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Abstract

This paper is concerned with a development of a theory on probabilistic models, and in particular Bayesian networks,
when handling continuous variables. While it is possible to deal with continuous variables without discretisation, the sim-
plest approach is to discretise them. A fuzzy partition of continuous domains will be used, which requires an inference
procedure able to deal with soft evidence. Soft evidence is a type of uncertain evidence, and it is also a result of the type
of discretisation used. An algorithm for inference in multiply connected networks will be proposed and exploited for fil-
tering and abduction in dynamic, time-invariant models, when continuous variables are present.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Reasoning under uncertainty has a central role in Artificial Intelligence. Probabilistic models within Soft
Computing, are suitable for dealing with a certain type of uncertainty. Among probabilistic models, in
particular Bayesian networks (BNs) are a powerful tool for knowledge representation and inference. They
combine probability theory and graph theory providing an instrument for dealing with uncertainty and com-
plexity. Their graphical representation allows the decomposition of a complex system in simpler parts and fur-
thermore provides expressive models. The general framework for Bayesian networks was first developed by
Pearl [26] and subsequently refined by Lauritzen and Spiegelhalter [16], and Jensen [11]. The first applications
were done in probabilistic expert systems responding to the need of having expert systems that could use prob-
ability theory in a tractable way. Since then, they have acquired an important role in AI. They have been used
primary as diagnostic systems in medicine, then as general tools for decision making, forecasting, monitor and
control.
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There are in particular two aspects related to the use of Bayesian networks, that are still subject of research
and that may occur in real-world applications: handling continuous variables, and inferring solutions from
uncertain findings. There are two basic approaches to deal with continuous variables: the one that resorts
to specific families of probability distributions and the one that uses a finite partition of the continuous
domains. The first approach consists in the definition of standard families of probability functions represent-
ing the priors and conditional probabilities in the BN. The functions are specified by a finite number of param-
eters. A common choice is to use conditional linear Gaussian (CLG) distributions. CLG models do not allow
discrete variables to have continuous parents. There are attempts to overcome this limitation using a combi-
nation of Gaussian and softmax functions [19,23], but in most cases, they need to resort to the use of approx-
imate methods for the inference. Their convergence can be quite slow and very sensitive to the parameter
choice. In general, these attempts need some strong assumptions particularly on the interaction between dis-
crete variables and their continuous parents. Mixture of Truncated Exponentials (MTE) models [18] allow the
use of discrete variables with continuous parents, and exact propagation algorithms can be performed over
them; yet they rely on the non-trivial estimation of the parameters describing the MTE densities. The second
approach consists in the discretisation of continuous domains. A common choice is to define a partition using
a finite number of intervals. This requires the specification of set of threshold values to specify the intervals.
The set of thresholds may be supplied by an expert. Techniques have be applied to find the optimal set of
thresholds while inducing the model from data but they can become computationally very expensive when
applied to large databases [8].

We shall propose an approach to handle continuous variables using a discretisation of continuous domains.
We shall define a type of partition that requires only the specification of the number of partition sets. The pro-
posed type of partition requires changes in the traditional approach to probabilistic inference. The same infer-
ence procedure will be able to process both continuous findings and soft evidence. Soft evidence is a type of
uncertain evidence that occurs when uncertainty is represented through probability. The inference procedure
for dealing with soft evidence has been proposed originally by the authors in [2]. It resorts to an iterative pro-
portional fitting procedure in order to perform belief updating when soft evidence is given. A similar proce-
dure has also been independently proposed in [30] for dealing with agent communication, and in [14] where it
is suitable for a restricted type of applications where uncertain evidence affects a limited and fixed number of
variables.
2. The use of soft evidence for continuous variables

In this section we shall describe an approach to handle continuous variables using a type of uncertain evi-
dence called soft evidence. We shall also discuss the appropriateness of the use of soft evidence rather than
likelihood evidence, which is an alternative means to deal with uncertain findings.
2.1. Soft evidence

Evidence is new information about any of the random variables that a Bayesian network models. Typically,
evidence is the observation that a variable is in one of its possible states or values. For example, a binary var-
iable Rain may be observed being in the state yes or not; if the state yes is observed, the variable Rain is instan-
tiated to that value, which we will indicate as Rain = yes. The type of evidence described so far is also termed
hard evidence, as complementary to other types of evidence called soft and likelihood evidence, which are used
to model uncertain findings.

While hard evidence assigns one exact value to each of the evidence variables, i.e. the variables subjected to
new findings, soft evidence [24] is not a delta function but specifies a probability distribution for the evidence
variable. Soft evidence maps all the values of the evidence variables to [0,1].

Definition 2.1 (Soft evidence). Given a variable X defined on the domain XX, a soft evidence E is a
function
E : XX 7!½0; 1�
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such that
8xm 2 XX ; 0 6 EðxmÞ 6 1;X
xm2XX

EðxmÞ ¼ 1: ð1Þ
For example, a certain uncertain observation about the variable Rain could be represented as the soft evidence
E(yes) = 0.8 and E(not) = 0.2.
2.2. Soft evidence versus likelihood evidence

Uncertain evidence is commonly handled through virtual nodes, and hence likelihood evidence.
The likelihood evidence approach requires adding virtual nodes to the structure, and for each of them a

CPT associated with the new link. For example, a certain uncertain observation about the variable Rain is
handled creating a virtual node V with values true and false as a child node of Rain. The CPT of V given Rain

is represented by the likelihood ratio:
P ðV ¼ truejRain ¼ yesÞ
P ðV ¼ truejRain ¼ notÞ ¼

OddsðRain ¼ yesjV ¼ trueÞ
OddsðRain ¼ yesÞ ð2Þ
The evidence V = true is entered, and propagation is performed. It is important to notice that the node Rain is
not instantiated to any particular value and its beliefs may change if another node that influences Rain is sub-
jected to observation. A detailed explanation of the use of likelihood evidence can be found in [15].

Likelihood evidence represents a subjective statement that can be improved by something observed later,
while uncertain observations that cannot be improved by anything observed later are represented using soft
evidence. We can argue that the use of soft evidence is complementary to the use of the likelihood evidence
when dealing with uncertainty.

Example 2.1. Let us consider a court case where two witnesses, John and Mary, are asked to give evidence on
whether Ms X is guilty or not of having committed a certain crime.

Suppose that the structure in Fig. 1 is used to model the case, where the node ‘Guilty’ represents ‘Ms X is
guilty’ and takes values ‘true’ and ‘false’, the nodes ‘John’ and ‘Mary’ represent respectively ‘John and Mary
saw Ms X committing the crime’, and have value ‘true’ and ‘false’. Suppose that Mary thinks she has seen Ms
X committing the crime, but she is only 70% sure about it. The uncertain evidence provided by Mary could be
interpreted as likelihood evidence. In this case a virtual node V is added to the model, the likelihood ratio is
computed, and the evidence V = true is entered. The updated values after propagation is performed, are
shown in Fig. 2.

Further, suppose that John gives evidence that he saw Ms X committing the crime. According to the
likelihood evidence approach, the additional information provided by John will modify the beliefs of the node
‘Mary’ as shown in Fig. 3.

If we interpret Mary’s uncertain evidence as soft evidence that cannot be modified by anything observed
later, the updated values given Mary’s testimony are equal to the ones shown in Fig. 2. The additional
information provided by John will not change the beliefs of the node ‘Mary’. The results after propagation are
shown in Fig. 4.

The reasoning and the algorithm which lead to these results when soft evidence is considered, will be
explained in the following sections.
Fig. 1. Two-witness network.



Fig. 2. Posterior probabilities after Mary’s testimony.

Fig. 3. Posterior probabilities after Mary’s and John’s testimony (likelihood evidence approach).

Fig. 4. Posterior probabilities after Mary’s and John’s testimony (soft evidence approach).
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The above simple example illustrates the consequences of using likelihood evidence versus soft evidence.
Should Mary’s uncertain testimony be ‘improved’ by John’s testimony? The soft evidence approach allows
one to fix the node ‘Mary’ to the values 0.7 and 0.3 in a way that generalises hard evidence, i.e. the findings
cannot be modified by further evidence. As a consequence of John’s additional testimony of Ms X being
guilty, the posterior probability of Guilty = true is higher when using the likelihood evidence approach than
when we treat Mary’s uncertain statement as soft evidence. Hence soft evidence is the appropriate means of
dealing with uncertain evidence when one wants to fix the beliefs of a node to a probability distribution. Fur-
ther discussions on the distinction between likelihood evidence and soft evidence can be found in [30,4].

2.3. Discretisation of continuous domains

In this section we shall relate soft evidence to the use of continuous variables.
While in many applications it is possible to deal with continuous variables without discretisation, the sim-

plest approach is to discretise them. The continuous variable domains are discretised with a finite set of thresh-
old values, defined on the original continuous frame. Given the continuous variable Y, defined on the domain
KY, the discretisation is the definition of a partition y1; . . . ynY

of KY.
We shall discretise continuous domains with a fuzzy partition [28].

Definition 2.2 (Fuzzy partition). A fuzzy partition on the universe X is the set of fuzzy sets [33] ff1; . . . ; fpg
such that 8x 2 X
Xp

i¼1

vfi
ðxÞ ¼ 1 ð3Þ
where vfi
is the membership function of fi, i.e. a function
vf : X 7!½0; 1�
We shall use equally spaced, symmetric fuzzy sets as in Fig. 5.



Fig. 5. Fuzzy partition.
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Let X be a variable defined on X ¼ ½InfX; SupX� and ff1; . . . ; fpg a partition of X as in Fig. 5. Let I ¼ SupX�InfX

p�1
.

For X = x and k 2 f1; . . . ; p � 1g, if
InfX þ ðk � 1ÞI 6 x 6 InfX þ kI
the values vfk
ðxÞ and vfkþ1

ðxÞ are
vfk
ðxÞ ¼ k � x� InfX

I
ð4Þ

vfkþ1
ðxÞ ¼ x� InfX

I
� k þ 1 ð5Þ
The two membership values define a probability distribution over the elements of the partition [1]. This is due
to the fact that we use equally spaced, symmetric fuzzy sets.

The proposed discretisation is related to the use of soft evidence. Let Y be a continuous variable defined on
XY, and let ff1; . . . ; fpg be a fuzzy partition of XY. The continuous finding Y ¼ y corresponds to the soft evi-
dence EðfkÞ ¼ vfk

ðyÞ and Eðfkþ1Þ ¼ vfkþ1
ðyÞ, where k 2 f1; . . . ; p � 1g, and the two membership functions vfk

and vfkþ1
are as in (4) and (5).

Continuous findings cannot be treated as likelihood evidence since they do not correspond to subjective
statements that can be modified by further evidence. Soft evidence is appropriate to deal with continuous vari-
ables discretised as explained above, since it is able to generalise hard evidence: the beliefs of a continuous
node discretised with a 2-element fuzzy partition will be fixed for example to the values 0.95 and 0.05, as
the beliefs of a binary discrete node are fixed for example to the values 1 and 0.

3. Soft updating of a joint distribution

The type of dicretisation proposed in the previous section requires a probabilistic inference able to deal with
soft evidence. We shall consider here the process of updating a joint distribution. Soft evidence can be inter-
preted as a constraint to the distribution. The minimum relative entropy (MRE) criteria finds a solution to the
problem of updating a distribution when another distribution is given as constraint. Let qk be a prior distri-
bution that is subjected to some constraints C. Among all the distributions pk that satisfy the constraints, the
minimum relative entropy criteria estimates the one that yields the minimum relative entropy with respect to
the prior distribution qk:
dðp0k; qkÞ ¼ min
pk2C

dðpk; qkÞ ð6Þ
where d is the relative entropy of pk with respect to qk.

Definition 3.1 (Relative entropy). Let pk and qk be two discrete probability distributions on a measurable
space ðX;FÞ. The relative entropy of pk with respect to qk is defined by
dðpk; qkÞ ¼
X

k

pklog2

pk

qk

ð7Þ
where d is a convex function of pk, is always non-negative, and equals zero if and only if pk = qk [6]. d is also
called Kullback–Leibler (K-L) distance or I-divergence and denotes the information difference between two
distributions. Minimising the difference between the estimated pk and the prior qk is equivalent to projecting
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the prior onto the set of possible distributions allowed by the data. The existence of a solution has been dis-
cussed in [7]. If a solution to the MRE criteria exists, then the solution is unique. The uniqueness is straight-
forward to prove due to dðpk; qkÞ being a convex function of pk.

The iterative proportional fitting (IPF) procedure adjusts a distribution qk to a set of c arbitrary marginal
distributions. It consists in the cyclical application of the MRE criteria for each of the c constraints and con-
verges to p0k, the solution to the MRE criteria subjected to all the given constraints. It starts from p0

k ¼ qk and
evaluates p1

k as the distribution that yields the minimum relative entropy with respect to p0
k and satisfies the first

constraint. Subsequently, p1
k takes the place of p0

k and is updated with respect to the second constraint to p2
k .

For a generic constraint n it yields that
dðpn
k ; p

n�1
k Þ ¼ min

pk2Cn
dðpk; p

n�1
k Þ ð8Þ
where Cn is the set of probabilities distributions that satisfies the nth constraint. The constraints are cyclically
repeated so that in the sth cycle
Cn ¼ Ci; n ¼ ðs� 1Þ � cþ i ð9Þ

where Ci is the set of distributions satisfying the ith constraint for 1 6 i 6 c. The solution to the IPF procedure
is a distribution p0k that satisfies
p0k ¼ lim
n�>1

pn
k ð10Þ
The convergence of this procedure has been discussed in [7] proving the following theorem:

Theorem 3.1. Let C1; . . . ;Cc be arbitrary sets of distributions on a finite space with C ¼ \c
i¼1Ci and C 6¼ ;. Let

qk be a probability distribution such that there exists a distribution pk 2 C with dðpk; qkÞ <1. If p1
k ; p

2
k ; . . . are

defined recursively as in (8) and (9), then pn
k converges to p0k satisfying
dðp0k; qkÞ ¼ min
pk2C

dðpk; qkÞ ð11Þ
We shall apply the minimum relative entropy criteria to the inference process of updating the joint distri-
bution of a set of variables when soft evidence is given. Let V ¼ fV 1; . . . ; V ng be a set of n variables and P(V)
their joint distribution. The updated distribution P 0(V) given a set of constraints, is chosen as close as possible
in the probability space, to the prior distribution P(V), that is it satisfies:
min
fP 0ðV Þg

X
V

P 0ðV iÞlog2

P 0ðV iÞ
PðV iÞ

ð12Þ
Suppose a new finding on a continuous variable Vi is known, and the finding is specified by the soft evidence
EðV iÞ. Minimizing the relative entropy of P 0(V) with respect to P(V) is equivalent in this case, to applying Jef-
frey’s rule of updating [10]:
P 0ðV Þ ¼
X

j

P ðV jvijÞEðvijÞ ð13Þ
where vij is a possible state of Vi.
The Eq. (13) can equivalently be expressed as
P 0ðV Þ ¼ P ðV ÞEðV iÞ
P ðV iÞ

ð14Þ
Example 3.1. Let us consider a set of binary variables V ¼ fA;B;Cg with a joint probability as in Table 1 and
a soft evidence on the variable A as E(A) = (0.2,0.8). According to Jeffrey’s rule as in (13) or (14), the updated
distribution is in Table 2. Computing the marginal probabilities for A, we find that P 0(A) = (0.2,0.8), as
expected. The finding on the variable A remains unchanged after it has been absorbed in the model.



Table 1
Joint distribution P ðABCÞ

b1c1 b1c2 b2c1 b2c2

a1 0.28 0.12 0.09 0.01
a2 0.23 0.12 0.145 0.005

Table 2
Updated joint distribution given E(A)

b1c1 b1c2 b2c1 b2c2

a1 0.112 0.048 0.036 0.004
a2 0.368 0.192 0.232 0.008

Table 3
Updated joint distribution given E(A) and E(B) with 0 iterations

b1c1 b1c2 b2c1 b2c2

a1 0.047 0.02 0.09 0.01
a2 0.153 0.08 0.58 0.02

Table 4
P0(A) at different steps of iteration

it. 0 it. 1 it. 2 it. 3 it. 4

Pða1Þ 0.16666667 0.19963702 0.19999607 0.19999996 0.2
Pða2Þ 0.83333333 0.80036298 0.80000393 0.80000004 0.8
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In case the finding consists of evidence on more than one variable, Jeffrey’s rule is applied within an iter-
ative procedure, which is consistent with the minimum relative entropy criteria.

Example 3.2. Let us consider again the joint distribution as in Table 1. Suppose this time we have two findings
as EðAÞ ¼ ð0:2; 0:8Þ and EðBÞ ¼ ð0:3; 0:7Þ. According to Jeffrey’s rule as in (13) or (14), the updated
distribution when no iteration is applied, is as in Table 3. Computing the marginal probabilities for B, we find
that P 0ðBÞ ¼ EðBÞ, while for A we obtain P 0ðAÞ ¼ ð0:167; 0:833Þ, which is different from the finding on A. The
presence of a second evidence variable, B, does not allow the finding on the first variable, A, to remain
unchanged after the updating. If we iterate our updating procedure 4 times, we obtain that P 0ðAÞ ¼ EðAÞ. The
resulting values of P 0ðAÞ after each iteration are in Table 4. The number of iterations depends on the precision
we require. Table 4 shows that we get the exact solution for P ðAÞ after 1 iteration with the precision of 10�3,
after 2 iterations with the precision of 10�5 and after 3 iterations with the precision of 10�7.
4. Soft updating of hybrid Bayesian networks

The inference process in Bayesian networks determines the posterior probability for a set of query vari-
ables, given that some evidence variables have been instantiated to specific values. The inference algorithms
can be classified into two major groups according to if they provide an exact or an approximate solution.
We shall base our analysis on the first group. The existing algorithms for exact inference tend to handle only
exact values for the evidence variables, i.e. hard evidence. In order to deal with continuous findings, we shall
use the MRE criteria for updating the joint distribution P(V) of a set of variables V, where P(V) is represented
through a Bayesian network. We base our inference procedure on Lauritzen and Spiegelhalter’s join tree algo-
rithm [16], which produces exact inference. It is based on Pearl’s algorithm [25] and allows a Bayesian network
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to have any sparse structure. Other inference algorithms like the HUGIN algorithm [13] or the lazy propaga-
tion algorithm [17], could equivalently be considered for the same purpose.

4.0.1. Lauritzen and Spiegelhalter’s algorithm

Lauritzen and Spiegelhalter developed an exact probabilistic method for propagating the evidence in
Bayesian networks. Their method involves topological changes in the structure of the net: it builds a join tree
whose vertices are cliques of a moral and triangulated graph derived from the graph of the BN. The
topological order of the cliques in the join tree is such that the cliques hold the running intersection property.
A probabilistic propagation method is applied to the clique tree and the related potential representation
ðfClq1 . . . ClqnC

g;WÞ, where fClq1 . . . ClqnC
g is the set of cliques and W is a function
W : X1 � . . .� Xn 7!R
such that
P ðV Þ ¼ const
YnC

i¼1

WðClqiÞ ð15Þ
The join tree algorithm computes the probability P ðClqiÞ or, once the evidence has been absorbed in the func-
tion W, the updated probability P 0ðClqiÞ, where Clqi is a generic clique of the join tree. The marginal distri-
bution of a variable can be computed from the probability of the clique the variable belongs to. We shall
give an overview on the theory that justifies the join tree algorithm [21].

Theorem 4.1. Let ðSi;RiÞ be partition of a clique Clqi such that Si ¼ Clqi \ ðClq1 [ . . . [ Clqi�1Þ and

Ri ¼ Clqi � Si, then
P ðClqijSiÞ ¼ PðRijSiÞ ð16Þ

It follows from Theorem 4.1 that for 1 6 i 6 nC
P ðClqiÞ ¼ P ðRijSiÞP ðSiÞ ð17Þ

The aim of the join tree algorithm is to solve (17) for each clique of the tree. The following two theorems deal
with the computation of the first factor of Eq. (17).

Theorem 4.2. Let kðSnC Þ ¼
P

RnC
WðClqnC

Þ, then it holds that
P ðRnC jSnC Þ ¼
WðClqnC

Þ
kðSnC Þ

ð18Þ
Theorem 4.3. Let ðfClqig;WÞ for 1 6 i 6 nC be a potential representation of the joint distribution P(V), Clqj be

one of the clique that satisfy SnC � Clqj and W00 be a function defined for 1 6 i 6 ðnC � 1Þ as
W00ðClqiÞ ¼
WðClqiÞ if i 6¼ j

WðClqiÞkðSnC Þ if i ¼ j

�
ð19Þ
ðfClq1 . . . ClqnC�1g;W00Þ is a potential representation of the marginal distribution on the set fClq1 . . . ClqnC�1g,
relative to P(V).

Theorem 4.2 allows one to compute P ðRijSiÞ for the clique that is last in the topological order of the cliques,
Theorem 4.3 builds a potential representation on the remaining cliques so that Theorem 4.2 can subsequently
be applied to them. The alternate application of the two theorems till reaching the root clique allows one to
compute the conditional probabilities P ðRijSiÞ for each clique of the tree. k can be thought of as a message that
a clique sends upwards to its parents. Being S1 ¼ ; by definition, PðR1jS1Þ ¼ P ðR1Þ and P ðClq1Þ ¼ PðR1Þ,
which solves the (17) for Clq1. It follows that for any clique Clqj such that Sj � Clq1
P ðSjÞ ¼
X

Clq1�Sj

P ðClq1Þ ð20Þ
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and hence, let pðSjÞ ¼ P ðSjÞ,

P ðClqjÞ ¼ P ðRjjSjÞpðSjÞ ð21Þ
The alternate application of (20) and (21) till reaching the leaf cliques allows one to compute the probabil-
ities P ðClqiÞ for each clique of the tree. p can be thought of as a message that a clique sends downwards to its
children. As mentioned above, if the evidence has been absorbed into the potential representation, i.e. the evi-
dence variables have been instantiated, the algorithm computes the updated marginal over the cliques. Lau-
ritzen and Spiegelhalter’s join tree algorithm deals only with hard evidence.

4.0.2. Soft updating algorithm

We shall distinguish here the case of one evidence variable only, and the one of two or more evidence vari-
ables. In the first case we shall apply the join tree algorithm nX times, where nX is the number of possible values
of the evidence variable X. The soft evidence E(X) is split in nX hard evidence function EðX Þ ¼ dðrÞ, for
1 6 r 6 nX . The resulting updated marginals over the cliques P 0ðClqiÞ ¼ PðClqijEðX ÞÞ are combined in
P 00ðClqiÞ ¼ PðClqijEðX ÞÞ according to (13). If the finding consists of the evidence on two or more nodes,
we shall apply the soft updating within an iterative procedure. The iterative procedure will be built taking into
account that the join tree algorithm applies to potential representations. Let U � V be a set of m evidence
nodes of the Bayesian network and ðfClq1 . . . ClqnC

g;WÞ a potential representation of P(V). We shall apply
the soft updating procedure considering the first variable U1 and obtain P 00ðClqiÞ ¼ PðClqijEðU 1ÞÞ. Let
p�1ðSjÞ ¼ 1=

P
Clq1�Sj

P 00ðClq1Þ for any clique Clqj such that Sj � Clq1. It follows from Theorem 4.1 that
P 00ðRjjSjÞ ¼ P 00ðClqjÞp�1ðSjÞ ð22Þ
The application of (22) till the leaf cliques allows one to compute P 00ðRijSiÞ for 2 6 i 6 nC. p�1 can be thought
of as a message a clique sends downwards to its children. Let us consider the function
W00ðClqiÞ ¼
P 00ðClqiÞ i ¼ 1

P 00ðRijSiÞ 2 6 i 6 nC

�
ð23Þ
ðfClqig;W00Þ, for 1 6 i 6 nC, is a potential representation of P(V) because of the following theorem [21]:

Theorem 4.4. Let ðfClqig;WÞ for 1 6 i 6 nC be a potential representation of the joint distribution P(V), if the

ordering fClq1 . . . ClqnC�1g has the running intersection property, then
P ðV Þ ¼ P ðClq1Þ
YnC

i¼2

P ðRijSiÞ ð24Þ
We shall apply the soft updating procedure considering the second variable U2 and W00 as in (23). The appli-
cation of (22) and (23), and the soft updating for each U k 2 U complete the first loop of the iterative process.
We repeat the procedure till the solution converges. Let U � V be a set of m evidence nodes of the Bayesian
network. Let ukl be one of the mk generic values of the variable U k 2 U . Let ChðClqiÞ be the set of children of a
clique Clqi in the join tree. The description of the soft updating algorithm is in Algorithm 1.

Algorithm 1 (Soft updating for multiply connected nets).

ðfClqig;WÞ, 1 6 i 6 nC

ðSi;RiÞ
E(U)
�S

W00ðClqiÞ ( WðClqiÞ {initialisation}
repeat
nit: ( nit: þ 1 {a new iteration starts}
UðClqiÞ ( P 00ðClqiÞ {store P00 at each iteration in U}
{go through the variables Uk in U}
for k = 1 to m do



Table
Param

n

r

p

m

nit:
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WðClqiÞ ( W00ðClqiÞ {the updating is done in a sequence}
P 00ðClqiÞ ( 0 {initialization of P00 for the step ðmnit: þ kÞ}
{go through the values ukl of Uk}

for l = 1 to mk do
EðUkÞ ( dðuklÞ
P 0ðClqiÞ ( P ðClqijEðUkÞÞ {from hard updating algorithm}
P 00ðClqiÞ ( P 00ðClqiÞ þ P 0ðClqiÞEðuklÞ

endfor

W00ðClq1Þ ( P 00ðClq1Þ
if ChðClqiÞ 6¼ ; then

p�1ðSjÞ; Sj � Clqi

endif

if Clqi  p�1ðSiÞ {Clqi receives a p�1 message from a parent} then

W00ðClqiÞ ( P 00ðClqiÞp�1ðSiÞ
endif

endfor

until jP 00ðClqiÞ � UðClqiÞj < �S

P 00ðClqiÞ {the updated distribution over the cliques: P ðClqijEðUÞÞ}
P 00ðV Þ {the updated marginals estimated from P 00ðClqiÞ}

We shall discuss the time computational complexity of the soft evidence algorithm for multiply connected
networks in terms of the number of elementary arithmetic operations needed. The parameters involved in the
complexity analysis are as in Table 5.

We shall consider the different phases of the algorithm:
The k and p procedures. There are 5 major executions related with this first phase: the computation of k, the

divisions and multiplications respectively in (18) and (19), the computation of p and the multiplications in (21).
Each of them consists of basic operations on every combination of the variables in a clique. Hence each of
them consists of prm operations at the most. Overall the upper bound of the number of basic operations
required in the k and p procedures is 5prm. This phase corresponds to the hard updating algorithm for multiply
connected nets. Considering that p 6 n, its computational complexity is OðnrmÞ.

The cycle for every value ukl of Uk. Given an evidence variable Uk, the procedures in the first phase are
repeated for every value ukl of Uk such that EðuklÞ 6¼ 0. Taking r as an upper bound for the number of such
values, the number of operations needed at this stage is of the order of 5prmþ1.

Jeffrey rule. Every cycle of the previous phase is followed by a weighted sum. This requires prmþ1 further
operations. The overall amount of operations at this stage is 6prmþ1

The p�1 procedure. There are 2 major executions related with this phase: the computation of p�1 and the
multiplications in (22). This adds 2prm basic operations.

The cycle for every variable U k 2 U . All the previous phases are repeated for every variable Uk in the set of
evidence variables U. Considering that jU j 6 n, the total number of operations is multiplied by n.
5
eters in the complexity analysis of the soft updating algorithm

Number of variables
Maximum number of values for a variable=maxijXij
Number of cliques
Maximum number of variables in a clique=maxjjClqjj
Number of iterations
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The iterative procedure. Given that the convergence is reached in nit: iterations, the total number of basic
operations needed by the execution of the algorithm is ð6r þ 2Þprmnnit:. Considering that p 6 n, its upper
bound is ð6r þ 2Þn2rmnit: From the above analysis it arises that the computational complexity of the soft updat-
ing algorithm is Oðn2rmnit:Þ. As expected, the algorithm has an exponential complexity depending on the
parameter m that is inherited from the hard updating algorithm. In fact the computation of probabilistic infer-
ence in BNs is an NP-hard problem [5]. Comparing further the soft updating algorithm with the hard updating
one, the linear dependency on n becomes quadratic and there is an ulterior linear dependency on nit.. The
parameter nit. depends on the cardinality of U or more exactly on nval:: the overall number of values ukl such
that EðuklÞ 6¼ 0. The upper bound of nval: is rn. The dependency of nit: from nval: can be kept linear for relative
small value of nval:.

In order to show the convergence of the soft evidence algorithm for multiply connected networks, we shall
show that the hypothesis of Theorem 3.1 are satisfied by the features involved in the algorithm, and we shall
discuss when those hypothesis are not satisfied. The algorithm considers a joint distributions P(V) relative to a
set of variables V which is represented by P ðClqiÞ, the probability distribution over the set of cliques. Let us
consider m sets of multivariate distributions F kðUÞ defined on the finite set of evidence variables U � V such
that
 X

Uk

F kðUÞ ¼ EðUkÞ ð25Þ
The soft evidence functions are therefore the constraints to PðClqiÞ and the sets of distributions F kðUÞ corre-
spond to the C1; . . . ;Cc arbitrary sets of distributions of Theorem 3.1. Let F ðUÞ ¼ \m

k¼1F k, then F ðUÞ is the set
of multivariate distributions whose marginals over U k are the functions EðUkÞ and therefore satisfy all the m

constraints. The constraints EðU kÞ are cyclically considered in the algorithm as in (9). Considering a generic
step n ¼ nit: � mþ k, then
dðP nðClqiÞ; P n�1ðClqiÞÞ ¼ min
PðClqiÞ2F n

dðP ðClqiÞ; P n�1ðClqiÞÞ ð26Þ
since the application of Jeffrey’s rule at each nth step satisfies the MRE criteria. According to Theorem 3.1,
P nðClqiÞ converges to the right solution if
SðP ðClqiÞ;1Þ \ F ðUÞ 6¼ ; ð27Þ

Eq. (27) is satisfied only when the constraints EðU kÞ are consistent with the model represented by P(V). Incon-
sistent evidence in probabilistic models has been studied in [32]. We shall describe an example where there is
inconsistency between the evidence and the model.

Example 4.1. Let us consider two nodes A and B part of a certain Bayesian network, being A parent of B. Let
A and B be defined respectively on the continuous domains XA ¼ ½0; 12� and XB ¼ ½0; 1� and suppose that XA

and XB are discretised by a fuzzy partition of respectively 5 and 3 sets. The CPT related to P ðBjAÞ is in Table 6.
Let us consider the findings A = 12 and B ¼ 0:5. They correspond to the hard evidence Eða5Þ ¼ 1 and

Eðb2Þ ¼ 1. As expected, there is no solution in this case since P ðb2ja5Þ ¼ 0. Similarly, there is no solution for
the findings A = 6 and B = 1. Every 0 entry in the CPT is related to a domain of inconsistent evidence which,
in the case of hard evidence, corresponds to two points in the cross product space XA � XB:
Xih ¼ fð6; 1Þ; ð12; 0:5Þg � XA � XB
The domain of inconsistent soft evidence is instead more extended. In this example there is not exact solution
if the evidence function is defined on the domain:
Xis ¼ ½3; 9� � ½0:5; 1� þ ½9; 12� � ½0; 1� � XA � XB
Although there is no exact solution in Xis, the soft evidence algorithm provides an approximate solution in
part of the Xis domain that is far enough from Xih. The approximate solution is dependent on the order in
which the evidence variables are considered in the updating process. In Table 7 there are some examples of
approximate solutions for the variable A when B ¼ 0:75, and when the prior probability of A is
Pða1; a2; a3; a4; a5Þ ¼ ð0:03; 0:3; 0:2; 0:3; 0:17Þ.



Table 6
Conditional probability PðBjAÞ

a1 a2 a3 a4 a5

b1 0.7 0.5 0.25 0.4 0.75
b2 0.2 0.3 0.75 0.5 0
b3 0.1 0.2 0 0.1 0.25
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The example above shows that the soft evidence algorithm converges even in some inconsistent situations to
a solution that is somehow close to the findings. This does not solve the problem of inconsistent evidence since
in general the algorithm cycles or the solution is dependent on the order in which the evidence variables are
considered.

A further important aspect in the convergence analysis is the study of the behaviour of nit:, the number of
iterations which lead to the convergence. nit: increases as the number of soft evidence variables, or more exactly
as the number nval: of values ukl with EðuklÞ 6¼ 0, increases. The number of iterations in the IPF is related to the
stopping criteria which verifies that the procedure converges. In the Algorithm 1 the stopping criteria is
jP 00ðClqiÞ � UðClqiÞj < �S. We shall study the behaviour of nit: at different values of the parameter �S. Let
us consider the Stud farm model [11]. In Figs. 6 and 7 are represented the values of nit: as function of nval: when
�S is respectively equal to 10�6 and 10�7. Fig. 8 shows that the value of nit: increases exponentially with nval:

when �S ¼ 10�8.
The soft updating algorithm presented in this paper, and proposed originally by the authors in [2], produces

the same results as Netica system [22] when hard evidence findings are given, and as the big clique algorithm
[14] implemented in BC-Hugin, when soft evidence findings are given. An equivalent procedure for soft evi-
dential update has also been independently proposed in [30] for dealing with agent communication, but eval-
uation or analysis of the algorithm are not provided.

The big clique algorithm applies the IPF procedure for soft updating to a peculiar junction tree where all the
variables subjected to soft evidence are grouped in one of the cliques, namely the big clique. The junction tree
is also known as Hugin architecture. It consists of the join tree plus separating registers between the cliques.
The algorithm iterates only on a subset of the variables, the ones in the big clique. In this respect, it is more
Table 7
Approximate solutions for P(A) in Xis

a1 a2 a3 a4 a5

A = 3.5 0 0.8833 0.1667 0 0
solution 0 0.8833 0.1667 0 0
A = 4 0 0.6667 0.3333 0 0
solution 0 0.6667 0.3333 0 0
A = 4.5 0 0.5 0.5 0 0
solution 0 0.512 0.488 0 0
A = 5 0 0.3333 0.6667 0 0
solution 0 0.5001 0.4999 0 0

Fig. 6. Number of iterations in the Stud farm net when �S ¼ 10�6.



Fig. 7. Number of iterations in the Stud farm net when �S ¼ 10�7.

Fig. 8. Number of iterations in the Stud farm net when �S ¼ 10�8.
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efficient than the Algorithm 1. On the other hand, there are situations in which the use of Algorithm 1 is more
convenient. There are two main drawbacks of the big clique algorithm: the junction tree has to be built every
time the set of evidence variables changes (building an optimal junction tree is NP-hard [12]); if all the vari-
ables in the model are subjected to soft evidence, there is only one big clique (the computational complexity
depends exponentially on the number of nodes in a clique). Hence the big clique algorithm is suitable for a
restricted type of applications with a limited and fixed number of soft evidence variables.

An application of the IPF procedure has also been applied in [27] to modify, but not update, probability
distributions represented as Bayesian networks.

5. Hybrid probabilistic temporal models

Temporal models or state-space models (SSMs), relate observations to unobserved states, using state and
sensor variables replicated over time. They are suitable for sequential data modelling and dynamic systems.
The same reasoning applies as well to static processes that have an underlying spacial dimension and hence
can generate sequential data. A convenient approach to sequential data is on-line analysis, as it can deal with
sequences with a variable length and requires storing less information. We shall however restrict our analysis
to time-invariant and Markov models. We shall consider here hybrid Dynamic Bayesian networks (DBNs)
[20,9] that are a type of representation of stochastic space-models, including both discrete and continuous vari-
ables, in order to solve state estimation problems and calculations of optimal paths. The soft updating algo-
rithm presented in the previous section, is used as subroutine of the online inference for DBNs when dealing
with continuous variables. An extended algorithm is presented for the estimation of the most likely
explanation.

5.1. Soft filtering algorithm

Filtering is a type of inference in temporal models that estimates online the state of the world given the
observations up to the current time. We shall consider filtering when soft findings occur due to continuous-
valued observation variables, and call the soft updating algorithm for BNs as subroutine of a soft filtering
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for DBNs. Online inference in DBNs means that we can store a two-slice BN (2TBN) at a time, and we can
deal with sequences which have a variable length. We shall exploit the simple approach of prediction–estima-
tion cycle [29] suitable for general monitoring tasks.

Let Zt be a set of variables representing the state of a system at time t, and ðB0;B1Þ be the DBN modelling
this system, where B0 defines the prior P ðZ0Þ, and B1 is a two-slice BN. Let Zt ¼ ðX t; Y tÞ, where Xt is the set of
nodes X i

t called state nodes and Yt is the set of nodes Y j
t called observation nodes. The state nodes represent the

variables termed hidden states, since they cannot be observed directly. The system allows to collect findings
related merely to the observation nodes. Let us suppose to gather at each time step t some new continue-val-
ued information about the system that can be expressed through a soft evidence function EðY tÞ. The basic idea
of the prediction–estimation cycle is to store the information about the past in an updated prior BelðX tÞ for
the current state:
BelðX tÞ ¼ P ðX tjE0;E1 . . . Et�1Þ ð28Þ
Let PaðX tÞ be the set of parents of Xt. The soft filtering algorithm at a generic time t consists of two phases:

– prediction phase: the expected probability distribution over the states Xt is computed using the estimated
distribution over the past states X t�1:
dBelðX tÞ ¼

X
X t�1

P ðX tjX t�1ÞBelðX t�1Þ ð29Þ

dBelðX tjPaðX tÞÞ ¼
X
X t�1

PðX tjPaðX tÞÞBelðX t�1Þ ð30Þ
– estimation phase: the updated probability distribution over the states Xt, given the evidence EðY tÞ, is com-
puted using the soft updating algorithm on the BN B2, where B2 is obtained from B1 deleting the inter-slice
topology and modifying the prior of Xt with the prediction dBelðX tÞ from the previous phase, as in (29) or
(30).

The pseudo-code of the soft filtering is in Algorithm 2.

Algorithm 2. Soft filtering

Z ¼ ðX ; Y Þ
ðB0;B1Þ
if t = 0 then
BelðX 0ÞfP ðX 0jEðY 0ÞÞ from Algorithm 1g
BelðX t�1Þ ( BelðX 0Þ

elsedBelðX tÞ
BelðX tÞfPðX tjEðY tÞÞ from Algorithm 1g
BelðX t�1Þ ( BelðX tÞ

endif

When dealing with hard evidence, the Algorithm 2 is equivalent to the process of unfolding the 2TBN for t

slices (i.e. up to the current time t) and applying a standard inference algorithm on the resulting structure. In
the soft evidence case Algorithm 2 produces a different estimation of the state of the world than the soft infer-
ence algorithm applied for every time t, to the 2TBN stretched out t times. This is due to the fact that the soft
inference algorithm performs differently if one considers a whole set of observations or one observation at a
time. As shown in the previous section, the number of iterations of the inference process is related to the num-
ber of soft evidence findings. The iterative proportional fitting needs to consider sequentially each constraint
and iterate over them the necessary number of times that lead to the convergency. No iteration is required,
even when soft findings occur, only when the variables subjected to soft evidence are independent, which,
in the case of the observation nodes in a DBN, does not occur unless the state variables are instantiated.
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Soft inference on the unfolded structure provides the correct solution, however the two-slice filtering is
more convenient since it needs to store only two slices at a time, best exploiting the richness of temporal
models.
5.2. Soft abduction algorithm

Abduction or most likely explanation is the estimation of the most likely sequence of hidden states given the
observations. We shall solve the abduction task in DBNs drawing on the soft updating algorithm. If no further
assumptions are done, the most likely explanation does not necessary coincide with a sequence of local opti-
misations, i.e. optimisations obtained in a single time slice. We shall apply Bellman’s principle of optimality
for dynamic programming [3] to the propagation of probabilities in the join tree, similarly to the Viterbi algo-
rithm [31].

Let ðB0;B1Þ be a DBN modelling the temporal behaviour of a set of variables Zt ¼ ðX t; Y tÞ, and EðY 1:T Þ be
the observed evidence during a period of time T. The 2TBN is unrolled T times.

Phase 1. Let us apply the soft updating algorithm for BNs to the T slices structure and obtain
P 0ðClqiÞ ¼ PðClqijEðY 1:T ÞÞ from Algorithm 1. Let us apply the p�1 message to P 0ðClqiÞ as in (22) and obtain
P 0ðRijSiÞ.

Phase 2. Let pmaxðSiÞ ¼ maxSi P
0ðRijSiÞ for any clique Clqi such that Si � Clq1. We define the function

WmaxðClqiÞ as follows:
WmaxðClqiÞ ¼ P 0ðRijSiÞpmaxðSiÞ ð31Þ

The application of (31) till the leaf cliques allows one to compute WmaxðClqiÞ for 2 6 i 6 nC. pmax can be

thought of as a message a clique sends downwards to its children in order to select the candidates for the opti-
mal path.

Phase 3. Once we reach the leaf nodes, the configuration w* of the nodes with the max value of Wmax is
selected, and a backwards procedure is applied going up the tree. For a generic clique Clqi, it is selected
the configuration w�i holding the max value of Wmax, and with the values of the sets Sj as selected in its children.
The pseudo-code of the soft abduction is in Algorithm 3.

Algorithm 3 (Soft abduction).

ðfClqig;WÞ, 1 6 i 6 nC

ðSi;RiÞ
EðY Þ
{Phase 1}
P 00ðClqiÞ ( P ðClqijEðY kÞÞ {from Algorithm 1}
W00ðClq1Þ ( P 00ðClq1Þ
if CðClqiÞ 6¼ ; then

p�1ðSjÞ; Sj � Clqi

end if

if Clqi  p�1ðSiÞ {Clqi receives a p�1 message from a parent Clqj} then

W00ðClqiÞ ( P 00ðClqiÞp�1ðSiÞ
end if

{Phase 2}
if CðClqiÞ 6¼ ; then

pmaxðSjÞ; Sj � Clqi

end if

if Clqi  pmaxðSiÞ {Clqi receives a pmax message from a parent Clqj} then

WmaxðClqiÞ ( W00ðClqiÞpmaxðSiÞ
end if

{Phase 3}
if CðClqiÞ ¼ ; then
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w�i ( arg maxw2Clqi
WmaxðwÞ

end if

if ðClqj 2 PaðClqiÞÞ ^ ðs�i 2 w�i Þ then

ðw�j ( arg maxw2Clqj
WmaxðwÞÞ ^ ðs�i 2 w�j Þ

end if

[nC
i¼1w�i {the most likely configuration of nodes}
6. Conclusions

This paper has presented a possible model for hybrid Bayesian networks, where continuous and discrete
variables are both present in any position in the graph. The inference algorithm is an extension of Lauritzen
and Spiegelhalter’s join tree algorithm, and it is able to process both continuous findings and soft evidence.
The number of iterations for the convergence of the inference procedure depends on the number of values been
instantiated. We have dealt with continuous variables using a fuzzy partition of continuous domains but no
fuzzy logic formalism has been used throughout the paper. We have exploited the algorithm for soft evidence
for filtering and abduction in hybrid temporal models. The online filtering has required some further investi-
gation. As result of the IPF procedure, the online filtering in two-slice temporal BNs performs differently than
applying soft inference on the unfolded structure.

In a future implementation of the inference algorithm for soft evidence we intend to consider other prop-
agation methods like the HUGIN algorithm [13] or the lazy propagation algorithm [17].

Influence diagrams (IDs) and Dynamic Decision networks (DDNs) have not been considered in this paper.
IDs and DDNs are an augmented version of Bayesian networks and Dynamic Bayesian networks with deci-
sion and utility nodes. They model situations where decisions are taken maximising the expected utility minus
the cost. The results of this work could be exploited for IDs and DDNs. They are in particular suitable to
represent agents that act and plan and for general control systems applications.
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