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Abstract

This paper studies event-triggered stabilization of linear time-invariant systems over time-varying rate-limited communication
channels. We explicitly account for the possibility of channel blackouts, i.e., intervals of time when the communication channel
is unavailable for feedback. Assuming prior knowledge of the channel evolution, we study the data capacity, which is the
maximum total number of bits that could be communicated over a given time interval, and provide an efficient real-time
algorithm to lower bound it for a deterministic time-slotted model of channel evolution. Building on these results, we design an
event-triggering strategy that guarantees Zeno-free, exponential stabilization at a desired convergence rate even in the presence
of intermittent channel blackouts. The contributions are the notion of channel blackouts, the effective event-triggered control
despite their occurrence, and the analysis and quantification of the data capacity for a class of time-varying continuous-time
channels. Various simulations illustrate the results.
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1 Introduction

Control under communication constraints has key the-
oretical and practical importance given the increasing
ubiquity of networked cyber-physical systems in nearly
every aspect of modern life, including transportation,
energy, agriculture, and healthcare. This has motivated
a vast amount of research to address the challenges
posed by communication channels with limited, time-
varying, and unreliable bit rates. This paper is a con-
tribution to the growing body of results that employ
either information-theoretic or opportunistic triggered
control to address the problem of stabilization under
constrained resources. Specifically, we seek to com-
bine both approaches to deal with the control of linear
time-invariant systems under time-varying channels, in-
cluding for the possibility of blackouts, i.e., intervals of
time during which the channel is completely unavailable
for control. Applications where these channel models
are useful include communication in contested environ-
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ments and scheduling shared communication resources.

Literature review: The literature of information-
theoretic control under communication constraints fo-
cuses on identifying necessary and sufficient conditions
on the bit rates that guarantee stabilization under vari-
ous assumptions on the (often stochastically modeled)
communication channels. Comprehensive overviews
may be found in [Franceschetti and Minero, 2014, Nair
et al., 2007]. Early data rate results [Nair and Evans,
2000, 2004, Tatikonda and Mitter, 2004] provided tight
necessary and sufficient conditions on the data rate of
the encoded feedback for asymptotic stabilization in the
discrete-time setting. Since then, the problem has been
studied under increasingly complex assumptions on the
communication channels, see e.g., [Martins et al., 2006,
Minero et al., 2009, 2013]. In the continuous-time set-
ting, the problem has been studied under either periodic
sampling or aperiodic sampling with known upper and
lower bounds on the sampling period. The works [Key-
ong and Baillieul, 2004, 2007] deal with single-input
systems, [Persis, 2005] deals with nonlinear feedforward
systems, and [Liberzon, 2014] deals with switched lin-
ear systems and characterizes the convergence rate of
the finite data-rate stabilization scheme. The recent
work [Pearson et al., 2014] explores the stabilization
problem under a state-based aperiodic transmission pol-

Preprint submitted to Automatica 7 April 2021

ar
X

iv
:1

50
3.

07
91

1v
3 

 [
cs

.S
Y

] 
 1

5 
O

ct
 2

01
5



icy, with the inter-transmission intervals being integral
multiples of a fixed stepsize. In general, this literature
has not explored the potential advantages of tuning the
sampling period in the periodic case or if state-based
aperiodic sampling can provide any gains in efficiency
and performance. On the other hand, the event-triggered
approach, see e.g. [Heemels et al., 2012, Tabuada, 2007,
Wang and Lemmon, 2011] and references therein, ex-
ploits the tolerance to measurement errors to design
goal-driven, opportunistic state-based aperiodic sam-
pling. The literature on event-triggered control mainly
focuses on guaranteeing control performance while min-
imizing the number of transmissions but largely ignores
quantization, data capacity, and other important as-
pects of communication. Some of the few exceptions
include [Garcia and Antsaklis, 2013, Tallapragada and
Chopra, 2012], which utilize static logarithmic quanti-
zation and [Lehmann and Lunze, 2010, Li et al., 2012,
Sun and Wang, 2014] (see also references therein) which
use dynamic quantization. All these works guarantee a
positive lower bound on the inter-transmission times,
while [Lehmann and Lunze, 2010, Li et al., 2012, Sun
and Wang, 2014] also provide a uniform bound on the
communication bit rate (i.e., the number of bits per
transmission). However, these references do not address
the inverse problem of triggering and quantization given
a limit on the communication bit rate. Moreover, the
channel is assumed to always be available to the control
system and hence event-triggered designs typically do
not take into account the possibility of channel black-
outs. An important exception to this statement is [Anta
and Tabuada, 2009], which uses the deadlines gener-
ated by a self-triggered controller to perform a kind of
instantaneous or short-term scheduling. However, if the
communication latency is time-varying either because
of a time-varying channel or because of time-varying
packet sizes, which is important in finite precision
feedback control, it is difficult to guarantee long-term
future schedulability and system performance. Our re-
cent work [Tallapragada and Cortés, 2016] combines
the information-theoretic and event-triggered control
approaches to address the problem of event-triggered
stabilization of continuous-time linear time-invariant
systems under bounded bit rates. The event-triggered
formulation allows us to guarantee, in the absence of
channel blackouts, a specified rate of convergence in the
presence of non-instantaneous communication and pos-
sibly time-varying communication rate. The incorpora-
tion of information-theoretic aspects in our design also
allows us to analyze sufficient average data rate, some-
thing usually absent in the event-triggered literature.

Statement of contributions: We combine information-
theoretic and event-triggered control to address the sta-
bilization problem for linear time-invariant systems over
time-varying rate-limited communication channels that
may be subject to sporadic blackouts. Our starting point
is a description of the communication channel through
two time-varying channel functions representing, respec-

tively, the minimum instantaneous communication-rate
and the maximum packet size that can be successfully
transmitted. Our model explicitly accounts for the pos-
sibility of channel blackouts, which are intervals of time
during which no packet can be successfully transmitted.
Our first contribution is the definition of the concept of
data capacity, i.e., the maximum number of bits that
may be communicated over possibly multiple transmis-
sions during an arbitrary time interval under complete
knowledge of the channel evolution. This concept plays a
key role in effectively controlling the system despite the
occurrence of blackouts. The computation of data ca-
pacity for general time-varying channels is challenging.
We show that, for the class of piecewise constant chan-
nel functions, the computation of data capacity can be
formulated as an allocation problem involving the num-
ber of bits to be transmitted over each interval where the
channel functions are constant. This equivalence sets the
basis for our second contribution, which is the design of
an algorithm to lower bound in real time the data capac-
ity over an arbitrary time interval. Our third and final
contribution is the synthesis of event-triggered control
schemes that, using prior knowledge of the channel in-
formation, plan the transmissions in order to guarantee
the exponential stabilization of the system at a desired
convergence rate, even in the presence of intermittent
channel blackouts. Our design critically relies on three
elements: a performance-trigger function that measures
how close the system state is to violating the control ob-
jective, a channel-trigger function that keeps track of the
number of bits required at any moment to guarantee per-
formance at least for a certain period of time in the fu-
ture, and the lower bounds on data capacity provided by
our real-time algorithm. Our notion of scheduled chan-
nel blackouts and stabilization despite their occurrence
is a key contribution in the context of event-triggered
control, which typically assumes the channel is available
for feedback on demand. Various simulations illustrate
our results.

Notation: We let R, R≥0, Z>0, and Z≥0 denote the set
of real, nonnegative real, positive integer, and nonnega-
tive integer numbers, respectively. We let |S| denote the
cardinality of the set S. We denote by ‖.‖2 and ‖.‖∞
the Euclidean and infinity norm of a vector, respectively,
or the corresponding induced norm of a matrix. For a
symmetric matrix A ∈ Rn×n, we let λm(A) and λM (A)
denote its smallest and largest eigenvalues, respectively.
For any matrix norm ‖.‖, note that ‖eAτ‖ ≤ e‖A‖τ . For

a number a ∈ R, we let [a]+ , max{0, a}. For a function

f : R 7→ Rn and any t ∈ R, we let f(t−) and f(t+) de-
note the limit from the left, lim

s↑t
f(s) and the limit from

the right, lim
s↓t

f(s), respectively.

2 Problem statement

We start with the description of the system dynamics,
then describe the model for the communication channel,
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and finally state the control objective.

2.1 System description

We consider a linear time-invariant control system,

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn denotes the state of the plant and u ∈ Rm
the control input, while A ∈ Rn×n and B ∈ Rn×m are
the system matrices. Our starting point is the existence
of a continuous-time feedback stabilizer of the plant dy-
namics (1). Formally, we select a control gain matrix
K ∈ Rm×n such that the matrix Ā = A + BK is Hur-
witz. Under this assumption, the continuous-time feed-
back u(t) = Kx(t) renders the origin of (1) globally ex-
ponentially stable.

The plant is equipped with a sensor (the encoder) and
an actuator (the decoder) that are not co-located. The
sensor can measure the state exactly and the actuator
can exert the input to the plant with infinite precision.
However, the sensor may transmit state information to
the controller at the actuator only at discrete time in-
stants of its choice, using only a finite number of bits.
We let {tk}k∈Z>0

⊂ R≥0 be the sequence of transmission
times at which the sensor transmits an encoded packet of
data, {rk}k∈Z>0

⊂ R≥0 the sequence of reception times
at which the decoder receives a complete packet of data,
and {r̃k}k∈Z>0

⊂ R≥0 the sequence of update times at
which the decoder updates the controller state. At a
transmission time tk, the sensor sends bk bits, which en-
code the plant state. Due to causality, r̃k ≥ rk ≥ tk, and
we denote by

∆k , rk − tk, ∆̃k , r̃k − tk,

the kth communication time and kth time-to-update, re-
spectively. The distinction between the reception times
and the update times is a generalization with respect
to our previous work [Tallapragada and Cortés, 2016]
and provides greater flexibility in the presence of time-
varying channels, particularly in cases where the channel
is unavailable for certain periods of time.

2.2 Communication channel

Our model for the time-varying communication channel
is fully determined by the map R : R≥0 → R≥0, where
Ra = nR is the minimum instantaneous communication-
rate at a given time, and the map p̄ : R≥0 → Z≥0, where
b̄ = np̄ is the maximum packet size that can be success-
fully transmitted at a given time. More specifically, we
assume the kth communication time and the kth time-
to-update satisfy

∆̃k ≥ ∆k ≥ 0, (2a)

∆k ≤ ∆(tk, pk) ,
pk

R(tk)
=

bk
Ra(tk)

, (2b)

where the first condition is that of causal communication
and the second is an upper bound on the communication
time. Note that the actual instantaneous communication
rate at tk is bk/∆k and we can rewrite (2b) as

bk
∆k

=
npk
∆k
≥ npk

∆(tk, pk)
= Ra(t),

to realize that Ra(t) is a lower bound on the number of
bits communicated per unit time of all the bits transmit-
ted at time t. Thus, for example, if Ra(t) =∞, then the
packet sent at t is received instantaneously. The packet
size bk = npk that can be successfully transmitted start-
ing at tk is upper bounded as

pk ≤ p̄(tk), pk ∈ Z≥0 (3a)

for all k ∈ Z≥0. We refer to an interval of time during
which p̄ = b̄ = 0 as a (channel) blackout. In this paper,
we assume that the encoder knows the functions t 7→
R(t) and t 7→ p̄(t) a priori or sufficiently in advance,
which we make clear in the sequel.

Since the channel has bounded data capacity and in or-
der to maintain synchronization between the encoder
and the decoder, we require that the encoder does not
transmit a packet before a previous packet is received by
the decoder and the controller updated, i.e.,

tk+1 ≥ r̃k, (3b)

for all k ∈ Z≥0. We say the channel is busy at time t if
t ∈ [tk, rk), for some k ∈ Z>0. Finally, we refer to the
sequences of transmission times {tk} ⊂ R≥0, packet sizes
{bk} ⊂ Z≥0, and update times {r̃k} ⊂ R≥0 as feasible
if (2) and (3) are satisfied for every k ∈ Z>0.

2.3 Encoding and decoding

We use dynamic quantization for finite-bit transmissions
from the encoder to the decoder. In dynamic quantiza-
tion, there are two distinct phases: the zoom-out stage,
e.g., [Liberzon, 2003], during which no control is ap-
plied while the quantization domain is expanded until it
captures the system state at time r0 = t0 ∈ R≥0; and
the zoom-in stage, during which the encoded feedback
is used to asymptotically stabilize the system. We fo-
cus exclusively on the latter, i.e., for t ≥ t0. We assume
both the encoder and the decoder have perfect knowl-
edge of the plant system matrices, have synchronized
clocks, and synchronously update their states at update
times {r̃k}k∈Z>0

. For simplicity, we assume that at trans-
mission tk the sensor (encoder) encodes each dimension
of the plant state using pk bits so that the total number
of bits transmitted is bk = npk.

The state of the encoder/decoder is composed of the con-
troller state x̂ ∈ Rn and an upper bound de ∈ R≥0 on

‖xe‖∞, where xe , x − x̂ is the encoding error. Thus,

3



the actual input to the plant is given by u(t) = Kx̂(t).
During inter-update times, the state of the dynamic con-
troller evolves as

˙̂x(t) = Ax̂(t) +Bu(t) = Āx̂(t), t ∈ [r̃k, r̃k+1). (4a)

Let the encoding and decoding functions at the kth it-
eration be represented by qE,k : Rn × Rn 7→ Gk and
qD,k : Gk × Rn 7→ Rn, respectively, where Gk is a fi-
nite set of 2bk symbols. At tk, the encoder encodes the
plant state as zE,k , qE,k(x(tk), x̂(t−k )), where x̂(t−k ) is
the controller state just prior to the encoding time tk,
and sends it to the controller. The decoder can decode
this signal as zD,k , qD,k(zE,k, x̂(t−k )) at any time dur-
ing [rk, r̃k]. At the update time r̃k, the sensor and the
controller also update x̂ using the jump map,

x̂(r̃k) = eĀ∆̃k x̂(t−k ) + eA∆̃k(zD,k − x̂(t−k ))

, qk(x(tk), x̂(t−k )), (4b)

where qk : Rn × Rn 7→ Rn represents the quantization
that occurs as a result of the finite-bit coding. We allow
the quantization domain, the number of bits and the
resulting quantizer, qk, for each transmission k ∈ Z>0 to
be variable. The evolution of the plant state x and the
encoding error xe on the time interval [r̃k, r̃k+1) can be
written as

ẋ(t) = Āx(t)−BKxe(t), (5a)

ẋe(t) = Axe(t). (5b)

While the encoder knows the encoding error xe precisely,
the decoder can only compute a bound de(t) on ‖xe(t)‖∞
as follows

de(t) , ‖eA(t−tk)‖∞δk, t ∈ [r̃k, r̃k+1), k ∈ Z≥0 (6a)

δk+1 =
1

2pk+1
de(tk+1). (6b)

One can design a pair of algorithms for the encoder and
the decoder to implement (4b) in a manner that they
maintain consistent x̂(t) and de(t) signals for t ≥ t0
(see [Tallapragada and Cortés, 2016] for example). For
the sake of brevity, we do not present these algorithms
here and it suffices to say that ‖xe(t)‖∞ ≤ de(t) for all
t ≥ t0 if ‖xe(t0)‖∞ ≤ de(t0).

2.4 Control objective

We measure the performance of the closed-loop system
through a Lyapunov function as follows. Given an arbi-
trary symmetric positive definite matrix Q ∈ Rn×n, let
P be the unique symmetric positive definite matrix that
satisfies the Lyapunov equation

PĀ+ ĀTP = −Q. (7)

Define x 7→ V (x) = xTPx and let

Vd(t) = Vd(t0)e−β(t−t0), (8)

with β > 0, be the desired control performance. We as-
sume that

W ,
λm(Q)

λM (P )
− aβ > 0, (9)

with a > 1 an arbitrary constant. Assumption (9) is
sufficient to guarantee a convergence rate faster than
β for the dynamics (1) under the continuous-time and
unquantized feedback u(t) = Kx(t).

Given the system and the communication channel model
above, our objective is to design an event-triggered com-
munication and control strategy that ensures the expo-
nential stability of the origin. Formally, we seek to syn-
thesize an event-triggered control strategy that recur-
sively determines the sequences of transmission times
{tk}k∈Z>0

and update times {r̃k}k∈Z>0
, along with a

coding scheme for messages and a rule to determine the
number of bits {bk}k∈Z>0 to be transmitted, so that

V (x(t)) ≤ Vd(t),

holds for all t ≥ t0. This objective is especially challeng-
ing given the time-varying nature of the communication
channel and the possibility of intermittent blackouts.

3 Performance- and channel-trigger functions

In order to achieve the control objective of Sec-
tion 2.4 with opportunistic transmissions, we need a
performance-trigger function that tells us how close the
system state is to violating the convergence require-
ment. Bounded precision quantization further requires
us to keep track (through a channel-trigger function) of
the number of bits required at any moment to guarantee
performance at least for a certain period of time. Thresh-
old crossings of these two functions form the primary
basis of our event-triggering mechanism. Further, in or-
der to take care of communication delays, the triggering
mechanism instead uses guaranteed upper bounds on
the performance and channel-trigger functions up to the
maximum possible communication delay for the current
channel state. In this section, we describe each of these
components, thus laying the groundwork to deal with
time-varying communication channels and blackouts.

3.1 Performance-trigger function

We define the performance-trigger function as the ratio
of the quadratic Lyapunov function V and the desired
performance Vd,

hpf(t) ,
V (x(t))

Vd(t)
. (10)
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Note that the control objective is to maintain hpf(t) ≤ 1
at all times. This is why, in general, it is of interest to
characterize the open-loop evolution of the performance-
trigger function. The next result provides an upper
bound on the value of hpf in the future as a function of
the information available now.

Lemma 3.1 (Upper bound on open-loop evolution of
performance-trigger function [Tallapragada and Cortés,
2016]). Given tk ∈ R>0 such that hpf(tk) ≤ 1, then

hpf(τ + tk) ≤ h̄pf(τ, hpf(tk), ε(tk)),

for τ ≥ 0, where

ε(t) ,
de(t)

c
√
Vd(t)

, h̄pf(τ, h0, ε0) ,
f1(τ, h0, ε0)

f2(τ)
, (11)

f1(τ, h0, ε0) , h0 +
Wε0
w + µ

(e(w+µ)τ − 1), f2(τ) , ewτ ,

c ,
W
√
λm(P )

2
√
n‖PBK‖2

, w ,
λm(Q)

λM (P )
− β > 0, µ , ‖A‖2 +

β

2
.

This result motivates the definition of the function

Γ1(h0, ε0) , min{τ ≥ 0 : h̄pf(τ, h0, ε0) = 1,
dh̄pf

dτ
≥ 0},

as a lower bound on the time it takes hpf to evolve to 1
starting from hpf(tk) = h0 with ε(tk) = ε0. The following
result captures some useful properties of this function.

Lemma 3.2 (Properties of the function Γ1 [Tallapra-
gada and Cortés, 2016]). The following holds true,

(i) Γ1(1, 1) > 0.
(ii) If h1 ≥ h0 and ε1 ≥ ε0, then Γ1(h0, ε0) ≥ Γ1(h1, ε1).

In particular, if h0 ∈ [0, 1], then Γ1(h0, ε0) ≥
Γ1(1, ε0).

(iii) For T > 0, if h0 ∈ [0, 1] and

ε0 ≤ ρT (h0) ,
(w + µ)(1− h0)

W (e(w+µ)T − 1)
+ 1, (12)

then Γ1(h0, ε0) ≥ min{Γ1(1, 1), T}.
(iv) For T > 0 and h0 ∈ [0, 1],

Γ1(h0, ε0) ≥ T ⇐⇒ h̄pf(T, h0, ε0) ≤ 1.

The statement with strict inequalities is also true.

3.2 Channel-trigger function

We define the channel-trigger function

hch(t) ,
ε(t)

ρT (hpf(t))
, (13)

where T > 0 is a fixed design parameter. The channel-
trigger function hch depends on the bound on the en-
coding error de through ε. Note that the channel-trigger
function hch through its dependence on de, which evolves
as (6), also jumps at the update times r̃k. Lemma 3.2(iii)
implies that for any time s0 ≥ t0, if hch(s0) ≤ 1, then
hpf(t) ≤ 1 for at least t ∈ [s0, s0 + min{T,Γ1(1, 1)})
even without any transmissions or receptions. Thus, as-
suming that the communication delays are smaller than
min{T,Γ1(1, 1)}, a transmission strategy ( {tk}k∈Z>0

and {bk}k∈Z>0 such that bk = npk) is to ensure that,
for each k, hch(r̃k) ≤ 1 so that Γ1(hpf(r̃k), ε(r̃k)) ≥
min{T,Γ1(1, 1)}. Thus, we now require an upper bound
on the open-loop evolution of hch, which is provided in
the following result. Its proof follows from the defini-
tions of ε and ρT in (11) and (12), respectively, and the
evolution of de described in (6).

Lemma 3.3 (Upper bound on the channel-trigger func-
tion at the update times r̃k). If tk ∈ R>0 is such that
hpf(tk) ∈ [0, 1], then

hch(r̃k) ≤ h̄ch(r̃k − tk, hpf(tk), ε(tk), pk), (14)

where bk = npk bits are transmitted at tk and

h̄ch(τ, h0, ε0, p) ,
‖eAτ‖∞e

β
2 τ ε0

ρT (h̄pf(τ, h0, ε0))
· 1

2p
. (15)

Note that for t, t + τ ∈ [r̃k, tk+1), for any k ∈ Z≥0, we
have hch(t+ τ) ≤ h̄ch(τ, hpf(t), ε(t), 0).

Now, analogous to Γ1, we define

Γ2(b0, ε0, p) , min{τ ≥ 0 : h̄ch(τ, b0, ε0, p) = 1}, (16)

which essentially is an upper bound on the communi-
cation delay r̃k − tk, for which we can still guarantee
hch(r̃k) ≤ 1. Given the interpretation of Γ2, one of the
conditions in our event-triggering rule would be to check
if Γ2 is less than a maximum communication delay. The
next result provides a way to check this in real time.

Lemma 3.4 (Algebraic condition to check value
of Γ2 [Tallapragada and Cortés, 2016]). Let T ◦ > 0. For
any h0 ∈ [0, 1] and ε0 ∈ [0, ρT (h0)], Γ2(h0, ε0, p) > T ◦ if
and only if h̄ch(T ◦, h0, ε0, p) < 1. Further, the statement
with equalities is also true.

The following result provides a lower bound for Γ2 uni-
form in its first two arguments. This bound will be useful
in our event-triggered design later.

Lemma 3.5 (Lower bound on Γ2). If ε0 ∈ [0, ρT (h0)]
then Γ2(h0, ε0, p) ≥ T ∗(p) with

T ∗(p) , min{τ ≥ 0 : g(τ, p) = 1},

g(τ, p) ,
‖eAτ‖∞e

β
2 τ

2p
· e(w+µ)T − 1

e(w+µ)T − e(w+µ)τ
.
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PROOF. From (10) and (12), we have

ρT (h̄pf(τ, h0, ε0))

=
(w + µ)(1− e−wτ (h0 + Wε0

w+µ (e(w+µ)τ − 1)))

W (e(w+µ)T − 1)
+ 1

= ρT (e−wτh0)− e(w+µ)τ − 1

e(w+µ)T − 1
e−wτ ε0

≥ ρT (e−wτh0)
e(w+µ)T − e(w+µ)τ

e(w+µ)T − 1
,

where the inequality follows from the assumption that
ε0 ≤ h0. Now, substituting this lower bound in (15) and
noting the fact that ρT (e−wτh0) ≥ ρT (h0) gives

h̄ch(τ, h0, ε0, p) ≤ g(τ, p).

The claim now follows from the definition (16). 2

4 Characterization of the data capacity

Our study of data capacity here is motivated by the need
of the encoder to know how much data can be transmit-
ted successfully before a channel blackout.

4.1 Data capacity

We denote the number of bits (data) communicated (the
data transmitted by the encoder and completely received
by the decoder) during the time interval [τ1, τ2] under the

feasible sequences {tk}, {pk}, and {∆̃k} (that satisfy (2)
and (3)) as

D(τ1, τ2, {tk}, {∆̃k}, {pk}) , n
kτ2∑
k=k

τ1

pk,

where kτ1 = min{k : tk ≥ τ1} and kτ2 = max{k :

tk + ∆̃k ≤ τ2}. Notice that we count only the bits that
are transmitted and also received (communicated) dur-
ing [τ1, τ2]. We define the data capacity during the time
interval [τ1, τ2] as the maximum data that can be com-
municated during the time interval under all possible
communication delays, i.e.,

D(τ1, τ2) , max
{tk},{pk}

s.t. (3) holds
∀∆k≤∆(tk,pk)

D(τ1, τ2, {tk}, {∆k}, {pk}).

Notice that to maximize the data communicated, it must
be that r̃k = rk (∆̃k = ∆k) for all k ∈ Z>0. This explains
the fact that only the sequences {tk} and {pk} are the op-
timization variables. Next, notice that maximization un-
der all possible communication delays (∆k ≤ ∆(tk, pk))
is the same as maximization under maximum communi-
cation delays (∆k = ∆(tk, pk)). Thus, the definition of

the data capacity reduces to

D(τ1, τ2) , max
{tk},{pk}

s.t. (3) holds

D(τ1, τ2, {tk}, {∆(tk, pk)}, {pk}).

(17)

Note that a greedy approach does not necessarily max-
imize the communicated data. In general, the precise
computation of D(τ1, τ2) involves solving an integer pro-
gram with non-convex feasibility constraints. Given the
difficulty of solving this problem, we seek a class of chan-
nel functionsR and b̄ that are meaningful and yet simple
enough to efficiently compute a lower bound for the data
capacity. To this end, we make the following observation.

Lemma 4.1 (Data capacity under constant communi-
cation rate). Suppose ∀t ∈ [τ1, τ2] (i) R(t) = R ≥ 0
and (ii) p̄(t) ≥ 1 (no blackouts). Then, D(τ1, τ2) =
nbR(τ2 − τ1)c.
The proof of Lemma 4.1 follows directly by noting that
an optimal solution can be constructed by choosing pk =
1 and tk+1 = r̃k = rk for all k ∈ Z≥0. Motivated by this
result, we assume in the sequel that the channel func-
tion R is piecewise constant so that the problem of find-
ing a reasonable lower bound on D(τ1, τ2) is tractable
while also ensuring that the overall problem is meaning-
ful. Note that any givenR can be approximated to an ar-
bitrary degree of accuracy by a piecewise constant func-
tion. In addition, according to (2b), R is a lower bound
on the instantaneous communication rate and it is quite
reasonable to assume it is piecewise constant. Also, note
that p̄ takes integer values and hence by its nature is
always piecewise constant. Specifically, we assume that

R(t) = Rj , ∀t ∈ (θj , θj+1] (18a)

p̄(t) = π̄j , ∀t ∈ (θj , θj+1] (18b)

where {θj}∞j=0 is a strictly increasing sequence of time

instants and π̄j ∈ Z≥0 for each j. We also denote Tj ,
θj+1−θj as the length of the jth time slot Ij , (θj , θj+1].
Again note that identical {θj} sequences for R and p̄ is
not a restriction because one can always refine the se-
quence {θj}. In order to concisely express the constraints
in the optimization problem (17) we assume, without
loss of generality, that τ1 = θj0 and τ2 = θjf , for some
j0, jf ∈ Z≥0. Finally, we choose left-open intervals in
our model (18) since it provides a slight technical advan-
tage in lowering the gap between the optimal and our
sub-optimal solutions.

4.2 Formulation as an allocation problem

Here we show that, for piecewise constant channel func-
tions, we can think of the computation of D(θj0 , θjf ) as
an allocation problem: that of allocating the number of
bits {nφj}, with φj ∈ Z≥0, to be transmitted in the

time slots {Ij} for j ∈ N jf
j0
, {j0, . . . , jf − 1}. For con-

venience, we let φ
jf
j0
, (φj0 , . . . , φjf−1). Given φ

jf
j0

, the
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sequences {tk} and {pk} are determined so that trans-
missions start at the earliest possible time in Ij and the
channel is not idle until all the allocated bits φj are re-
ceived, i.e., tk+1 = r̃k = rk = ∆(tk, pk) during Ij and
{pk} during Ij is any sequence that respects the channel
upper bound π̄j and adds up to φj . Given this correspon-
dance, our forthcoming discussion focuses on expressing
the constraints in the optimization problem in terms of
the φ variables. In the sequel, a standing constraint is
that φj ∈ Z≥0 for each j, unless we mention otherwise.

Maximum bits that may be transmitted: First, we present
the constraint that describes the maximum bound on
the number of bits that may be transmitted in each
slot Ij . Note that according to Lemma 4.1, in the time
slot Ij , nbRjTjc bits could be transmitted and received
within bRjTjc/Rj ≤ Tj units of time. In addition, nπ̄j
more bits could be transmitted during the closed inter-
val [ bRjTjc, θj+1], though these bits are received only in

subsequent time slots. Thus, we have for each j ∈ N jf
j0

nφj ≤
{
nRjTj + nπ̄j , if π̄j > 0

0, if π̄j = 0
(19)

where in the first case we have used the fact that φj ∈
Z≥0 to avoid the use of the floor function.

Reduced channel availability in a time slot due to prior
transmissions: As noted above, if φj > bRjTjc, then
these bits take up some of the time in Ij+1 and possibly
even subsequent slots. Thus, effectively the time avail-
able in Ij+1 and consequently the upper bound on φj+1 is
reduced. Moreover, in general, the number of bits trans-
mitted in Ij has an effect on the number that could be
transmitted in all subsequent intervals either directly or

indirectly. Thus, for each j1, j ∈ N
jf
j0

, we introduce

T̄j1,j(φ
jf
j0

) ,
(
Tj −

j−1∑
i=j1

( φi
Ri
− Ti

))

= θj+1 − θj1 −
j−1∑
i=j1

φi
Ri
. (20)

As we shall see in the following lemma, these functions

determine the available time in slot Ij given φ
jf
j0

.

Lemma 4.2 (Available time in slot Ij). Let T̄j(φ
jf
j0

) be

the time available in the slot Ij given the allocation φ
jf
j0

.
Then,

T̄j(φ
jf
j0

) =
[

min
j1∈N

jf
j0

{T̄j1,j(φ
jf
j0

), Tj}
]

+
.

PROOF. Observe that for any j1, j ∈ N
jf
j0

, θj+1 − θj1
is the total time in the slots j1 to j, while

∑j−1
i=j1

φi
Ri

is

the total time taken by the bits transmitted in slots j1

to j − 1. Thus,
[
T̄j1,j(φ

jf
j0

)
]

+
is an upper bound on the

time available for transmission in the slot Ij . Now, let

j2 = max{i ∈ Z≥0 ∩[j0, j − 1] : T̄i(φ
jf
j0

) = Ti}

Then clearly, {φi}j−1
i=j2

is sufficient to determine

T̄j(φ
jf
j0

). Next, for the allocation φ
jf
j0

, the bits trans-

mitted during the time slots Ii for i ∈ {j2, j − 1}
are received by θj2 +

∑j−1
j=j2

φj
Rj

and thus in deed

T̄j(φ
jf
j0

) =
[
min{T̄j2,j(φ

jf
j0

), Tj}
]

+
. Finally, for each

j1 ∈ Z≥0 ∩[j0, j2 − 1], T̄j1,j(φ
jf
j0

) ≥ T̄j2,j(φ
jf
j0

), which
proves the result. 2

As a consequence of Lemma 4.2, for each j ∈ N jf
j0

and

j1 ∈ Z≥0 ∩[j0, j − 1], consider the constraints

nφj ≤

{
nRj T̄j1,j(φ

jf
j0

) + nπ̄j , if T̄j1,j(φ
jf
j0

) > 0

0 otherwise

(21a)
which we obtain using the same reasoning as in (19)

with Tj replaced by T̄j1,j(φ
jf
j0

). Note that if T̄j1,j(φ
jf
j0

) ≥
Tj , then the constraint (21a) is weaker than (19) and

hence inactive. For T̄j1,j(φ
jf
j0

) ∈ (0, Tj), the constraint
reflects the reduced available time in the time slot Ij and

if T̄j1,j(φ
jf
j0

) ≤ 0, for some j1 ∈ Z≥0 ∩[j0, j − 1], then
it corresponds to the case when the channel is busy for

the whole of the time slot Ij (T̄j(φ
jf
j0

) = 0). Thus (21a)
accurately reflects the effect of possibly reduced available
time during the slot Ij due to prior transmissions.

Counting only the bits transmitted and received during
[θj0 , θjf ]: Finally, since in the computation ofD(θj0 , θjf ),
we are interested in the maximum number of bits that
can be communicated (transmitted and received) during
the time interval, we also require that any bits transmit-
ted during the slot Ij are received before θjf , i.e.,

φj
Rj
≤

{
T̄j(φ

jf
j0

) + θjf − θj+1, if T̄j(φ
jf
j0

) > 0

0, otherwise.

Using the definition of T̄j(φ
jf
j0

), this can be rewritten

giving the following constraints for each j ∈ N jf
j0

and

j1 ∈ Z≥0 ∩[j0, j]

φj
Rj
≤

{
T̄j1,j(φ

jf
j0

) + θjf − θj+1, if T̄j1,j(φ
jf
j0

) > 0

0, otherwise.

(21b)
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Then, the data capacity is given as

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (19), (21) hold

n

jf−1∑
j=j0

φj . (22)

Ignoring the fact that this is an integer program, the
constraints (21) still make the problem combinatorial.

4.3 Efficient approximation of data capacity

The following result is the basis for the construction of
a sub-optimal and efficient solution to the problem (22).

Lemma 4.3 (Bound on “channel variation”). If there
exists J ∈ Z≥0 such that

π̄j
Rj

<

i=j+1+J∑
i=j+1

Ti, ∀j ∈ N jf
j0
, (23)

then, for any j ∈ N jf
j0

, any bits transmitted in time slot Ij
would be received strictly before the end of the slot Ij+1+J .

PROOF. The term π̄j/Rj is the time it takes a packet
of size up to nπ̄j bits transmitted during Ij to reach
the decoder. Thus, the claim follows by noting that
any bits transmitted during Ij would be received before
t = θj+1 + (π̄j/Rj). 2

Lemma 4.3 relates the three sequences of parameters,
{Rj}, {π̄j} and {Tj}, that define the channel state at
any given time. The result may be interpreted as the
imposition of a bound on how often there is a change in
the channel state as measured by the time slot lengths
Tj . The parameter J may be interpreted as a uniform
upper bound on the number of consecutive time slots
that may be fully occupied due to a prior transmission.

4.3.1 Guaranteed channel availability in each time slot

The case of J = 0 is of special interest and will be ad-
dressed next. This case is interesting because the con-
straints (21) reduce to a simpler form, as presented in
the following result, and using which we can compute a
good sub-optimal solution subsequently.

Lemma 4.4 (Data capacity in the case of J = 0). Sup-

pose the channel is such that J = 0 for all j ∈ N jf
j0

.

Then, the constraints (21a) reduce to

nφj + nRj

j−1∑
i=j1

φi
Ri
≤ nRj(θj+1 − θj1) + nπ̄j , (24a)

for each j ∈ N jf
j0

and j1 ∈ Z≥0 ∩[j0, j − 1] while the

constraints (21b) reduce to

jf−1∑
i=j1

φi
Ri
≤ θjf − θj1 , (24b)

for each j1 ∈ Z≥0 ∩[j0, jf − 1]. The data capacity is

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (19), (24) hold

n

jf−1∑
j=j0

φj . (25)

PROOF. Indeed, if J = 0 then for each j and j1 ∈ N
jf
j0

,

T̄j1,j(φ
jf
j0

) > 0 and hence T̄j > 0 also. Thus, the con-

straints (21a) reduce to nφj ≤ nRj T̄j1,j(φ
jf
j0

) + nπ̄j ,

which after using (20) give us (24a). Note that
Lemma 4.3, with J = 0, guarantees that the con-
straints (21b) are satisfied for all j ∈ {j0, . . . , jf − 2},
while for jf − 1 (21b) reduce to

φjf−1

Rjf−1
≤ T̄j1,j(φ

jf
j0

),

which by expanding and rearranging the terms, we
get the constraints (24b). Data capacity (25) follows
from (22) and the equivalence of (21) and (24). 2

Note that for J = 0 all the constraints, (19) and (24) are
linear, though φj are still restricted to be integers. This
brings us to the next result.

Proposition 4.5 (A sub-optimal solution and quantifi-
cation of sub-optimality in the case of J = 0). Suppose the
channel is such that J = 0 for all j ∈ J = {j0, . . . , jf}.
Let Ds(θj0 , θjf ) , n

∑jf−1
j=j0

φNj where

φN , bφrc , (bφrj0c, . . . , bφ
r
jf−1c), (26)

φr = argmax
φj∈R≥0, ∀j∈N

jf
j0

s.t. (19), (24) hold

jf−1∑
j=j0

φj .

Then φN is a sub-optimal solution to (25), i.e.
Ds(θj0 , θjf ) ≤ D(θj0 , θjf ) and

D(θj0 , θjf )−Ds(θj0 , θjf )

≤ n|{j ∈ Z≥0 ∩[j0, jf−1] : π̄j > 0}|.

PROOF. Clearly, φN satisfies the constraints (19)
and (24) since φr does and for each j, φNj ≤ φrj and

φN ∈ Z≥0. Thus, φN is a sub-optimal solution to (25).
The sub-optimality bound follows from the fact that for
any a ∈ R, (a− bac) ∈ [0, 1). 2

8



4.3.2 No guaranteed channel availability

If J > 0, we forgo optimality in favor of an easily com-
putable lower bound of the data capacity. With a slight
abuse of notation, we let

φNj = bRj(θj+1 − θj)c, j ∈ Z≥0,

which is the number of bits that can be communicated
(transmitted and received) during the time slot Ij =
[θj , θj+1). Hence, {φNj }j∈Z≥0

is a feasible solution and,
again with an abuse of notation, we denote

Ds(θj0 , θjf ) , n
jf−1∑
j=j0

φNj ,

which is a sub-optimal lower bound of the data capacity.

4.4 Computing data capacity in real time

As mentioned earlier, we want the encoder to compute
a lower bound for the data capacity up to the end of
the next blackout period. However, the computation of
Ds(τ1, τ2) in the case of J = 0 involves solving a lin-
ear program and hence may not be suitable for real-time
computation. Thus, given D(θj0 , θjf ) (or Ds(θj0 , θjf )),
we propose a simpler procedure to compute a lower
bound onD(t, θjf ) (orDs(t, θjf )) for any t ∈ [θj0 , θj0+1).
We present the procedure in the following result.

Proposition 4.6 (Real-time computation of data ca-
pacity). Let φ∗ (or φN ) be any optimizing solution to
D(θj0 , θjf ) (or Ds(θj0 , θjf )). Let

D̂(t, θjf ) ,
[
n
⌊
φ∗j0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φ∗j

(27)

D̂s(t, θjf ) ,
[
n
⌊
φNj0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φNj ,

(28)

for any t ∈ [θj0 , θj0+1). Then, 0 ≤ D(t, θjf )−D̂(t, θjf ) ≤
n and 0 ≤ Ds(t, θjf )− D̂s(t, θjf ) ≤ n.

PROOF. Here we prove only the statements about
D(t, θjf ) as the proof of the statements for Ds(t, θjf )
are exactly analogous to those of D(t, θjf ). First of all
notice that for any τ1 < τ2 < τ3

D(τ1, τ3) ≥ D(τ1, τ2) +D(τ2, τ3). (29)

Now, let T0 = θj0 +
φ∗
j0

Rj0
. Clearly, from the optimality of

D(θj0 , θjf ), it follows that

D(θj0 , T0) = nφ∗j0 , D(T0, θjf ) = n

jf−1∑
j=j0+1

φ∗j . (30)

Thus, for the special choice of T0, we have the stronger
relation D(θj0 , θjf ) = D(θj0 , T0) + D(T0, θjf ). Now, us-
ing (29) twice we get

D(θj0 , θjf ) ≥ D(θj0 , t) +D(t, θjf )

≥ D(θj0 , t) +D(t, T0) +D(T0, θjf ),

which implies

D(θj0 , θjf )−D(θj0 , t) ≥ D(t, θjf ) ≥ D(t, T0)+D(T0, θjf ).

Notice that D(t, T0) + D(T0, θjf ) = D̂(t, θjf ). Now, we
compute the difference between the upper and lower
bounds on D(t, θjf )

D(θj0 , θjf )−D(θj0 , t)− D̂(t, θjf )

= D(θj0 , T0) +D(T0, θjf )−D(θj0 , t)− D̂(t, θjf )

= n [Rj0(T0 − θj0)− bRj0(t− θj0)c − bRj0(T0 − t)c]
= n [−bRj0(t− θj0)c − b−Rj0(t− θj0)c] ≤ n,

where, in arriving at the second last relation, we have
used bRj0(T0 − t)c = bRj0(T0 − θj0)−Rj0(t− θj0)c and
the fact that Rj0(T0 − θj0) = φ∗j0 is an integer. The
statement now follows. 2

The significance of Proposition 4.6 is that it provides
a method to reuse a previously computed solution to
find a tight sub-optimal solution to the data capacity
problem in real-time. The implication is that, if one has
the computational resources, then one may solve the full
optimization problem D(θj1 , θj2) for j1, j2 ∈ Z≥0 and
use the above result to find a tight sub-optimal solution
D̂(t, θj2) for any t ∈ [θj1 , θj1+1].

5 Event-triggered stabilization

In this section, we address the problem of event-triggered
control under a time-varying channel. Section 5.1 ad-
dress the case with no channel blackouts. Section 5.2
builds on this design and analysis to deal with the pres-
ence of channel blackouts.

5.1 Control in the absence of channel blackouts

In the case of no channel blackouts, the encoder may
choose to transmit at any time and, in addition, we as-
sume the channel rate R is sufficiently high at all times
(the exact technical assumption is specified later) so that
there is no need to resort to the computation of data
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capacity. For this reason, we are able to consider arbi-
trary (i.e., not necessarily piecewise constant) functions
t 7→ R(t). Note that, by its discrete nature, the function
t 7→ p̄(t) is always piecewise constant. For any p ∈ Z≥0,
let

TM (p) = σmin{Γ1(1, 1), T, T ∗(p)}, (31)

where σ ∈ (0, 1) is a design parameter, T is the param-
eter chosen in (12) and T ∗ is as defined in Lemma 3.5.
As we show in the sequel, if TM (p) is an upper bound
on the communication delay when b = np bits are trans-
mitted, then it is sufficient to design an event-triggering
rule that guarantees the control objective is met.

In the presence of communication delays, we need to
make sure (i) that the control objective is not violated
between a transmission and the resulting control update
and (ii) that at the control update times, the encoding
error is sufficiently small to ensure future performance.
To this end, we define

L1(t) , h̄pf (TM (p̄(t)), hpf(t), ε(t)) , (32a)

L2(t) , h̄ch (TM (p̄(t)), hpf(t), ε(t), p̄(t))) , (32b)

to take care of each of these requirements. If up to b̄ = np̄
bits are transmitted at time t, then L1(t) provides an
upper bound on the performance-trigger function hpf at
the reception time which would be less than t+TM (p̄(t)),
while L2(t) provides an upper bound on the channel-
trigger function hch if the control is updated as soon as
the packet is received.

Theorem 5.1 (Event-triggered control in the absence of
blackouts). Suppose t 7→ p̄(t) is piecewise constant, as
in (18b), with a uniform lower bound 1 (i.e., no black-
outs) and a uniform upper bound pmax. Assume that

R(t) ≥ p

TM (p)
, ∀p ∈ {1, . . . , p̄(t)}, ∀t. (33)

Consider the system (1) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈Z≥0

determined recursively by

tk+1 = min{t ≥ r̃k : L1(t) ≥ 1 ∨ L1(t+) ≥ 1 ∨
L2(t) ≥ 1 ∨ L2(t+) ≥ 1}. (34)

Let {rk}k∈Z≥0
and {r̃k}k∈Z≥0

be given as r̃0 = r0 = t0
and r̃k = rk ≤ tk+∆k for k ∈ Z>0. Assume the encoding
scheme is such that (6) is satisfied for all t ≥ t0. Further
assume that L1(t0) ≤ 1, L2(t0) ≤ 1 and that (9) holds.
Let pk be

pk,min{p ∈ Z>0 : h̄ch

(
p

R(tk)
, hpf(tk), ε(tk), p

)
≤ 1}.

(35)
Then, the following hold:

(i) p1 ≤ p̄(t1). Further for each k ∈ Z>0, if pk ∈
Z>0 ∩[pk, p̄(tk)], then pk+1 ≤ p̄(tk+1).

(ii) the inter-transmission times {tk+1 − tk}k∈Z>0 and
inter-update times {r̃k+1− r̃k}k∈Z>0 have a uniform
positive lower bound,

(iii) the origin is exponentially stable for the closed-loop
system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

PROOF. We start by establishing two claims that we
later invoke to establish the result.

Claim (a): First, we show that for any t ≥ t0, if
hpf(t) ≤ 1 and hch(t) ≤ 1 then L1(s) < 1 and
L2(s) < 1, with s = t and s = t+. Indeed, if
hpf(t) ≤ 1 and hch(t) ≤ 1, then Lemma 3.2 says
Γ1(hpf(t), ε(t)) ≥ min{Γ1(1, 1), T}. Then, from (31),
(32a) and from Lemma 3.2(iv), we see that the claim
is true for L1. Again, the conditions hpf(t) ≤ 1 and
hch(t) ≤ 1 along with Lemma 3.5 guarantee that for any
p ∈ Z≥0, Γ2(hpf(t), ε(t), p) ≥ T ∗(p). Thus, (31), (32b)
and Lemma 3.4 imply that the claim is true for L2.

Claim (b): Next, we claim that for any k ∈ Z≥0, if
hpf(r̃k) ≤ 1 and hch(r̃k) ≤ 1, then Li(tk+1) ≤ 1, for
i ∈ {1, 2}. If the signal p̄ is constant during [r̃k, tk+1],
the claim immediately follows from Claim (a) and (34).
Now, let us suppose there exists θ ∈ [r̃k, tk+1) at which
time p̄ is discontinuous, i.e., θ ∈ {θj}j∈Z>0 as defined
by (18b). Then, from (34), it is clear that, for i ∈ {1, 2},
Li(θ) < 1 and Li(θ+) < 1. This implies that there ex-
ists an interval Iθ = [θ, θ + ε) such that Li(s) < 1 for
each s ∈ Iθ and i ∈ {1, 2}. Then, by continuity of Li on
each interval (θj , θj+1] and by invoking induction over
the discontinuity times of p̄, we can conclude that the
claim is true.

Now, we show that (i) holds. The facts L1(t0) ≤ 1 and
L2(t0) ≤ 1 together with the arguments used above en-
sure that L1(t1) ≤ 1 and L2(t1) ≤ 1. Then, (35) ensures
that p1 ≤ p̄(t1). Now, for each k ∈ Z>0, if L1(tk) ≤ 1
and L2(tk) ≤ 1 and pk ∈ Z>0 ∩[pk, p̄(tk)] then

r̃k − tk = rk − tk ≤
pk

R(tk)
≤ p̄(tk)

R(tk)
≤ TM (p̄(t)), (36)

where the last inequality follows from (33). As a result
of (36), we see that hpf(r̃k) ≤ 1 and hch(r̃k) ≤ 1. Then,
invoking Claim (b), we see that L2(tk+1) ≤ 1, from
which it follows that pk+1 ≤ p̄(tk+1), which proves (i).

Now, we prove (ii) - the main idea here is that for each
k ∈ Z≥0, either r̃k − tk or tk+1 − r̃k is sufficiently large
to guarantee (ii). To show this, we pick a σ1 ∈ (0, 1) and
partition the set Z≥0 into two subsets G and L defined
as follows

G = {k ∈ Z≥0 : r̃k − tk > σ1TM (pk)},
L = {k ∈ Z≥0 : r̃k − tk ≤ σ1TM (pk)}.

Then, it is clear that {tk+1− tk}k∈G and {r̃k+1− r̃k}k∈G
are uniformly lower bounded by σ1TM (1). Thus, all that
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remains is to handle the set L. Recall that the assump-
tions and the design are such that, for each k ∈ Z≥0,
we guarantee hpf(r̃k) ≤ 1 and hch(r̃k) ≤ 1 for r̃k ≤
tk + TM (pk). As a result, and due to the fact that {pk}
is upper bounded by pmax, there exist h0

pf , h
0
ch ∈ (0, 1)

such that hpf(r̃k) ≤ h0
pf and hch(r̃k) ≤ h0

ch for all k ∈ L.

Thus, from Claim (a) and (34), it is clear that for any
k ∈ L, tk+1− r̃k ≥ TL, where TL is a lower bound on the
time it takes hpf to evolve from h0

pf to 1 and on the time

it takes hch to evolve from h0
ch to 1. Finally, by the fact

that both h0
pf and h0

ch are strictly less than 1, it follows

that TL > 0, which proves (ii).

Regarding (iii), we have already seen that for any k ∈
Z≥0, hpf(t) ≤ 1 for all t ∈ [tk, r̃k]. Further, (34) also
ensures that hpf(t) ≤ 1 for all t ∈ [r̃k, tk+1]. Therefore
hpf(t) ≤ 1 (V (x(t) ≤ Vd(t)) for all t ≥ t0, which com-
pletes the proof. 2

The interpretation of the three claims of the result is as
follows. Claim (i) essentially states that if the number of
bits transmitted in the past is according to the given rec-
ommendation, then in the future, the sufficient number
of bits bk = npk to guarantee continued performance will
respect the time-varying channel constraints. Claim (ii)
is sufficient to guarantee non-Zeno behavior and claim
(iii) states that indeed the control objective is met.

Remark 5.2 (Requirements on the knowledge of chan-
nel information). Note that in the scenario with no chan-
nel blackouts, the encoder needs to know the channel in-
formation given by R and p̄ only over a time horizon of
length δt. Further, if a uniform lower bound on t 7→ p̄(t)
greater than or equal to 1 is known, then it is sufficient
for the encoder to know only the channel information
at the current time and use this bound to schedule the
transmissions (however, this might result in more fre-
quent transmissions with smaller packet sizes). •

5.2 Control in the presence of channel blackouts

Here, we address the scenario of channel blackouts build-
ing on our developments in Section 5.1. The main diffi-
culty comes from the fact that in the presence of black-
outs, the channel might be completely unavailable. Thus,
the event-triggering condition not only needs to be based
on the functions L1 and L2 in (32), but also on the avail-
able data capacity up to the next blackout.

Throughout the section, we assume both R and p̄ are
piecewise constant functions, as in (18) and, without
loss of generality, that time slots with p̄ = 0 are not
consecutive. We let Bk , (θjk , θjk+1] denote the kth

blackout slot, with k ∈ Z>0. Also, for any t ≥ t0, we let

τl(t) , min{s ≥ t : p̄(s) = 0},
τu(t) , min{s ≥ τl(t) : p̄(s) > 0},

give, respectively, the beginning and the end times of

the next channel blackout slot from the current time t.
When there is no confusion, we simply use τl and τu,
dropping the argument t. Hence, for t ∈ [t0, θj1), we
have τl(t) = θj1 and τu(t) = θj1+1. Similarly, for any
k ∈ Z>0 and t ∈ (θjk , θjk+1

], we have τl(t) = θjk+1
and

τu(t) = θjk+1+1. At time t, the length of the next chan-

nel blackout slot, Tb(t) , τu(t) − τl(t), determines a
sufficient upper bound on the encoding error de(τl), or
equivalently ε(τl), for non-violation of the control objec-
tive during the blackout or immediately subsequent to
it. We quantify this upper bound in the following result.

Lemma 5.3 (Upper bound on required ε before black-
out). For t ∈ [t0,∞), suppose

ε(τl(t)) ≤ εr(t) , min

{
(ewTb(t) − 1)(w + µ)

W (e(w+µ)Tb(t) − 1)
,

1

eµ̄Tb(t)

}
,

(37)

where µ̄ , ‖A‖∞ + β
2 . If hpf(τl(t)) ≤ 1, then hpf(s) ≤ 1

for all s ∈ [τl(t), τu(t)] and hch(τu(t)) ≤ 1 (in particular
ε(τu(t)) ≤ 1).

PROOF. From Lemma 3.2, we know Γ1(hpf(τl), ε(τl)) ≥
Γ1(1, εr(t)). So, we need to show that Γ1(1, εr(t)) ≥ Tb(t)
or, as per Lemma 3.2(iv), that h̄pf(Tb(t), 1, εr(t)) ≤ 1.
Direct computation shows that this is indeed the case,
which implies hpf(s) ≤ 1 for all s ∈ [τl, τu] by the
definition of Γ1. The second claim follows from

hch(τu) ≤ h̄ch(Tb(t), 1, εr(t), 0)

= ‖eATb(t)‖∞e
β
2 Tb(t)εr(t) ≤ eµ̄Tb(t)εr(t) ≤ 1. �

The ability to ensure that ε(τl) is sufficiently small is de-
termined by the data capacity D(t, τl). To have a real-
time implementation, we make use of the sub-optimal
lower bound D̂s(t, τl) instead. However, notice that max-
imizing the data throughput and satisfying the primary
control goal of exponential convergence at a desired rate
may not be compatible in general - if maximizing data
throughput is the only goal, then certain transmissions
might be delayed and this might lead to the violation of
the primary control objective. Conversely, if the control
objective is the only goal, this might lead to an ineffi-
cient use of the channel that could be detrimental later.
Thus, to still be able to use the intuition and the build-
ing blocks from Section 5.1, we need to impose a time-
varying artificial bound on the allowed packet size in
place of p̄(t) that prevents the system from affecting the
data capacity until the next blackout. To this end, we
store in the variable Pj the value of φNj , where φN is as
defined in Section 4.3 for Ds(θj , τl(θj)). Then, we define

Φτl(t) , [bPj −Rj(t− θj)c]+ , t ∈ (θj , θj+1]. (38)

We notice from (28) that nΦτl(t) is the optimal number
of bits to be transmitted during (t, θj+1] to obtain the
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sub-optimal data capacity D̂s(t, τl(t)). Note that some
of nΦτl(t) bits may be received after θj+1. Now, we let

ψτl(t) , min{p̄(t),Φτl(t)} (39)

be the artificial bound on the packet size for transmis-
sions. Notice that Φτl(t) may at times be zero, even when
p̄(t) > 0, which means letting ψτl(t) be the bound on
packet size may itself introduce artificial blackouts. How-
ever, we can state how long artificial blackouts may be,
as the next result shows.

Lemma 5.4 (Upper bound on the length of artificial

blackouts). Let B̃j , {t ∈ Ij = (θj , θj+1] : ψτl(t) = 0}.
Then, for each j ∈ Z≥0, B̃j is an interval and if π̄j > 0,

then the length of B̃j is less than 2/Rj = 2/R(θj+1).

PROOF. The fact that B̃j is an interval follows directly
from the definition (38). If π̄j > 0, then at any time
t ∈ Ij , p̄(t) = π̄j > 0. Thus, if ψτl(t) = 0 for some t ∈ Ij ,

Pj −Rj(t− θj) = Pj −Rj(t+ Tj − θj+1) < 1

=⇒ (θj+1 − t) <
1

Rj
+

(
Tj −

Pj
Rj

)
<

2

Rj
,

where the last inequality follows from the optimality of
Ds(θj , τl(θj)) because otherwise, if RjTj −Pj ≥ 1, then
the optimality of Pj would imply that Pj = Pj + 1,
which is a contradiction. This proves the result. 2

With this in place, we define functions analogous to L1

and L2 to, respectively, monitor the compliance with the
control objective and ensure the encoding error is suffi-
ciently small at the control update times to ensure future
performance. In addition, we define one more function
to capture the effect of the data capacity,

L̃1(t) , h̄pf (T (t), hpf(t), ε(t)) , (40a)

L̃2(t) , h̄ch (T (t), hpf(t), ε(t), ψ
τl(t)) , (40b)

L3(t, ε) , n log2

(
eµ̄(τl(t)−t)ε

εr(t)

)
− σ1D̂s(t, τl(t)), (40c)

where σ1 ∈ (0, 1) is a design parameter and

T (t) ,

{
TM (ψτl(t)), if ψτl(t) ≥ 1

2
R(t) , if ψτl(t) = 0.

Clearly, we cannot satisfactorily control the system for
arbitrary channel characteristics with arbitrary channel
blackout slots. The following result presents a sufficient
condition on the length of the blackout slots and the
available data capacity.

Lemma 5.5 (Control feasibility in the presence of black-
outs). Suppose t 7→ R(t) and t 7→ p̄(t) are piecewise
constant functions as in (18). Let {(θjk , θjk+1]}k∈Z>0

be a sequence of channel blackout slots. Assume that
p̄(t0) > 0, L3(t0, ε(t0)) ≤ 0 and, for each k ∈ Z>0, as-
sume L3(θjk+1, 1) ≤ 0. Then, there exists a transmission
policy that ensures ε(θjk) ≤ εr(θjk) for each k ∈ Z>0.

PROOF. Notice from the definition of ε(t) in (11)
and (6) that for any k ∈ Z≥0 and s ∈ [rk, rk+1)

ε(s) =
‖eA(s−tk)‖∞e(β/2)(s−tk)ε(t−k )

2pk
≤
eµ̄(s−tk)ε(t−k )

2pk
,

which when recursively used gives us

ε(τl(t)) ≤
eµ̄(τl(t)−t)ε(t)

2(B(t,τl(t))/n)
,

where B(t, τl(t)) is the total number of bits communi-
cated (transmitted and received) during the time inter-
val [t, τl(t)]. In other words, for any t ≥ t0, if

B(t, τl(t)) ≥ n log2

(
eµ̄(τl(t)−t)ε(t)

εr(t)

)
(41)

ensures that ε(τl(t)) ≤ εr(τl(t)). Initially, L3(t0, ε(t0)) ≤
0 ensures that there is enough data capacity, i.e.,
B(t0, θj1) ≤ D̂s(t0, θj1) to ensure (41). Lemma 5.3 guar-
antees that for any k ∈ Z>0, if ε(θjk) ≤ εr(θjk) then
ε(θjk+1) ≤ 1. The final claim simply follows from induc-
tion and the use of the fact that L3(θjk+1, 1) ≤ 0 for
each k ∈ Z≥0. 2

Now we are ready to present our next main result.

Theorem 5.6 (Event-triggered control in the presence
of blackouts). Suppose t 7→ R(t) and t 7→ p̄(t) satisfy the
assumptions of Lemma 5.5. In addition, assume that p̄ is
uniformly upper bounded by pmax ∈ Z>0. Also, assume

R(t) ≥ (p+ 2)

TM (p)
, ∀p ∈ {1, . . . , pmax}, ∀t. (42)

Consider the system (1) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈Z≥0

determined recursively by

tk+1 = min
{
t ≥ r̃k : ψτl(t) ≥ 1 ∧(
max{L̃1(t), L̃1(t+), L̃2(t), L̃2(t+)} ≥ 1

max{L̃3(t), L̃3(t+)} ≥ 0
)}
, (43)

where L̃3(t) , L3(t, ε(t)). Let {rk}k∈Z≥0
be given as r̃0 =

r0 = t0 and rk ≤ tk + ∆k for k ∈ Z>0. Let the update
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times {r̃k}k∈Z≥0
be given as r̃0 = r0 and for k ∈ Z>0

r̃k = min{t ≥ rk : ψτl(t) ≥ 1 ∨ p̄(t) = 0}. (44)

Assume the encoding scheme is such that (6) is satisfied

for all t ≥ t0. Further assume that L̃1(t0) ≤ 1, L̃2(t0) ≤ 1
and that (9) holds. Let pk be given by

pk,min{p ∈ Z>0 : h̄ch (TM (p), hpf(tk), ε(tk), p) ≤ 1}.
(45)

Then, the following hold:

(i) p1 ≤ ψτl(t1). Further for each k ∈ Z>0, if pk ∈
Z>0 ∩[pk, ψ

τl(tk)], then pk+1 ≤ ψτl(tk+1).

(ii) the inter-transmission times {tk+1 − tk}k∈Z>0
and

inter-update times {r̃k+1− r̃k}k∈Z>0 have a uniform
positive lower bound,

(iii) the origin is exponentially stable for the closed-loop
system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

PROOF. Notice that (43) ensures that for any k ∈
Z>0, ψτl(tk) ≥ 1. Now, notice from (44) that for any
k ∈ Z>0, r̃k > rk if and only ifψτl(rk) = 0 and p̄(rk) ≥ 1.
That is, r̃k > rk if and only if rk ∈ (τ1, τ2], an artificial
blackout interval. In all other cases, r̃k = rk. Thus, it
follows from Lemma 5.4 that r̃k − rk ≤ 2

R(rk) for all

k ∈ Z>0. Hence, for all k ∈ Z>0, we have

r̃k − tk = (r̃k − rk) + (rk − tk) ≤ 2

R(rk)
+

pk
R(tk)

=⇒ r̃k − tk ≤

{
pk

R(tk) , if r̃k = rk
(pk+2)

min{R(tk),R(rk)} , if r̃k > rk.

In either case, it follows from (42) that r̃k − tk ≤
TM (pk) ≤ TM (ψτl(tk)) for all k ∈ Z>0. Thus, claims (a)
and (b) in the proof of Theorem 5.1 hold here also.

Next observe that, by the construction of t 7→ ψτl(t)

in (39), we have D̂s(r̃k, τl) ≥ D̂s(tk, τl) − npk. Next,
noting that

ε(r̃k) = ‖eA∆̃k‖∞e
β
2 ∆̃k

ε(tk)

2pk
≤ eµ̄∆̃k

ε(tk)

2pk
,

we have

n log2

(
eµ̄(τl−r̃k)ε(r̃k)

εr

)
≤ n log2

(
eµ̄(τl−tk)ε(tk)

εr

)
− npk

≤ σ1D̂s(tk, τl)− npk ≤ σ1(D̂s(tk, τl)− npk)

≤ σ1D̂s(r̃k, τl),

where the second inequality follows from L̃3(tk) ≤ 0 and
the third inequality follows from σ1 ∈ (0, 1). Therefore,

L̃3(r̃k) ≤ 0. Thus, using induction, the proposed trans-
mission policy ensures that by the beginning of the next

blackout, t = τl, ε(τl) ≤ εr. Lemma 5.3 then implies
that, at the end of blackout, we have hch(τu) ≤ 1 and
hpf(s) ≤ 1 for all s ∈ [τl, τu]. Hence, claim (i) follows as
in the proof of Theorem 5.1(i) and using induction over
the sequence of blackout slots.

Claim (ii) also follows by arguments analogous to the
proof of Theorem 5.1(ii).

Finally, we prove (iii). Notice (43) ensures that

L̃1(tk) ≤ 1 for any k ∈ Z>0, which as a conse-
quence of Lemma 3.2(iv) means that hpf(t) ≤ 1 for all
t ∈ [tk, r̃k] for any k ∈ Z>0. Now, for t ∈ [r̃k, tk+1)
for k ∈ Z≥0, there are three cases. Case I: ψτl(t) ≥ 1.

In this case, hpf(t) ≤ 1 because L̃1(t) < 1. Case II:
ψτl(t) = 0 and p̄(t) ≥ 1, which corresponds to
a time during an artificial blackout (τ1, τ2]. Recall
from Lemma 5.4 that τ2 − τ1 ≤ 2/R(τ1), which us-
ing (42) then implies τ2 − τ1 ≤ TM (ψτl(τ−1 )). Next,
by design (44), r̃k /∈ (τ1, τ2] and hence r̃k < τ1 and
no transmission is in progress during (τ1, τ2], which

must mean L̃1(τ−1 ) < 1. Lemma 3.2(iv) then implies
Γ1(hpf(τ1), ε(τ1)) ≥ TM (ψτl(τ−1 ) ≥ τ2 − τ1. Therefore,
hpf(t) ≤ 1 for all t ∈ [τ1, τ2). Case III: ψτl(t) = p̄(t) = 0,
which corresponds to a time in a channel blackout slot.
We have already seen in the proof of (i) that the pro-
posed transmission policy ensures hpf(s) ≤ 1 for all
s ∈ [τl, τu] for any channel black out [τl, τu]. Therefore,
hpf(t) ≤ 1 (V (x(t)) ≤ Vd(t)) for t ≥ t0. 2

Claim (i) in the result may be interpreted as the satis-
faction of the constraints imposed by the channel. The
use of ψτl in (43) and (44) also ensures that the data
capacity is not lowered at any time in the future due to
past transmissions. The interpretation of claims (ii) and
(iii) is the same as in Theorem 5.1.

Remark 5.7 (Requirements on the knowledge of chan-
nel information). In the scenario with channel blackouts,
the encoder needs to know, at t ∈ [t0,∞), the time at
which the next blackout will occur τl(t) and its duration
Tb(t), from which εr(t) may be computed. The encoder
also needs to know the channel functions s 7→ R(s) and
s 7→ p̄(s) for all s ∈ [t, τl(t)]. Using this information, the
encoder can compute the lower bound on the remaining
data capacity by computing D̂s(t, τl(t)). •

6 Simulation results

In this section we illustrate the execution of our event-
triggered design of Section 5. The simulation results we
present correspond to the strategy described in Theo-
rem 5.6 on the system given by (1) with

A =

[
1 −2

1 4

]
, B =

[
0

1

]
, K =

[
2 −8

]
.
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The plant matrix A has eigenvalues at 2 and 3, while the
control gain matrix K places the eigenvalues of the ma-
trix Ā = A + BK at −1 and −2. We select the matrix
Q = I2, for which the solution to the Lyapunov equa-
tion (7) is

P =

[
2.2500 −0.9167

−0.9167 0.5833

]
.

The desired control performance is specified by

Vd(t0) = 1.2V (x(t0)), β = 0.8
λm(Q)

λM (P )
.

We set a = 1.2 in (9), so that W > 0, and assume,
without loss of generality, t0 = 0. The initial condition
is x(t0) = (6,−4), and the encoder and decoder use the
information

x̂(t0) = (0, 0), de(t0) = 1.5‖x(t0)− x̂(t0)‖∞.

In (40), we chose σ1 = 0.8. For these parameters,
Γ1(1, 1) = 0.5699. We select T = 0.1 × Γ(1, 1) and
TM (p) = 0.06 × min{Γ(1, 1), T, T ∗(p)}. The time-
varying channel functions np̄ and R are plotted in
Figures 1(a) and 1(b) respectively with dashed lines.
Figure 1(a) also shows the times of transmission and
the number of bits transmitted on each one. Note that,
in this simulation, the maximum possible number of
bits are transmitted on each transmission. Figure 2(a)
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Fig. 1. (a) shows the transmission times, the number of
bits transmitted on each transmission and the time-varying
function np̄ (dashed line). The three intervals, (4.88, 6.88],
(11.52, 13.52] and (17.05, 19.05], with p̄ = 0 are the black-
outs. (b) shows the time-varying function R.

shows the evolution of V and Vd and it is clear that the
control goal is satisfied. Notice that, just before a black-
out, V decreases sharply in anticipation to ensure that
the control goal is not violated during the blackout. Fig-
ure 2(b) shows the (interpolated) cumulative number
of bits transmitted as a function of time. We see that
there is a rush of transmissions just prior to 4.88 units
of time, which we see from Figure 1(a) is the beginning
of the first blackout. The number of transmissions in
the 20 units of time in the simulation are 16, with the
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Fig. 2. Evolution of (a) V and Vd and (b) total number of
bits transmitted, the inset shows that the transmission times
are separated.

average inter-transmission interval as 1.26 and the min-
imum as 0.002. From Figure 2(b), we also see that on
an average 11.5 bits are transmitted per unit time.

7 Conclusions

We have addressed the problem of event-triggered con-
trol of linear time-invariant systems under time-varying
rate-limited communication channels. The class of time-
varying channels we consider is broad enough to include
intermittent occurrence of channel blackouts, which are
intervals of time when the communication channel is
unavailable for feedback. We have designed an event-
triggered control scheme that, using prior knowledge of
the channel information, guarantees the exponential sta-
bilization of the system at a desired convergence rate,
even in the presence of intermittent channel blackouts.
Key enablers of our design are the definition and analy-
sis of the data capacity, which measures the maximum
number of bits that can be communicated over a given
time interval through one or more transmissions. We
have also provided an efficient real-time algorithm to
lower bound the data capacity for a time-slotted model
of channel evolution. An important assumption we make
is that the encoder has knowledge of the channel evo-
lution sufficiently ahead of time so that it can plan its
transmission schedule. In practice, the channel will have
to be estimated, and only uncertain knowledge of its fu-
ture evolution may be available. Nevertheless, we showed
that the problem of estimating the data capacity, which
is needed in order to design a meaningful mechanism to
guarantee exponential stability, is challenging even as-
suming full channel information. Future work will ex-
plore the reduction of the conservatism of the proposed
design, scenarios with bounded disturbances, a stochas-
tic model of channel evolution, and the trade-off between
the available information pattern at the encoder and the
ability to perform event-triggered control.
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