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Constant-Time Dynamic Weight Approximation for Minimum
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Abstract

We give two fully dynamic algorithms that maintain a (1 + ε)-approximation of the weight
M of a minimum spanning forest (MSF) of an n-node graph G with edges weights in [1,W ], for
any ε > 0.

(1) Our deterministic algorithm takes O(W 2 logW/ε3) worst-case update time, which is
O(1) if both W and ε are constants. Note that there is a lower bound by Patrascu and Demaine
(SIAM J. Comput. 2006) which shows that it takes Ω(log n) time per operation to maintain
the exact weight of an MSF that holds even in the unweighted case, i.e. for W = 1. We further
show that any deterministic data structure that dynamically maintains the (1+ ε)-approximate
weight of an MSF requires super constant time per operation, if W ≥ (logn)ωn(1).

(2) Our randomized (Monte-Carlo style) algorithm works with high probability and runs in

worst-case O(logW/ε4) update time if W = O((m∗)1/6/log2/3 n), where m∗ is the minimum
number of edges in the graph throughout all the updates. It works even against an adaptive
adversary. This implies a randomized algorithm with worst-case o(log n) update time, whenever

W = min{O((m∗)1/6/ log2/3 n), 2o(logn)} and ε is constant. We complement this result by
showing that for any constant ε, α > 0 and W = nα, any (randomized) data structure that
dynamically maintains the weight of an MSF of a graph G with edge weights in [1,W ] and
W = Ω(εm∗) within a multiplicative factor of (1 + ε) takes Ω(log n) time per operation.
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1 Introduction

Minimum spanning forest (MSF) is a fundamental and well studied graph problem in computer
science. Given an edge-weighted graph G, an MSF is a subgraph of G that forms a spanning
forest and has minimum weight among all spanning forests of G, where the weight of a spanning
forest is the sum of the edge weights of the forest. In this paper, we study dynamic algorithms for
maintaining and extracting information regarding the MSF of a dynamically changing graph.

A (fully) dynamic graph algorithm is a data structure that provides information about a graph
property while the graph is being modified by edge updates such as edge insertions or deletions. When
designing a dynamic graph algorithm the goal is to minimize the time per update or query operation.
Formally, a fully dynamic graph algorithm is an algorithm that maintains some information of a
graph G which is undergoing an arbitrary sequence of the following operations: 1) Insert(u, v, w):
insert the edge (u, v) with weight w in G; 2) Delete(u, v): delete the edge (u, v) from G. (If
the considered graph is unweighted, then the weight w of an insertion is always set to be 1.) The
algorithm can further support different Query operations depending on the specific graph property.
Dynamically maintaining the (minimum) spanning forest (or tree) (e.g., [Fre83, EGIN97, HK99,
HK97, HDLT01, HRWN15, WN17, NS17, NSWN17]) and dynamically testing connectivity between
any pair of vertices (e.g., [EGIN97, HDLT01, HK99, Tho00, KKM13, GKKT15, HHKP17]) have
played a fundamental role in the area of dynamic graph algorithms. The currently best dynamic
algorithms for MSF take O(log4 n/ log log n) amortized1 time per update [HRWN15] (that improves
upon [HDLT01]) and O(no(1)) worst-case time [NSWN17, CGL+19].

An approximate version of this problem has also been studied: A (1 + ε)-approximation2 of the
weight M of an MSF is a value M ′ such that (1 − ε) · M ≤ M ′ ≤ (1 + ε) · M . In the (1 + ε)-
approximate MSF problem, the fully dynamic algorithm maintains an MSF of weight M ′ that is a
(1+ ε) approximation of the weight of an MSF in the current graph. This problem was first studied
by Henzinger and King [HK99], who also provided a reduction that uses a dynamic algorithm B
for a spanning tree to obtain a dynamic algorithm A for the (1 + ε)-approximate MSF problem, by
invoking the algorithm B on logW/ε subgraphs of a graph G with edge weights in [1,W ], for some
W ≥ 1. By combining this reduction and best known algorithms for dynamic connectivity (and
spanning forest), we have the following table Table 1 summarizing the state-of-the-art. We remark
that all these algorithms require at least logarithmic update time per operation.

It is natural to consider a relaxed version of the above problems, by asking how to dynamically
maintain an exact or approximate value, i.e., not the spanning tree, of the weight of an MSF with
much faster update time. We first note that maintaining the exact value of the weight of an MSF
dynamically cannot be done in constant time per operation: There is a lower bound of Patrascu
and Demaine [PD06], who showed that in the cell-probe model many fundamental graph properties,
such as asking whether the graph is connected or maintaining the exact value of the weight of an
MSF, require Ω(log n) time per operation, where n is the number of nodes in the graph. Their lower
bound even holds for the unweighted case, i.e. for W = 1. However, their lower bound does not
apply to maintaining an approximate value of the weight of an MSF, leading to the following open
question: Can a (1 + ǫ)-approximation of the weight of an MSF be maintained in time o(log n)?

We answer this question positively in this paper. Our main contributions are two dynamic
algorithms for maintaining a (1 + ǫ)-approximation of the weight of an MSF, that bypass the

1An algorithm is said to have amortized update time of α if for any t, after t updates the total update time is at
most αt. It is said to have worst-case update time of α if every update time is at most α.

2Note that we can easily translate this definition of (1 + ε)-approximation of M to the standard one, i.e., a value
M ′′ such that M ≤ M ′′ ≤ (1+ ε)M . This can be achieved by multiplying the estimate M ′ by 1/(1− ε) and replacing
ε by ε′ = min{ε/4, 1

2
}.
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worst-case amortized

deterministic no(1) [CGL+19] min{O( logW log2 n
ε log logn ), O( log4 n

log logn)} [WN13,
HK99] [HRWN15]

Monte Carlo O(logW log4 n/ε) [GKKT15, HK99]

Las Vegas expected O(logW (log n)(log log n)2/ε)
[HHKP17, HK99]

Table 1: The best known dynamic algorithms for the (1+ ε)-approximate MSF problem on a graph
with edge weights from [1,W ]. Those algorithms maintain a spanning tree whose weight is a (1+ε)-
approximation of the weight of an MSF. For the Monte Carlo algorithm, there is some 1/poly(n)
probability of answering a query incorrectly. For the Las Vegas algorithm, the answers to the queries
are always correct, while the update time is a random variable.

worst-case

deterministic O(W 2 · (logW ) · ε−3) Theorem 1.1

Monte Carlo O
(

logW
ε + W 3(logW ) log(W/ε)(log(logW/ε)+logn)

ε4
√
m∗

)

Theorem 1.3

Table 2: Our algorithms for the problem of maintaining a (1+ ε)-approximation of the weight of an
MSF of a graph with edge weights from [1,W ]. Our algorithms do not maintain a spanning tree.
Note that our algorithms are faster than the corresponding algorithms in Table 1 for a wide range
of parameters.

Ω(log n) time lower bound barrier. Even stronger, they have constant update times for a wide range
of parameters. More specifically, our first algorithmic result is as follows.

Theorem 1.1. There exists a fully dynamic, deterministic algorithm that maintains an estimator
M that (1+ ε)-approximates the weight M of a MSF of a graph with edge weights from [1,W ]. The
worst-case time per update operation is O(W 2 · logW · ε−3).

For constant W and ε this is a deterministic worst-case O(1) time bound. Our algorithm does
not require the initial graph to be empty. In contrast, for maintaining the exact value of the weight
of an MSF, the best known deterministic algorithm has O(no(1)) worst-case time [CGL+19] (which
actually maintains the MSF, not just the value). In comparison, the already mentioned lower bound
of Ω(log n) by [PD06] also applies for maintaining the exact weight of an MSF even for W = 1.

We then show that any deterministic data structure that dynamically maintains the (1 + ε)-
approximate weight of an MSF requires super constant time per operation, if W ≥ (log n)ωn(1),
where ωn(1) is any function that goes to infinity if n goes to infinity. The lower bound on the time
per operation for this problem is established in the cell-probe model.

Theorem 1.2. Let W ≥ (log n)ωn(1). Let G be a dynamic graph with edge weights in [1,W ]. Any
deterministic data structure that dynamically maintains the weight M of an MSF of a graph G
within a multiplicative factor of (1 + ε) for any constant ε > 0, or an additive error less than W/2
must perform ωn(1) cell probes, where each cell has size O(log n).

Our second algorithmic result is a randomized dynamic algorithm that works even against an
adaptive adversary3. We let m∗ be the minimum number of edges of the graph throughout all the

3That is, the adversary sees the answers to all query operations before deciding which edge to update next. We say
an adversary is oblivious, if it fixes the sequence of edge insertions and deletions and is oblivious to the randomness
of algorithm.
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updates. In this paper, “With high probability” means “with probability at least 1 − 1
nc for some

constant c ≥ 1”.

Theorem 1.3. Let ε ∈ (0, 1) and W ≥ 1. There exists a fully dynamic algorithm that with high
probability, maintains an estimator M that is a (1 + ε)-approximation of the weight M of MSF of
a graph G with edge weights from [1,W ]. The worst-case time per update operation is

O
(

(logW )/ε+W 3(logW ) log(W/ε) (log(logW/ε) + log n)/(ε4
√
m∗)

)

,

where m∗ ≥ 1 is the minimum number of edges in G throughout all the updates. Our algorithm
works against an adaptive adversary.

From the above, we can easily obtain a randomized algorithm that runs in sub-logarithmic time
(for constant ε > 0) for the setting that W might not be constant.

Corollary 1.4. Let ε ∈ ( 1
n4 , 1). There exists a fully dynamic algorithm that, with high probability,

maintains an estimator M that is a (1 + ε)-approximation of the weight M of an MSF of a graph
G with edge weights from [1,W ] such that W = O((m∗)1/6/ log2/3 n), and has

• O((logW )/ε4) worst-case time per update operation;

• O(1) worst-case time per update operation, if W and ε are constant;

• o(log n)) worst-case time per update operation, if W = 2o(log n) and ε is constant.

The algorithm works against an adaptive adversary.

Proof. By applying Theorem 1.3 with the assumptions that ε ∈ ( 1
n4 , 1) and that W = O((m∗)1/6/ log2/3 n),

we obtain a corresponding algorithm with worst-case update time

O

(

logW

ε
+

W 3(logW ) log(W/ε)(log(log(W/ε)) + log n)

ε4 ·
√
m∗

)

=O

(

logW

ε
+

√
m∗(logW ) log(W/ε)(log n)

ε4 ·
√
m∗ · log2 n

)

= O(
logW

ε4
),

where we used the fact that m∗ ≤ O(n2). This finishes the proof of the corollary.

The requirement that W needs to be small compared to the minimum number of edges in the
graph might look artificial. However, we present the following lower bound for any randomized data
structure that dynamically maintains the approximate weight of an MSF, which shows that some
requirement of this type is necessary.

Theorem 1.5. For any constant ε, α > 0 and W = nα, any data structure that dynamically
maintains with high probability the weight of an MSF of a graph G with edge weights in [1,W ] and
W = Ω(εm∗) within a multiplicative factor of (1 + ε), or an additive error less than W/2, must
perform Ω(log n) cell probes, where each cell has size O(log n).

This stands in interesting contrast to the above Corollary 1.4, which has update time o(log n),
but requires W to be min{O((m∗)1/6/ log2/3 n), 2o(log n)}.

We remark that main technical contributions are our algorithmic results given by Theorem 1.1
and 1.3, which are summarized in Table 2, for ease of comparison.
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1.1 Our techniques

Both our deterministic and randomized dynamic graph algorithms for this problem use an approach
developed in the area of property testing: Build an efficient algorithm for estimating the number
of connected components (CCs) in a graph and apply it to suitable subgraphs of G [CRT05, CS09,
AGM12]. More specifically, we build constant-time dynamic algorithms that estimate the number
of CCs with appropriate additive error, apply them to O(logW/ε) many subgraphs, and then use
an extension of the formula in [CRT05] to disconnected graphs to estimate the weight of an MSF.
We stress that most of previous work uses the formula for connected graphs, while in our setting,
it is more natural to remove the requirement that the dynamic graph is always connected. Thus,
we extend the formula to work for disconnected graphs (see Lemma 2.1). To use this formula our
algorithms need to estimate the number of CCs with an additive error ε′ · nis(G), where nis(G) is
the number of non-isolated vertices in G (see below why this is crucial). Our randomized dynamic
algorithm for this problem achieves such an error in time O(max{1, log(1/ε′) log n/(ε′3 ·

√
m∗)})

with high probability, and our deterministic algorithm achieves the same error ε′ · nis(G) in time
O((1/ε′)2).

The randomized algorithm. The randomized algorithm for estimating the number of con-
nected components is based on the following simple approach (used previously e.g. [GP13]): When-
ever (1) there exists a static algorithm that in time T estimates a desired parameter (here the number
of CCs) with an additive error of Err and (2) each update operation changes the value of a desired
parameter only by an additive value up to +/ − δ (here 1), then running the static algorithm ev-
ery Err

δ update operations leads to a dynamic algorithm with additive error of at most 2Err and

amortized time O( Tδ
Err

) per update.
To turn this into a worst-case time bound observe that we can run the static algorithm “in

the background” executing O( Tδ
Err

) steps of the static algorithm at every update operation. This
increases the additive error only by a constant factor. We make use of the static (constant-time)
algorithm of [BKMT14] (that improves upon [CRT05]) for estimating the number of CCs with addi-
tive error ε′n as a subroutine. However, directly invoking this static algorithm we can obtain only a
dynamic estimator for the number of CCs with an additive error ε′n2/3 log2/3 n with O(1/ε′3) update
time (see Appendix A). This is not sufficient for the MSF approximation algorithm: Specifically, we
need to be able to dynamically approximate the number of CCs with an additive error ε′ · nis(G)
with fast update time and nis(G) can be arbitrarily small. To achieve this smaller additive error,
we carefully choose different values of Err throughout all the updates and sample the non-isolated
vertices uniformly at random in the dynamic graph. We give more detailed discussions on some
other technical difficulties (e.g., we need to “synchronize” the updates in G and its subgraphs to
achieve the desired update time) and how we handle them in Section 4.

Sampling non-isolated vertices uniformly at random in a dynamic graph is exactly the problem
solved by ℓ0-sampling in streaming algorithms (see e.g. [JST11]). However, all such algorithms,
while only using O(poly log n) space, require time Ω(log n) per operation. We give a relatively
simple data structure (see Lemma 4.2) that allows to sample all non-zero entries in a dynamically
changing vector of size n in constant time (no matter how small their number might be), albeit with
space O(n). We believe that our data structure might be of independent interest.

Our randomized algorithm uses “fresh” random bits whenever it invokes the static (constant-
time) algorithm on the current graph, and does not reuse any information computed before. Fur-
thermore, our analysis assumes that the adversary changes the graph in the worst possible way, i.e.,
changes the number of CCs by at most 1 in each update. Thus, our algorithm works against an
adaptive adversary, i.e. an adversary that sees the answers to all queries before deciding on the next
update operation.
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The deterministic algorithm. To design a deterministic worst-case dynamic algorithm we
cannot simply invoke the static constant-time algorithm: that algorithm is inherently randomized
as it is designed with the goal of reading the smallest possible portion of the graph. Instead we
carefully implement the random local exploration that underlies the static randomized algorithm in
a deterministic way. Our key observations are that (1) we only need to count the number of CCs
which are small in size, i.e., which consist of up to 1/ε′ vertices, as the number of larger CCs is
at most ε′ · nis(G) and (2) these counts can be maintained in worst-case time O(1/ε′2) after each
update by exploring a neighborhood of O(1/ε′) vertices “near” the endpoints of the updated edge.

Both the randomized and the deterministic MSF algorithm run their respective CCs estimation
algorithms on each of the O(logW/ε) relevant subgraphs with ε′ = Θ(ε/W ). Using the above-
mentioned formula we obtain an estimate M that approximates the weight M of MSF with an
additive error of εnis(G)/4. As the weight of any MSF is at least nis(G)/2, this additive error is at
most εM/2, i.e., a (1 + ε)-approximation of M . Whenever a query on M is asked, we return M in
constant time. For our deterministic algorithm for MSF, the time per edge update is O(1/ε′2) =
O(W 2/ε2) for each of the O(logW/ε) subgraphs, resulting in a worst-case O(W 2 logW/ε3) update
time. The running time of our randomized algorithm for MSF can be analyzed analogously.

We remark that our algorithms are much simpler than the fastest dynamic (exact or approxi-
mate) MSF algorithms: the algorithms of [HRWN15, HDLT01, GKKT15, HHKP17, HK01] main-
tain a hierarchical decomposition with O(log n) levels (in the approximate setting this is even
O(log n logW ) levels), the algorithm of [NSWN17] maintains a decomposition of the graph into
expanders and a “remaining” part.

The lower bounds. Both the lower bounds given in Theorem 1.2 and Theorem 1.5 are proven
via simple reductions from the previous cell probe lower bounds for dynamic connectivity. Let us
take the proof of Theorem 1.2 for example. We give a reduction, similar to the one in [HF98], from a
problem called the parity prefix sum problem to the problem of dynamically maintaining the weight
of an MSF of a graph with large maximum edge weights within a multiplicative factor of 1 + ε.
That is, using our reduction, one can use an algorithm for the latter problem to solve the former
problem, for which a cell-probe lower bound is long known [FS89]. This gives a corresponding lower
bound for the problem of dynamically maintaining a (1+ε)-approximation of the weight of an MSF
of a graph. The proof of Theorem 1.5 is similar, except that we use a variant of reduction from the
problem of dynamic connectivity, whose cell-probe lower bound is given in [PD06].

1.2 Other related work

There are few other graph problems for which constant-time dynamic algorithms are known: (a)
maximal matching (randomized) [Sol16], (b) (2+ε)-approximate vertex cover (deterministic) [BK19],

(c) (2k − 1)-stretch spanner of size O(n1+ 1
k log2 n) for constant k (randomized) [BKS12], and (d)

(∆+1)-vertex coloring [HP20, BGK+19]. All these are amortized time bounds and almost all these
algorithms except the coloring algorithm in [HP20] maintain a sophisticated hierarchical graph
decomposition, which makes them rather impractical.

Fully dynamic algorithms for minimum spanning forest and connectivity testing have also been
investigated for some special classes of graphs (e.g.,[EIT+92, EGIS96]). There are also works on
approximating the weight of minimum spanning tree (or forest) in the query model [CRT05, CS09]
in sublinear time and data streaming model [AGM12, HP19, PS18] in sublinear space.
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2 Preliminaries

Let G be a (static) undirected graph without parallel edges and with edge weights in [1,W ]. Let M
be the weight of an MSF of G. We use ncc(G) to denote the number of CCs of G, nis(G) to denote
the number of non-isolated vertices of G, and size of a CC to denote the number of vertices in the
CC.

Our algorithms exploit a relation between the weight of an MSF of a graph G and the number
of CCs of some subgraphs of G.

For any ε > 0, we let r = ⌈log1+εW ⌉, ℓi = (1 + ε)i, and λi = (1 + ε)i+1 − (1 + ε)i. For any
i ≥ 0, we let G(i) denote the subgraph of G spanned by all edges with weights at most ℓi, and let
c(i) denote the number of CCs in G(i). We will make use of the following lemma, whose proof is
almost the same as in [AGM12] (see also [CRT05, CS09]), except that we are considering a graph
that is not necessarily connected. We present the proof here for the sake of completeness.

Lemma 2.1 ([CRT05, CS09, AGM12]). Let ε ∈ (0, 1). Let G be a weighted graph and let M,W,
and c(i) be defined as above. Then

M ≤ n− c(r) · (1 + ε)r +

r−1
∑

i=0

λi · c(i) ≤ (1 + ε)M. (1)

Proof. We let G′ be the graph that is obtained by rounding each edge weight up to the nearest
power of (1 + ε). Note that the weight M ′ of an MSF of G′ satisfies that M ≤ M ′ ≤ (1 + ε)M .

Now we invoke the Kruskal’s algorithm on G′ to compute M ′. The algorithm will add n − c(0)

edges of weight ℓ0 = 1, c(0) − c(1) edges of weight ℓ1, and so on. Thus

M ′ = n− c(0) +

r−1
∑

i=0

ℓi+1(c
(i) − c(i+1)) = n− c(r)ℓr +

r−1
∑

i=0

(ℓi+1 − ℓi) · c(i).

This proves the statement of the lemma.

3 A Deterministic Dynamic Algorithm

In this section, we present our deterministic dynamic algorithm for maintaining the weight M of a
minimum spanning forest of a graph G without parallel edges and with edge weights in [1,W ], and
give the proof of Theorem 1.1.

We first give a deterministic dynamic algorithm for estimating the number of connected com-
ponents (CCs) with appropriate additive error.

Theorem 3.1. Let ε > 0. There exists a fully dynamic and deterministic algorithm that preprocesses
a potentially non-empty graph in O(nε ) time, and maintains an estimator c s.t., |c − ncc(G)| ≤
ε · nis(G) with worst-case O(1/ε2) update time per operation.

We remark that in the above theorem, the initial graph can be an arbitrary graph, and the
performance guarantee holds even if the algorithm is not aware of the value nis(G). The proof of
the above theorem is deferred to the end of this section. By combining Theorem 3.1 and the relation
in Lemma 2.1, we are ready to give the algorithm DeterEstWMSF for maintaining an estimator
of the weight of an MST.
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DeterEstWMSF(G, ε,W ) ⊲ Dynamically Maintaining an estimator M of the weight of
an MSF

1. Let r = ⌈log1+ε/2W ⌉, ℓi = (1 + ε/2)i, and λi = (1 + ε/2)i+1 − (1 + ε/2)i.

2. Let G(i) denote the subgraph of the current graph G spanned by all edges with weights at
most ℓi. Let c(i) be the number of CCs of G(i).

3. For each 1 ≤ i ≤ r, invoke the dynamic algorithm from Theorem 3.1 to maintain an estimator
ci for c(i) with ε′ = ε/(12W ).

4. Define M := n− cr · (1 + ε/2)r +
∑r−1

i=0 λi · ci.

Now we are ready to prove Theorem 1.1, which is restated in the following for the sake of
readability.

Theorem 1.1. There exists a fully dynamic, deterministic algorithm that maintains an estimator
M that (1+ ε)-approximates the weight M of a MSF of a graph with edge weights from [1,W ]. The
worst-case time per update operation is O(W 2 · logW · ε−3).

Proof. Let r, ℓi, λi, G
(i), c(i),M be defined as in the above algorithm DeterEstWMSF(G, ε,W ).

Note that nis(G) ≥ nis(G(i)), since G(i) is a subgraph of G for any 1 ≤ i ≤ r.
Since ci is the estimator of c(i) obtained by invoking the dynamic algorithm in Theorem 3.1 with

approximation parameter ε′ = ε/(12W ), we have that for each 1 ≤ i ≤ r,

|ci − c(i)| ≤ ε · nis(G(i))/(12W ) ≤ ε · nis(G)/(12W )

Let X = n − c(r) · (1 + ε/2)r +
∑r−1

i=0 λi · c(i). Recall that M is the weight of an MSF of the
current graph G. We have

|M −X| ≤ (1 + ε/2)r |cr − c(r)|+
r−1
∑

i=0

λi|ci − c(i)|

≤ (1 + ε/2)r · (ε · nis(G)/(12W )) + (ε/2)
r−1
∑

i=0

(1 + ε/2)i · (ε · nis(G)/(12W ))

< (1 + ε/2)r(ε · nis(G)/(12W )) + (1 + ε/2)r(ε · nis(G)/(12W ))

≤ 2(1 + ε/2)1+log1+ε/2 W · (ε · nis(G)/(12W ))

≤ 2 · (3/2) · (ε · nis(G)/12) ≤ ε · nis(G)/4 ≤ ε ·M/2,

where the last inequality follows from the fact that M ≥ nis(G)/2, as each non-isolated vertex is
incident to at least one edge (of weight at least 1) of any MSF in the simple graph G.

By Lemma 2.1 with approximation parameter ε/2, we have that M ≤ X ≤ (1 + ε/2)M . Thus,
M is a (1 + ε)-approximation of M .

Now note that for each 1 ≤ i ≤ r, for estimating c(i) we invoke the dynamic algorithm in
Theorem 3.1 with ε′ = ε/(12W ), which has worst-case time O(1/ε′2) = O(W 2/ε2) per update
operation. Therefore, the worst-case time per update operation of DeterEstWMSF(G, ε,W ) is
∑r

i=1O(W
2

ε2
) = O( r

ε2
W 2) = O(W

2·logW
ε3

).
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3.1 Proof of Theorem 3.1

In the following, we present the proof of Theorem 3.1, which we restate below.

Theorem 3.1. Let ε > 0. There exists a fully dynamic and deterministic algorithm that preprocesses
a potentially non-empty graph in O(nε ) time, and maintains an estimator c s.t., |c − ncc(G)| ≤
ε · nis(G) with worst-case O(1/ε2) update time per operation.

Proof. For a graph G, we let nscc(G) denote the number of CCs of size at most 1/ε in G. We first
observe that to approximate ncc(G) of a dynamic graph G with an additive error ε ·nis(G), it suffice
to compute and maintain nscc(G). This is true as the total number of CCs of size larger than 1

ε is
at most ε · nis(G), where nis(G) is the number of non-isolated vertices of G. In the following, we
first give a static algorithm for computing nscc(G0), for any initial graph G0, and then we show
how to maintain nscc(G) dynamically.

Preprocessing We first give a static algorithm StaticNCC for computing the number of small
CCs of any initial graph G0. We maintain a set of 1/ε counters cntℓ, where cntℓ denotes the number
of CCs of size ℓ. Initially, all the counters are set to 0 and all vertices are marked unvisited. We
recursively choose an arbitrary unvisited vertex v, mark it as visited and start a BFS at v which
runs until (1) it has reached (e.g. discovered an edge to) 1/ε + 1 unvisited vertices, (2) it reaches
a visited vertex, or (3) the BFS terminates because whole connected component (of size at most
1/ε) containing v has been explored. Then we mark all the newly discovered vertices as visited and
update the counters accordingly. More precisely, the static and dynamic algorithms are given in the
following two tables.

StaticNCC(G0, ε) ⊲ A static algorithm for the number of CCs of size at most 1/ε

1. Initialize cntℓ = 0, for each 1 ≤ ℓ ≤ 1/ε. Mark all vertices as unvisited.

2. While there exists some unvisited vertex v:

(a) Do BFS from v until (i) 1/ε+ 1 unvisited vertices have been reached, or (ii) any visited
vertex has been reached, or (iii) no more new vertices can be reached. Mark all the newly
discovered vertices in the search as visited.

(b) If (iii) occurs, and ℓ vertices have been reached for some ℓ ≤ 1/ε, then increment cntℓ by
1.

3. Define the estimator c :=
∑1/ε

ℓ=1 cntℓ.

Note that by definition of the algorithm and the estimator c, it holds that c = nscc(G0).

Lemma 3.2. The algorithm StaticNCC(G, ε) can be implemented in O(n· 1ε ) time for any n-vertex
graph G.

Proof. Note that it suffices to bound the time of exploring each CC C, i.e., until all the vertices
inside C have been marked as visited. Note that cntℓ is exactly the number of CCs of size ℓ, for
ℓ ≤ 1/ε and consider two cases, which together show the O(n/ε) bound.

1. If |C| = ℓ ≤ 1
ε , then the total time for exploring C is O(ℓ2). In this case, we note that the total

time for exploring CCs of size at most 1/ε is
∑1/ε

ℓ=1 cntℓ·O(ℓ2) ≤ ∑1/ε
ℓ=1 cntℓ·ℓ·O(1/ε) = O(n/ε),

where the last equation follows from the fact that
∑1/ε

ℓ=1 cntℓ · ℓ ≤ n.
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2. If |C| > 1/ε, let S = {v1, v2, · · · , vb} denote the set of vertices from which we start a BFS in
C. Note that for each i ≤ b, the number of newly discovered vertices from vertex vi is at most
1/ε + 1 by the description of our algorithm. Let tj denote the number of vertices in S from

which the BFS discovers exactly j new vertices, for each j ≤ 1/ε+1. Then |C| = ∑1/ε+1
j=1 tj ·j.

Furthermore, we note that for each j ≥ 1, it takes time O(j · 1ε ) for the BFS to discover exactly
j new vertices, as we will only scan at most 1

ε+1 neighbors for each of these new vertices. Thus,

the total time of exploring C is
∑1/ε+1

j=1 tj ·O(j · 1ε ) ≤ O(1/ε) ·∑1/ε+1
j=1 tj · j = O(|C|/ε). Thus,

the total time of exploring CCs of size at least 1/ε + 1 is
∑

C:|C|≥1/ε+1O(|C|/ε) = O(n/ε),
where the last equation follows from the fact that

∑

C:|C|≥1/ε+1 |C| ≤ n.

Handling edge updates Now we give the details of our dynamic algorithm DeterDynamic-

NCC(G, ε) for updating the counter c by running a limited BFS from the two endpoints of the
updated edge in the graph before and after the update.

DeterDynamicNCC(G, ε) ⊲ Maintaining an estimator for ncc(G) of a dynamic graph G

1. Preprocessing: run the algorithm StaticNCC(G0, ε) to find the c, the number of CCs of G0

of size at most 1/ε.

2. Handling an edge insertion (u, v): perform three BFS calls: two from u and v, respectively, in
the graph before the insertion of (u, v), and one from u in the graph after the insertion. Stop
the BFS once 1/ε+1 vertices have been reached or no more new vertices can be reached. Let

s
(0)
u , s

(0)
v , s

(1)
u denote the sizes of the corresponding explored subgraphs.

(a) If exactly one of s
(0)
u and s

(0)
v , say s

(0)
u , is no larger than 1/ε, then decrement c by 1.

(b) If both of s
(0)
u , s

(0)
v are smaller than 1/ε:

i. if s
(1)
u is larger than 1/ε, then decrement c by 2;

ii. if s
(1)
u is no larger than 1/ε and s

(1)
u = s

(0)
u , then keep c unchanged;

iii. if s
(1)
u is no larger than 1/ε and s

(1)
u 6= s

(0)
u , then decrement c by 1.

3. Handling an edge deletion (u, v): perform three BFS calls: one from u in the graph before the
deletion of (u, v), and two from u and v, respectively, in the graph after the deletion. Stop
the BFS once 1/ε+1 vertices have been reached or no more new vertices can be reached. Let

s
(0)
u , s

(1)
u , s

(1)
v denote the sizes of the corresponding explored subgraphs.

(a) If exactly one of s
(1)
u and s

(1)
v , say s

(1)
u , is no larger than 1/ε, then increment c by 1.

(b) If both of s
(1)
u , s

(1)
v are smaller than 1/ε:

i. if s
(0)
u is larger than 1/ε, then increment c by 2;

ii. if s
(0)
u is no larger than 1/ε and s

(0)
u = s

(0)
u , then keep c unchanged;

iii. if s
(0)
u is no larger than 1/ε and s

(0)
u 6= s

(1)
u , then increment c by 1.

Correctness. As aforementioned, it suffices to show that throughout all the updates, c̄ =
nscc(G), where G is the current graph. We give details as follows.
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For any edge insertion (u, v), we know that the number nscc (of CCs of size at most 1/ε) can

change by at most 2. More precisely, it changes if and only if at least one of s
(0)
u , s

(0)
v is at most

1/ε and u, v do not belong to the same CC before the edge insertion, where s
(0)
u and s

(0)
v are the

sizes of the explored subgraphs (before the edge insertion) starting from u and v, respectively, that

we compute in the algorithm. Furthermore, if Step 2a happens, i.e., exactly one of s
(0)
u and s

(0)
v ,

say s
(0)
u , is no larger than 1/ε, then a small CC merges into a large CC, and thus nscc decreases by

1. If Step 2b happens (i.e., s
(0)
u , s

(0)
v are smaller than 1/ε): if Step 2(b)i happens, i.e., s

(1)
u is larger

than 1/ε, then two small CCs merge into a CC of size larger than 1/ε and thus nscc decreases by 2;

if Step 2(b)ii happens, i.e., s
(1)
u is no larger than 1/ε and s

(1)
u = s

(0)
u , then u, v belong to the same

CC before (u, v) was inserted and thus nscc remains unchanged; if Step 2(b)iii happens, i.e., s
(1)
u is

no larger than 1/ε and s
(1)
u 6= s

(0)
u , then two small CCs merge into a CC of size no larger than 1/ε

and thus nscc decreases by 1. By the description of our algorithm, after the insertion (u, v), the
maintained c still satisfies that c = nscc(G′), where G′ is the updated graph.

The case for edge deletions can be analyzed similarly.
Running time. Now we analyze the running time of our dynamic algorithm. We note that for

each update (either insertion or deletion), we only need to execute O(1) BFS calls, each of which
will explore at most O(1/ε) vertices (and thus O(1/ε2) edges). Thus, the worst-case update time is
O(1/ε2).

Theorem 3.1 now follows from the above analysis of the static algorithm StaticNCC and the
dynamic algorithm DeterDynamicNCC.

4 A Randomized Dynamic Algorithm

Now we present our randomized dynamic algorithm A for estimating the weight of an MSF of G
and prove Theorem 1.3. To do so, as for the previous deterministic algorithm, we give dynamic
algorithms Bj that approximate the number of CCs of subgraphs G(j) (as defined before) of G
within an additive error O(εnis(G)/W ) with small worst-case update time.

We first consider a dynamic algorithm whose input is a dynamic graph H and an additional
(integer) parameter T that is also changing along with each edge update. That is, starting with an
initial graph and parameter, at each timestamp i ≥ 1, the graph H is updated by one edge insertion
or deletion, and the parameter T is updated to a new value. We give such a dynamic algorithm for
estimating the number of CCs of H with an additive error parametrized by T . We will show the
following theorem.

Theorem 4.1. Let ε′, p ∈ (0, 1). Consider a dynamic algorithm that takes as input a dynamic graph
H and an additional (integer) parameter T , called T -parameter, that is also changing along with
each edge update. Suppose that (a) T ≥ nis(H) throughout all the updates and (b) the T -parameters
at timestamps i and i−1 differ by at most 2, for i ≥ 1. Then there exists a fully dynamic algorithm
RandDynamicNCC(H, T , ε′, p) that with probability at least 1 − p, maintains an estimator cc
for the number ncc of CCs of a dynamic graph H such that |cc − ncc(H)| ≤ ε′ · T . The worst-case
time per update operation is O(max{1, log(1/ε′) log(1/p)/(ε′3T ∗)}), where T ∗ is the minimum of
the T -parameters over all updates. Our algorithm works against an adaptive adversary.

We defer the proof of Theorem 4.1 to the end of this section. To approximate the weight of
an MSF of a dynamic graph G, our algorithm Bj for approximating the number of CCs of G(j)

is obtained by invoking the algorithm RandDynamicNCC from Theorem 4.1 on G(j) with the
T -parameter being specified to be the number nis(G) of non-isolated vertices in G. Note that by
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our choice of T -parameter and choosing p = 1/poly(n), the algorithm Bj approximates the number

of CCs of each subgraph G(j) within an additive ε′nis(G), with worst-case O(max{1, log(1/ε′) log(n)
ε′3nis∗

})
time per update operation, with high probability, where nis∗ is the minimum number of non-
isolated vertices in G throughout all the updates. The running time can be further guaranteed to
be O(max{1, log(1/ε′) log(n)/(ε′3

√
m∗)}) as it holds that nis∗ >

√
2m∗ (a fact that is proven in the

proof of Theorem 1.3).
By combining the dynamic algorithm for the number of CCs given in Theorem 4.1 and the

relation of the weight of MSF of a graph G and the number of CCs in its subgraphs as given in
Lemma 2.1, we are ready to present our randomized algorithm RandEstWMSF for the weight
of an MST of G. For each 1 ≤ j ≤ r = ⌈log1+ε/2 W ⌉, it first initializes a data structure Bj for

maintaining an estimator cj of the number of CCs of each G(j) using the initial graph G0, ncc(G
(j)
0 ),

T = nis(G0), and corresponding parameters ε′ = ε/(24W ), p = p′/r. Then for each update in G,
the algorithm first updates each G(j) accordingly and then invoke Bj with T -parameter nis(G) to
update cj. To guarantee that the T -parameter for G(j) fulfills the precondition of Theorem 4.1, we
introduce the use of self-loops to “synchronize” the updates in G and G(j), for each j ≤ r. That is, for
each update on the graph G, it is guaranteed that there will be one or two corresponding updates on
each G(j), for each j ≤ r (see Footnote 4 for more explanations). The algorithm RandEstWMSF

is formally described in the following table.
Now we restate Theorem 1.3 and give its proof.

Theorem 1.3. Let ε ∈ (0, 1) and W ≥ 1. There exists a fully dynamic algorithm that with high
probability, maintains an estimator M that is a (1 + ε)-approximation of the weight M of MSF of
a graph G with edge weights from [1,W ]. The worst-case time per update operation is

O
(

(logW )/ε+W 3(logW ) log(W/ε) (log(logW/ε) + log n)/(ε4
√
m∗)

)

,

where m∗ ≥ 1 is the minimum number of edges in G throughout all the updates. Our algorithm
works against an adaptive adversary.

Proof. Let p′ be a parameter that will be specified later. Let r, ℓj , λj , G
(j), c(j),M be defined as in

the algorithm RandEstWMSF(G, ε, p′,W ). Note that nis(G) ≥ nis(G(j)), since G(j) is a subgraph
of G for any 1 ≤ j ≤ r. Since G is simple, we know that M ≥ nis(G)/2, as each non-isolated vertex
is incident to at least one edge (of weight at least 1) of any MSF.

Note that cj is the estimator of c(j) obtained by invoking the dynamic algorithm in Theorem 4.1
with p = p′/r, ε′ = ε/(24W ) and the above specified dynamic graph H and T -parameter. As each
update in G changes nis(G) by at most 2, T -parameter changes by at most 2 for each update in G(j)

(and thus fulfills requirement (b) of Theorem 4.1) if we guarantee that each update corresponding
to edge (u, v) in G leads to at least one update in G(j). In the case that the weight of (u, v) is at
most ℓj , then (u, v) belongs to G(j), and, thus, the requirement is naturally fulfilled.

If the weight of (u, v) is larger than ℓj , we execute two operations that cancel each other.
Specifically we insert a self-loop (u, u) at Step 4(b)i and then immediately delete it at Step 4(b)ii, so
that the graph G(j) remains correct, but the T -parameters in these two steps also fulfill requirements
(a) and (b). More precisely, after adding the self-loop (u, u), it holds that the T -parameter is at

4Note that if we do not introduce the self-loops, then it is not the case that each edge update in G leads to an
update in every graph G(j). In particular, if the updated edge of G has weight larger than ℓj , then the graphs G(i)

with ℓi < ℓj stay the same, i.e., they are not updated. This further leads to the issue that when one edge update
occurs on G(i), the T -parameter for G(i) may have changed by more than 2, i.e., the precondition of Theorem 4.1 is
no longer fulfilled. This could happen if before this update in G(i), G was updated many times (where each updated
edge had weight more than ℓi) and thus the T parameter (i.e., nis(G)) of G(i) has changed by more than 2.
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RandEstWMSF(G, ε, p′,W ) ⊲ Dynamically Maintaining an estimator M of the weight of
an MSF

1. Let r = ⌈log1+ε/2W ⌉, ℓj = (1 + ε/2)j , and λj = (1 + ε/2)j+1 − (1 + ε/2)j .

2. Let G(j) denote the subgraph of the current graph G spanned by all edges with weights at
most ℓj. Let c(j) be the number of CCs of G(j).

3. For each 1 ≤ j ≤ r, initialize an estimator cj for c(j) to be cj = ncc(G
(j)
0 ), where G0 is the

initial graph of G; initialize a data structure Bj for RandDynamicNCC(H, T , ε′, p) from

Theorem 4.1 with p = p′/r, ε′ = ε/(24W ), H = G
(j)
0 and T = nis(G0).

4. For each i ≥ 1 and the i-th update in G:

for each j with 1 ≤ j ≤ r:

(a) if the i-th update in G leads to an update in G(j), perform the same update to H in Bj ,
and set the corresponding T -parameter to be nis(G), where G is the graph after the i-th
update;

(b) if the i-th update with edge endpoints u, v in G does not lead to an update in G(j),
perform two consecutive updates to H in Bj:

i. insert self-loop4 (u, u) to H, and set the corresponding T -parameter to be nis(G′),
where G′ is the union of the graph G after the i-th update together with the self-loop
(u, u);

ii. delete self-loop (u, u) from H, and set the corresponding T -parameter to be nis(G),
where G is the graph after the i-th update.

(c) update Bj and cj according to the above edge update(s) in H.

5. Define M := n− cr · (1 + ε/2)r +
∑r−1

j=0 λj · cj.

least nis(H) as H is the number of non-isolated vertices of a subgraph of G with the self-loop (u, u);
furthermore, the change of the T -parameter is at most 1 as the self-loop can change the number of
non-isolated vertices by at most 1, so the requirement (b) holds for this operation. After deleting
the self-loop (u, u), the requirement (a) is still guaranteed, as H will be exactly G(j), which implies
that the corresponding T -parameter is at least nis(G) ≥ nis(H); the requirement (b) still holds as
deleting one self-loop can change the T -parameter by at most 1.

For simplicity, we slightly abuse the notation by letting Ti denote the specified T -parameter
in the algorithm corresponding to the i-th update of G (i.e., it corresponds to the T -parameter in
either Step 4a, 4(b)i or 4(b)ii). By Theorem 4.1 and the fact that ncc(H) = ncc(G(j)) (as H is either
G(j) itself or G(j) with an additional self-loop (u, u), for some vertex u), the algorithm computes an
estimator cj for c(j) such that with probability 1− p′/r, it holds that

|cj − c(j)| ≤ ε′ · Ti ≤ ε/(24W ) · (nis(G) + 1) ≤ ε/(12W ) · nis(G),

where the second inequality holds as Ti ≤ nis(G)+1 throughout the update, and the last inequality
follows as nis(G) ≥ nis∗ ≥ 1.

Thus with probability at least 1− r · p′

r = 1 − p′, the above inequality holds for all j such that

1 ≤ j ≤ r. Assume in the following that this event holds. Let X = n−c(r) ·(1+ε/2)r+
∑r−1

j=0 λi ·c(j).
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By the same calculation as in the proof of Theorem 1.1, we have that

|M −X| ≤ εnis(G)/4 ≤ εM/2

Now by Lemma 2.1 with approximation parameter ε/2, it holds that M ≤ X ≤ (1 + ε/2)M .
Thus M is a (1 + ε)-approximation of M .

Now note that for each j, it always holds that for the i-th update in G satisfies that Ti ≥
nis(G) ≥ nis∗, and thus the worst-case time spent per update for computing cj is

O(max{1, log(1/ε′) log(1/p)/(ε′3nis∗)}) = O(1 +W 3 log(W/ε) log(r/p′)/(ε3nis∗)).

In total, the worst-case time per update operation of RandEstWMSF(G, ε, p′,W ) is

O(

r
∑

j=1

(1 +W 3 log(W/ε) log(r/p′)/(ε3nis∗)))

=O((logW )/ε+W 3 logW log(W/ε) log(logW/(εp′))/(ε4nis∗)).

Now we note that nis∗ >
√
2m∗, where m∗ is the minimum number of edges of the graph

throughout all the updates. This is true as for the graph G∗ with minimum non-isolated vertices,
i.e., nis(G∗) = nis∗, the total number of edges in G∗ is both at most (nis∗)(nis∗ − 1)/2 < (nis∗)2/2
and also at least m∗.

Therefore, by setting p′ = 1/nc for any constant c > 1, we can guarantee that the worst-case
update time of the algorithm RandEstWMSF(G, ε, p′,W ) is

O((logW )/ε+W 3(logW ) log(W/ε)(log(logW/ε) + log n)/(ε4
√
m∗)),

and the algorithm succeeds with probability at least 1− p′ = 1− 1/nc.
The algorithm works against an adaptive adversary as each of the algorithms from Theorem 4.1

works against an adaptive adversary, and the MSF algorithm returns only a weighted sum of the
values returned by each of these algorithms.

4.1 Proof of Theorem 4.1

In the following, we present the proof of Theorem 4.1. We use H to denote the considered graph.

Theorem 4.1. Let ε′, p ∈ (0, 1). Consider a dynamic algorithm that takes as input a dynamic graph
H and an additional (integer) parameter T , called T -parameter, that is also changing along with
each edge update. Suppose that (a) T ≥ nis(H) throughout all the updates and (b) the T -parameters
at timestamps i and i−1 differ by at most 2, for i ≥ 1. Then there exists a fully dynamic algorithm
RandDynamicNCC(H, T , ε′, p) that with probability at least 1 − p, maintains an estimator cc
for the number ncc of CCs of a dynamic graph H such that |cc − ncc(H)| ≤ ε′ · T . The worst-case
time per update operation is O(max{1, log(1/ε′) log(1/p)/(ε′3T ∗)}), where T ∗ is the minimum of
the T -parameters over all updates. Our algorithm works against an adaptive adversary.

4.1.1 A data structure for dynamically sampling non-zero entries

We first give a data structure to maintain some data structures so that the algorithm can perform
non-isolated vertex-sample queries, i.e., to sample a vertex from the set of all non-isolated vertices
uniformly at random at any time. Our dynamic algorithm for estimating the weight of an MSF will
make use of this data structure.
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We first present a more general data structure to sample non-zero entries from a dynamic array
and then show how to use it to support non-isolated vertex-sample queries. Given a set V of n
elements (here vertices), numbered from 0 to n − 1, each element u with an associated number du
(here degree), we show how to support the following operations in constant time with preprocessing
time O(n):

– Update(u, δ): add δ to du, where δ can be positive or negative.

– Non-zero sample(): return an element that is chosen uniformly at random from all elements
u with du 6= 0.

Lemma 4.2. There exists a data structure that supports Non-zero sample() queries to a fully
dynamic array with constant update time.

Proof. Let us call an element u of V with du 6= 0 a non-zero element. We implement the data
structure by using two arrays and a counter:

1. Keep the number nis of non-zero elements of V .

2. Keep an array A of size n, where only the first nis entries are used, such that (i) each entry in
A stores a non-zero element u together with du and (ii) each non-zero element of V is stored
in A within the first nis entries.

3. Keep an array P of size n, which has an entry for each element of V , such that if an element u
is stored in A[i] (i.e. u is non-zero), then P[u] = i; and if an element u is not stored in A (i.e.
du = 0), then P[u] = −1. Thus P contains indices corresponding to the positions of elements
in A or −1.

During preprocessing we initialize both arrays, set all entries of P to −1, and set nis = 0. Then
insert each u whose initial value du 6= 0 by calling Update(u, du).

Handling an Update(u, δ) operation. Whenever an Update(u, δ) operation is executed,
we check if P[u] > −1.

1. If P[u] > −1, then u is stored in A and P[u] contains the index of u in A. Thus we add δ to
du, which is retrieved and then stored in the entry A[P[u]]. If the resulting value du 6= 0, this
completes the update operation. If, however, the resulting value du = 0, let v be the element
stored in A[nis]. We copy into A[P[u]] all information of element v, which we retrieve from
A[nis]. Then we set P[v] = P[u], set P[u] = −1, and decrement nis.

2. If P[u] = −1, then we increment nis by 1, set du = δ, store u and du in A[nis], and set
P[u] = nis.

Handling Non-zero sample operation. To implement this operation, we pick a random
integer j between 0 and nis− 1 and return the element from A[j].

Supporting non-isolated vertex-sample queries in dynamic graphs. Next we show how
to use the above data structure to support non-isolated vertex-sample query throughout all the
updates. Whenever an edge (u, v) is inserted, for each x ∈ {u, v}, we call Update(x, 1). Whenever
an edge (u, v) is deleted, for each x ∈ {u, v}, we call Update(x,−1). To sample a non-isolated
vertex, we call Non-zero sample().
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4.1.2 The dynamic algorithm

A static algorithm for estimating the number of CCs We will make use of a static algorithm,
which we briefly describe here. Recall that ncc(H) denotes the number of CCs of a graph H.
The following lemma was proven by Berenbrink et al. [BKMT14] (which improves upon the result
in [CRT05]) and it gives a constant-time algorithm for estimating ncc(H). It is assumed that the
algorithm can perform a vertex-sample query, which allows it to sample (in constant time) a vertex
uniformly at random from V , and can make queries to the adjacency list of the graph. Note that
these two queries for accessing a static graph can be supported by maintaining an array of vertices
and the adjacency list of the graph, respectively.

Lemma 4.3 ([BKMT14]). Let ε > 0 and 0 < p < 1. Suppose the algorithm has access to the
adjacency list of a graph H and can perform vertex-sample queries. Then there exists an algorithm
that with probability at least 1 − p, returns an estimate that approximates ncc(H) with an additive
error εn. The running time of the algorithm is O(1/ε2 log(1/ε) log(1/p)).

We remark that the algorithm in [BKMT14] simply samples (uniformly at random) O(1/ε2)
vertices, performs a BFS starting from each sampled vertex (for a number of steps) and then makes
decisions based on the explored subgraphs. Let Hnis denote the subgraph induced by all non-isolated
vertices in a graph H. Note that if the algorithm is able to perform a non-isolated vertex-sample
query, i.e., the algorithm can sample a vertex uniformly at random from the vertex set of Hnis,
then one can approximate the number ncc(Hnis) of CCs in the subgraph Hnis with an additive error
ε|V (Hnis)| = εnis(H), where nis(H) is the number of non-isolated vertices in H. This is true as we
can simply treat H[N ] as the input graph in the algorithm from Lemma 4.3. This also proves the
following lemma, Lemma 4.4, which will be invoked by our dynamic algorithm.

Lemma 4.4. Let ε > 0 and 0 < p < 1. Suppose the algorithm has access to the adjacency list
of a static graph H and can sample a vertex uniformly at random from the set of all non-isolated
vertices in H. Then there exists an algorithm that with probability at least 1−p, returns an estimate
b that approximates ncc(Hnis) with an additive error ε · nis(H). The running time of the algorithm
is O(1/ε2 log(1/ε) log(1/p)).

From static to dynamic The idea of our dynamic algorithm is as follows. By slightly abusing
notation, let Hi denote the graph H after the i-th update (and H0 denotes the initial graph).
Our algorithm first maintains the number Γ of non-isolated vertices in the current graph in the
straightforward way: we can maintain the degree of each vertex, and count the number of vertices
with non-zero degrees, which can be done in constant update time.

During initialization we set Ψ = T0 and c = ncc(H0), which is calculated by running a static
BFS traversal on H0. Then it partitions the updates (and the corresponding graphs) into phases.
For notational convenience, we let phase P0 consist only of the graph H0. We let H ′

j be the graph
corresponding to the last update in Pj , for any j ≥ 0. At the beginning of each phase Pj (for
j ≥ 1), we are given two parameters, an estimate c and Ψ, which correspond to estimator of the
number of CCs and the number of non-isolated vertices in the graph H ′

j−1 corresponding to the last

update in Pj−1. The phase Pj consists of all graphs corresponding to the next ε′Ψ
4 updates. The

parameters c and Ψ remain unchanged (i.e., they are as fixed at the beginning of the phase) until
the last update in Pj. More precisely, let T ′

j be the T -parameter corresponding to the last update
in Pj . At the end of Pj , the algorithm sets Ψ to T ′

j , runs the static algorithm from Lemma 4.4 to

obtain an estimate b for ncc([H ′
j]nis) and re-set the estimate c to b + n − nis(H ′

j). Then we start
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with a new phase Pj+1 consisting of the graphs corresponding to the next ε′Ψ/4 updates, where Ψ
is as fixed at the beginning of this phase and then we repeat the above.

Throughout, we maintain the adjacency list of the dynamic graph in a trivial way and maintain
the data structure from Section 4.1.1 for sampling a vertex uniformly at random from the set of
all non-isolated vertices from the current graph. When asked a query on the number of CCs of
the current graph, the algorithm returns c. The description of our algorithm RandDynamicNCC

is given as follows, omitting the details for maintaining adjacency list, array of degrees, and data
structures for sampling non-isolated vertices.

RandDynamicNCC(H,T, ε′, p) ⊲ Maintaining an estimator c for ncc(H) of a dynamic graph
H (with parameter T ≥ nis(H)) with additive error ≤ ε′ · T

1. Preprocessing: Use BFS in the initial graph H0 to obtain nis(H0) and ncc(H0). Start of the
first phase. Initialize Γ = nis(H0) and c = ncc(H0), Ψ = T0. Let i = 1.

2. For the i-th update:

(a) update Γ to be nis(Hi)

(b) if i mod (ε
′·Ψ
4 ) = 0, then ⊲ The end of a phase

i. compute an estimator b for ncc([Hi]nis) by running the static algorithm in Lemma 4.4
on Hi with parameter ε = ε′

4 and p

ii. set c = b+ n− Γ ⊲ n− Γ is the number of isolated nodes in Hi

iii. set Ψ = Ti

(c) set i = i+ 1

4.1.3 Putting it together

Now we prove the correctness of the above dynamic algorithm, analyze its running time and then
finish the proof of Theorem 4.1.

Correctness. Let j ≥ 0 and let Pj denote the set of all the graphs in the j-th phase in the
algorithm. In particular, P0 = {H0}. Let H ′

j and T ′
j be the graph and the T -parameter, respectively,

corresponding to the last update in Pj . We first prove the following claims.

Claim 4.5. For any j ≥ 0 and the graph H = H ′
j, our estimate satisfies that |c − ncc(H ′

j)| ≤
ε′nis(H ′

j)/4 ≤ ε′ · T ′
j/4 with probability 1− p.

Proof. For j = 0, it holds that H ′
0 = H0 and our estimate c = ncc(H0) by definition. Let j ≥ 1.

Our algorithm calls the static algorithm from Lemma 4.4, which returns with probability 1 − p

an estimator b for ncc([H ′
j ]nis) such that |b − ncc([H ′

j]nis)| ≤
ε′nis(H′

j)

4 . This gives |c − ncc(H ′
j)| =

|b + n − nis(H ′
j) − ncc(H ′

j)| = |b − ncc([H ′
j]nis)| ≤ ε′nis(H′

j)

4 ≤ ε′T ′

j

4 , where the second equation
follows from the fact that ncc(H ′

j) is the sum of ncc([H ′
j]nis) and the number of isolated vertices,

n− nis(H ′
j).

Claim 4.6. For any j ≥ 0, any H ∈ Pj+1 \ {H ′
j+1} that is the graph right after the i-th update, it

holds that |c− ncc(H)| ≤ ε′Ti with probability 1− p.
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Proof. Note that after update fj, Ψ = T ′
j ≥ nis(H ′

j); both Ψ and the estimate c remain unchanged
before the last update in Pj+1. As each update changes ncc(H) by at most 1, with at least probability
1 − p, it holds that |c − ncc(H)| ≤ ε′nis(H ′

j)/4 + ε′Ψ/4 ≤ ε′Ψ/2 for all graph H ∈ Pj+1 \ {H ′
j+1}.

Note that |Ψ − Ti| ≤ ε′Ψ
2 , as each update (during the next ε′Ψ

4 − 1 updates) can change Ti by at
most 2. Thus Ψ ≤ 1

1−ε′/2Ti ≤ (1 + ε′)Ti ≤ 2Ti. This implies that c approximates ncc(H) with an

additive error ε′Ti.

Thus with probability 1−p, for any H (right after the i-th update), we have |c−ncc(H)| ≤ ε′Ti.
Finally, note that the algorithm uses “fresh” random bits at the beginning of each phase, only
needs to access to the current graph, and does not reuse any information computed in prior phases.
Within each phase we performed a worst-case analysis, i.e., we assumed that the adversary changes
the graph in the worst possible way, i.e., changing ncc(H) by 1 in each update. Thus, our algorithm
works against an adaptive adversary.

Running time. For each phase that contains all graphs in Pj+1 \ {H ′
j+1} with parameter

Ψ = T ′
j , the amortized time (over the phase) per update operation is

O(max{1, (1/ε′2) log(1/ε′) log(1/p)/(ε′Ψ)}) = O(max{1, log(1/ε′) log(1/p)/(ε′3Ψ)}).

(Note that we always need to use O(1) time to update the adjacency list and other data structures so
as to provide query access to the graph). Since T ∗ is the minimum value Ti over graphs throughout all

the updates, then in any phase, Ψ ≥ T ∗ and the amortized update time is O(max{1, log(1/ε
′) log(1/p)

ε′3T ∗
}).

The worst-case update time guarantee follows from the standard global rebuilding technique.

5 Lower Bounds: Proofs of Theorem 1.2 and 1.5

5.1 A Lower Bound for Deterministic Data Structure

Our first lower bound is built upon a construction by Henzinger and Fredman [HF98]. The parity
prefix sum problem is defined as follows: Given an array A[1], . . . , A[n] with entries from {0, 1},
initialized with 0, build a data structure that executes an arbitrary sequence of the following oper-
ations: (1) Add(i): Set A[i] = (A[i] + 1) mod 2; (2) Sum(i): return

∑i
j=1A[i] mod 2. Fredman

and Saks [FS89] showed the following theorem.

Theorem 5.1 ([FS89]). There is an amortized lower bound of Ω(log n/(log log n + log b)) update
time per operation for the parity prefix sum problem in the cell probe model with word size b.

Now we show the following.

Theorem 5.2. Let G be a dynamic n-vertex graph with edge weights in [1,W ]. Any data structure
that dynamically maintains the weight M of an MSF of a graph G within an additive error less
than W/2 for any W ≥ 1, or a multiplicative factor of (1 + ε), for any W > 2εn must perform
Ω(log n/(log log n+ log b)) cell probes, where each cell has size b.

Proof. The proof is analogous to the lower bound for dynamic connectivity in [HF98]. Give a parity
prefix sum problem build a graph with n vertices, labeled from 1, . . . , n, one vertex called even, and
one vertex called odd. At any point in time the graph maintains the following invariant: It consists
of two paths, namely an even path containing all vertices i (called “even” vertices) such that Sum(i)
returns 0, in order of their indices, and such that the vertex in the chain is connected to vertex
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even; and an analogous odd path containing all “odd” vertices, connected to vertex odd. It is shown
that each Add(i) only leads to a constant number of edge updates in the graph. To determine which
edges need to be deleted and inserted, a Van-Emde-Boas priority queue is maintained, which adds
a cost of O(log log n) to each Add(i) operation. To answer a parity query Sum(i) return 1 iff vertex
odd and vertex i are connected.

Now we show how to use this construction to give a lower bound for the dynamic approximate
MSF weight problem. We maintain the same graph as above, and give each edge weight 1. Thus
the weight of an MSF before and after every operation is n−2. To answer a Sum(i) query we insert
an edge of weight W from vertex odd to vertex i. If the answer is 1, then i and odd were already
connected before the edge insertion and the weight of an MSF is unchanged. If the answer is 0,
then i and odd were not connected before the edge insertion and, thus, the weight of an MSF is now
n−2+W . Thus any dynamic MSF algorithm with multiplicative actor of (1+ ε), for any W > 2εn
and any dynamic MSF algorithm with additive error less than W/2 for any W ≥ 1, can distinguish
the two cases. Thus, they must perform Ω(log n/(log log n+ log b)) cell probes, where each cell has
size b.

Now we are ready to prove Theorem 1.2.

Theorem 1.2. Let W ≥ (log n)ωn(1). Let G be a dynamic graph with edge weights in [1,W ]. Any
deterministic data structure that dynamically maintains the weight M of an MSF of a graph G
within a multiplicative factor of (1 + ε) for any constant ε > 0, or an additive error less than W/2
must perform ωn(1) cell probes, where each cell has size O(log n).

Proof. We let G′ be a graph with n′ vertices and edge weights in [1,W ], for n′ = ⌊W3ε ⌋. By Theorem
5.2, any data structure that dynamically maintains the weight M of an MSF of a graph G′ with
W > 2εn′ within an additive error less than W/2 for any W ≥ 1, or a multiplicative factor of (1+ε)
must perform Ω(log n′/(log log n′ + log b)) cell probes, where each cell has size b.

Note that n′ = (log n)ωn(1)/ε. Now assume that we have a data structure A that dynamically
maintains the (1 + ε)-approximation of the weight of an MSF of an n-vertex graph. (The case that
A has an additive error less than W/2 can be analyzed similarly.) We use A to the graph Ḡ which
consists of G′ and n− n′ isolated vertices. Note that the weight of an MSF of Ḡ is the same as the
weight of an MSF of G′. Thus A maintains a (1+ ε)-approximation of the weight of an MSF of G′.

By setting b = Θ(log n), we know that A must perform Ω(log n′/(log log n′+log b)) = ωn(1) cell
probes, where each cell has size O(log n).

5.2 A Lower Bound for Randomized Data Structure

We let m∗(G) be the minimum number of edges of a dynamic graph G throughout all the updates.
We first prove the following.

Theorem 5.3. Let G be a dynamic graph with edge weights in [1,W ]. Any data structure that
dynamically maintains the weight M of an MSF of a graph G with W = Ω(ε ·m∗(G)) and m∗(G) =
Θ(n) within an additive error less than W/2 for any W ≥ 1, or a multiplicative factor of (1 + ε),
with probability at least 1 − 1

nc for some constant c > 0, must perform Ω((log n)2/b) cell probes,
where each cell has size b.

Proof. In [PD06] Patrascu and Demaine construct an n-node graph and show that there exists a
sequence S of T edge insertion, edge deletion, and query operations such that any data structure for
dynamic connectivity must perform Ω((log n)2/b) cell probes to process the sequence, where each
cell has size b. This shows that the amortized number of cell probes per operation is Ω((log n)2/b).
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The graph G in the proof of [PD06] consists of a
√
n×√

n grid, where each node in column 1 has
exactly 1 edge to a node of column 2 and no other edges, each node in column i, with 1 < i <

√
n

has exactly 1 edge to a node of column i−1 and 1 edge to a node of column i+1 and no other edges,
and each node in column

√
n has exactly 1 edge to a node of column

√
n − 1 and no other edges.

Thus, the graph consists of
√
n paths of length

√
n − 1 and the edges between column i and i + 1

for any 1 ≤ i <
√
n represent a permutation of the

√
n rows. The sequence S consists of “batches”

of O(
√
n) edge updates, replacing the permutation of some column i by a new permutation for

column i. Between the batches of updates are “batches” of connectivity queries, each consisting of√
n connectivity queries and a parameter 1 ≤ k ≤ √

n, where the j-th query for 1 ≤ j ≤ √
n of each

batch tests whether the j-th vertex of column 1 is connected with a specific vertex of column k.
We now show how to use this construction to give a lower bound for the dynamic approximate

MSF problem. We add a new vertex s and an edge between s and every vertex in column 1 and
give weight 1 to every edge. We now show how to modify each connectivity query (u, v) such that
it consists of a constant number of edge updates and one query for the value of an MSF. Thus, in
the resulting sequence S ′ the number of query operations equals the number of query operations in
S and the number of update operations is linear in the number of update and query operations in
S. Thus the total number of operations in S ′ is only a constant factor larger than the number of
operations in S, which, together with the result of [PD06], implies that the amortized number of
cell probes per operation is Ω((log n)2/b).

We now show how to simulate a connectivity query(u, v), where u is in column 1 and v is in
column k for some 1 ≤ k ≤ √

n. To simulate a connectivity query(u, v) we (1) remove the edge
from u to s, (2) add the edge (u, v) with weight W and then (3) ask a query for the weight M
of an MSF. Afterwards we undo the changes to G. Note that if u and v are connected in G then
the edge (u, v) does not belong to the MSF (and the graph is disconnected), otherwise it does.
Furthermore, the value M will be n − 2 if u and v are connected, and n − 2 + W if u and v are
not connected. This implies that if our data structure maintains M within an additive error less
than W/2, for any W ≥ 1, or within a multiplicative factor of 1 + ε for W > 2εn, then we can
also test connectivity. Then the statement of the theorem follows from the lower bound for testing
connectivity. Finally, we note that m∗(G) = n − O(

√
n) = Θ(n) by construction of the graph and

thus W = Ω(εm∗(G)) > 2εn. This finishes the proof.

Now we are ready to give the proof of Theorem 1.5.

Theorem 1.5. For any constant ε, α > 0 and W = nα, any data structure that dynamically
maintains with high probability the weight of an MSF of a graph G with edge weights in [1,W ] and
W = Ω(εm∗) within a multiplicative factor of (1 + ε), or an additive error less than W/2, must
perform Ω(log n) cell probes, where each cell has size O(log n).

Proof. The proof is similar to the proof of Theorem 1.2.
We let G′ be a graph with n′ vertices and edge weights in [1,W ], for n′ = ⌊W3ε ⌋. By Theorem

5.3, any data structure that dynamically maintains the weight M of an MSF of a graph G′ with
W = Ω(ε ·m∗(G′)) and m∗(G′) = Θ(n′) within an additive error less than W/2 for any W ≥ 1, or a
multiplicative factor of (1 + ε), with probability at least 1− 1

(n′)c , must perform Ω((log n′)2/b) cell
probes, where each cell has size b.

Note that n′ = Θ(nα/ε) where α > 0 is a constant. Now assume that we have a data structure
A that dynamically maintains the (1 + ε)-approximation of the weight of an MSF of an n-vertex
graph with probability at least 1− 1

nc′
= 1− 1

(n′)c for some constant c′ > 0. (The case that A has an

additive error less than W/2 can be analyzed similarly.) We use A to the graph Ḡ which is consisted
of G′ and n − n′ isolated vertices. Note that the weight of an MSF of Ḡ is the same as the weight
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of an MSF of G′. Thus A maintains a (1 + ε)-approximation of the weight of an MSF of G′. Note
that m∗(G) = m∗(G′), and that W = Ω(ε ·m∗(G′)) = Ω(ε ·m∗(G)) and m∗(G) = m∗(G′) = Θ(n′).

By setting b = Θ(log n), we know that A must perform Ω((log n′)2/b) = Ω(log2(W/ε)/b) =
Ω(log n) cell probes, where each cell has size O(log n).
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A A Note on Dynamically Estimating the Number of CCs

Estimating ncc(G) with an additive error εnO(1) We note that similar to our previous algo-
rithm (in Section 4) for estimating ncc(G) with an additive error εT (G), if we simply invoke the
static algorithm from Lemma 4.4 on the current graph H = G with parameters nis(H) = n and
ncc(Hnis) = ncc(G) to obtain an estimator cc and re-compute the estimator every Θ(εn) updates,
then the corresponding algorithm always maintain an estimator for ncc(G) with an additive error
εn. That is, we have the following theorem.

Theorem A.1. Let 1 > ε > 0 and 0 < p < 1. There exists a fully dynamic algorithm that with
probability at least 1 − p, maintains an estimator cc for the number ncc of CCs of a graph G s.t.,
|cc− ncc(G)| ≤ ε · n. The worst-case time per update operation is O(max{1, log(1/ε) log(1/p)

ε3n
}).

The following is a direct corollary of the above theorem.
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Corollary A.2. Let ε > 0 and let c be any constant such that c ≥ 1. There exists a fully dynamic
algorithm that with probability at least 1 − 1

nc , maintains an estimator cc for the number ncc of

CCs of a graph G s.t., |cc − ncc(G)| ≤ εn2/3 log2/3 n. The worst-case time per update operation is
O(ε−3).

Proof. If ε < n− 2
3 , then for each update, one can use the naive BFS algorithm to exactly compute

ncc(G), which runs in time O(n2) = O(ε−3). If ε ≥ n− 2
3 , we can apply Theorem A.1 with parameters

p = 1
nc , ε

′ = εn−1/3 · log2/3 n, to obtain an cc for ncc(G) with an additive error εn2/3 log2/3 n. The

corresponding dynamic algorithm has update time O(ε−3 · (1 + log(1/ε)
logn )) = O(ε−3).

Remark: We cannot expect to be able to get a constant-time algorithm for maintaining the
number of connected components with an additive error of 1 or a multiplicative error of 2: Any
such algorithm would be able to decide whether the graph is connected or not, contradicting the
Ω(log n) lower bound for dynamically maintaining whether a graph is connected [PD06].
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