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In [3], Abdulla et al. introduced the concept of decisiveness, an interesting tool for lifting good prop-

erties of finite Markov chains to denumerable ones. Later [10], this concept was extended to more

general stochastic transition systems (STSs), allowing the design of various verification algorithms

for large classes of (infinite) STSs. We further improve the understanding and utility of decisiveness

in two ways.

First, we provide a general criterion for proving the decisiveness of general STSs. This criterion,

which is very natural but whose proof is rather technical, (strictly) generalizes all known criteria from

the literature. Second, we focus on stochastic hybrid systems (SHSs), a stochastic extension of hybrid

systems. We establish the decisiveness of a large class of SHSs and, under a few classical hypotheses

from mathematical logic, we show how to decide reachability problems in this class, even though

they are undecidable for general SHSs. This provides a decidable stochastic extension of o-minimal

hybrid systems [16, 22, 32].

1 Introduction

Hybrid and stochastic models. Various kinds of mathematical models have been proposed to

represent real-life systems. In this article, we focus on models combining hybrid and stochastic aspects.

We outline the main features of these models to motivate our approach.

The idea of hybrid systems originates from the urge to study systems subject to both discrete and

continuous phenomena, such as digital computer systems interacting with analog data. These systems are

transition systems with two kinds of transitions: continuous transitions, where some continuous variables

evolve over time (e.g., according to a differential equation), and discrete transitions, where the system

changes modes and variables can be reset. Much of the research about hybrid systems focuses on non-

deterministic hybrid systems, i.e., systems modeling uncertainty by considering all possible behaviors

(e.g., different possibilities for discrete transitions at a given time, arbitrary long time between discrete

transitions). A typical question concerns the safety of such systems—if a system can reach an undesirable

state, it is said to be unsafe; if not, it is safe—such a specification is called qualitative. However, this

is limiting for two reasons. First, it does not take into account that some behaviors are more likely to
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occur than others. Second, risks cannot necessarily be avoided, and it is unrealistic to prevent undesirable

outcomes altogether. Therefore, we want to make probabilities an integral part of our models, in order

to be able to quantify the probability that they behave according to the specification. We thus consider

the class of stochastic hybrid systems (SHSs, for short), hybrid systems in which a stochastic semantics

replaces non-determinism.

Goals. Our interest lies in the formal analysis of continuous-time SHSs, and more specifically in

reachability questions, i.e., concerning the likelihood that some set of states is reached. The questions we

seek to answer are both of the qualitative kind (is some region of the state space almost surely reached,

i.e., reached with probability 1?) and of the quantitative kind (what is the probability that some states are

eventually reached?). Such questions are crucial, as verifying that a system works safely often reduces

to verifying that some undesirable state of the system is never reached (or with a low probability), or that

some desirable state is to be reached with high probability [8]. We want to give algorithms that decide,

for an SHS H and reachability property P, whether P is satisfied in H . Such an endeavor faces multiple

challenges; a first obvious one being that even for rather restricted classes of non-deterministic hybrid

systems, reachability problems are undecidable [24, 25]. We want to define and consider a class of SHSs

for which some reachability problems are decidable.

Methods and contributions. Our methodology consists of two main steps. In a first step, we fol-

low the approach of Bertrand et al. [10]: we study general stochastic transition systems (STSs) through

the decisiveness concept (Section 2). The class of STSs is a very versatile class of systems encompassing

many well-known families of stochastic systems, such as Markov chains, generalized semi-Markov pro-

cesses, stochastic timed automata, stochastic Petri nets, and stochastic hybrid systems. Decisiveness was

introduced in [3] to study Markov chains, and extended to STSs in [10]. An STS is said to be decisive

with respect to a set of states B if executions of the system almost surely reach B or a state from which B

is unreachable. Decisive STSs benefit from useful properties that make possible the design of verification

algorithms related to reachability properties. Our first contribution is to provide a criterion to check the

decisiveness of STSs (Proposition 2.8), which generalizes the decisiveness criteria from [3, 10]. This

generalization was mentioned as an open problem in [10].

In a second step, we focus on stochastic hybrid systems, which we introduce in Section 3.1. Reach-

ability problems in hybrid systems are notoriously undecidable [24, 25]. Our contributions regarding

SHSs are split into two parts.

First, we aim to use the decisiveness idea to get closer to the decidability frontier. Albeit desirable,

the decisiveness of a class of SHSs is not sufficient to handle algorithmic questions about each SHS,

as we need an effective way to apprehend their uncountable state space. In this regard, an often-used

technique is to consider a finite abstraction of the system, that is, a finite partition of the state space that

preserves the properties to be verified (a well-known example is the region graph for timed automata [5]).

To find such an abstraction of SHSs, we borrow ideas from [16, 32]: we consider SHSs with strong resets

(Section 3.2), a syntactic condition that decouples their continuous behavior from their discrete behavior.

We show that SHSs with adequately placed strong resets (at least one per cycle of their discrete graph)

(i) have a finite abstraction (Proposition 3.11), and (ii) are decisive (Proposition 3.9), which can be

proved using our new criterion.

Second, in Section 3.3, we show, with strong resets, how to effectively compute a finite abstraction

and use it to perform a reachability analysis of the original system. We proceed by assuming that the

components of our systems are definable in an o-minimal structure. The main difficulty here is that “a
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satisfactory theory of measure and integration seems to be lacking in the o-minimal context” [9]; in an

o-minimal structure, the primitive function of a definable function is in general not definable, which

complicates definability questions regarding probabilities. We therefore restrict the possible probability

distributions, using properties of o-minimal structures to keep our class as large as possible. When

the theory of the structure is decidable (as is the case for the ordered field of real numbers [43]), the

reachability problems are then decidable. This provides a stochastic extension to the theory of o-

minimal hybrid systems [32]. We study qualitative and quantitative problems. Due to space constraints,

all the missing proofs and some technical details and additional results are omitted from this version and

can be found in the full article [14].

Related work. Our results combine previous work on stochastic systems and hybrid systems.

About stochastic systems, we build on the work of [3, 10]. Our work also takes inspiration from re-

search about stochastic timed automata, a subclass of stochastic hybrid systems which already combines

stochastic and timed aspects; model checking of stochastic timed automata has been studied in [7, 11, 12]

and considered in the context of the decisiveness property in [18]. Fundamental results about the decid-

ability of the reachability problem for hybrid systems can be found in [5, 24, 25]. The class of o-minimal

hybrid systems, of which we introduce a stochastic extension, has been studied in [16, 22, 32].

The literature about SHSs often follows a more practical or numerical approach. A first introduction

to the model was provided in [29]. An extensive review of the underlying theory and of many applications

of SHSs is provided in books [19, 17], and a review of different possible semantics for this model is

provided in [34]. Applications of SHSs are numerous: a few examples are air traffic management [40,

41], communication networks [26], biochemical processes [33, 42]. The software tool UPPAAL [20]

implements a model of SHS similar to the one studied in this article and uses numerical methods to

compute reachability probabilities, through numerical solving of differential equations and Monte Carlo

simulation. Reachability problems have also been considered in an alternative semantics with discrete

time; a numerical approach is for instance provided in [1, 2].

Notations. We write R+ = {x ∈ R | x ≥ 0} for the set of non-negative real numbers. Let (Ω,Σ) be

a measurable space. We write Dist(Ω,Σ) (or Dist(Ω) if there is no ambiguity) for the set of probability

distributions over (Ω,Σ). The complement of a set A ∈ Σ is denoted by Ac = Ω \A. For A ∈ Σ, we say

that two probability distributions µ ,ν ∈ Dist(Ω) are (qualitatively) equivalent on A if for each B ∈ Σ, if

B ⊆ A, µ(B)> 0 if and only if ν(B)> 0.

2 Decisiveness of Stochastic Transition Systems

In this section, we define stochastic transition systems (STSs, for short) as in [10]. We then describe

the concept of decisiveness, first defined in the specific case of Markov chains [3], and then extended

to STSs [10]. Decisive stochastic systems benefit from “nice” properties making their qualitative and

quantitative analysis more accessible. The first contribution of our work is a new decisiveness criterion

(Proposition 2.8), which generalizes existing criteria from the literature [3, 10]. It is an intuitive criterion,

which was conjectured in [10] but could not be proved. We finish with a brief section on the notion of

abstraction between STSs, which will be useful to apply our results to stochastic hybrid systems.
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2.1 Stochastic Transition Systems and Decisiveness [10]

Definition 2.1 (Stochastic transition system). A stochastic transition system (STS) is a tuple T =
(S,Σ,κ) consisting of a measurable space of states (S,Σ), and a function κ : S×Σ → [0,1] (sometimes

called Markov kernel) such that for every s ∈ S, κ(s, ·) is a probability measure and for every A ∈ Σ,

κ(·,A) is a measurable function.

The second condition on κ implies in particular that for a measurable set B ∈ Σ, the set {s ∈ S |
κ(s,B)> 0} is measurable.

We interpret STSs as systems generating runs, with a probability measure over these runs. We fix an

STS T = (S,Σ,κ). From a state s ∈ S, a probabilistic transition is performed according to distribution

κ(s, ·), and the system resumes from one of the successor states; this process generates random sequences

of states. A run of T is an infinite sequence s0s1s2 . . . of states. To formally provide a probabilistic

semantics to STSs, we define a probability measure over the set of runs of T . From an initial distribution

µ ∈ Dist(S), we can define in a classical way a unique probability measure Prob
T
µ on the σ -algebra

generated by all the cylinders, using Carathéodory’s extension theorem.

Expressing properties of runs. We use standard LTL notations [39] to express properties of runs

of T . If B,B′ ∈ Σ, we write in particular FB (resp. F≤n B, B′ UB, B′U≤n B, GB, GFB) for the set of runs

that visit B at some point (resp. visit B in less than n steps, stay in B′ until a first visit to B, stay in B′ until

a first visit to B in less than n steps, always stay in B, visit B infinitely often). We are interested in two

kinds of reachability problems.

Definition 2.2 (Qualitative and quantitative reachability). Let B ∈ Σ be a measurable set of target states,

and µ ∈ Dist(S) be an initial distribution. The qualitative reachability problems consist in deciding

whether ProbT
µ (FB) = 1, and whether ProbT

µ (FB) = 0. The quantitative reachability problem consists

in deciding, given ε , p ∈Q with ε > 0, whether |ProbT
µ (FB)− p|< ε .

Transforming probability distributions. Another useful way to reflect on STSs is as transformers

of probability distributions on (S,Σ).

Definition 2.3 (STS as a transformer). For µ ∈ Dist(S), its transformation through T is the probability

distribution ΩT (µ) ∈ Dist(S) defined for A ∈ Σ by

ΩT (µ)(A) =

∫

s∈S
κ(s,A)dµ(s).

The value ΩT (µ)(A) is the probability to reach A in one step, from the initial distribution µ .

Attractors. We will be particularly interested in the existence of attractors for STSs.

Definition 2.4 (Attractor). A set A ∈ Σ is an attractor for T if for every µ ∈ Dist(S), ProbT
µ (FA) = 1.

While S is always an attractor for T , we will later search for attractors with more interesting prop-

erties. The definition of attractor actually implies a seemingly stronger statement: an attractor is almost

surely visited infinitely often from any initial distribution [10, Lemma 19].
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Decisiveness. Before introducing decisiveness, we give the definition of an avoid-set: for B ∈ Σ,

its avoid-set is written as B̃ = {s ∈ S | ProbT

δs
(FB) = 0} (where δs is the Dirac distribution at s). The

avoid-set B̃ corresponds to the set of states from which runs almost surely stay out of B ad infinitum. One

can show that the set B̃ belongs to the σ -algebra Σ [10, Lemma 14]. We can now define the concept of

decisiveness as in [10].

Definition 2.5 (Decisiveness). Let B ∈ Σ be a measurable set. We say that T is decisive w.r.t. B if for

every µ ∈Dist(S), ProbT
µ (FB∨F B̃) = 1.

Intuitively, the decisiveness property states that, almost surely, either B will eventually be visited, or

states from which B can no longer be reached will eventually be visited.

Example 2.6 (Random walk). We consider the STS T (random walk) from Figure 1. We want to find

out whether T is decisive w.r.t. B = {0}. We assume that the initial distribution is given by δ1 (the Dirac

distribution at 1). By the theory on random walks, if 1
2
< p < 1, the walk will almost surely diverge to

∞. This entails that ProbT

δ1
(FB) < 1. Moreover, since p < 1, there is a path with positive probability

from every state to 0, so B̃ = /0. Therefore, ProbT

δ1
(FB∨F B̃) = Prob

T

δ1
(FB) < 1, which means that T

is not decisive w.r.t. B. If p ≤ 1
2
, state 0 is almost surely reached from any state, that is, for any initial

distribution µ ∈ Dist(S), we have that ProbT
µ (FB) = 1. Hence, in this case, STS T is decisive w.r.t. B.

. . .0 1 2

1 p p

1− p1− p1− p

Figure 1: STS T representing a random walk on N.

A major interest of the decisiveness concept lies in the design of simple procedures for the qualitative

and quantitative analysis of stochastic systems. Indeed, as presented in [3, 10], it allows, under effec-

tiveness hypotheses, to verify qualitative properties or to compute arbitrary close approximations of the

probabilities of various properties, like reachability, repeated reachability, and even ω-regular properties.

The reader is referred to [10, Sections 6 & 7] for more details, but we briefly recall the approximation

scheme for reachability properties in order to illustrate the usefulness of the decisiveness property. This

scheme will be applied to a specific class of STSs in Section 3.3.

Let B∈Σ be a measurable set and µ ∈Dist(S) be an initial distribution. To compute an approximation

of ProbT
µ (FB), we define two sequences (pYesn )n∈N and (pNo

n )n∈N such that for n ∈N,

pYesn = Prob
T
µ (F≤n B) and pNo

n = Prob
T
µ (Bc U≤n B̃).

These sequences are non-decreasing and converge respectively to Prob
T
µ (FB) and Prob

T
µ (Bc U B̃). Ob-

serve moreover that for all n ∈ N, we have that pYesn ≤ Prob
T
µ (FB)≤ 1− pNo

n .

The main idea behind decisiveness of STSs lies in the following property [3, 10]: if T is decisive

w.r.t. B, then limn→∞ pYesn + pNo
n = 1. Therefore, for any given ε > 0, for some n sufficiently large, pYesn ≤

Prob
T
µ (FB) ≤ pYesn + ε . In situations where pYesn and pNo

n can be effectively approximated arbitrarily

closely and T is decisive w.r.t. B, we can thus approximate Prob
T
µ (FB) up to any desired error bound.
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2.2 A New Criterion for Decisiveness

Our goal is to provide new sufficient conditions for the decisiveness of STSs. To this end, we expose the

following crucial technical lemma.

Lemma 2.7. Let B ∈ Σ, and A ∈ Σ. Suppose that there is p > 0 such that for all ν ∈ Dist(A), we have

Prob
T
ν (FB)≥ p. Then for any µ ∈ Dist(S), ProbT

µ (GBc ∧GFA) = 0.

This result seems rather intuitive: if we visit A infinitely often, and after every passage through A

we have a probability bounded from below to reach B, then the probability to stay in Bc forever is 0.

An equivalent statement for Markov chains has been used without proof in [3, Lemmas 3.4 & 3.7]. A

weaker version of this statement is given as part of the proof of [10, Proposition 36], where it is said that

this general case was not known to be true or false. This weaker version assumes that there is a uniform

upper bound k such that for all ν ∈ Dist(A), ProbT
ν (F≤k B)≥ p to obtain a similar conclusion. We have

removed the need for this constraint.

A possible proof of this result consists of regarding a stochastic transition system as a stochastic

process, and resorting to results from martingale theory. More precisely, using Lévy’s zero-one law, we

obtain that infinite runs that never reach B are the same (up to a set of probability 0) as the infinite runs

s0s1 . . . for which the probability to reach B given s0 . . . sn converges to 0 as n grows to infinity. Runs that

visit A infinitely often cannot both avoid B and have a probability to visit B that converges to 0 (since for

every visit to A, the probability to visit B is bounded from below by p > 0). Therefore, such runs will

almost surely visit B.

We can now state our main contribution to decisiveness.

Proposition 2.8 (Decisiveness criterion). Let B ∈ Σ be a measurable set, and A ∈ Σ be an attractor for

T . We denote A′ = A∩ (B̃)c the set of states of A from which B is reachable with a positive probability.

Assume that there exists p > 0 such that for all ν ∈ Dist(A′), ProbT
ν (FB)≥ p. Then T is decisive w.r.t.

B.

With probability 1, every run visits attractor A infinitely often, but the hypotheses imply a dichotomy

between runs. Some runs will reach a state of A from which B is almost surely non-reachable (i.e., in B̃).

The other runs will go infinitely often through states of A such that the probability of reaching B is lower

bounded by p (i.e., in A′), and will almost surely visit B by Lemma 2.7. This almost-sure dichotomy

between runs is required to show decisiveness.

This criterion strictly generalizes those used in the literature. The criterion in [3, Lemma 3.4] assumes

the existence of a finite attractor; the criteria in [10, Propositions 36 & 37] assume some finiteness

property in an abstraction (see next section), which we do not. In [3, Lemma 3.7], a similar kind of

property as ours is required from all the states of the STSs, not only from an attractor. We can actually

prove the same result using a slightly more general notion of attractor (see [14, Proposition 11]).

2.3 Abstractions of Stochastic Transitions Systems

Decisiveness and abstractions are deeply intertwined concepts, so we briefly recall this notion [10] and

related properties. We let T1 =(S1,Σ1,κ1) and T2 = (S2,Σ2,κ2) be two STSs, and α : (S1,Σ1)→ (S2,Σ2)
be a measurable function. We say that a set B ∈ Σ1 is α-closed if B = α−1(α(B)). To mean that B is α-

closed, we also say that α is compatible with B. Following [13, 21], we define a natural way to transfer

measures from (S1,Σ1) to (S2,Σ2) through α : the pushforward of α is the function α# : Dist(S1) →
Dist(S2) such that α#(µ)(B) = µ(α−1(B)) for every µ ∈ Dist(S1) and for every B ∈ Σ2.

Definition 2.9 (α-abstraction). STS T2 is an α-abstraction of T1 if for all µ ∈Dist(S1), α#(ΩT1
(µ)) is

qualitatively equivalent to ΩT2
(α#(µ)).
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Informally, the two STSs then have the same “qualitative” single steps. Later, we may speak of

abstraction instead of α-abstraction if α is clear in the context.

The objective of the notion of abstraction is that by finding an α-abstraction T2 which is somehow

simpler than T1 (for example, with a smaller state space), we should be able to use T2 (with initial

distribution α#(µ)) to analyze some properties of T1 (with initial distribution µ). To do so, we need to

know which properties are preserved through an α-abstraction. As a first observation, positive probability

of reachability properties is preserved. Stronger conditions are required to study almost-sure reachability

properties through α-abstractions. We select a key property of abstractions about that matter which will

be useful in the subsequent sections.

Definition 2.10 (Sound α-abstraction). We say that T2 is a sound α-abstraction of T1 if for all B ∈ Σ2,

Prob
T2

α#(µ)
(FB) = 1 implies ProbT1

µ (Fα−1(B)) = 1.

Sound abstractions preserve almost-sure reachability properties from T2 to T1. A major result

from [10] is that if T1 is decisive w.r.t. B and T2 is a sound α-abstraction, then for all µ ∈ Dist(S1),
Prob

T1
µ (Fα−1(B)) = 1 if and only if Prob

T2

α#(µ)
(FB) = 1. Additional results about abstractions are pro-

vided in [14, Section 2.4].

3 Application to Stochastic Hybrid Systems

We choose to restrict our attention to a stochastic extension of the well-studied hybrid systems. A hybrid

system is a dynamical system combining discrete and continuous transitions. It can be defined as a non-

deterministic automaton with a finite number of continuous variables, whose evolution is described via an

infinite transition system. Hybrid systems have been widely studied since their introduction in the 1990s

(e.g., [4, 23]). They are effectively used to model various time-dependent reactive systems; systems that

need to take into account both continuous factors (e.g., speed, heat, time, distance) and discrete factors

(e.g., events, instructions) are ubiquitous.

We define hybrid systems and give them a fully stochastic semantics, yielding the class of stochastic

hybrid systems (SHSs). We then show that under classical definability hypotheses, we can obtain decid-

ability results for qualitative and quantitative reachability problems in a class of SHSs (even though

such problems are undecidable in full generality), using decisiveness (along with our new decisive-

ness criterion) as a key tool. This provides a stochastic extension to the study of o-minimal hybrid

systems [16, 22, 32].

3.1 Hybrid Systems with Probabilistic Semantics

We proceed with the definition of a (non-deterministic) hybrid system.

Definition 3.1 (Hybrid system). A hybrid system (HS) is a tuple H = (L,X ,A ,E,γ ,I ,G ,R) where:

L is a finite set of locations (discrete states); X = {x1, . . . ,xn} is a finite set of continuous variables; A

is a finite alphabet of events; E ⊆ L×A ×L is a finite set of edges; for each ℓ ∈ L, γ(ℓ) : Rn ×R+ → Rn

is a continuous function describing the dynamics in location ℓ; I assigns to each location a subset of

Rn called invariant; G assigns to each edge a subset of Rn called guard; R assigns to each edge e and

valuation v ∈ Rn a subset R(e)(v) of Rn called reset. For ℓ ∈ L, e ∈ E , we usually denote γ(ℓ) and R(e)
by γℓ and Re.

We denote the number of variables |X | by n. Given a hybrid system H , we define SH = L×Rn as

the states of H . We distinguish two kinds of transitions between states:
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• there is a switch-transition (ℓ,v)
a
−→ (ℓ′,v′) if there exists e = (ℓ,a, ℓ′) ∈ E such that v ∈ I (ℓ)∩

G (e), v′ ∈ Re(v)∩I (ℓ′);

• there is a delay-transition (ℓ,v)
τ
−→ (ℓ,v′) if there exists τ ∈ R+ such that for all 0 ≤ τ ′ ≤ τ ,

γℓ(v,τ
′) ∈ I (ℓ) and v′ = γℓ(v,τ).

Informally, a switch-transition (ℓ,v)
a
−→ (ℓ′,v′) means that an edge e = (ℓ,a, ℓ′) can be taken without

violating any constraint: the value v of the continuous variables is an element of the invariant I (ℓ) and

of the guard G (e), and there is a possible reset v′ of the variables which is an element of the invariant

I (ℓ′). A delay-transition (ℓ,v)
τ
−→ (ℓ,v′) means that some time τ elapses without changing the discrete

location of the system—the only constraint is that all the values taken by the continuous variables during

this time are in the invariant I (ℓ).
Given s = (ℓ,v) ∈ L×Rn a state of the hybrid system, and τ ∈R+, we denote by s+ τ = (ℓ,γℓ(v,τ))

the new state after some delay τ , without changing the location.

We consider semantics given by mixed transitions, i.e., transitions that consist of a delay-transition

(some time elapses) followed by a switch-transition (an edge is taken and the location changes). A mixed

transition is denoted by (ℓ,v)
τ ,a
−→ (ℓ′,v′) if and only if there exists v′′ ∈ Rn such that (ℓ,v)

τ
−→ (ℓ,v′′)

a
−→

(ℓ′,v′).
We usually assume that there is a bijection between the edges E and the alphabet of events A , and

we omit mentioning this alphabet. If e = (ℓ,a, ℓ′) ∈ E , we can thus denote
e
−→ (resp.

τ ,e
−→) for switch-

transitions (resp. mixed transitions) instead of
a
−→ (resp.

τ ,a
−→).

Example 3.2. We provide in Figure 2 an example of a hybrid system (first studied in [7]). There are two

continuous variables (x and y) and five locations, each of them equipped with the same simple dynamics:

ẋ = ẏ = 1 (i.e., γℓ((x,y),τ) = (x+ τ ,y+ τ) for every location ℓ ∈ L). Locations ℓ2 and ℓ4 have the same

invariant, which is {(x,y) | y < 1}; the other invariants are simply R2. Guards are written next to the edge

to which they are related: for instance, G (e4) = {(x,y) | y = 2}. The notation “x := 0” is used to denote a

deterministic reset (in this case, the value of x is reset to 0 after taking the edge). For instance, Re1
(x,y) =

{(x,0)} (the value of x is preserved and y is reset to 0). If nothing else is written next to an edge e, it means

that there is no reset on e, i.e., that Re(v) = {v} for all v ∈ Rn. An example of mixed transitions of this

system can be (ℓ0,(0,0))
0.4,e0
−−−→ (ℓ1,(0.4,0.4))

0.6,e1
−−−→ (ℓ2,(1,0))

0.2,e2
−−−→ (ℓ0,(0,0.2))

1.5,e3
−−−→ (ℓ3,(1.5,1.7)).

ℓ0ℓ1ℓ2 ℓ3 ℓ4

x = 0
0 ≤ y < 1

y < 1 y < 1
y = 2
y := 0e4

1 < y < 2
e3

x > 2

x := 0

e5

y = 1
y := 0

y < 1

x > 1

x := 0

e0e1

e2

Figure 2: Example of a hybrid system with two continuous variables. Each location is equipped with the

dynamics ẋ = ẏ = 1.

We give more vocabulary to refer to hybrid systems. If there is a switch-transition (ℓ,v)
e
−→ (ℓ′,v′),

we say that edge e is enabled at state (ℓ,v)—this means that edge e can be taken with no delay from state

(ℓ,v). Given a state s = (ℓ,v) and an edge e = (ℓ,a, ℓ′) of H , we define I(s,e) = {τ ∈ R+ | s
τ ,e
−→ s′}

as the set of delays after which edge e is enabled from s, and I(s) =
⋃

e I(s,e) as the set of delays after

which any edge is enabled from s. For instance, in the hybrid system from Figure 2, for s = (ℓ0,(0,0.2)),
we have I(s,e0) = [0,0.8), and I(s) = [0,1.8)\{0.8}.
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We say that a state s ∈ L×Rn is non-blocking if I(s) 6= /0. In the sequel, we only consider hybrid

systems such that all states are non-blocking, thereby justifying why considering solely mixed transitions

is doable—such a transition is available from any state.

We now replace the non-deterministic elements of hybrid systems with stochasticity.

Definition 3.3 (Stochastic hybrid system). A stochastic hybrid system (SHS) is defined as a tuple H =
(H ′,µL,ηR,θ), where:

• H ′ = (L,X ,A ,E,γ ,I ,G ,R) is a hybrid system, which is referred to as the underlying hybrid

system of H . We require guards, invariants and resets to be Borel sets.

• µL : L×Rn → Dist(R+) associates to each state a probability distribution on the time delay in R+

(equipped with the classical Borel σ -algebra) before leaving a location. Given s ∈ L×Rn, the

distribution µL(s) will also be denoted by µs. We require that for every s ∈ L×Rn, µs(I(s)) = 1,

i.e., the probability that an edge is enabled after a delay is 1.

• ηR associates to each edge e and valuation v a probability distribution on the set Re(v) ⊆ Rn.

Given e ∈ E and v ∈Rn, the distribution ηR(e)(v) will also be denoted by ηe(v).

• θ : L ×Rn → Dist(E) assigns to each state of H a probability distribution on the edges. We

require that θ(s)(e) > 0 if and only if edge e is enabled at s. For s ∈ L×R, we denote θ(s) by θs.

This distribution is only defined for states at which an edge is enabled.

Remark 3.4. The term “stochastic hybrid system” is used for a wide variety of stochastic extensions of

hybrid systems throughout the literature. In this work, we consider stochastic delays, stochastic resets,

a stochastic edge choice, and stochastic initial distributions. The way this probabilistic semantics is

added on top of hybrid systems is very similar to how timed automata are converted to stochastic timed

automata in [7, 11, 12]. Although dynamics appear to be deterministic, the model is powerful enough to

emulate stochastic dynamics by assuming that extra variables are solely used to influence the continuous

flow of the other variables. These variables can be chosen stochastically in each location through the

reset mechanism. This is for example sufficient to consider a stochastic extension of the rectangular

automata [24], whose variables evolve according to slopes inside an interval (such as ẋ ∈ [1,4]). Our

model is very close to the one of the software tool UPPAAL [20]. In Section 3.3, we will identify the

need to restrict the definition of some components of SHSs to ensure their definability; this is however

not required for the results of Section 3.2.

When referring to an SHS, we make in particular use of the same terminology as for hybrid systems

(e.g., runs, enabled edges, allowed delays I(·)) to describe its underlying hybrid system.

In order to apply the theory developed in Section 2, we give the semantics of an SHS H as an

STS TH = (SH ,ΣH ,κH ). The set SH is the set L×Rn of states of H , and ΣH is the σ -algebra

product between 2L and the Borel σ -algebra on Rn. To define κH , we first explain briefly the role of

each probability distribution in the definition of SHS. Starting from a state s = (ℓ,v), a delay τ is chosen

randomly, according to the distribution µs. From state s+ τ = (ℓ,v′), an edge e = (ℓ,a, ℓ′) (enabled in

s+ τ) is selected, following distribution θs+τ (such an edge is almost surely available, as µs(I(s)) = 1

by hypothesis). The next state will be in location ℓ′, and the values of the continuous variables are

stochastically reset according to the distribution ηe(v
′). We can thus define κH as follows: for s =

(ℓ,v) ∈ SH , B ∈ ΣH ,

κH (s,B) =
∫

τ∈R+
∑

e=(ℓ,a,ℓ′)∈E

(
θs+τ(e) ·

∫

v′′∈Rn
1B(ℓ

′,v′′)d(ηe(γℓ(v,τ)))(v
′′)

)
dµs(τ)
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where 1B is the characteristic function of B. It gives the probability to hit set B ⊆ SH from state s in

one step (representing a mixed transition). The function κH (s, ·) defines a probability distribution for all

s ∈ SH .

Definition 3.5 (STS induced by an SHS). For an SHS H , we define TH = (SH ,ΣH ,κH ) as the STS

induced by H .

Thanks to the stochasticity of our models, we can reason about both qualitative and quantitative

reachability problems, as defined in Definition 2.2.

Undecidability. We provide a proof that qualitative and quantitative reachability problems for

SHSs with “simple” features are undecidable. The undecidability in itself is not surprising, as some

of the undecidability proofs from the literature about non-deterministic hybrid systems [24, 25] can be

translated directly to our stochastic setting. Our goal with this new proof is to get as close as possible to

the class that we will later (in Section 3.3) show to be decidable, in order to outline as well as possible

an undecidability frontier.

We prove undecidability even when constrained to purely continuous distributions on time delays

from any state, and very simple guards, resets, and dynamics (that can be defined in simple mathematical

structures). This requires a distinct proof from [24]. The result from [25] is close to the one we want to

achieve, and we take inspiration from its proof. The proof consists of reducing the halting problem for

two-counter machines to deciding whether a measurable set in an SHS is reached with probability 1.

Proposition 3.6 (Undecidability of SHSs). The qualitative reachability problems and the approximate

quantitative reachability problem are undecidable for stochastic hybrid systems with purely continuous

distributions on time delays, guards that are linear comparisons of variables and constants, and using

positive integer slopes for the flow of the continuous variables. The approximate quantitative problem is

moreover undecidable for any fixed precision ε < 1
2
.

Although the proof is centered on showing the undecidability of qualitative reachability problems, we

get as a by-product the undecidability of the approximation. Indeed, as the systems used throughout the

proof reach a target set B with a probability that is either 0 or 1, the ability to approximate Prob
TH

µ (FB)

with ε < 1
2

would be sufficient to solve the qualitative problem. As the proof shows that these qualitative

problems are undecidable, we obtain that the approximate quantitative problem is undecidable as well.

Our result also implies that deciding whether a state lies in B̃ is undecidable.

3.2 The Cycle-Reset Hypothesis

The literature about non-deterministic hybrid systems suggests that to obtain subclasses for which the

reachability problem becomes decidable, one must set sharp restrictions on the continuous flow of the

variables and/or on the discrete transitions (via the reset mechanism). In this decidable spectrum lie for

instance the rectangular initialized automata, which are quite permissive toward the continuous evolution

of the variables, but need strong hypotheses about the discrete transitions [24]. Our approach lies at one

end of this spectrum: we restrict the discrete behavior by considering strong resets, i.e., resets that

forget about the previous values of the variables, decoupling the discrete behavior from the continuous

behavior. We show that one strong reset per cycle of the graph is sufficient to obtain valuable results, and

we name this property cycle-reset. This point of view has already been studied in [16, 22, 32] for non-

deterministic hybrid systems, and in [11] for stochastic timed automata. Note that previous work about

finite abstractions of non-deterministic hybrid systems (called time-abstraction bisimulations) does not
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extend in general to “stochastic” abstractions (as defined in Section 2.3), as there may be transitions that

have probability 0 to happen.

Definition 3.7 (Strong reset, cycle-reset SHS). Given H a stochastic hybrid system and e an edge of

H , we say that e has a strong reset (or is strongly reset) if there exist R∗
e ⊆Rn and η∗

e ∈Dist(R∗
e ) such

that for all v ∈ G (e), Re(v) = R∗
e and ηe(v) = η∗

e . We say that an SHS H is cycle-reset if for every

simple cycle of H , there exists a strongly reset edge.

If an edge e is strongly reset, it stochastically resets all the continuous variables when it is taken,

and the stochastic reset does not depend on their values. We show two independent and very convenient

results of cycle-reset SHSs: such SHSs are decisive w.r.t. any measurable set (the proof of this statement

relies on the decisiveness criterion from Proposition 2.8), and admit a finite abstraction.

Decisiveness of cycle-reset SHSs. We motivate this section with an example of a simple non-

decisive SHS, which we will use to show that our decisiveness result is tight.

Example 3.8. We add a stochastic layer to the hybrid system of Example 3.2, pictured in Figure 2. The

distributions on the time delays in locations ℓ0, ℓ2 and ℓ4 are uniform distributions on the interval of

allowed delays. For instance, at state s = (ℓ0,(x,y)), the distribution µs follows a uniform distribution on

[0,2− y). In locations ℓ1 and ℓ3, the distributions on the delays are Dirac distributions. Reset and edge

distributions are simply modeled as Dirac distributions. It is proved in [12, Section 6.2.2] that this SHS

is not decisive w.r.t. B = {ℓ2}×R2. The proof is quite technical and we do not recall it here; intuitively,

at each passage through location ℓ0, the value of y increases but stays bounded from above by 1, which

decreases the probability to take edge e0 (and thus reach B); this decrease is too fast to ensure that B is

almost surely reached.

Proposition 3.9. Every cycle-reset SHS is decisive w.r.t. any measurable set.

Placing (at least) one strong reset per simple cycle is an easy syntactic way to guarantee that almost

surely, infinitely many strong resets are performed, which is the actual sufficient property used in the

proof. As there are only finitely many edges, we can find a probability lower bound p on the probability

to reach B after any strong reset, as required in the criterion of Proposition 2.8. Notice that as shown in

Example 3.8, having independent flows for each variable and resetting each variable once in each cycle

is not sufficient to obtain decisiveness; variables need to be reset on the same discrete transition in each

cycle.

Existence of a finite abstraction. We show that cycle-reset SHSs admit a finite α-abstraction. We

first give a simple example showing that without one strong reset per cycle, some simple systems do not

admit a finite α-abstraction compatible with the locations.

Example 3.10. Consider the SHS of Figure 3. The self-loop edge of ℓ0 is the only edge not being

strongly reset. We assume that we want to have an abstraction compatible with s∗ := {ℓ1}×R. In order

to obtain an abstraction, we must split {ℓ0}×Rn in s0 := {ℓ0}× (−∞,0) and {ℓ0}× [0,+∞), as all the

states of s0 can reach s∗ with a positive probability in one step, but none of the states of {ℓ0}× [0,+∞)
can. Then, {ℓ0}× [0,+∞) must also be split into s1 := {ℓ0}× [0,1) and {ℓ0}× [1,+∞) because the states

of s1 can all reach s0 with a positive probability in one step, but none of the states of {ℓ0}× [1,+∞)
can. By iterating this argument, we find that the smallest α-abstraction compatible with {ℓ1}×R is

countably infinite, and the partition that it induces is composed of s∗, s0 and si = {ℓ0}× [i− 1, i) for

i ≥ 1. The underlying hybrid system actually belongs to the class of updatable timed automata [15], and

the abstraction almost coincides with the region graph of the automaton. The reasoning we have used
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is very close to the classical bisimulation algorithm for non-deterministic systems, and is explained in

more detail in [14, Section 2.4].

x < 0

x := 0ẋ = 1

x ≥ 0

x := x−1

ℓ0 ℓ1

ẋ = 1

x ∈ R

x := 0

Figure 3: The time delays are given by exponential distributions from any state; resets are Dirac distribu-

tions. The smallest abstraction compatible with {ℓ1}×R is countably infinite.

The cycle-reset assumption is sufficient to guarantee the existence of a finite abstraction, as formu-

lated in the next proposition.

Proposition 3.11. Let H be an SHS, and B ∈ ΣH . If H is cycle-reset, it has a finite and sound

abstraction compatible with B and with the locations.

The proof consists of showing that a stochastic adaptation of the classical bisimulation algorithm

terminates under the cycle-reset assumption. Combined with our decisiveness result, we can even show

that this abstraction is sound.

3.3 Reachability Analysis in Cycle-Reset Stochastic Hybrid Systems

Our goal in this section is to perform a reachability analysis of cycle-reset SHSs. A first hurdle to

circumvent is that arbitrary SHSs are in general difficult to apprehend algorithmically: for instance, the

continuous evolution of their variables may be defined by solutions of systems of differential equations,

which we do not know how to solve in general. To make the problem more accessible, we follow the

approach of [16, 32] for non-deterministic hybrid systems by assuming that some key components of our

systems are definable in a mathematical structure. We identify a large class of SHSs for which the finite

abstraction from Section 3.2 is computable, which makes qualitative reachability problems decidable;

namely, cycle-reset o-minimal SHSs defined in a decidable theory. We then identify sufficient hypotheses

for the approximate quantitative problem to be decidable, in the form of a finite set of probabilities that

have to be approximately computable.

Qualitative analysis. We assume that the reader is familiar with basic model-theoretic and logical

terms—the reader is referred to [27] for an introduction to the main concepts. In what follows, by

definable, we mean definable without parameters.

Definition 3.12 (Definable SHS). Given a structure M , an SHS H is said to be defined in M if for

every location ℓ ∈ L, γℓ is a function definable in M and I (ℓ) is a set definable in M , and for every

edge e ∈ E , the set G (e) is definable and there exists a first-order formula ψe(x,y) such that v′ ∈ Re(v)
if and only if ψe(v,v

′) is true.

Note that we require that the flow of the dynamical system in each location is definable in M , and

not that it is the solution to a definable system of differential equations.

Our goal is to prove that the class of cycle-reset o-minimal SHSs, i.e., cycle-reset SHSs defined in an

o-minimal structure (introduced in [44, 38]), with additional assumptions on the probability distributions,

is decidable. We will use that the finite sound abstraction from Proposition 3.11 is then computable,
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and that decisiveness (Proposition 3.9) gives us a strong link between reachability properties of the

abstractions and the original systems.

Definition 3.13 (O-minimality). A totally ordered structure M = 〈M,<, . . .〉 is o-minimal if every defin-

able subset of M is a finite union of points and open intervals (possibly unbounded).

In other words, the definable subsets of M are exactly the ones that are definable with parameters in

〈M,<〉. Some well-known structures are o-minimal, such as the ordered additive group of rationals 〈Q,<

,+,0〉, the ordered additive group of reals Rlin = 〈R,<,+,0,1〉, the ordered field of reals Ralg = 〈R,<
,+, ·,0,1〉, the ordered field of reals with the exponential function Rexp = 〈R,<,+, ·,0,1,ex〉 [45]. There

is no general result about the decidability of the theories of o-minimal structures. A well-known case

is the Tarski-Seidenberg theorem [43], which asserts that there exists a quantifier-elimination algorithm

for sentences in the first-order language of real closed fields. This result implies the decidability of the

theory of Ralg. However, it is not known whether the theory of Rexp is decidable. Its decidability is

implied by Schanuel’s conjecture, a famous unsolved problem in transcendental number theory [36]. In

this work, we define an o-minimal SHS as an SHS defined in an o-minimal structure.

The o-minimality of M implies that definable subsets of Mn have a very “nice” structure, described

notably by the cell decomposition theorem [31]. In particular, every subset of Rn definable in an o-

minimal structure belongs to the σ -algebra of Borel sets of Rn [30, Proposition 1.1]. Moreover, to

help with issues related to the definability of probabilities, we will use the property that in o-minimal

structures, definable sets with positive Lebesgue measure coincide with definable sets with non-empty

interior [30, Remark 2.1]. This is very helpful, as the property of having an empty interior is definable.

Remark 3.14. The definition of o-minimal (non-deterministic) hybrid system in the literature usually

assumes that all edges are strongly reset. O-minimal hybrid systems were first introduced in [32], and

further studied notably in [16]. The strong reset hypothesis was relaxed in [22] to “one strong reset per

cycle”.

Let M = 〈R,<,+, . . .〉 be an o-minimal structure whose theory is decidable, such as Ralg. Let

H = (H ′,µL,ηR,θ) be a cycle-reset o-minimal SHS defined in M . Let µ ∈ Dist(SH ) be an initial

distribution. We make the following assumptions, which we denote by (†):

• for all s = (ℓ,v) ∈ L×Rn, if I(s) is finite, µs is equivalent to the uniform discrete distribution on

I(s); if I(s) is infinite, µs is equivalent to the Lebesgue measure on I(s);

• the initial distribution µ is either equivalent to the discrete measure on some finite definable support

D, or equivalent to the Lebesgue measure on a definable support D;

• for e ∈ E , v ∈ Rn, we ask that Re(v) is finite or has positive Lebesgue measure; ηe(v) is resp.

either equivalent to the discrete measure or the Lebesgue measure on Re(v).

The first requirement was already a standard assumption in the case of stochastic timed automata [7,

11, 12]. Hypothesis (†) is easily satisfied: for instance, exponential distributions (resp. uniform distribu-

tions on [a,b]) are equivalent to the Lebesgue measure on R+ (resp. [a,b]). We summarize what these

ideas entail in the next proposition.

Proposition 3.15. Let H be a cycle-reset o-minimal SHS defined in a structure whose theory is decid-

able. Let B ∈ ΣH be definable and µ ∈ Dist(SH ). We assume that assumption (†) holds. Then one can

decide whether ProbTH
µ (FB) = 1 and whether ProbTH

µ (FB) = 0.

In particular, we can decide the qualitative reachability problems for cycle-reset SHSs defined in Ralg

and satisfying (†). Assuming Schanuel’s conjecture [36], we could extend this result to Rexp.
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Approximate quantitative analysis. Under strengthened numerical hypotheses, we can solve the

approximate quantitative reachability problem in cycle-reset SHSs. Let H be a cycle-reset SHS, B ∈
ΣH and µ ∈ Dist(SH ). Our goal is to apply the approximation scheme described in [10] in order to

approximate Prob
TH

µ (FB). To do so, we require that TH is decisive w.r.t. B, which is implied by the

cycle-reset hypothesis (Proposition 3.9), and the ability to compute for all m ∈ N, an arbitrarily close

approximation of

pYesm = Prob
T
µ (F≤m B) and pNo

m = Prob
T
µ (Bc U≤m B̃).

Using the cycle-reset hypothesis, we can express these probabilities as sums and products of a finite

number of probabilities of paths with bounded length b ∈ N, where b is the length of the longest path

without encountering a strong reset. Details on this computation are available in [14, Section 5.2].

4 Conclusion

Summary. We presented in Section 2 how to solve reachability problems in stochastic transition

systems via the decisiveness notion, introduced in [3, 10]. We notably solved in Lemma 2.7 a technical

question that was open in [10], which helped formulate a general sufficient condition for decisiveness in

Proposition 2.8, encompassing known decisiveness criteria from the literature.

In Section 3, we considered stochastic hybrid systems (SHSs). We showed that SHSs with one

strong reset per cycle (cycle-reset) are decisive (using our new decisiveness criterion), and admit a finite

abstraction. We then identified assumptions, using ideas from logic, leading to the effective computabil-

ity of this abstraction, and to the decidability of qualitative and quantitative reachability problems. These

assumptions pertain to the definability of the different components of the SHSs in a decidable math-

ematical structure. Combined with the previous decisiveness results, this abstraction can be used to

decide qualitative reachability problems. In particular, these results apply to cycle-reset SHSs defined in

Ralg = 〈R,<,+, ·,0,1〉 with well-behaved distributions.

Possible extensions and future work. We identify some possible extensions of our results.

A first direction of study is to find other classes of decisive stochastic systems that can be encom-

passed by our decisiveness criterion (Proposition 2.8). In that respect, a good candidate is the class of

stochastic regenerative Petri nets [28, 37]. An application of decisiveness results to stochastic Petri nets

was briefly discussed in [10, Section 8.3], but under severe constraints; we may be able to relax part of

these constraints with the generalized criterion.

In Section 3.3, we circumvent the issue of the definability of measures by using a specific property of

the o-minimal structures (namely, that the Lebesgue measure of a definable set is positive if and only if

the interior of that set is non-empty). However, more powerful results exist about the compatibility of o-

minimal structures and measure theory [30]: some o-minimal structures are closed under integration with

respect to a given measure (then called tame measure). This consideration may help extend our results

to a larger class that is less restrictive w.r.t. probability distributions, or in which actual probabilities may

be definable.
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