos(d) such that p�pref p

′ and seq(d, p, p′) = w, then
cutout(d,w) ⊆ Vn(A).

Proof. Let d ∈ TR′ , n ∈ N, A ∈ N ′, and w ∈ (R′)∗ such that there are p, p′ ∈ pos(d) with p�pref p
′,

seq(p, p′) = w, w is an elementary cycle, and d ∈ Vn(A). We show that for every l ∈ N and d′ ∈ TR′

with d (`w)l d′ it holds that d′ ∈ Vn(A) by induction on l. For the induction base, let l = 0. Then for
every d′ ∈ TR′ with d (`w)0 d′ it holds that d′ = d, and d ∈ Vn(A) by definition.

For the induction step, let l ∈ N. We assume (IH) that for every d′ ∈ TR′ , n ∈ N, and A ∈ N ′ with
d (`w)l d′ the following holds: if d ∈ Vn(A), then d′ ∈ Vn(A). Now let d′′ ∈ TR′ such that d (`w)l+1 d′′.
Then there is a d′ ∈ TR′ such that d (`w)l d′ and d′ `w d′′. Then, if d ∈ Vn(A), we have that d′ ∈ Vn(A)
by (IH). Moreover, there are p, p′ ∈ pos(d) such that seq(d, p, p′) = w and d′[d′p′]p = d′′. Thus, by
Lemma A.14, d′′ ∈ Vn(A).

Now, as for every l ∈ N and d′ ∈ TR′ with d (`w)l d′ it holds that d ∈ Vn(A) implies d′ ∈ Vn(A), we
obtain that for every d′ ∈ TR′ with d `w+ d′ the same implication holds. Thus d′ ∈ Vn(A) for every
d′ ∈ cutout(d,w). �

Lemma 7.4. For every d ∈ TR′ , n ∈ N, and A ∈ N ′ the following holds: if d ∈ Vn(A), then cutout(d) ⊆
Vn(A).

Proof. This is a consequence of Lemma A.15. �

Lemma A.16. For every n ∈ N the following holds: if ∆n(A) ∩ T
(c)
R′ = ∅, then Vn+1(A) = Vn(A),

where selectn = A.

Proof. Let n ∈ N and selectn = A. Then ∆n(A) = ∅ or ∆n ⊆ TR′ \T
(c)
R′ . For every d ∈ ∆n(A) we have

that d ∈ Vn+1(A) and thus by, Lemma 7.4,

cutout(d) ∩ T
(c)
R′ ⊆ Vn+1(A) ∩ T

(c)
R′

=
(
Vn(A) ∪̇∆n(A)

)
∩ T

(c)
R′ (Lemma 7.3)

=
(
Vn(A) ∩ T

(c)
R′

)
∪̇
(
∆n(A) ∩ T

(c)
R′︸ ︷︷ ︸

= ∅

)
(distributivity of ∩ over ∪̇)

= Vn(A) ∩ T
(c)
R′

⊆ Vn(A) .

Furthermore, by Lemma 7.3, Vn(A) ⊆ Vn+1(A), and since ∆n(A) = ∅ or ∆n ⊆ TR′ \T
(c)
R′

Vn+1(A) =
⊕

d∈Vn+1(A)

wt′(d)K =
⊕

d∈Vn(A)

wt′(d)K ⊕
⊕

d∈∆n(A)

wt′(d)K (Lemma 7.2)

=
⊕

d∈Vn(A)

wt′(d)K (Theorem 4.11)

= Vn(A) . (Lemma 7.2) �

Lemma 7.5. For every n ∈ N and A ∈ N ′ the following holds: if Vn+1(A) 6= Vn(A), then Vn+1(A) ∩
T

(c)
R′ ⊃ Vn(A) ∩ T

(c)
R′ .

81

Proof. Let n ∈ N and A ∈ N ′. If Vn+1(A) 6= Vn(A), then we obtain selectn = A from Observation 7.1.

Then by Lemma A.16, ∆n(A) ∩ T
(c)
R′ 6= ∅. Furthermore, by Lemma 7.3, Vn(A) ⊆ Vn+1(A). Thus

Vn+1(A) ∩ T
(c)
R′ =

(
Vn(A) ∪̇∆n(A)

)
∩ T

(c)
R′

= (Vn(A) ∩ T
(c)
R′) ∪̇

(
∆n(A) ∩ T

(c)
R′

)︸ ︷︷ ︸
6= ∅

⊃ Vn(A) ∩ T
(c)
R′ . �

A.15. Correctness of Algorithm 6.1

Lemma 7.7. For every n ∈ N, d ∈ T
(c)
R′ of the form d = r(d1, . . . , dk) with r =

(
A → σ(A1, . . . , Ak)

)
,

k1, . . . , kk ∈ K, and I ⊆ [k] such that

(i) for every i ∈ [k] \ I, di ∈ Vn(Ai) and

(ii) for every i ∈ I, Vn(Ai) = Vn(Ai)⊕ ki

the following holds: if selectn = A, then Vn+1(A) = Vn+1(A)⊕ wt′(r)(l1, . . . , li), where

li =

{
ki if i ∈ I
wt′(di)K otherwise.

Proof. Let n ∈ N, d ∈ T
(c)
R′ of the form r(d1, . . . , dk) with r =

(
A→ σ(A1, . . . , Ak)

)
, k1, . . . , kk ∈ K, and

I ∈ [k] such that selectn = A, for every i ∈ [k]\I, di ∈ Vn(Ai), and for every i ∈ I, Vn(Ai) = Vn(Ai)⊕ki.
Then by Observation 7.1

Vn+1(A) =
⊕
r′∈R′:

r′=(B→σ(B1,...,Bk′))

wt′(r′)
(
Vn(B1), . . . , Vn(Bk′)

)
=

⊕
r′∈R′\{r}:

r′=(B→σ(B1,...,Bk′))

wt′(r′)
(
Vn(B1), . . . , Vn(Bk′)

)
⊕ wt′(r)

(
Vn(A1), . . . , Vn(Ak)

)
. (7)

Now for each i ∈ [k], we let li ∈ K be as in the statement of the lemma and define the set

Si =

{
Vn(Ai) if i ∈ I
{di} otherwise.

Then by Lemma 7.2 and distributivity of wt′(r) over ⊕

wt′(r)
(
Vn(A1), . . . , Vn(Ak)

)
=

⊕
(d′1,...,d

′
k)∈Vn(A1)×···×Vn(Ak)

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)

=
⊕

(d′1,...,d
′
k)∈Vn(A1)×···×Vn(Ak)\S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)

⊕
⊕

(d′1,...,d
′
k)∈S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)
.

(8)

Now ⊕
(d′1,...,d

′
k)∈S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)

= wt′(r)(U1, . . . , Uk)

82

where for every i ∈ [k], if i ∈ I, then Ui = Vn(Ai), else Ui = wt′(di)K,

= wt′(r)(U ′1, . . . , U
′
k)

where for every i ∈ [k], if i ∈ I, then U ′i = Vn(Ai)⊕ ki, else U ′i = wt′(di)K,

= wt′(r)(U1, . . . , Uk)⊕ wt′(r)(l1, . . . , lk) .

Thus we obtain by Equation 8

wt′(r)
(
Vn(A1), . . . , Vn(Ak)

)
=

⊕
(d′1,...,d

′
k)∈Vn(A1)×···×Vn(Ak)\S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)

⊕ wt′(r)(U1, . . . , Uk)⊕ wt′(r)(l1, . . . , lk)

=
⊕

(d′1,...,d
′
k)∈Vn(A1)×···×Vn(Ak)\S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)

⊕
⊕

(d′1,...,d
′
k)∈S1×···×Sk

wt′(r)
(

wt′(d1)K, . . . ,wt′(dk)K
)
⊕ wt′(r)(l1, . . . , lk)

= wt′(r)
(
Vn(A1), . . . , Vn(Ak)

)
⊕ wt′(r)(l1, . . . , lk) .

Finally, by Equation 7, we obtain

Vn+1(A) =
⊕

r′∈R′\{r}:
r′=(B→σ(B1,...,Bk′))

wt′(r′)
(
Vn(B1), . . . , Vn(Bk′)

)
⊕ wt′(r)

(
Vn(A1), . . . , Vn(Ak)

)
⊕ wt′(r)(l1, . . . , lk)

=
⊕
r′∈R′:

r′=(B→σ(B1,...,Bk′))

wt′(r′)
(
Vn(B1), . . . , Vn(Bk′)

)
⊕ wt′(r)(l1, . . . , lk)

= Vn+1(A)⊕ wt′(r)(l1, . . . , lk) . (Observation 7.1) �

A.16. Termination and correctness of the M-monoid parsing algorithm

In this subappendix we give a full proof of Lemma 7.10. For this, we need a few auxiliary definitions
and lemmas.

Let a be a syntactic object and G =
(
(G,L),K,wt

)
be a wRTG-LM with G = (N,Σ,A0, R) such that

L is finitely decomposable and cwds(G, a) =
(
(G′,CFG∅),K,wt′

)
with G′ = (N ′, Σ′, A′0, R

′). We define

a partial mapping ψ:R′ →p R such that for each r =
(
[A, t, a0]→ 〈x1 . . . xk〉([A1, t1, a1], . . . , [Ak, tk, ak])

)
in R′, ψ(r) = A→ t. Furthermore, we define the mapping ψ′: TR′ → TR such that for each d ∈ TR′ , if
lhs(d(ε)) =

(
[A0, a]→ 〈x1〉([A0, t, a])

)
for some t ∈ TΣ′(N), then ψ′(d) = ψ(d|1), and otherwise ψ′(d) =

ψ(d), where ψ is the N -sorted tree relabeling induced by ψ. We also let ψ(w) = ψ(w1) . . . ψ(w|w|) for
every w ∈ (R′)∗.

Lemma A.17. For every d ∈ TR′ it holds that wt′(d)K = wt(ψ′(d))K.

Proof. Let d ∈ TR′ . We let d′ = d|1 if there is a t ∈ TΣ′(N) such that lhs(d(ε)) =
(
[A0, a] →

〈x1〉([A0, t, a])
)

and otherwise, d′ = d. We note that if d′ = d|1, then wt(d(ε)) = id by definition of
cwds and thus wt(d)K = wt(d′)K in both cases. Now, by definition of cwds, for every p ∈ pos(d′) it
holds that wt′(d′(p)) = wt(ψ(d′)(p)) and hence wt′(d′)K = wt

(
ψ(d′)

)
K = wt(ψ′(d))K. �

Lemma A.18. For every c ∈ N, d ∈ TR′ and elementary cycle w ∈ (R′)∗ such that there is a leaf
p ∈ pos(d) which is (c+ 1, w)-cyclic the following holds: ψ′(cutout(d,w)) = cutout(ψ′(d), ψ(w)).

83

Proof. Let c ∈ N, d ∈ TR′ and w ∈ (R′)∗ be an elementary cycle such that there is a leaf p ∈ pos(d)
which is (c+ 1, w)-cyclic. Then

d′ ∈ ψ′(cutout(d,w)) ⇐⇒ ∃d′′ ∈ TR′ : d `w+ d′′ ∧ ψ′(d′′) = d′

⇐⇒ ∃d′′ ∈ TR′ , p, p
′ ∈ pos(d): seq(d, p, p′) = w ∧ d[d|p′]p = d′′ ∧ ψ′(d′′) = d′

⇐⇒ ∃p, p′ ∈ pos(ψ′(d)): seq(ψ′(d), p, p′) = ψ(w) ∧ ψ′(d)[ψ′(d)|p′]p = d′

⇐⇒ ψ′(d) `w+ d′

⇐⇒ d′ ∈ cutout(ψ′(d), ψ(w)) . �

Lemma A.19. For every d ∈ TR′ and w ∈ (R′)∗ the following holds: if there is a leaf p ∈ pos(d) which
is (c + 1, w)-cyclic, then there are a c′ ∈ N and a leaf p′ ∈ pos(ψ′(d)) which is (c′, ψ(w))-cyclic and
c′ > c+ 1.

Proof. Let d ∈ TR′ , w ∈ (R′)∗ such that there is a leaf p ∈ pos(d) which is (c+ 1, w)-cyclic. Then there
are v0, . . . , vc+1 ∈ (R′)∗ such that seq(d, p) = v0wv1 . . . wvc+1 and for every i ∈ [0, c+ 1], w is not a sub-
string of vi. If lhs(d(ε)) =

(
[A0, a]→ 〈x1〉([A0, t, a])

)
for some t ∈ TΣ′(N), then we let p′ = 1p and p0 =

1 and otherwise, we let p′ = p and p0 = ε. Then seq(ψ′(d), p0, p
′) = ψ(v0)ψ(w)ψ(v1) . . . ψ(w)ψ(vc+1).

Furthermore, for every i ∈ [0, c+1], ψ(vi) = vi,0ψ(w)vi,1 . . . ψ(w)vi,ci with ci ∈ N and for every j ∈ [0, ci],
vi,j ∈ R∗ and ψ(w) is not a substring of vi,j . Thus ψ′(d) is (c′, ψ(w))-cyclic for c′ = c+1+

∑
i∈[0,c] ci. �

Lemma 7.10. For every wRTG-LM G with finitely decomposable language algebra and syntactic
object a, the wRTG-LM cwds(G, a) is closed if

• G is closed or

• G is nonlooping and the weight algebra of G is in Kd-comp ∩Kdist.

Proof. Let a be a syntactic object and G =
(
(G,L),K,wt

)
be a wRTG-LM with G = (N,Σ,A0, R)

such that L is finitely decomposable and cwds(G, a) =
(
(G′,CFG∅),K,wt′

)
with G′ = (N ′, Σ′, A′0, R

′).

If there is a c ∈ N such that G is c-closed, then for every d ∈ TR′ and elementary cycle w ∈ (R′)∗ such
that there is a leaf p ∈ pos(d) which is (c+ 1, w)-cyclic

wt′(d)K ⊕
⊕

d′∈cutout(d,w)

wt′(d′)K = wt(ψ′(d))K ⊕
⊕

d′∈cutout(d,w)

wt(ψ′(d′))K (Lemma A.17)

= wt(ψ′(d))K ⊕
⊕

d′∈cutout(ψ′(d),ψ(w))

wt(d′)K (Lemma A.18)

=
⊕

d′∈cutout(ψ′(d),ψ(w))

wt(d′)K (Lemma 4.10)

=
⊕

d′∈cutout(d,w)

wt(ψ′(d′))K (Lemma A.18)

=
⊕

d′∈cutout(d,w)

wt′(d)K . (Lemma A.17)

We note that Lemma 4.10 can be applied due to Lemma A.19.
If G is nonlooping and the weight algebra of G is in Kd-comp∩Kdist, then, by Lemma 6.5, cwds(G, a)

is in W(Gacyc,Kd-comp∩Kdist) for every syntactic object a. Then, by Lemma A.22, it is also closed. �

A.17. Application scenarios employ closed wRTG-LMs

This subappendix contains the full proofs of Theorem 8.1 and Theorem 8.2.

Lemma A.20. Every wRTG-LM in W(Gall,Kfin,id,�) is closed.

84

Proof. Let G =
(
(G,L),K,wt

)
in W(Gall,Kfin,id,�) with G = (N,Σ,A0, R). Then K is finite and

idempotent and there is a partial order (K,�) such that for every k ∈ N, ω ∈ Ωk, and k1, . . . , kk ∈ K:
max�{k1, . . . , kk} � ω(k1, . . . , kk). We show that G is |K|-closed. For this, let n = |K| + 1, G =
(N,Σ,A0, R), d ∈ TR, p ∈ pos(d) be a leaf, and w ∈ R∗ be an elementary cycle such that p is (n,w)-
cyclic. Then there are v0, . . . , vn ∈ R∗ such that for every i ∈ [0, n], w is not a substring of vi and
seq(d, p) = v0wv1 . . . wvn. We let w = r1 . . . rm with ri ∈ R for every i ∈ [m] and rm = (A → t) with
yieldN (t) = A1 . . . Ak and Ai ∈ N for every i ∈ [k].

We consider the set D = {d|p1..j
| i ∈ [n], j =

∑i−1
l=0 |vl|+ i · |w|}. Since |D| = n, there are d1, d2 ∈ D

such that d1 6= d2 and wt(d1)K = wt(d2)K. Let i, j ∈ [n] and i′, j′ ∈ N such that i′ =
∑i−1
l=0 |vl|+ i · |w|,

j′ =
∑j−1
l=0 |vl|+ j · |w|, d1 = d|p1..i′ , and d2 = d|p1..j′ . Without loss of generality, we assume that i < j.

Let q = j − |w|+ 1. By Lemma 2.2, d|p1..q
= d|p1..j′ . We let s ∈ [k] such that pq = s. Then

wt(d)K = wt(d)[xs,As]p1..q

(
wt
(
d|p1..q

)
K

)
K

= wt(d)[xs,As]p1..q
(wt(d2)K)K

= wt
(
d[d2]p1..q

)
K . (d|p1..q′ (ε) = d2(ε))

Then, as K is idempotent,

wt(d)K ⊕ wt
(
d[d2]p1..q

)
K = wt

(
d[d2]p1..q

)
K .

Finally, as d[d2]p1..q ∈ cutout(d), we have that

wt(d)K ⊕
⊕

d′∈cutout(d,w)

wt(d′)K =
⊕

d′∈cutout(d,w)

wt(d′)K

and thus G is |K|-closed. �

Lemma A.21. Every wRTG-LM in W(Gall,Ksup) is closed.

Proof. Let G =
(
(G,L),K,wt

)
in W(Gall,Ksup). We show that G is 0-closed. For this, let G =

(N,Σ,A0, R), d ∈ TR, p ∈ pos(d) be a leaf, and w ∈ R∗ be an elementary cycle such that p is (1, w)-
cyclic. Then there are v0, v1 ∈ R∗ such that w is not a substring of v0 or v1 and seq(d, p) = v0wv1.
We let v0 = r1 . . . rm, rm = (A → t) with yieldN (t) = A1 . . . Ak and Ai ∈ N for every i ∈ [k], and
d′ = d[d|p1..m+|w|]p1..m+1 . We will show that wt(d)K ⊕ wt(d′)K = wt(d′)K.

First, we let wt
(
d|p1..m+|w|

)
K = k and wt

(
d|p1..m+1

)
K = k′ (we are not interested in the partic-

ular value). As K is superior, we have that k �⊕ k′. Thus wt
(
d|p1..m+1

)
K ⊕ wt

(
d|p1..m+|w|

)
K =

wt
(
d|p1..m+|w|

)
K. Therefore

wt(d)K ⊕ wt(d′)K

= (d[xs,As]p1..m+1
)
(
wt
(
d|p1..m+1

)
K ⊕ wt

(
d|p1..m+|w|

)
K

)
K

(distributivity of Ω over ⊕)

= (d[xs,As]p1..m+1
)
(
wt
(
d|p1..m+|w|

)
K

)
K

= wt(d′)K .

Now, as d′ ∈ cutout(d,w), this entails that

wt(d)K ⊕
⊕

d′′∈cutout(d,w)

wt(d′′)K =
⊕

d′′∈cutout(d,w)

wt(d′′)K

and thus G is 0-closed. �

Lemma A.22. Every wRTG-LM in W(Gacyc,Kd-comp ∩Kdist) is closed.

85

Proof. Let
(
(G,L),K,wt

)
∈ W(Gacyc,Kd-comp ∩Kdist) with G = (N,Σ,A0, R). Since every d ∈ TR is

acyclic we have that TR = T
(0)
R . Thus, by Definition of closed, G is 0-closed. �

Theorem 8.1. Each wRTG-LM in each of the following three classes is closed: W(Gall,Kfin,id,�),
W(Gall,Ksup), and W(Gacyc,Kd-comp ∩Kdist).

Proof. This is a consequence of Lemmas A.20, A.21, and A.22. �

Lemma A.23. Every wRTG-LM in W<1(Gall,BD) is closed.

Proof. Let G =
(
(G,L),BD,wt

)
in W<1(Gall,BD). We show that G is 0-closed. For this, let G =

(N,Σ,A0, R), d ∈ TR, p ∈ pos(d) be a leaf, and w ∈ R∗ be an elementary cycle such that p is (1, w)-
cyclic. Then there are v0, v1 ∈ R∗ such that w is not a substring of v0 or v1 and seq(d, p) = v0wv1.
We let v0 = r1 . . . rm, rm = (A → t) with yieldN (t) = A1 . . . Ak and Ai ∈ N for every i ∈ [k], and
d′ = d[d|p1..m+|w|]p1..m+1 . We will show that maxBD

(
wt(d)BD,wt(d′)BD

)
= wt(d′)BD.

First, we let wt
(
d|p1..m+|w|

)
BD = (q,D). Then wt

(
d|p1..m+1

)
BD = (q′, D′), where q′ is a product of q

and other elements from R1
0 and D′ ∈ P(TR) (we are not interested in the particular values). Since by

definition of W<1(Gall,BD) each factor of that product is less than 1, we have that q′ < q by monotonicity

of · in R1
0. Thus maxBD

(
wt
(
d|p1..m+1

)
BD,wt

(
d|p1..m+|w|

)
BD

)
= wt

(
d|p1..m+|w|

)
BD. Therefore

maxBD

(
wt(d)BD,wt(d′)BD

)
= (d[xs,As]p1..m+1)

(
maxBD

(
wt
(
d|p1..m+1

)
BD,wt

(
d|p1..m+|w|

)
BD

))
BD

(distributivity of ΩBD over ⊕)

= (d[xs,As]p1..m+1
)
(
wt
(
d|p1..m+|w|

)
BD

)
BD

= wt(d′)BD .

Now, as d′ ∈ cutout(d,w), this entails that

maxBD

(
wt(d)BD, maxBD

d′′∈cutout(d,w)
wt(d′′)BD

)
= maxBD
d′′∈cutout(d,w)

wt(d′′)BD

and thus G is 0-closed. �

Lemma A.24. Every wRTG-LM in W(Gall, nBST) is closed.

Proof. Let n ∈ N and G =
(
(G,L), nBST ,wt

)
in W(Gall, nBST). We show that G is (n − 1)-closed.

For this, let G = (N,Σ,A0, R), d ∈ TR, p ∈ pos(d) be a leaf, and w ∈ R∗ be an elementary cycle such
that p is (n,w)-cyclic. Then there are v0, . . . , vn ∈ R∗ such that for every i ∈ [0, n], w is not a substring
of vi and seq(d, p) = v0wv1 . . . wvn. We let v0 = r1 . . . rm, rm = (A → t) with yieldN (t) = A1, . . . , Ak
and Ai ∈ N for every i ∈ [k], s ∈ [k] such that pm+1 = s, m′n = 1, d′n = d, and for every i ∈ [n]

m′i−1 = m′i + |vn−i−1|+ |w|
s′i ∈ N such that pm′i−1+1 = s′i

d′i−1 = d′i[d|p1..m′
i−1

+|w|
]pm′n..m′n+|v0|...pm′i−1

..m′
i−1

+|vn−i|
.

We will show that

wt(d)nBST ⊕
n−1⊕
i=0

wt(d′i)nBST =

n−1⊕
i=0

wt(d′i)nBST .

First, we define d′′i = d′i|p1..m+1
for every i ∈ [0, n− 1]. Then we let w = r1 . . . rl and for every i ∈ [l],

we let wt(ri) = muln
(ki)
ki

with ki = rk(ri) and ki ∈ nBST . Then there are d1, . . . , dk1 ∈ TR such that
d|pm+1 = r1(d1, . . . , dk1). Thus

wt
(
d|p1..m+1

)
nBST = muln

(k)
k

(wt(d1)nBST , . . . ,wt(dk)nBST)

86

and by recursively applying wt to d(p2..i) for each i ∈ [m+ 2, |p| − |vn|]

= muln
(k)
k

(
wt(d1)nBST , . . . ,wt(ds−1)nBST ,

muln
(k)
k

(
wt((ds)|1)nBST , . . . ,wt(ds′−1)nBST ,

. . .

muln
(kl)
kl

(
wt
(
d|p1..m+l1

)
nBST , . . . ,wt

(
dp1..m+ls′′−1

)
nBST ,

. . .

muln
(kl)
kl

(
wt
(
d|p1..|p|−|vn|1

)
nBST , . . . ,wt

(
dp1..|p|−|vn|k

)
nBST

)
,

. . . ,

wt
(
dp1..m+ls′′+1

)
nBST , . . . ,wt

(
d|p1..m+lk

)
nBST

)
,

. . . ,

wt(ds′+1)nBST , . . . ,wt((ds)|k)nBST

)
wt(ds+1)nBST , . . . ,wt(dk)nBST

)
,

where pm+2 = s′ and pm+l+1 = s′′,

= takenbest
(

(k1, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n wt(d1)nBST ·n . . . ·n wt(ds−1)nBST

·n (k2, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n wt((ds)|1)nBST ·n . . . ·n wt(ds′−1)nBST

·n . . .
·n (kl, 0, . . . , 0︸ ︷︷ ︸

n− 1 times

) ·n wt
(
d|p1..m+l1

)
nBST ·n . . . ·n wt

(
dp1..m+ls′′−1

)
nBST

·n . . .
(kl, 0, . . . , 0︸ ︷︷ ︸

n− 1 times

) ·n wt
(
d|p1..|p|−|vn|1

)
nBST ·n . . . ·n wt

(
dp1..|p|−|vn|k

)
nBST

·n . . .
·n wt

(
dp1..m+ls′′+1

)
nBST ·n . . . ·n wt

(
d|p1..m+lk

)
nBST

·n . . . ,
·n wt(ds′+1)nBST ·n . . . ·n wt((ds)|k)nBST

·n wt(ds+1)nBST ·n . . . ·n wt(dk)nBST

)
,

where we have skipped the inner applications of takenbest for readability. Thus, by commutativity of
·n, there is a k ∈ K such that we continue

= takenbest
(

((k1, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n . . . ·n (kl, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

))n ·n k
)
.

We let wt
(
d|p1..m+1

)
nBST = (a1, . . . , an). Then for every i ∈ [n], there is an i′ ∈ [n] such that

ai = takenbest
(

((k1, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

) ·n . . . ·n (kl, 0, . . . , 0︸ ︷︷ ︸
n− 1 times

))n ·n k
)
i′
.

87

Now as for every i ∈ [n− 1], (k1 · . . . · kl)i ≥ (k1 · . . . · kl)n and (k1 · . . . · kl)0 = 1 ≥ (k1 · . . . · kl)n, for
every i ∈ [n] and i′ ∈ [0, n− 1] by monotonicity of · we have that ai ≤ (wt(d′′i′)nBST)1. Thus

wt
(
d|p1..m+1

)
nBST ⊕

n−1⊕
i=0

wt(d′′i)nBST =

n−1⊕
i=0

wt(d′′i)nBST .

Therefore

wt(d)nBST ⊕
n−1⊕
i=0

wt(d′i)nBST

= d[xs,As]p1..m+1

(
wt
(
d|p1..m+1

)
nBST ⊕

n−1⊕
i=0

wt(d′′i)nBST

)
K

(distributivity of ΩBD over ⊕)

= d[xs,As]p1..m+1

(
n−1⊕
i=0

wt(d′′i)nBST

)
K

=

n−1⊕
i=0

wt(d′i)nBST .

Now, as d′i ∈ cutout(d,w) for every i ∈ [0, n− 1], this entails that

wt(d)nBST ⊕
⊕

d′∈cutout(d,w)

wt(d′)nBST =
⊕

d′∈cutout(d,w)

wt(d′)nBST

and thus G is n− 1-closed. �

Lemma A.25. Every wRTG-LM in W(Gall,Kint) is closed.

Proof. LetG =
(
(G,L), (K,∪, ∅, ω),wt

)
in W(Gall,Kint). Clearly, (K,⊆) is a partial order. By definition

of Ω, for every k ∈ N, ω ∈ Ωk, and k1, . . . , kk ∈ K it holds that ki ⊆ ω(k1, . . . , kk) for each i ∈ [k].
Thus and since K is finite, idempotent and distributive, by Lemma A.20, G is closed. �

Theorem 8.2. Each wRTG-LM in each of the following three classes is closed: W<1(Gall,BD),
W(Gall, nBST), and W(Gall,Kint).

Proof. This is a consequence of Lemmas A.23, A.24, and A.25. �

A.18. Restriction of best derivation M-monoid is necessary

Lemma A.26. There is a wRTG-LM in W(Gall,BD) \W<1(Gall,BD) which is not closed.

Example A.27. Let G =
(
(G,CFG∅),K,wt

)
∈ W(Gall,BD) with G = (N,Σ,A0, R) such that there

are r, r′ ∈ R with r =
(
A → 〈x1〉(A)

)
, r′ = (A → 〈ε〉), wt(r) = tc,r, and wt(r′) = tcp,r’ for some

p ∈ R1
0. We let

d(c) = r(. . . r(︸ ︷︷ ︸
c times

r′) . . .)︸ ︷︷ ︸
c times

.

We show shat for every c ∈ N,

wt
(
d(c)
)
K ⊕

⊕
d′∈cutout(d(c))

wt(d′)K 6=
⊕

d′∈cutout(d(c))

wt(d′)K

by an indirect proof. Assume that there is a c ∈ N such that

wt
(
d(c)
)
K ⊕

⊕
d′∈cutout(d(c))

wt(d′)K =
⊕

d′∈cutout(d(c))

wt(d′)K .

88

Then

wt
(
d(c)
)
K ⊕

⊕
d′∈cutout(d(c))

wt(d′)K = (p, {d(c)})⊕
⊕
c′∈N:
c′<c

(p, {d(c′)}) (as ⊕ is idempotent)

=
⊕
c′∈N:
c′≤c

(p, {d(c′)})

6=
⊕
c′∈N:
c′<c

(p, {d(c′)}) =
⊕

d′∈cutout(d(c))

wt(d′)K ,

which contradicts our assumption. Now, since for every c ∈ N we have that the leaf 1c ∈ pos(d) is
(bc/2c, rr)-cyclic, it follows that G is not (bc/2c)-closed. Thus G is not closed. �

89

	1 Introduction
	2 Preliminaries
	2.1 Basic mathematical notions
	2.2 Universal algebra
	2.3 Monoids, semirings, and M-monoids
	2.4 Regular tree grammars

	3 Weighted RTG-based language models and the M-monoid parsing problem
	3.1 Weighted RTG-based language models
	3.2 M-monoid parsing problem
	3.3 Comparison with interpreted regular tree grammars (IRTG)

	4 Classes of weighted RTG-based language models
	4.1 Classes of RTG-based language models
	4.1.1 The CFG-algebras and context-free grammars
	4.1.2 The LCFRS-algebras and linear context-free rewriting systems
	4.1.3 TAG-algebras and tree-adjoining grammars
	4.1.4 Yield-algebras and yield grammars
	4.1.5 Further classes of RTG-based language models
	4.1.6 Summary of considered classes of RTG-LMs

	4.2 Classes of weight algebras
	4.2.1 M-monoids that are associated with semirings
	4.2.2 Superior M-monoids
	4.2.3 Further classes of complete M-monoids
	4.2.4 Summary of considered classes of M-monoids

	4.3 Closed weighted RTG-based language models
	4.3.1 Definition of closed weighted RTG-based language models
	4.3.2 Properties of closed weighted RTG-based language models

	5 Two particular M-monoid parsing problems
	5.1 Intersection of a grammar and a syntactic object
	5.2 Algebraic dynamic programming

	6 M-monoid parsing algorithm
	6.1 Weighted deduction systems
	6.2 Value computation algorithm

	7 Termination and correctness of the M-monoid parsing algorithm
	7.1 Properties of the value computation algorithm
	7.1.1 Termination of the value computation algorithm
	7.1.2 Correctness of the value computation algorithm

	7.2 Properties of the M-monoid parsing algorithm

	8 Application scenarios
	8.1 Value computation algorithm
	8.2 M-monoid parsing algorithm
	8.3 Complexity

	List of abbreviations
	Index
	References
	A Additional proofs
	A.1 Proofs of statements from the preliminaries
	A.2 Superior M-monoids
	A.3 Best derivation M-monoid is distributive and d-complete
	A.4 N-best M-monoid is distributive and d-complete
	A.5 Definition of closed weighted RTG-based language models
	A.6 Properties of closed weighted RTG-based language models
	A.7 Intersection is an instance of the M-monoid parsing problem
	A.8 ADP algebra is a d-complete and distributive M-monoid
	A.9 ADP is an instance of the M-monoid parsing problem
	A.10 Each weight-preserving weighted deduction system is sound and complete
	A.11 The canonical weighted deduction system is weight-preserving
	A.12 Applying the canonical weighted deduction system to nonlooping wRTG-LMs yields acyclic wRTG-LMs
	A.13 General statements about Algorithm 6.1
	A.14 Termination of Algorithm 6.1
	A.15 Correctness of Algorithm 6.1
	A.16 Termination and correctness of the M-monoid parsing algorithm
	A.17 Application scenarios employ closed wRTG-LMs
	A.18 Restriction of best derivation M-monoid is necessary

