
Belief Update in CLG Bayesian Networks With Lazy Propagation

Anders L Madsen
HUGIN Expert A/S

Gasværksvej 5

9000 Aalborg, Denmark
Anders.L.Madsen@hugin.com

Abstract

In recent years Bayesian networks (BNs)
with a mixture of continuous and discrete

variables have received an increasing level of
attention. We present an architecture for ex-

act belief update in Conditional Linear Gaus-

sian BNs (CLG BNs). The architecture is an
extension of lazy propagation using opera-

tions of Lauritzen & Jensen [6] and Cow-

ell [2]. By decomposing clique and separa-
tor potentials into sets of factors, the pro-

posed architecture takes advantage of inde-
pendence and irrelevance properties induced

by the structure of the graph and the evi-

dence. The resulting benefits are illustrated
by examples. Results of a preliminary empir-

ical performance evaluation indicate a signif-

icant potential of the proposed architecture.

1 INTRODUCTION

The framework of BNs is an efficient knowledge rep-

resentation for reasoning under uncertainty [12, 3, 4].
Traditionally, the variables of a BN are assumed to be

either discrete or continuous. In recent years BNs with

a mixture of continuous and discrete variables have
received an increasing level of attention. Here exact

belief update in CLG BNs is considered.

Extending the class of BNs containing discrete (or con-

tinuous) variables only to the class of BNs containing

both discrete and continuous variables is not simple.
The work by Pearl [12] on BNs containing continu-

ous variables imposed three constraints on the vari-
ables in the network. The interaction between vari-

ables is linear, the sources of uncertainty are Gaussian

distributed and uncorrelated, and the causal network
is singly connected. Later, Shachter & Kenley [14]

described how to solve Gaussian influence diagrams

under similar constraints, but allowing multiple con-

nected causal networks.

Lauritzen [5] presents a scheme for modeling and ex-

act belief update in CLG BNs. This scheme is more
general than the scheme proposed by Pearl. The con-

ditional distribution of the continuous variables given

the discrete variables is assumed to be multivariate
Gaussian. Only continuous variables which are linear

additively Gaussian distributed are considered. The
asymmetry between continuous and discrete variables

induces a number of constraints on the model spec-

ification and the inference structure. Using a simi-
lar approach Chang & Fung [1] extend the SPI algo-

rithm [13] to solve arbitrary queries against CLG BNs.

The Lauritzen [5] architecture is known to suffer from

problems causing numerical instability. For this rea-

son the architecture was later revised by Lauritzen &
Jensen [6] in order to improve the numerical stabil-

ity of belief update. Recently, Cowell [2] introduced

an alternative architecture for belief update based on
message passing in an elimination tree using the arc-

reversal operation of Shachter & Kenley [14] (referred
to as the EXCHANGE operation). By performing mes-

sage passing in an elimination tree the need for com-

plex matrix operations is eliminated.

We introduce a new architecture for belief update

in CLG BNs. The architecture is an extension of
lazy propagation [10] based on operations introduced

by Lauritzen & Jensen [6] and Cowell [2]. Belief up-

date proceeds by message passing in a strong junc-
tion tree structure where messages are computed us-

ing arc-reversal and EXCHANGE operations. The EX-

CHANGE operation is extended to eliminate discrete
variables by arc-reversal. Variables are eliminated us-

ing a sequence of EXCHANGE operations and barren
variable removals. Posterior marginal distributions are

computed using EXCHANGE and PUSH [6] operations.

We investigate the computational efficiency of the pro-

posed architecture by comparing its performance on a

number of randomly generated CLG BNs with the per-

formance of the Lauritzen & Jensen [6] architecture as
implemented in the HUGIN Decision Engine, i.e., the

inference engine of the HUGIN tools. Furthermore,

we analyze the performance of various steps of belief
update such as computing posterior distributions.

2 PRELIMINARIES AND NOTATION

2.1 CLG BAYESIAN NETWORK

A CLG BN N = (X, G, P, F) over variables X consists of
an acyclic, directed graph (DAG) G = (V, E), a set of

conditional probability distributions P = {P(X| π(X)) :

X ∈ ∆}, and a set of CLG density functions F =

{f(Y | π(Y)) : Y ∈ Γ } where ∆ is the set of discrete

variables and Γ is the set of continuous variables such

that X = ∆ ∪ Γ . The vertices V of G correspond one to
one with the variables of X. CLG BN N induces a mul-

tivariate normal mixture density over X on the form:

P(∆) · f(Γ |∆) =
∏

X∈∆

P(X| π(X)) ·
∏

Y∈Γ

f(Y | π(Y)),

where π(X) is the set of variables corresponding to the
parents of the vertex representing X in G.

Let Y ∈ Γ with I = π(Y) ∩ ∆ and Z = π(Y) ∩ Γ , then Y

has a CLG distribution if:

L(Y |I = i, Z = z) = N(α(i) + β(i)z, σ2(i)), (1)

where the mean value of Y depends linearly on the
values of the continuous parent variables Z, while the

variance is independent of Z. In (1), α(i) is a table

of real numbers, β(i) is a table of |Z|-dimensional vec-
tors, and σ2(i) is a table of non-negative values.

Evidence on a variable X ∈ ∆ is assumed to be an
instantiation, i.e., X = x. Evidence on a variable Y ∈ Γ

is an assignment of a value y to Y, i.e., Y = y. We

let ǫ∆ and ǫΓ denote the set of evidence on variables
of ∆ and Γ , respectively, such that ǫ = ǫ∆ ∪ ǫΓ .

Definition 2.1 [Barren Variable]
A variable X is a barren variable w.r.t. a set of vari-

ables T , evidence ǫ, and DAG G, if X 6∈ T , X 6∈ ǫ and X

only has barren descendants in G (if any).

2.2 THE EXCHANGE OPERATION

Let Y, Z ∈ Γ with parent sets π(Z) = {Z1, . . . , Zn} ⊆ Γ

and π(Y) = {Z, Z1, . . . , Zn} ⊆ Γ such that:

Y |Z, Z1, . . . , Zn ∼ N(αY + βZZ +

n∑

i=1

βiZi, σ
2
Y),

Z|Z1, . . . , Zn ∼ N(αZ +

n∑

i=1

δiZi, σ
2
Z).

The EXCHANGE operation is essentially Bayes’ theorem.

It converts the above pair of distributions such that Y

becomes a parent of Z in the domain graph spanned by

the two distributions maintaining the same joint prob-

ability density function of the original pair [2]. Graph-
ically speaking the EXCHANGE operation corresponds

to arc-reversal in the domain graph. The distribution
of Y after EXCHANGE is:

Y |Z1, . . . , Zn ∼

N(αY + βZαZ +

n∑

i=1

(βi + βZδi)Zi, σ
2
Y + β2

Zσ2
Z),

while the distribution of Z is (Cowell [2] considers

three different cases depending on the values of σ2
Y

and σ2
Z that are mathematical limits of this case):

Z|Y, Z1, . . . , Zn ∼ N

(

ρ

σ2
Y + β2

Zσ2
Z

,
σ2

Zσ2
Y

σ2
Y + β2

Zσ2
Z

)

,

where

ρ = αZσ2
Y−αYβZσ2

Z+

n∑

i=1

(δiσ
2
Y−βiβZσ2

Z)Zi+βZσ2
ZY.

It is straightforward to extend the EXCHANGE opera-

tion to handle discrete variables. Let Xi, Xj ∈ ∆ with

parent sets π(Xi) = {X1, . . . , Xn} ⊆ ∆ and π(Xj) =

{Xi, X1, . . . , Xn} ⊆ ∆ such that p(Xj |Xi, X1, . . . , Xn)

and p(Xi |X1, . . . , Xn) are the corresponding probabil-
ity potentials of Xi and Xj, respectively. In the discrete

case the EXCHANGE operation is also essentially Bayes’

theorem. That is, the EXCHANGE operation converts
the above pair of potentials such that Xj becomes a

parent of Xi in the domain graph spanned by the two

potentials maintaining the same joint probability po-
tential of the original pair:

p(Xj |X1, . . . , Xn) =
∑

Xi

p(Xj |Xi, X1, . . . , Xn)p(Xi |X1, . . . , Xn),

p(Xi |Xj, X1, . . . , Xn) =

p(Xj |Xi, X1, . . . , Xn)p(Xi |X1, . . . , Xn)

p(Xj |X1, . . . , Xn)
.

Graphically speaking the EXCHANGE operation corre-

sponds to arc-reversal in the domain graph.

By construction it is never necessary to apply the EX-

CHANGE operation to a pair of mixed variables (i.e., a
continuous and a discrete variable). Also, prior to ap-

plying the EXCHANGE operation on a pair of adjacent

variables we make sure that the two variables share
the same set of parents. This is achieved by straight-

forward domain extensions.

2.3 THE STRONG JUNCTION TREE

Belief update is performed by message passing in a
strong junction tree T = (C, S) with cliques C, sepa-

rators S and strong root R ∈ C. T has the property
that for all adjacent cliques A and B with A closer to R

than B, it holds that S = A∩B ⊆ ∆ or B\A ⊆ Γ . Let A

and B be adjacent cliques with A closer to R than B

and such that S = A ∩ B. Then, A is referred to as the

parent clique of B (denoted πC(B)) and S is referred to

as the parent separator of B (denoted πS(B)).

A clique C ∈ C is referred to as a boundary clique if C∩
Γ 6= ∅ and either B ⊆ ∆ or B ∩ Γ is instantiated by
evidence where B = πC(C). Let bd(C) denote the set

of boundary cliques.

3 LAZY PROPAGATION

A junction tree for a discrete BN is by construction
wide enough to support the computation of any poste-

rior marginal given any subset of evidence. The junc-

tion tree is, however, often too wide to take advantage
of independence properties induced by evidence. Lazy

propagation aims at taking advantage of indepen-

dence and irrelevance properties induced by evidence
in a Shenoy-Shafer message passing scheme [10]. In

Lazy propagation belief update proceeds by message

passing in a junction tree maintaining decompositions
of clique and separator potentials.

3.1 POTENTIALS AND OPERATIONS

Definition 3.1 [Potential]
A potential on W ⊆ X is a pair πW = (P, F) where P

is a set of (discrete) probability potentials on subsets

of W and F is a set of probability density functions on
subsets of W ∩ Γ conditional on subsets of W ∩ ∆.

Elements of P are referred to as factors and elements
of F as density functions (or densities). Furthermore,

we call a potential πW vacuous if πW = (∅, ∅). The

vacuous potential is denoted π∅.

Definition 3.2 [Combination]
The combination of two potentials πW1

= (P1, F1)

and πW2
= (P2, F2) denotes the potential on W1∪W2

given by πW1
⊗ πW2

= (P1 ∪ P2, F1 ∪ F2).

Notice that potential combination is set union.

Definition 3.3 [Contraction]
The contraction c(πW) of a potential πW = (P, F) is
the non-negative function on W given by:

c(πW) =
∏

p∈P

p ·
∏

f∈F

f.

We define the contraction of π∅ as c(π∅) = 1.

Definition 3.4 [Projection]
The projection of a potential πW = (PW , FW) to a

subset U ⊆ W denotes the potential πU = π
↓U
W =

(PU, FU) on U obtained by performing a sequence

of EXCHANGE operations and barren variable removals
eliminating variables of W \ U.

In projection continuous variables are eliminated be-
fore discrete variables. Notice that the head of any

factor or density will consists of a single variable or

a single piece of evidence. If a variable X is barren,
then X and its factor or density may be removed with-

out further computation.

3.2 INITIALIZATION

The first step in initialization of T = (C, S) is to asso-

ciate π∅ with each clique C ∈ C. Next, for each X ∈ ∆,

we assign P(X| π(X)) ∈ P, to the clique C closest to R

such that fa(X) ⊆ C where fa(X) = π(X) ∪ {X}. Simi-

larly, for each Y ∈ Γ . After initialization each clique C

holds a potential πC = (P, F). The joint potential πX

on T = (C, S) is therefore:

πX =
⊗

C∈C

πC =

(

⋃

X∈∆

{P(X| π(X))},
⋃

Y∈Γ

{f(Y | π(Y))}

)

.

The contraction of the joint potential πX is:

c(πX) = c(
⊗

C∈C

πC) =
∏

X∈∆

P(X| π(X)) ·
∏

Y∈Γ

f(Y | π(Y)).

Evidence ǫ∆ is inserted as part of initialization while
evidence ǫΓ is inserted during message passing.

X1

X2

X3

Y1

Y2

Y3

Y4

X1X2X3Y1

X2X3Y1

X2X3Y1Y2

X3Y1Y2

X3Y1Y2Y3

Y1Y2Y3

Y1Y2Y3Y4

C1

C2

C3

C4

Figure 1: A CLG BN and junction tree

Example 3.5
Figure 1 shows a CLG BN over variables Yi ∈ Γ for i =

1, . . . , 4 and Xj ∈ ∆ for j = 1, 2, 3 and its strong junction

tree T. After initialization the clique potentials are:

πC1
= ({P(X1), P(X2), P(X3)}, {f(Y1 |X1)}),

πC2
= (∅, {f(Y2 |X2)}),

πC3
= (∅, {f(Y3 |X3)}),

πC4
= (∅, {f(Y4 |Y1, Y2, Y3)}).

The domain of each factor in any clique potential con-

sists of a single variable. This is contrary to both

the Lauritzen & Jensen [6] and Cowell [2] architectures

where each clique has a probability potential over all

discrete variables in the clique. This representation is

storage demanding when Y4 has additional parents each
having a single discrete variable as parent and when the

discrete variables have many states.

The above example illustrates the structure of a set

of CLG BNs used in production by a commercial cus-

tomer. In this application a large part of the discrete
variables are observed making the present inference

scheme very efficient on this type of network.

3.3 PROPAGATION

Propagation of information in T proceeds by message

passing via the separators S. The separator S = A ∩
B between two adjacent cliques A and B stores the

messages passed between A and B, see Figure 2.

R · · · B S A ...

Figure 2: A junction tree with root clique R

Messages are passed from leaf cliques toward R by re-
cursively letting each clique A pass a message to its

parent B whenever A has received a message from
each C ∈ adj(A) \ {B} (COLLECT). Messages are,

subsequently, passed in the opposite direction (DIS-

TRIBUTE). DISTRIBUTE is performed from the root to
boundary cliques.

3.4 MESSAGES

The message πA→B is passed from A ∈ C to B ∈
adj(A) by absorption. Absorption from A to B involves

eliminating the variables A \ B from the combination
of the potential associated with A and the messages

passed to A from each neighbor except B. The mes-

sage πA→B is computed as:

πA→B =
(

πA ⊗
(

⊗C∈adj(A)\{B}πC→A

))↓B
,

where πC→A is the message passed from C to A and ↓
is the projection operation based on EXCHANGE opera-
tions and barren variable removals.

3.5 THE PUSH OPERATION

A strong junction tree representation T of a CLG BN

is not always wide enough to support the insertion of

evidence on any continuous variable or the calculation
of any posterior marginal density function. If the junc-

tion tree is not wide-enough to support a calculation,
then the PUSH operation is used [6].

The marginal density of a variable Y ∈ Γ is, in general,

a mixture of Gaussian distributions. In order to com-
pute the marginal mixture of Y, it may be necessary

to (temporarily) rearrange the content of cliques and
separators of T. The PUSH operation is applied in order

to rearrange T such that Y becomes part of a bound-

ary clique. This is achieved by extending cliques and
separators to include Y and collecting Y towards R.

Assume A is the clique closest to R such that Y ∈ A,
A 6∈ bd(C), B = πC(A), and S = πS(A), see Figure 2.

The PUSH operation extends S and B to include Y. In

the process any continuous variable Z ∈ T(f) such
that Z 6∈ S is eliminated from the density f of Y

where T(f) is the tail of f, i.e., the set of condition-

ing variables. The process of eliminating tail variables
not in S is repeated recursively until T(f) ⊆ S. The

resulting density f is associated with πB and πA→B.

The PUSH operation is applied recursively on the par-

ent clique until Y becomes part of a boundary clique.

3.6 INSERTION OF CONTINUOUS EVIDENCE

Let Y ∈ Γ be instantiated by evidence ǫY = {Y = y},

let f(Y | π(Y)) be the density function for Y given π(Y)

and let C be the clique to which f(Y | π(Y)) is asso-

ciated. Assume Y has only discrete parents, if any,
i.e., I = π(Y) ⊆ ∆. Insertion of evidence ǫY produces

a factor p(y|I) such that:

p(y|I = i) =
exp

(

−(y − αY(i))2/(2σ2(i))
)

√

2πσ2(i)
,

where we assume σ2
Y(i) > 0 for all i [6, 2]. The clique

potential πC = (P, F) is updated such that π∗
C = (P ∪

{p}, F \ {f}). If σ2(i) = 0, insertion of evidence may be
undefined, see [2] who cites [6].

If π(Y) 6⊆ ∆, then a sequence of PUSH operations are
performed in order to compute the marginal density

function for Y. The density f of Y is pushed to the

boundary clique. Subsequently, evidence ǫY is in-
serted as described above. This implies that the inser-

tion of evidence on a continuous variable may change

the content of clique and separator potentials. This oc-

curs when it is necessary to apply the PUSH operation
in order to insert ǫY . Finally, Y is instantiated in all

density functions where Y is a tail variable.

Notice that bd(C) may change when ǫY is inserted.

Example 3.6
Consider the simple CLG BN and its corresponding junc-

tion tree T shown in Figure 3. After initialization the

clique potentials are:

πC1
= ({P(X)}, {f(Y1 |X)}),

πC2
= (∅, {f(Y2 |Y1}).

Assume evidence ǫ = {Y2 = y2}. Since the tail

of f(Y2 |Y1) is continuous and a subset of the parent sep-

arator, it is necessary to apply the PUSH operation on Y2

in order to insert ǫ into T.

X

Y1

Y2

XY1

Y1

Y1Y2

C1

C2

Figure 3: Insertion of evidence on Y2 requires a PUSH

operation

First the density f(Y2 |Y1) is pushed to the parent clique,

next an EXCHANGE operation is performed on the arc

(Y1, Y2). Next, densities including Y2 in the domain are

instantiated to reflect the evidence. Once the PUSH oper-

ation completes the revised clique potentials are:

π∗
C1

= ({P(X), p(y2 |X)}, {f(Y1 |X, y2)}),

π∗
C2

= (∅, ∅).

This completes the insertion of evidence ǫ.

3.7 PROPAGATION OF CONTINUOUS EVIDENCE

Section 3.3 describes the propagation scheme used

when ǫΓ = ∅. When ǫΓ 6= ∅, the recursive message
passing scheme is terminated at each boundary clique.

Once each boundary clique A ∈ bd(C) has received
messages from each C ∈ adj(A) \ {πC(A)}, continuous

evidence is inserted using the PUSH operation.

Let T = (C, S) be a strong junction tree representation
and let ǫ = ǫ∆ ∪ ǫΓ be the evidence to propagate.

The evidence ǫ is propagated in T by performing the
following sequence of steps:

1. Initialization including insertion of evidence ǫ∆.

2. At each A ∈ bd(C) COLLECT from every B ∈
adj(A) \ {πC(A)}.

3. Insert evidence ǫΓ using the PUSH operation.

4. Perform in sequence a COLLECT and a DISTRIBUTE

operation on R.

During the COLLECT operation performed in step 4
messages are passed from the boundary cliques to R.

Thus, the effect of steps 2 and 4 is that two mes-

sages have been passed between each pair of adjacent
cliques on any path between the root R and a bound-

ary clique. No messages are passed from boundary

cliques to leave cliques.

The architectures described in [2], [6], and [9] each

does a full propagation over all the nodes of the com-
putation tree prior to inserting ǫ whereas we do only

a partial COLLECT prior to inserting ǫ∆.

3.8 POSTERIOR MARGINALS

The posterior marginal P(X|ǫ) for X ∈ ∆ may be

computed from any clique or separator containing X.
Since ǫΓ is incorporated using PUSH operations, no Y ∈
Γ needs to be eliminated in the process of comput-
ing P(X|ǫ). If X ∈ C, then P(X|ǫ) is computed as:

P(X|ǫ) ∝
∑

C\{X}

c(πC) =
∑

C\{X}

∏

p∈PC

p ·
∏

f∈FC

f

=
∑

C\{X}

∏

p∈PC

p,

where πC = (PC, FC) is the clique potential for C. On

the other hand, if S is a separator containing X with
adjacent cliques A and B, then P(X|ǫ) is computed as:

P(X|ǫ) ∝
∑

S\{X}

c(πA→B ⊗ πB→A)

=
∑

S\{X}

∏

p∈PA→B∪PB→A

p ·
∏

f∈FA→B∪FB→A

f

=
∑

S\{X}

∏

p∈PA→B∪PB→A

p,

where potential πA→B = (PA→B, FA→B) and poten-
tial πB→A = (PB→A, FB→A) are the potentials passed

from A to B and from B to A, respectively.

The posterior mixture for Y ∈ Γ is computed using

PUSH operations followed by a projection of the rele-

vant boundary clique to Y and a contraction.

Example 3.7
The prior mixture densities of Y1 and Y2 of the CLG BN

shown in Figure 4 are:

f(Y1) =
∑

x1∈X1

P(x1) · f(Y1 |x1),

f(Y2) =
∑

x1∈X1,x2∈X2

P(x1)P(x2 |x1) · f(Y2 |x1, x2).

X1

X2 Y1

Y2

X1X2Y1

X2Y1

X2Y1Y2

Figure 4: Prior density for Y1 has ||X1|| components

The density for Y1 has only ‖X1‖ components. This

is a reduction compared to the Lauritzen & Jense-

nand Cowell architectures where the marginal density

will have ‖X1‖ · ‖X2‖ components. The reduction is due

to the decomposition of clique and separator potentials.

Example 3.8
Consider again Figure 1 of Example 3.5. The num-

ber of components in the mixture marginal for Y4

is ‖X1‖ · ‖X2‖ · ‖X3‖ whereas the number of compo-
nents in the mixture marginal for Yi is equal to ‖Xi‖.

This is a reduction compared to the Lauritzen & Jense-

nand Cowell architectures where the number of compo-

nents is ‖X1‖ ·‖X2‖ ·‖X3‖. Hence, in the case of a larger

number of variables (and same structure), the storage

and time reduction can be significant.

4 COMPARISON

4.1 COWELL

Cowell [2] presents an algorithm for belief update

where message passing proceeds on an elimination
tree rather than a (strong) junction tree. This pro-

duces a local propagation scheme in which all calcula-

tions involving continuous variables are performed by
manipulating univariate regressions (avoiding matrix

operations) such that continuous variables are elimi-

nated using EXCHANGE operations.

The three main differences between the present prop-

agation scheme and Cowell [2] are: use of a strong
junction tree as opposed to an elimination tree, use of

EXCHANGE to eliminate both continuous and discrete

variables and a single round of message passing.

4.2 LAURITZEN AND JENSEN

The architecture of Lauritzen & Jensen [6] performs

belief update by message passing in a strong junction
tree architecture. A CG potential [8] is associated with

each clique and separator. A CG potential consists of

a probability potential over discrete variables and a
probability density function over continuous variables

conditional on the discrete variables. Each clique and

separator has a CG potential over its variables. This

implies that complex matrix operations are required
during belief update.

Initialization plays an important role in the Lauritzen
& Jensen [6] architecture. It produces a Lauritzen

& Spiegelhalter-like junction tree representation [7]

where clique potentials are conditioned on the con-
tinuous variables of the parent separator. This en-

sures that a variable Y ∈ Γ is only propagated when
inserting evidence on Y or when computing the mix-

ture marginal for Y. Furthermore, a complex recursive

combination operator may be required during initial-
ization in order to combine CG potentials. The need

for conditioning, recursive combination, and complex

matrix operations is eliminated in both the Cowell [2]
and the present architectures.

Example 4.1
Figure 5 shows a CLG BN and its junction tree T. The

initial clique potentials are:

πC1
= ({P(X1)}, {f(Y1 |X1), f(Y3 |X1, Y1, Y2)}),

πC2
= (∅, {f(Y2 |Y1, Y4), f(Y4)}).

In the Lauritzen & Jensen [6] architecture initialization

of T requires a recursive combination operation.

X1 Y1 Y2

Y3 Y4

X1Y1Y2Y3

Y1Y2

Y1Y2Y4

C1

C2

Figure 5: Initialization requires recursive combination
in the Lauritzen & Jensen architecture

In the proposed architecture initialization amounts to

associating probability distributions and densities with
cliques of T. The prior distribution of each variable is

readily computed using the EXCHANGE operation.

The Lauritzen & Jensen [6] architecture calculates

weak marginals during DISTRIBUTE. This is not the

case for the Cowell [2] nor the present architecture.

4.3 MADSEN

The present architecture is quite different from the ar-

chitecture proposed by Madsen [9]. The latter archi-
tecture is an extension of Madsen & Jensen [11] to

the case of CLG BNs based on the propagation scheme
of Lauritzen & Jensen [6]. This implies a number

of differences when compared to the present scheme.

First, the architecture is based solely on the operations
of Lauritzen & Jensen [6] whereas the present scheme

is based on operations of both Lauritzen & Jensen [6]

and Cowell [2]. Second, a Lauritzen & Spiegelhalter-

like junction tree representation is achieved as the re-
sult of initialization, i.e., during the initial COLLECT

operation, the sender clique is conditioned on the

continuous variables of the parent separator. Finally,
in the present scheme variable eliminations are per-

formed using EXCHANGE operations and barren vari-
able removals.

5 PERFORMANCE ANALYSIS

A preliminary performance analysis on a set of ran-

domly generated CLG BNs has been made. Networks
with 25, 50, 75, 100, 125, and 150 variables with dif-

ferent fractions of continuous variables (0, 0.25, 0.5,

0.75, 1) were randomly generated (ten networks of
each size). For each network, evidence sets of 0 to 20

instantiated variables were generated and 40 sets of
evidence were generated for each size.

We compared the performance of the present architec-
ture with the performance of the commercial imple-

mentation of the Lauritzen & Jensen [6] architecture

in the HUGIN Decision Engine. Table 1 shows statis-

Table 1: Statistics On CLG BN net50-4

Network |X| |C| maxC∈Cs(C) s(C)

net50-4-0 50 42 3, 888 18, 084

net50-4-0.25 50 39 186, 624 231, 309

net50-4-0.5 50 38 165, 888 218, 656

net50-4-0.75 50 39 1, 728 2, 444

net50-4-1 50 40 1 40

tics on one of the networks used in the tests (net50-4)

where s(C) =
∏

X∈∆∩C ‖X‖ and s(C) =
∑

C∈C s(C).

Figure 6 shows the average time cost of belief update
in net50-4 whereas Figure 7 shows the average size of

the largest discrete configuration. A discrete configu-
ration is either the domain of a factor or the discrete

conditioning set of a density. This is an example where

the proposed architecture is most efficient.

The present architecture maintains a factorization of

clique and separator potentials into sets of factors and
densities. This decomposition implies that the largest

discrete domain size considered during belief update

is often significantly smaller than the discrete domain
size of the largest clique in the strong junction tree.

This insight is supported by the experimental analysis,
which indicates that the Lauritzen & Jensen [6] imple-

mentation runs out of memory on most networks with

75 or more variables for a large fraction of the evi-
dence sets whereas the present architecture runs out

of memory on a much smaller fraction of the evidence

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20

Number of instantiations

HUGIN 0,
HUGIN 0.25,
HUGIN 0.5,

HUGIN 0.75,
HUGIN 1,

LAZY 0,
LAZY 0.25,
LAZY 0.5,

LAZY 0.75,
LAZY 1,

Figure 6: Average time in sec. for belief update

sets. Figure 7 illustrates how the average largest dis-
crete domain size decreases as |ǫ| increases. Notice

that the average largest size is significantly smaller

than the size of the largest clique in the strong junction
tree.

For networks with only discrete or only continuous
variables the Lauritzen & Jensen implementation is

faster than the implementation of the proposed archi-

tecture. However, for some networks with a fraction
of 0.25 or 0.5 continuous variables Lauritzen & Jensen

is significantly slower than the proposed architecture.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 5 10 15 20

Number of instantiations

LAZY 0,
LAZY 0.25,
LAZY 0.5,

LAZY 0.75,
LAZY 1,

Figure 7: Average size in numbers

The typical decrease in average time cost as |ǫ| in-
creases for lazy propagation is not as significant on

CLG BNs. The reason is that computing marginal den-
sities is a dominant and a non-constant factor in the

time cost of belief update. A significant amount of the

total time for propagating evidence is spent on com-
puting posterior mixture marginals. In the proposed

architecture the number and the computational cost

of PUSH operations is reduced by a decomposition of

clique and separator potentials. The significance of the
decrease depends on the ratio of continuous variables.

Figure 8 shows the average time cost of computing

marginals in net50-4. Notice that a significant amount
of the time cost originates from computing marginals.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20

Number of instantiations

HUGIN 0,
HUGIN 0.25,

HUGIN 0.5,
HUGIN 0.75,

HUGIN 1,
LAZY 0,

LAZY 0.25,
LAZY 0.5,

LAZY 0.75,
LAZY 1,

Figure 8: Average time in sec. for marginals

On most of the networks considered in the test —

where belief update is feasible — the commercial im-
plementation of Lauritzen & Jensen [6] is most effi-

cient (typically networks with less than 75 variables).

The HUGIN Decision Engine has significantly more ef-
ficient data structures and operations than the imple-

mentation of the proposed architecture though.

The experiments were performed using a Java imple-

mentation on a desktop computer with a 2.2 GHz AMD

AthlonTM CPU and 768 MB RAM running Redhat 8.

6 CONCLUSION

An architecture for belief update in CLG BNs based on

lazy propagation where messages are computed us-

ing EXCHANGE operations and barren variable elimi-
nations has been presented. The architecture is based

on extended versions of operations introduced by Lau-
ritzen & Jensen [6] and Cowell [2].

Despite a significant difference in the efficiency of ta-
ble operations the proposed architecture is — in some

cases — more efficient than a commercial implemen-

tation of the Lauritzen & Jensen [6] architecture. The
results of the performance evaluation indicate a signif-

icant potential of the proposed architecture.

References

[1] K. C. Chang and R. Fung. Symbolic probabilis-

tic inference with both discrete and continuous

variables. IEEE Transactions on Systems, Man.

and Cybernetics, 25(6):910–916, 1995.

[2] R. G. Cowell. Local Propagation In Conditional
Gaussian Bayesian Networks. Journal of Machine

Learning Research, 6:1517–1550, 2005.

[3] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and

D. J. Spiegelhalter. Probabilistic Networks and Ex-

pert Systems. Springer-Verlag, 1999.

[4] F. V. Jensen. Bayesian Networks and Decision

Graphs. Springer-Verlag, 2001.

[5] S. L. Lauritzen. Propagation of probabilities,

means and variances in mixed graphical associ-
ation models. Journal of the American Statistical

Association, 87(420):1098–1108, 1992.

[6] S. L. Lauritzen and F. Jensen. Stable Local
Computation with Mixed Gaussian Distributions.

Statistics and Computing, 11(2):191–203, 2001.

[7] S. L. Lauritzen and D. J. Spiegelhalter. Lo-

cal computations with probabilities on graphi-
cal structures and their application to expert sys-

tems. Journal of the Royal Statistical Society, B.,

50(2):157–224, 1988.

[8] S. L. Lauritzen and N. Wermuth. Graphical mod-
els for associations between variables, some of

which are qualitative and some quantitative. The

Annals of Statistics, 17:31–57, 1989.

[9] A. L. Madsen. All Good Things Come to Those

Who Are Lazy - Efficient Inference in Bayesian Net-

works and Influence Diagrams Based on Lazy Eval-
uation. PhD thesis, Department of Computer Sci-

ence, Aalborg University, 1999.

[10] A. L. Madsen. Variations Over the Message Com-

putation Algorithm of Lazy Propagation. IEEE

Transactions on Systems, Man. and Cybernetics

Part B, 2006. To appear.

[11] A. L. Madsen and F. V. Jensen. Lazy propaga-

tion: A junction tree inference algorithm based
on lazy evaluation. Artificial Intelligence, 113(1-

2):203–245, 1999.

[12] J. Pearl. Probabilistic Reasoning in Intelligence

Systems. Morgan Kaufmann Publishers, 1988.

[13] R. Shachter, B. D’Ambrosio, and B. DelFavero.
Symbolic probabilistic inference in belief net-

works. In Proceedings Eighth National Conference

on AI, pages 126–131, 1990.

[14] R. D. Shachter and C. R. Kenley. Gaussian influ-

ence diagrams. Management Science, 35(5):527–

549, 1989.

