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Abstract 

In this paper, we propose the plausibility transformation method for translating 

Dempster-Shafer (D-S) belief function models to probability models, and describe some 

of its properties. There are many other transformation methods used in the literature for 

translating belief function models to probability models. We argue that the plausibility 

transformation method produces probability models that are consistent with D-S 

semantics of belief function models, and that, in some examples, the pignistic 

transformation method produces results that appear to be inconsistent with Dempster’s 

rule of combination. 
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1 Introduction 

Bayesian probability theory and the Dempster-Shafer (D-S) theory of belief functions are two 

distinct calculi for modeling and reasoning with knowledge about propositions in uncertain 
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domains. Bayesian networks and Dempster-Shafer belief networks both provide graphical and 

numerical representations of uncertainty. While these calculi have important differences, their 

underlying structures have many significant similarities. In a recent paper [Cobb and Shenoy 

2003a], we argue that these two calculi have roughly the same expressive power. We say roughly 

since we don’t have a metric to measure expressiveness exactly. 

There are many different semantics of D-S belief functions, including multivalued 

mapping [Dempster 1966], random codes [Shafer 1987], transferable beliefs [Smets and Kennes 

1994], probability of provability [Pearl 1988], and hints [Kohlas and Monney 1995], which are 

compatible with Dempster’s rule of combination. However, the semantics of belief functions as 

upper and lower probability bounds on some true but unknown probability function are 

incompatible with Dempster’s rule [Walley 1987]. Also, Smets [2002] gives betting rates 

semantics for belief functions assuming that the pignistic transformation is the correct 

transformation. Since the pignistic transformation does not appear to be consistent with 

Dempster’s rule1, these betting rates semantics may not be valid for D-S belief functions. In this 

paper, we are concerned with the D-S theory of belief functions with Dempster’s rule of 

combination as the updating rule, and not with theories of upper and lower probabilities, nor with 

Smets’ transferable belief model with the pignistic rule. One benefit of studying probability 

functions derived from D-S belief functions is a clearer understanding of D-S belief function 

semantics. 

In this paper, we propose a new method for translating a D-S belief function model to a 

Bayesian probability model. This is useful for several reasons. First, a large model of an 

uncertain domain may have some knowledge represented by belief functions, and some 

represented by probability functions. To reason with the entire model, one needs to either 

translate the belief functions to probability functions, or vice-versa. 

                                                
1 In Section 4, we give an example and some arguments as to why the pignistic transformation is inconsistent with 
Dempster’s rule of combination. 
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Second, although there are several proposals for decision-making using belief functions 

[e.g., Schmeidler 1989, Jaffray 1989, Strat 1990, Yager 1992], the theory of belief functions 

lacks a coherent decision theory to guide the choices of lotteries in which uncertainty is 

described by belief functions. One solution to this situation is to translate a belief function model 

to a probability model, and then use the Bayesian decision theory to make decisions. Smets 

[1990] has suggested this strategy be used by applying the so-called “pignistic” transformation 

method. We are concerned that the pignistic transformation method may not be consistent with 

Dempster’s rule of combination. One alternative is to use the plausibility transformation (in place 

of the pignistic transformation) for making decisions with belief functions.2 

Third, the marginal of a joint belief function for a variable with many states can have an 

exponential number of focal elements and may be too complex to comprehend. One method to 

summarize a complex belief function is to translate it to a probability mass function. 

Fourth, given the computational complexity of Dempster’s rule, it is easy to build belief 

function models where the marginals of the joint belief function for variables of interest are 

computationally intractable to calculate. In such cases, one can translate the belief function 

model to a probability model and use Bayes rule to compute the relevant marginals of the joint 

probability distribution. 

Fifth, a transformation method that is consistent with Dempster’s rule will lead to an 

increased understanding of the D-S theory of belief functions by providing probabilistic 

semantics for belief functions. For example, consider the basic probability assignment m for a 

variable H whose state space is ΩH = {h1, …, h70}: m({h1}) = 0.3, m({h2}) = 0.01, 

m({h2, …, h70}) = 0.69. One can ask: What does this basic probability assignment mean in the 

context of, e.g., betting for or against h1 versus h2? A transformation method that is consistent 

                                                
2 In some situations such as the Ellsberg paradox [Ellsberg 1961], decision making using the probability function 
derived using the plausibility transformation leads to outcomes that are at variance with empirical findings. The 
topic of normative or descriptive decision making with D-S belief functions is beyond the scope of this paper. 
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with D-S theory semantics could provide a probability function that can be construed as a 

“meaning” of the basic probability assignment. 

 Sixth, the literature on belief functions is replete with examples where it is suggested that 

belief function theory is more expressive than probability theory since a “corresponding” 

probability model using the pignistic transformation leads to non-intuitive results [see, e.g., 

Bogler 1987]. In these examples, if we use the plausibility transformation method to translate the 

belief function models, the two models—a belief function model and the corresponding 

probability model using the plausibility transformation—give the same qualitative results. 

Seventh, a transformation method that is consistent with D-S belief function theory 

semantics will lead to a new method for building probabilistic models. One can use belief 

function semantics of distinct evidence (or no double-counting of uncertain knowledge [Shenoy 

2005]) to build belief function models and then use the transformation method to convert it to a 

probability model. 

 The main contributions of this paper are five theorems and three corollaries that describe 

some key properties of the plausibility transformation method. These properties allow an 

integration of Bayesian and D-S reasoning that takes advantage of the efficiency in computation 

and decision-making provided by Bayesian calculus while retaining the flexibility in modeling 

evidence that underlies D-S reasoning. These conclusions will lead to a greater understanding of 

the similarities between the two methods and allow belief function techniques to be used in 

probabilistic reasoning, and vice versa. We also discuss an example that questions the 

compatibility of the pignistic transformation method with Dempster’s rule of combination. 

 The remainder of this paper is organized as follows. Section 2 contains notation and 

definitions. Section 3 describes the plausibility transformation method for translating belief 

functions to probability functions. Section 4 contains the main results of the paper including one 

example that is used to raise the issue whether the pignistic transformation method is compatible 

with Dempster’s rule of combination. In Section 5, we summarize and conclude. Proofs of all 

theorems are found in the Appendix. 



 

 5 

2 Notation and Definitions 

2.1 Probability Theory 

We will use upper-case Roman alphabets, such as X, Y, Z, etc., to denote variables, and lower-

case Roman alphabets, such as r, s, t, etc., to denote sets of variables. Associated with each 

variable X, is a set of mutually exclusive and exhaustive set of possible states, which is denoted 

by ΩX. If s is a set of variables, then its state space is given by Ωs = ×{ΩX | X ∈ s}. 

 A probability potential Ps for s is a function Ps: Ωs → [0, 1]. We express our knowledge 

by probability potentials, which are combined to form the joint probability distribution, which is 

then marginalized to the variables of interest. 

 In order to define combination of probability functions, we first need a notation for the 

projection of states of a set of variables to a smaller set of variables. Here projection simply 

means dropping extra coordinates; if (w, x, y, z) is a state of {W, X, Y, Z}, for example, then the 

projection of (w, x, y, z) to {W, X} is simply (w, x), which is a state of {W, X}. If s and t are sets 

of variables, s ⊆ t, and x is a state of t, then x↓s denotes the projection of x to s. 

 Combination. Combination in a Bayesian network involves “pointwise” multiplication 

of functions. Suppose Ps is a probability potential for s and Pt is a probability potential for t. 

Then Ps⊗Pt is a probability potential for s∪t defined as follows: 

 (Ps⊗Pt)(x) = K–1Ps(x
↓s) Pt(x

↓t) (2.1) 

For each x ∈ Ωs∪t, where K =∑{Ps(x
↓s) Pt(x

↓t)| x ∈ Ωs∪t} is the normalization constant. 

 Marginalization. Let s\{X} denote the set-theoretic subtraction of the variable X from set 

s. Marginalization in a Bayesian network involves addition over the state space of the variables 

being eliminated. Suppose Ps is a probability potential for s, and suppose X ∈ s. The marginal of 

Ps for s\{X}, denoted by Ps
↓(s\{X}), is the probability potential for s\{X} defined as follows: 

 Ps
↓(s\{X})(y) = Σ{Ps(y, x) | x ∈ ΩX} (2.2) 

for all y ∈ Ωs\{X}. 
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 Inference. The probability potentials specified in a probability model can be used to 

calculate the prior joint distribution of the variables in the model. Inference in a Bayesian 

network involves updating the prior joint distribution with observations of actual states of certain 

variables or likelihoods of occurrence of variables based on new information. The observations 

and likelihoods are modeled as probability potentials. Once the likelihoods or observations are 

included in the model, the combination of all potentials is called the joint posterior distribution. 

Usually, one is interested in the marginals of the joint posterior function for some variables of 

interest. 

2.2 Dempster-Shafer Theory of Belief Functions 

Dempster-Shafer (D-S) belief networks are an alternative to probability for modeling knowledge 

about propositions in uncertain domains graphically and numerically. At the qualitative level, a 

D-S belief network provides a graphical description of the knowledge base by modeling 

variables and their relations. At the numerical level, a D-S belief network assigns a D-S belief 

function or basic probability assignment (bpa) to subsets of the variables in the domain of each 

relation. Additional knowledge entered as evidence is used to update the D-S belief network. 

 If Ωs is the state space of a set of variables s, a function m: 2Ωs → [0,1] is a bpa for s 

whenever 

 m(∅) = 0, and Σ{m(a) | a ∈ 2Ωs} = 1. (2.3) 

A bpa can also be stated in terms of a corresponding plausibility function or a belief function. 

The plausibility function Pl corresponding to a bpa m for s is defined as Pl: 2Ωs → [0,1] such that 

for all a ∈ 2Ωs, 

 Pl(a) = Σ{m(b) | b∩a ≠ ∅}. (2.4) 

The belief function Bel corresponding to a bpa m for s is defined as Bel: 2Ωs → [0,1] such that 

for all a ∈ 2Ωs, 

 Bel(a) = Σ{m(b) | b ⊆ a} (2.5) 
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 The valuation network (VN) graph defined by Shenoy [1992] can be used to graphically 

represent the qualitative features of a D-S belief network. An example of a valuation network is 

shown in Figure 2.1. The rounded rectangles represent variables and the hexagons represent 

valuations, which are functions representing knowledge about relations between the variables. 

Each valuation is connected by an edge to each variable in its domain to create a bipartite graph. 

Rectangles represent evidence. In Figure 2.1, evidence is available for variables T and V. The 

arcs connecting valuations to variables are typically undirected; however if a bpa m for a set of 

variables, say h∪t, is a “conditional” for some, say h, given the rest t, then this is indicated by 

making the edges between m and the variables in h directed. Suppose m is a bpa for h∪t. We say 

m is a conditional for h given t if m↓t is a vacuous bpa, i.e., m↓t(Ωt) = 1. Most of the valuations in 

Figure 2.1 are conditionals. An exception is the bpa for {V, G}, which is not a conditional. 

Figure 2.1. A Dempster-Shafer Belief Network for an Anti-Air Threat Identification Problem 

Threat Mode (TM) Guidance (G)Emitter (E) Visibility (V)

Threat ID (T) Range (R)

ML EO RWR

T-E

T-TM-R

T-G

V-G

TM-ML TM-G-EO TM-G-RWR

Intel. Rpt.

Visib. Rpt.
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 Projection and Extension of Subsets. Before we can define combination and 

marginalization for bpa’s, we need the concepts of projection and extension of subsets of a state 

space. 

 If r and s are sets of variables, r ⊆ s, and a is a nonempty subset of Ωs, then the 

projection of a to r, denoted by a↓r, is the subset of Ωr given by a↓r = {x↓r | x ∈ a}. 

 By extension of a subset of a state space to a subset of a larger state space, we mean a 

cylinder set extension. If r and s are sets of variables, r ⊂ s, and a is a nonempty subset of Ωr, 

then the extension of a to s is a×Ωs\r. Let a↑s denote the extension of a to s. For example, if a is a 

nonempty subset of Ω{W, X}, then a↑{W, X, Y, Z} = a × Ω{Y, Z}. 

 Calculation of the joint bpa in a D-S belief network is accomplished by combination 

using Dempster’s rule [Dempster 1966]. Consider two bpa’s mA and mB for a and b, respectively. 

The combination of mA and mB, denoted by mA⊕mB, is a bpa for a∪b given by 

 (m
A
! m

B
)(z) = K

"1
{m

A
(x)m

B# (y) | (x
$(a%b)

)& (y$(a%b) ) = z}  (2.6) 

for all non-empty z ⊆ Ωa∪b, where K is a normalization constant given by 

 K = {m
A
(x)m

B! (y) | (x
"(a#b)

)$ (y"(a#b) ) %&} . (2.7) 

 Clearly, if the normalization constant is equal to zero, the combination is not defined, so 

the two bpa’s are said to be not combinable. If the bpa’s mA and mB are based on independent 

bodies of evidence, then mA⊕mB represents the result of pooling these bodies of evidence. Shafer 

[1976] shows that Dempster’s rule is commutative and associative, so the bpa’s representing the 

evidence in the network of Figure 2.2, for instance, could be combined in any order to yield the 

joint bpa. 

 Marginalization. Suppose m is a bpa for s, and suppose t ⊂ s. The marginal of m for t, 

denoted by m↓t, is the bpa for t defined as follows: 

 m↓t(a) = Σ{m(b) | b↓t = a} (2.8) 

for each a ⊆ Ωt, where b↓t denotes the subset of Ωt obtained by projecting each element of b to t. 

Intuitively, marginalization corresponds to coarsening of knowledge. 



 

 9 

 Similar to the probabilistic case, we make inferences from a belief function model by 

computing the marginal of the joint belief function for variables of interest. All belief functions 

that constitute the belief function model must be independent. 

3 The Plausibility Transformation Method 

Our main goal in this section is to describe a new method for translating a belief function model 

to a corresponding probability function model. One method of achieving this is to translate each 

independent belief function in the belief function model to a corresponding probability function. 

The collection of probability functions then constitutes a corresponding probability model. 

 Suppose m is a bpa for subset s. Let Plm denote the plausibility function for s 

corresponding to bpa m. Let Pl_Pm denote the probability function that is obtained from m using 

the plausibility transformation method. Pl_Pm is defined as follows: 

 Pl_Pm(x) = K–1 Plm({x}) (3.1) 

for all x ∈ Ωs, where K = Σ{Plm({x}) | x ∈ Ωs} is a normalization constant. We will refer to 

Pl_Pm as the plausibility probability function corresponding to bpa m. 

 Other Transformation Methods. The most commonly used transformation method is 

the pignistic transformation method3 defined as follows. Let BetPm denote the pignistic 

probability function for s corresponding to bpa m. Then, 

 BetPm(x) = Σ{ m(a)

|a|
 | a ∈ 2Ωs such that x ∈ a} (3.2) 

for all x ∈ Ωs. Daniel [2003] has defined a host of other transformation methods. 

4 Properties of the Plausibility Transformation 

Haspert [2001] identifies the significance of the relationship between the D-S plausibility 

function and probability functions, noting that when multiple belief functions on the same 

                                                
3 The name of the transformation is due to Smets [1990], but the transformation has been used in the D-S belief 
function literature earlier. See, e.g., Dubois and Prade [1982]. 
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domain are combined using Dempster’s rule, the masses in the resulting bpa migrate to the 

outcome for which the product of the plausibility terms is the greatest. He presents heuristic 

arguments that indicate that the plausibility function can be used to link Bayesian and D-S 

reasoning. Giles [1982] was among the earliest to discuss decision making with plausibility 

functions. Appriou [1991] suggests selecting the hypothesis with the maximum plausibility in a 

decision-making context. 

 Dempster [1968] states that the upper probability bound (or plausibility) associated with a 

belief function is the appropriate likelihood function that contains all sample information. 

Similarly, Halpern and Fagin [1992] observe that the plausibility function calculated from a 

given belief function behaves similarly to a likelihood function and can be used to update beliefs. 

Given a set H consisting of basic hypotheses—one of which is true—and another set Ob 

consisting of basic observations, PlOb(Hi) = 1 – BelOb(Hi
c) = Pri(Ob)/c, where c = 

maxj = 1, …, mPrj(Ob), the plausibility function representing the observations appropriately 

captures the evidence of the observations. 

 Additionally, one form of Bayes rule has an analogous rule in terms of plausibility 

functions. Suppose PA, B is a prior joint probability distribution function for two variables A and 

B. The marginal distribution for B, denoted by PB, can be computed from PA, B as follows: PB(b) 

= Σ{PA, B(a, b) | a ∈ ΩA} for all a ∈ ΩA. Now suppose we observe B = b where PB(b) > 0. Then, 

the posterior marginal probability function for A, denoted by PA | b is given by: 

 PA | b (a) = PA, B(a, b) / PB(b) (4.1) 

for all a ∈ ΩA. Now consider the same situation in belief function calculus. Suppose mA, B and 

PlA, B represent a prior bpa and the corresponding plausibility function for {A, B}. Let PlB denote 

the marginal plausibility function for B. Now suppose we observe B = b such that PlB({b}) > 0. 

This can be represented by the bpa mb for B where mb({b}) = 1. The posterior marginal bpa for 

A, denoted by mA | b, is given by (mA, B⊕mb)↓A. Let PlA | b denote the corresponding plausibility 

function for A. It can be shown [Shafer 1976] that PlA | b is given by: 

 PlA | b({a}) = PlA, B({(a, b)})/PlB({b}) (4.2) 
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for all a ∈ ΩB. Comparing (4.1) and (4.2) suggests that the correspondence between a belief 

function and probability function is via the plausibility function. This correspondence alone does 

not justify the plausibility transformation, because (4.2) could be restated in terms of the Bel 

function. To provide further justification for the plausibility transformation, we will state the 

following theorem from Voorbraak [1989]. 

Theorem 4.1. Suppose m1, …, mk are k bpa’s. Suppose Plm1
, …, Plmk

 are the 

associated plausibility functions, and suppose Pl_Pm1
, …, Pl_Pmk

 are the 

corresponding probability functions obtained using the plausibility 

transformation. If m = m1⊕…⊕mk is the joint bpa, Plm is the associated 

plausibility function and Pl_Pm is the corresponding plausibility probability 

function, then Pl_Pm1
⊗…⊗Pl_Pmk

 = Pl_Pm. 

 The statement of the theorem is depicted pictorially in Figure 4.1. Voorbraak’s 

motivation in stating the result was to efficiently compute a Bayesian approximation of the joint 

belief function. Notice that from a computational perspective, it is much faster to compute 

Pl_Pm1
⊗…⊗Pl_Pmk

 than it is to compute Pl_Pm (since the latter involves Dempster’s rule of 

combination and the former involves Bayes rule). We regard the plausibility probability function 

Pl_Pm as a translation of m from D-S belief function theory to probability theory, and not 

necessarily as an approximation. 

Figure 4.1. A Pictorial Depiction of the Statement of Theorem 4.1. 

Dempster’s rule
of combination

Plausibility
transformation

Bayes rule

Plausibility
transformation

belief
function

space

probability 
function

space

m1, ..., mk

! 

m1 " ..." mk

! 

Pl_Pm1
, ...,Pl _Pmk

! 

Pl_Pm1
# ...# Pl _Pmk

! 

= Pl _Pm1"..."mk
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 Theorem 4.1 is significant for several reasons. First, we often create a belief function 

model, compute the joint belief function, and then translate the joint belief function to a 

probability function for the reasons described in Section 1. If the transformation used is the 

plausibility transformation, Theorem 4.1 tells us that we can escape the computational 

complexity of Dempster’s rule and use Bayes rule instead to obtain the same result. 

 Second, it is often easy to construct belief function models where it is intractable to 

compute the joint belief function using Dempster’s rule. Theorem 4.1 tells us that we can 

translate the belief function model to a probability model and achieve a more tractable result in 

probability theory by using Bayes rule. 

 Third, a qualitative aspect of uncertain knowledge is idempotency. Generally, most 

uncertain knowledge is non-idempotent. However, some knowledge is idempotent. Examples are 

observations of values of variables, vacuous knowledge, etc. It is natural to expect the 

idempotent knowledge be represented by idempotent representations in any calculi that are used 

to represent the knowledge. A corollary of Theorem 4.1 is that Pl_Pm is idempotent with respect 

to Bayes rule if m is idempotent with respect to Dempster’s rule. 

Corollary 4.2. If m is idempotent with respect to Dempster’s rule, i.e., m⊕m = m, 

then Pl_Pm is idempotent with respect to Bayes rule, i.e., Pl_Pm⊗Pl_Pm = Pl_Pm. 

 Fourth, if we use the plausibility transformation for decision making purposes, then 

Theorem 4.1 tells us that a two-level decision-making scheme such as the one proposed by Smets 

[1990] (with the pignistic transformation) is unnecessary. Since we get the same results whether 

we use Dempster’s rule with belief functions or Bayes rule with probability functions that are 

translations of the belief functions, we might as well work with the probability functions (from a 

computational perspective). This does not mean we don’t need the D-S theory of belief functions 

as the different semantics of this theory provides several methods for building models that are 

otherwise not available in other calculi. 
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 Fifth, one can ask: Why is the property stated in Theorem 4.1 compelling as a generic 

property for a transformation method? In the following example (adapted from Smets [2002]), 

we demonstrate why non-compliance with this property leads to results that are incompatible 

with Dempster’s rule of combination, the primary updating rule of D-S belief function theory. 

 Example 4.1. Consider a bpa m for a variable H with state space ΩH = {h1, …, h70} as 

follows: m({h1}) = 0.30, m({h2}) = 0.01, m({h2, h3, …, h70}) = 0.69. For this bpa m, the 

plausibility probability function Pl_Pm is as follows: Pl_Pm(h1) = 0.30/49.72 ≈ 0.0063, 

Pl_Pm(h2) = 0.70/49.72 ≈ 0.0146, Pl_Pm(h3) = … = Pl_Pm(h70) = 0.69/49.72 ≈ 0.0144, and the 

pignistic probability function BetPm is as follows: BetPm(h1) = 0.30, BetPm(h2) = 0.02, BetPm(h3) 

= … = BetPm(h70) = 0.01. Notice that the two probability functions are quite different. According 

to Pl_Pm, h2 is 2.33 times more probable than h1. According to BetPm, h1 is 15 times more 

probable than h2. Clearly, the two probability models are incompatible with each other. Which of 

these two models corresponds to the knowledge in bpa m? The answer depends, of course, on the 

semantics of D-S belief function theory, which is intrinsically tied to Dempster’s rule of 

combination. 

 To answer this question, consider the following hypothetical scenario consisting only of 

bpa m and Dempster’s rule of combination. We are interested in the true state of variable H. We 

start with complete ignorance. Starting from day 1, each day we receive an independent piece of 

evidence that is represented by bpa m described above. Thus, e.g., on day 2, our total belief is 

described by m2 = m⊕m which is as follows: m2({h1}) = 0.09/0.58 ≈ 0.15517, m2({h2}) = 

0.0139/0.58 ≈ 0.02397, and m2({h2, …, h70}) = 0.4761/0.58 ≈ 0.82086. On day 3, our total belief 

for H is given by m3, and so on. Table 1 gives the details of some of these functions. 
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Table 1. Values of Basic Probability Assignments in Example 4.1 (values are specified up to 5 

decimal places) 

Focal Sets 

BPA 

{h1} 

 

{h2} 

 

{h2, …, h70} 

 

m 0.30 0.01 0.69 

m2 0.15517 0.02397 0.82086 

m3 0.07297 0.03916 0.88786 

m4 0.03263 0.05410 0.91326 

m5 0.01425 0.06843 0.91732 

m10 0.00021 0.13399 0.86580 
 

 Suppose one subscribes to Smets’s decision theory based on the pignistic transformation. 

On day 1, our belief for H is given by m, and as per BetPm, we are willing to bet for h1 against h2 

with odds 15:1. On day 2, our total belief for H is given by m2 = m⊕m, and as per BetPm2 we are 

willing to bet for h1 against h2 with odds 4.33:1. One can ask: Why did the odds for h1 against h2 

diminish on day 2 from 15:1 to 4.33:1? If the evidence on day 1 supported h1 against h2, and a 

similar evidence was received on day 2, the odds for h1 against h2 should have increased and not 

decreased. On day 3, as per BetPm3, we are willing to bet on h1 against h2 with odds approx. 

1.4:1. On day 4, as per BetPm4, we are now willing to bet for h2 against h1 with odds approx. 

2.06:1, and so on. Dempster’s rule of combination tells us that each successive evidence supports 

h2 against h1. This is inconsistent with BetPm. Thus, we question whether the pignistic 

transformation method is incompatible with Dempster’s rule. 

 On the other hand, suppose we subscribe to decision making with the plausibility 

transformation method. On day 1, our belief for H is given by m, and as per Pl_Pm, we are 

willing to bet for h2 against h1 with odds 2.33:1. On day 2, our total belief for H is given by m2 = 
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m⊕m, and as per Pl_Pm2 we are willing to bet for h2 against h1 with odds 2.332:1. Notice that this 

result is a consequence of Theorem 4.1 since Pl_Pm⊗Pl_Pm = Pl_Pm2. On day k, as per Pl_Pmk, 

we are willing to bet for h2 against h1 with odds 2.33k:1. Thus, the plausibility transformation 

method appears to be consistent with Dempster’s rule. 

 Smets [2002, 2005] provides a justification for the pignistic transformation by showing 

that it is invariant with respect to a linear additive updating rule (in the same sense as Theorem 

4.1, but with Dempster rule replaced by the linear additive updating rule). We don’t find this 

justification convincing since the linear additive updating rule is not central to D-S belief 

function theory. The main updating rule in D-S belief function theory is Dempster’s rule, and if 

one substitutes Dempster’s rule for the linear additive updating rule in Smets’s justification, it 

results in the condition stated in Theorem 4.1, which is satisfied by the plausibility 

transformation and not by the pignistic transformation. 

 This example also demonstrates why the result stated in Theorem 4.1 is fundamental for 

any method that proposes to translate a D-S belief function model to a corresponding probability 

model for any of the reasons given in Section 1 including decision-making. ■ 

 To further demonstrate that the plausibility transformation is consistent with Dempster’s 

rule of combination, we consider another asymptotic property of this transformation. In 

probability theory, assuming there is a unique state x that is most probable according to a 

probability function P, x has the property that Limn→∞ Pn(x) = 1, and Limn→∞ Pn(y) = 0 for all y 

∈ Ωs\{x}, where Pn denotes P⊗…⊗P (n times). Belief functions have a similar property, as 

stated in the following theorem. 

Theorem 4.3. Consider a bpa m for s (with corresponding plausibility function 

Plm) such that x ∈ Ωs is the most plausible state, i.e., Plm({x}) > Plm({y}), for all y 

∈ Ωs\{x}. Let mn denote m⊕…⊕m (n times), let m∞ denote Limn→∞ mn, and let 

Pl
m∞

 denote the plausibility function corresponding to m∞. Then Pl
m∞

({x}) = 1, 

and Pl
m∞

({y}) = 0 for all y ∈ Ωs\{x}. 
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 If a unique most plausible state x exists in a bpa m, a corresponding probability function 

should have x as its most probable state. This property is satisfied for the plausibility 

transformation, as stated in the following corollary. 

Corollary 4.4. Consider a bpa m for s (with corresponding plausibility function 

Plm) such that x ∈ Ωs is the most plausible state, i.e., Plm({x}) > Plm({y}), for all y 

∈ Ωs\{x}. Let Pl_Pm denote the plausibility probability function corresponding to 

m, and let (Pl_Pm)∞ denote Limn→∞ (Pl_Pm)n. Then (Pl_Pm)∞(x) = 1, and  

(Pl_Pm)∞(y) = 0 for all y ∈ Ωs\{x}. 

In Theorem 4.3 stated earlier, the belief function m was assumed to have a unique most 

plausible state x. Now suppose we have a non-singleton subset of most plausible states. In 

probability theory, if P is such that t ⊆ Ωs is a subset of most probable states, and P∞ denotes 

Limn→∞ Pn, then P∞(x) = P∞(y) for all x, y ∈ t, and P∞(z) = 0 for all z ∈ Ωs \ t. Belief functions 

have a similar property, as stated in the following theorem. 

Theorem 4.5. Consider a bpa m for s (with corresponding plausibility function 

Plm) such that t ⊆ Ωs is a subset of most plausible states, i.e., Plm({x}) = Plm({y}) 

for all x, y ∈ t, and Plm({x}) > Plm({z}) for all x ∈ t, and z ∈ Ωs \ t. Let m∞ denote 

Limn→∞ mn, and let Pl
m∞ be the corresponding plausibility function. Then there 

exists a partition {a1, …, ak} of t such that m∞(ai) = 1/k for i = 1, …, k, i.e., 

Pl
m∞({x}) = Pl

m∞({y}) = 1/k for all x, y ∈ t, and Pl
m∞({z}) = 0 for all z ∈ Ωs \ t. 

Theorem 4.5 is a generalization of Theorem 4.3 in the sense that if | t | = 1, then Theorem 4.5 

reduces to Theorem 4.3. The following corollary generalizes the result in Corollary 4.4 for the 

case of non-unique most plausible states. 

Corollary 4.6. Consider a bpa m for s (with corresponding plausibility function 

Plm) such that t ⊆ Ωs is a subset of most plausible states, i.e., Plm({x}) = Plm({y}) 

for all x, y ∈ t, and Plm({x}) > Plm({z}) for all x ∈ t and z ∈ Ωs \ t. Let Pl_Pm 



 

 17 

denote the plausibility probability function corresponding to m, and let (Pl_Pm)∞ 

denote Limn→∞ (Pl_Pm)n. Then (Pl_Pm)∞(x) = (Pl_Pm)∞(y) = 1/| t | for all x, y ∈ t, 

and (Pl_Pm)∞(z) = 0 for all z ∈ Ωs \ t. 

 In general, computation of marginals in a D-S belief network is accomplished with local 

computation using two operations: combination and marginalization [Shenoy and Shafer 1990]. 

The plausibility transformation is not invariant with respect to marginalization. Formally, 

suppose m is a bpa for s, and suppose t ⊂ s. Then (Pl_Pm)↓t is not always equal to Pl_Pm↓t. This 

is graphically shown in Figure 4.2. 

Figure 4.2. Plausibility Probability Transformation is Not Invariant under Marginalization 

belief function
space

probability  
function

space

marginalization rule for 
bpa functions

marginalization rule for 
probability functions

bpa m for s

Pl_Pm

bpa m!t for t

(Pl_Pm)!t   !  Pl_Pm!t

plausibility 
transformation

plausibility 
transformation

 

 Example 4.2. As an example of the inconsistency depicted in Figure 4.2, consider the 

following bpa on the domain {V, G}: 

 mV-G({(v1, g1), (v1, g2)}) = 0.6 
 mV-G({(v1, g1), (v2, g1)}) = 0.3 
 mV-G({(v1, g1), (v1, g2), (v2, g1), (v2, g2), (v3, g1), (v3, g2)}) = 0.1 
 
Computing the marginal of the bpa for G, then using the plausibility transformation to calculate 

Pl _P
mV!G

"G  gives: 
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mV !G

"{G}
({g1}) = 0.3            Pl

mV!G
"G ({g1}) =1.0         Pl _P

mV!G
"G (g1) =1.0 /1.7 = 0.588

mV !G

"{G}
({g1,g2}) = 0.7     Pl

mV!G
"G ({g2}) = 0.7      Pl _P

mV!G
"G (g2 ) = 0.7 /1.7 = 0.412

 

Alternatively, calculating plausibilities and probabilities for the configurations of {V, G} yields: 

PlmV!G ({(v
1
,g

1
)}) =1.0       PlmV!G ({(v

2
,g

1
)}) = 0.4       PlmV!G ({(v

3
,g

1
)}) = 0.1         

PlmV!G ({(v
1
,g

2
)}) = 0.7      PlmV!G ({(v

2
,g

2
)}) = 0.1       PlmV!G ({(v

3
,g

2
)}) = 0.1       

 

Pl _PmV!G (v
1
,g

1
) = 0.417       Pl _PmV!G (v

2
,g

1
) = 0.167       Pl _PmV!G (v

3
,g

1
) = 0.042         

Pl _PmV!G (v
1
,g

2
) = 0.292      Pl _PmV!G (v

2
,g

2
) = 0.042       Pl _PmV!G (v

3
,g

2
) = 0.042   

 

Marginalizing this probability function to G gives: 

(Pl _PmV!G )
"G

(g1) = 0.625,(Pl _PmV!G )
"G

(g2 ) = 0.375     ■ 

Clearly, the probabilities using the plausibility transformation are not, in general, the 

same before and after marginalization. However, there are special cases where the plausibility 

transformation yields the same result before and after marginalization. One such special case is 

stated in the following theorem. An example illustrating the use of this theorem is given in Cobb 

and Shenoy [2003b]. 

Theorem 4.7. Suppose mi is bpa for si where si = t∪ri, for i = 1, …, k. Suppose r1, 

…, rk are pairwise disjoint, i.e. ri∩rj = ∅ for all i ≠ j. Let m denote m1⊕…⊕mk. 

Then, Pl_Pm↓t = Pl_Pm1
↓t⊗…⊗Pl_Pmk

↓t. 

 Finally, the following theorem allows us to find the plausibility function for a marginal 

bpa without having to calculate the marginal bpa. 

Theorem 4.8. Suppose m is a bpa for s and t ⊆ s. Then, 

 Pl
m
!t (a) = m(c) 

a"c
!t #$

%  

for all a ⊆ Ωt. 
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5 Conclusions and Summary 

The main goal of this paper has been to propose the plausibility transformation method for 

translating belief function models to probability models, and describe some of its properties. In 

particular, we have demonstrated that it results in probability models that are invariant with 

respect to combination, and consequently retains the D-S semantics of belief functions whose 

primary updating rule is Dempster’s rule of combination. However, the plausibility 

transformation is not invariant with respect to marginalization. 

 There are a number of other transformation methods proposed in the literature. One of 

them is the pignistic transformation method. For some examples, the pignistic transformation 

method results in probability models that are qualitatively different from the probability models 

produced by the plausibility transformation method. We question whether the pignistic 

transformation is compatible with Dempster’s rule of combination. A comparison of these two 

methods with several examples is described in Cobb and Shenoy [2003c]. 
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Appendix: Proofs 

Proof of Theorem 4.1. The proof of Theorem 4.1 follows directly from the proof of 

Proposition 2 in [Voorbraak 1989].  The proof also follows from the fact that Dempster’s rule 

can be stated as the product of commonality functions and the plausibility and commonality 

functions have the same values for singleton subsets.  

 Proof of Corollary 4.2: Follows immediately from the statement of Theorem 4.1.  
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Proof of Theorem 4.3: It follows from Theorem 4.1 that (Pl_Pm)n = Pl_Pmn. Taking the 

limit as n → ∞ on both sides we have Limn→∞ (Pl_Pm)n = Limn→∞ Pl_Pmn, i.e., (Pl_Pm)∞ = 

Pl_Pm∞. Since (Pl_Pm)n(x) = K1 (Plm({x}))n (K1 is a constant independent of x), Pl_Pmn(x) = K2 

Plmn({x}) (K2 is a constant independent of x), and x is the unique most plausible state, it follows 

that (Pl_Pm)∞(x) = 1, (Pl_Pm)∞(y) = 0 for all y ∈ Ωs\{x}. Therefore, Pl_Pm∞(x) = 1, and 

Pl_Pm∞(y) = 0 for all y ∈ Ωs\{x}. Therefore Plm∞({x}) = 1, and Plm∞({y}) = 0 for all y ∈ Ωs\{x}. 

 Proof of Corollary 4.4: Follows immediately from Theorem 4.3 and the definition of 

Pl_Pm in (3.2).  

 Proof of Theorem 4.5: The proof of this theorem is similar to the proof of Theorem 4.3 

and is therefore omitted.  

 Proof of Corollary 4.6: Follows immediately from Theorem 4.5 and the definition of 

Pl_Pm in (3.2).  

 The following proposition is a simpler version of Theorem 4.7. We will use it to prove 

Theorem 4.7. 

Proposition 4.7. Suppose m1 and m2 are bpa’s for s1 and s2 where s1= t∪r1 and 

s2= t∪r2. Suppose r1 and r2 are disjoint, i.e. r1∩r2 = ∅. Then, Pl_P(m1⊕m2)↓t = 

Pl_Pm1
↓t⊗Pl_Pm2

↓t. 

Proof of Proposition 4.7: It follows from the axioms proposed by Shenoy and Shafer 

[1990] that (m1⊕m2)↓t = m1
↓t⊕m2

↓t. The proof of this proposition now follows directly from 

Proposition 4.1 by substituting m1
↓t for m1 and m2

↓t for m2.   

Proof of Theorem 4.7. The proof of Theorem 4.7 follows directly from the proof of 

Proposition 4.7.  

 Proof of Theorem 4.8: The marginal bpa of m for t is defined as 
m

!t
(a) = {m(b) | b

!t
= a}"  for all a ⊆ Ωt. The plausibility function values of the marginal bpa of 

m for t are defined as Pl
m
!t (a) = m

!t
(d)

a"d#$

%  for each a ⊆ Ωt. This formula can be rewritten as 

Pl
m
!t (a) = m(c) 

a"c
!t #$

%  for each a ⊆ Ωt, which proves the theorem.  
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