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1 Introduction

Mixtures of truncated exponentials, abbreviated as MTE, were introduced as
a model for dealing with discrete and continuous variables simultaneously in
Bayesian networks without imposing any restriction on the network topology
and avoiding the rough approximations of methods based on the discretisation
of the continuous variables [1]. The ability of MTEs for fitting several common
probability models has been widely studied in the last two years [2,3].

The problem of learning Bayesian networks with MTEs can be structured into
three tasks: Learning the structure of the network, estimating the marginal
distributions for the root nodes (univariate MTEs) and obtaining the condi-
tional distributions for non-root nodes (conditional MTEs). There are methods
for learning univariate [4,5] and conditional MTEs [6].

In this paper we propose a method for inducing the structure of an MTE
network from data. The method is based on a search procedure over the space
of candidate network, and the search is guided by optimisation techniques.
Furthermore, the parameter learning technique developed in [4,5] is improved
by means of smoothing the empirical density of the data using kernel densities,
that afterwards are approximated by MTEs.

The paper is organised as follows. The necessary concepts relative to the MTE
distribution are reviewed in section 2. Section 3 is devoted to introduce the
proposed schemes for structural learning. The performance of the new algo-
rithms is experimentally tested as reported in section 4 and the paper ends
with conclusions in section 5.

2 The MTE model

Throughout this paper, random variables will be denoted by capital letters,
and their values by lowercase letters. Boldfaced characters will be used for
random vectors. The state space of the vector X is denoted by ΩX. The MTE
model is defined by its corresponding potential and density as follows [1]:

Definition 1 (MTE potential) Let X be a mixed n-dimensional random vec-
tor. Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous
parts of X, respectively, with c + d = n. We say that a function f : ΩX 7→ R

+
0

is a Mixture of Truncated Exponentials potential (MTE potential) if one of
the next conditions holds:
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i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m

∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such

that f is defined as

f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of equation (1).
iii. Y 6= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined

as in ii.
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Fig. 1. An example of mixed probability tree.

Definition 2 (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 , (2)

where Y and Z are the discrete and continuous coordinates of X respectively.

In a Bayesian network, two types of probability density functions can be found:

(1) For each variable X which is a root of the network, a density f(x) is
given.

(2) For each variable X with parents Y, a conditional density f(x|y) is given.
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A conditional MTE density f(x|y) is an MTE potential f(x,y) such that after
fixing y to each of its possible values, the resulting function is a density for
X.

In [1] a data structure was proposed to represent MTE potentials, called mixed
probability trees or mixed trees for short. Mixed trees can represent MTE
potentials defined by parts. Each entire branch in the tree determines one
sub-region of the space where the potential is defined, and the function stored
in the leaf of a branch is the definition of the potential in the corresponding
sub-region. An example of an MTE potential represented as a mixed tree can
be seen in figure 1.

The operations required for probability propagation in Bayesian networks (re-
striction, marginalisation and combination) can be carried out by means of
algorithms very similar to those described for discrete probability trees in [7,8].

3 Structural learning with MTEs

Given a mixed random vector X = {X1, . . . , Xn}, and a sample of X,

D = {x(1), . . . ,x(m)} ,

our aim is to design a method for obtaining a Bayesian network with variables
X, that agrees with the data D.

Basically, the problem of learning Bayesian networks from data can be ap-
proached as repeating the next three steps until an optimal network is ob-
tained:

(1) Selection of a candidate structure G.
(2) Estimation of the conditional distributions, θ̂, for G.
(3) Determination of the quality of (G, θ̂).

Our proposal consists of exploring the space of possible networks for variables
X using an optimisation approach. The starting point will be a network with-
out arcs. With respect to the movement operators, we have considered arc
insertion, deletion and reversal. After each movement, the conditional distri-
butions corresponding to the families involved in the change are estimated.
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3.1 Estimating the conditional distributions for a candidate network

The problem of estimating the parameters of truncated distributions has been
previously studied [9,10], as in the case of the truncated Gamma [11,12], but
the number of parameters is usually equal to one, and the maximum likelihood
estimator (that not always exists) or the UMVUE (Uniformly of Minimum
Variance Unbiased Estimator) is obtained by means of numerical methods
[13,14]. In the case of the MTE models, no similar techniques have been applied
so far, due to the high number of parameters involved in the MTE densities.

Another usual way to compute maximum likelihood estimates in mixture mod-
els is the EM algorithm [15,16]. The difficulty in applying this method to
learning MTE models lies in the fact that we may have negative coefficients
for some of the densities we are combining and also in the computation of the
conditional expectations in each iteration of the algorithm.

Due to the difficulties described above, the seminal paper on estimating MTEs
from data [4], followed an approach based on regression techniques for the
case of univariate densities. Besides the estimation of the parameters, the
construction of an MTE density involves the determination of the number
of terms and the splits into which its domain is partitioned. Heuristics to
approach these issues are proposed in [4]. The estimation procedure can be
summarised in the next algorithm.

Algorithm MTE-fitting

INPUT:

• A sample x1, . . . , xn.

OUTPUT:

• Estimates of the parameters of the fitted model, â, b̂, ĉ, d̂ and k̂.

(1) Using sample x1, . . . , xn, obtain two vectors (x∗

1, . . . , x
∗

n) and (y1, . . . , yn),
where the first one contains values of the variable, and the second one
contains their corresponding empirical density values.

(2) Divide the range of the variable into subintervals in terms of concav-
ity/convexity and increase/decrease of the curve determined by the points
in vectors (x∗

1, . . . , x
∗

n) and (y1, . . . , yn).
(3) For each subinterval do:

• Fit y = f(x) = k + a exp {bx} + c exp {dx} , using an iterative least
squares procedure.

(4) Normalise the whole function to integrate up to one.
(5) Let â, b̂, ĉ, d̂ and k̂ be the coefficients of the normalised function.
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(6) RETURN(â, b̂, ĉ, d̂,k̂).

Although the core of this algorithm is Step 3, the results strongly depend on
Step 1, in two ways:

(1) The accuracy of the estimation of the empirical density using the given
sample. If the estimation is poor, the result can be a density far away
from the original one.

(2) The size of the vectors obtained. Even if the empirical density is properly
captured, if the exponential regression in Step 3 is computed from a scarce
set of points, the accuracy of the approximation can be poor.

The method described in [4] used the empirical histogram as an approximation
of the actual density of the sample points. In this work, with the aim of
avoiding the two problems mentioned above, we have decided to improve the
estimation procedure using kernel approximations to the empirical density.

First of all, a Gaussian kernel density [17] is fitted to the data corresponding to
each leaf. A Gaussian kernel density for a variable X and a sample {x1, . . . , xm}
is defined as

f(x) =
1

mh

m
∑

i=1

K

(

x − xi

h

)

, (3)

where

K(u) =
1√
2π

exp

{

−u2

2

}

∀u ∈ R . (4)

The value of h in equation (3) is selected in order to minimise the mean squared
error of the kernel density with respect to the data. The optimal value is [17]:

hoptimal = 1.059σm−1/5 , (5)

where σ is estimated as the standard deviation of sample {x1, . . . , xm}.

The Gaussian kernel density provides a smooth approximation to the empirical
density of the data, which is specially useful in situations in which the amount
of data is scarce, since peaks in the density owing to the lack of data are not
as rough as in the case of using histograms.

Out of the fitted Gaussian kernel density, f(x), an artificial sample consist-
ing of pairs (x1, f(x1)), . . . , (xh, f(xh)), is drawn by taking equidistant points,
and an MTE density is obtained from it using the regression-based algorithm
described in [4,5].
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Besides the Gaussian kernels, there are several other types of kernel functions,
like the Biweight and Epanechnikov kernels [17].

The performance of Gaussian kernels versus histograms or other types of ker-
nels for fitting MTE densities is tested in figures 2 and 3, which respectively
show the MTE density obtained through histogram and kernel approximations
out of a sample of 200 points randomly sampled from a standard normal distri-
bution. More arguments supporting the use of Gaussian kernels are analysed
in [18].
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Fig. 2. Results of fitting an MTE from 5, 10, 20 and 30 bin histograms.

The method described so far for constructing estimators for the parameters
of the univariate MTE density is not valid for the conditional case, since
more restrictions should be imposed over the parameters in order to force
the MTE potential to integrate up to 1 for each combination of values of
the conditioning variables, i.e. to force the MTE potential to actually be a
conditional density. This problem was approached in [6] by partitioning the
domain of the conditioning variables and then fitting a univariate density
in each one of the splits using the method described above. More precisely,
the algorithm learns a mixed tree in which the leaves contain MTE densities
that depend only on the child variable, and that represents the density of the
child variable given by the values contained in the region determined by the
corresponding branch of the mixed tree. The tree is learnt in such a way that
the leaves discriminate as much as possible, following a schema similar to the
construction of decision trees [19].
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Fig. 3. Results of fitting an MTE from Gaussian, Biweight and Epanechnikov ker-
nels.

3.2 Measuring the quality of a candidate network

In order to measure the quality of a Bayesian network, we propose to use
a metric based on the asymptotic approximation to the classical Bayesian
metric proposed in [20] for networks with continuous variables. The idea is to
construct a score that takes into account the likelihood of the data given the
candidate network but penalising those ones with complex structure.

We define the following metric:

Q(G|D, θ̂) = log L(D; G, θ̂) − log m

2
Dim(G), (6)

where L(D; G, θ̂) is the likelihood of the data given the current network and
Dim(G) is the number of parameters needed to specify the network G that
must be learnt from the data.

The amount of parameters that are learnt from data for the conditional density
of any variable given its parents in the network, is the result of adding:

(1) The number of parameters in the leaves of the corresponding mixed tree
that will be used to represent the density (see Section 2).

(2) The number of points that determine the partition of the domain of each
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continuous variable.

Along this paper, for the sake of simplicity, we will assume that all the MTE
potentials that will appear in the learnt network will have a constant number
of parameters, say k, which means that the potentials will have the form

f(x) = a0 + a1e
b1x + · · ·+ ate

btx ,

with k = 2t + 1. A potential defined in this way will be called a k-parameter
MTE potential. For instance, a 5-parameter MTE potential has an independent
term and two exponentials.

If we denote by |X| the number of possible values of X if it is discrete, or
the number of splits into which its domain is divided, if X is continuous, the
number of parameters necessary to specify the density for the family of X

(i.e., variable X and its parents, pa(X), denoted as fa(X) = {X} ∪ pa(X))
can be expressed as

Par(fa(X)) = k
∏

Y ∈fa(X)

|Y | (7)

if X is continuous, and

Par(fa(X)) =
∏

Y ∈fa(X)

|Y | (8)

if X is discrete, since in this case each leaf of the mixed tree contains exactly
one real value.

Regarding the partition of the domain, we will consider a constant number
of splits for every continuous variable. Let s denote the number of splits. It
means that, whenever a variable is to be split, s − 1 splitting points must be
determined.

The number of splitting points that must be inferred from the data for each
family, cannot be determined beforehand, since the order in which the variables
are arranged in the mixed tree may increase or decrease it. For instance,
consider a family composed by two variables, one of which is discrete and the
other one being continuous. If the continuous variable is located in the root
of the mixed tree, the number of splitting points to be determined is equal
to s − 1, whilst if the discrete variable is in the root, the number of splitting
points increases up to d× (s− 1), where d is the number of possible values of
the discrete variable.

Due to the reason mentioned above, we will use an upper bound of the number
of splitting points instead. Assuming that there are Nc and Nd continuous and
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discrete variables respectively in the family of a variable X, fa(X), and that
d is the number of possible values of the discrete variables in fa(X), an upper
bound for the number of splitting points that must be learnt when constructing
the mixed tree for fa(X) is given by

Spl(fa(X)) = (s − 1)NcdNd . (9)

Thus, according to equations (7), (8) and (9) , the dimension of a family fa(X)
can be computed as

Dim(fa(X)) = Par(fa(X)) + Spl(fa(Xi)) , (10)

and the dimension of a network G as

Dim(G) =
n

∑

i=1

Dim(fa(Xi)) . (11)

Thus, the metric in equation (6) can be expressed as

Q(G|D, θ̂)= log L(D; G, θ̂) − log m

2
Dim(G)

=
m

∑

i=1

n
∑

j=1

log pj(x
(i)
j |pa(x

(i)
j )) − log m

2

n
∑

i=1

Dim(Xi) .

This metric can be decomposed as

Q(G|D, θ̂) =
n

∑

j=1

Q(Xj|D, θ̂) , (12)

where

Q(Xj|D, θ̂) =
m

∑

i=1

log pj(x
(i)
j |pa(x

(i)
j )) − log m

2
Dim(fa(Xj)) , (13)

which means that after carrying out a modification over a network, only the
part of the metric corresponding to the two variables affected by the operation
has to be re-computed.

Once the metric is defined, it can be used to guide the process of learning
the network from data. The problem can be viewed as the optimisation of the
metric defined in equation (6) within the space of candidate networks. In the
next subsection we will describe the optimisation procedure adopted in this
paper.
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3.3 Searching for an optimal network

In a preliminary version of this work [21] an optimal network was selected
using a hill climbing method that started from a network without arcs and
performed a greedy search trying to optimise the metric in equation (6). We
will refer to this method as Algorithm HC, standing for Hill Climbing. The only
difference of the version of Algorithm HC employed in this work with respect to
the one used in [21] is that the parameters are estimated using kernel methods
as described in section 3.1. The detailed algorithm is as follows:

Algorithm HC(G0,D)

INPUT:

• G0: The initial network (without arcs).
• D: The database.

OUTPUT: The learnt network.

(1) G := G0.
(2) Estimate the conditional distributions for G as described in section 3.1.
(3) Let θ̂ be the estimated conditional distributions.
(4) Compute the quality of G as q := Q(G|D, θ̂).
(5) FOR each G′ belonging to the neighbourhood of G,

(a) Let θ̂′ be the conditional distributions for G′.
(b) Compute the quality of the modified network:

q′ := Q(G′|D, θ̂′) .

(c) IF q < q′

• G := G′.
• q := q′.

(6) RETURN(G).

The neighbourhood of a given network considered in Step (5) consists of the
networks obtained from it by inserting, removing or reversing an arc as long
as no directed cycles are created.

Besides the greedy search, we have also used the simulated annealing algorithm
to explore the space of candidate networks, in order to reduce the risk of
reaching local optima, which is the main drawback of greedy search. We will
refer to this method as Algorithm SA, standing for Simulated Annealing.

We have adopted a cooling scheme determined by the following temperature:
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T (i) =
100

log(i + 1)
, (14)

where i is the iteration of the algorithm. The decision of using this temper-
ature was made after performing several preliminary experiments with other
temperatures suggested in [22].

The pseudo-code for the learning algorithm based on Simulated Annealing is
the following.

Algorithm SA(G0,nit,D)

INPUT:

• G0: The initial network (without arcs).
• nit: The number of iterations.
• D: The database.

OUTPUT: The learnt network.

(1) G := G0.
(2) Estimate the conditional distributions for G as described in section 3.1.
(3) Let θ̂ be the estimated conditional distributions.
(4) Compute the quality of G as q := Q(G|D, θ̂).
(5) FOR i := 1 TO nit

(a) Compute the temperature

T (i) =
100

log(i + 1)
.

(b) Choose at random one network G′ from the neighbourhood of net-
work G.

(c) Let θ̂′ be the conditional distributions for G′.
(d) Compute the quality of the modified network:

q′ := Q(G′|D, θ̂′) .

(e) Generate a random number r ∈ (0, 1).
(f) Compute

p := min

{

exp

{

q′ − q

T (i)

}

, 1

}

.

(g) IF (r < p) OR (q′ > q)
• G := G′.
• q := q′.

(6) RETURN(G).
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Table 1
Structural information about the artificial networks used in the experiments.

net5 net10

No. of links 6 13

No. of discrete vars. 1 2

No. of continuous vars. 4 8

As in the case of Algorithm HC, the neighbourhood considered in Step (5)(c)
consists of the networks obtained from it by inserting, removing or reversing
an arc as long as no directed cycles are created.

4 Experimental evaluation

The experimental analysis reported in this section has been carried out using
an implementation of algorithms SA and HC in Java language that we have
included in the Elvira system [23] (see http://leo.ugr.es/elvira).

We have tested the new algorithms in two different experiments using synthetic
and real-world data. We will describe both experiments separately.

4.1 Tests with synthetic data

We have considered two synthetic databases with 500 instances each one,
denoted as db5 and db10 obtained respectively by forward sampling from two
artificial networks called net5 and net10. Table 1 contains the information
regarding the structure of these networks.

The structure of networks net5 and net10 was generated as follows:

• For each variable, the number of parents is selected according to a Poisson
distribution with mean 0.8 .

• The parents are selected at random, among those that do not violate the
DAG condition.

The parameters (conditional distributions) of the artificial networks are gen-
erated according to the following procedure:

• The number of values of each discrete variable is selected uniformly at ran-
dom from the set {2, 3, 4}.

• The values in the probability tables of the discrete variables are generated
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Table 2
Results of the experiment for database db5.

Algorithm SA HC K2 MTE K2

LL 2 1 2 2

CL 0 0 2 2

IL 1 1 0 0

NL 1 0 0 0

Q -38.8013 2.4803 -31.8704 66.7387

Table 3
Results of the experiment for database db10.

Algorithm SA HC K2 MTE K2

LL 7 3 8 8

CL 0 2 0 0

IL 2 0 0 0

NL 5 1 0 0

Q -561.5937 -415.0141 -1004.2223 -721.7311

Table 4
Results of the experiment for database diabetes.

Algorithm SA HC K2 MTE K2

Q -6908.481 -6945.2861 -7051.232 -6496.7746

from a negative exponential distribution with mean 0.5, and they are nor-
malised afterwards.

• The number of splits of the state space of each continuous variable is set to
3.

• The number of exponential terms for each MTE potential is equal to 2.
• The independent term of each MTE potential is generated from a negative

exponential distribution with mean 0.01.
• The coefficients of the exponential terms in the potentials are generated from

a negative exponential distribution with mean randomly selected within the
interval (1, 10).

• The coefficients of the exponents in the exponential terms are generated
from a normal distribution with mean µ = 0 and standard deviation σ = 5.

Each database was randomly divided into two parts: one for training and one
for test, containing 70% and 30% of the instances respectively. Then, using
the two training databases, we run the following algorithms:

• Algorithms SA with 100 iterations and HC, as described in section 3.3.
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• Algorithm K2, as described in [24]. Since this algorithm is designed for
qualitative variables, the database was previously discretised using the k-
means algorithm with 3 categories per variable.

• Algorithm MTE K2. The same as K2, but once the structure is obtained, the
conditional distributions are fitted using mixtures of truncated exponentials.

For each learnt network, we recorded the number of links (LL), number of
coincident links (CL), number of inverted links (IL) and number of new links
(NL), i.e. those not coincident nor inverted. We also computed the quality (Q)
of each network using the test databases and computed according to equation
(6). The results are shown in tables 2 and 3. The number of links of the original
networks are shown in table 1.

In the experiments, we have used 5-parameter MTE potentials in the learnt
networks. It means that in each leaf of the mixed tree corresponding to a
conditional distribution, the fitted MTE potential has the form:

f(x) = a0 + a1e
b1x + a2e

b2x .

Furthermore, the number of splits into which the state space of the variables
is split is set to 3.

4.2 Experiments with real-world data

A similar experiment was run using a real-world database, called diabetes and
taken from the UCI machine learning repository [25]. The database contains
768 instances of 9 variables, 8 of them continuous and another one discrete.
The database was also randomly divided into two databases for train and test,
with 70% and 30% of the instances respectively.

In this case, the original network is unknown, so that we have not measured
any structural parameter in the learnt network, but only the quality. The
results for this database can be seen in table 4.

4.3 Results discussion

According to the results displayed in tables 2, 3 and 4, the following conclusions
can be drawn:

• The use of MTE potentials instead of discrete distribution is in general a
good choice. This is specially clear looking at the results of algorithms K2
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and MTE K2: the last one clearly outperforms the other, which is particu-
larly significant given that both of them provide the same network structure,
and the only difference is the use of MTE potentials.

• There are no big differences between HC and SA in the reported experiments.
However, it must be taken into account that in the experiments, the number
of iterations in algorithm SA was set to 100 and in each one of them, only
one network from the neighbourhood of the current network is explored.
This was aimed at keeping a computational cost similar to HC, in order to
make a fair comparison.

• Algorithm MTE K2 in general outperforms the other ones in two out of the
three experiments. One reason for this good performance is that K2 requires
the nodes to be ordered. In these experiments, we provided the algorithm
with the right order taken from the original artificial networks, what makes
more likely to get the correct links. However, SA and HC do not use any
node order. Thus, if the order of the variables is known, it is a good idea to
use MTE K2 instead of HC or SA.

5 Conclusions

We have introduced two algorithms for learning the structure of Bayesian
networks with discrete and continuous variables simultaneously, in which the
MTE model is used. So far, algorithms for estimating marginal and conditional
MTE densities existed [4–6], but the obtainment of the network structure
remained unsolved. Furthermore, the estimation algorithms proposed in [4,6]
are improved by means of using Gaussian kernels in order to get smoother
representations of the empirical density. Additionally, we have shown that the
use of an algorithm for discrete variables to capture the structure, and then
fitting MTE potentials can be valid in some situations, for instance if an order
of the nodes is known.

Perhaps the main feature of the methods proposed here is that they can be
used to construct a Bayesian network from any kind of mixed data, without
worrying about the structural restriction imposed by the Conditional Gaussian
model [26], which requires discrete nodes not to have continuous parents, and
without discretising the continuous variables.

Due to the lack of previous material on learning hybrid networks without
structure restrictions, it is difficult to design an experimental setting to test the
performance of the algorithms proposed here. Nevertheless, the experiments
described in section 4 seem to support their correctness.

However, still much effort must be invested in order to reach an entirely sat-
isfactory solution for the structural MTE learning problem. For instance, the
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metric used in this paper is known to have good properties when the con-
ditional distributions in the network belong to the curved exponential fam-
ily [27]. The MTE distribution does not belong to this family, and thus the
asymptotic properties of the metric should be studied.

Another aspect that influences the performance of the structural learning al-
gorithm is the estimation of the parameters. The technique we have used here
improves the existing estimation methods for MTEs. Since the structural and
parametric learning are problems that can be studied independently, new im-
provements in the estimation of the parameters will automatically benefit the
structural learning algorithm that we propose.

With respect to the search scheme, we are planning to used methods that try to
avoid reaching local optima by more sophisticated means than the simulated
annealing approach. Our next goal is to implement a version based on the
stochastic variable neighbourhood search algorithm [28].
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