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UNIFYING PRACTICAL UNCERTAINTY

REPRESENTATIONS: II. CLOUDS

SÉBASTIEN DESTERCKE, DIDIER DUBOIS, AND ERIC CHOJNACKI

Abstrat. There exist many simple tools for jointly apturing

variability and inomplete information by means of unertainty

representations. Among them are random sets, possibility distri-

butions, probability intervals, and the more reent Ferson's p-boxes

and Neumaier's louds, both de�ned by pairs of possibility distri-

butions. In the ompanion paper, we have extensively studied a

generalized form of p-box and situated it with respet to other

models . This paper fouses on the links between louds and other

representations. Generalized p-boxes are shown to be louds with

omonotoni distributions. In general, louds annot always be

represented by random sets, in fat not even by 2-monotone (on-

vex) apaities.

1. Introdution

There exist many di�erent tools for representing impreise probabil-

ities. Usually, the more general, the more di�ult they are to han-

dle. Simpler representations, although less expressive, usually have

the advantage of being more tratable. Over the years, several suh

representations have been proposed. Among them are possibility dis-

tributions [22℄, probability intervals [5℄, and more reently p-boxes [14℄

and louds [17, 18℄. Comparing their respetive expressive power is a

natural task. Finding formal relations between suh representations

also failitates a uni�ed handling of unertainty.

In the �rst part of paper [7℄, a generalized notion of p-boxes is stud-

ied and related to representations mentioned above. It is shown that

any generalized p-box is representable by a pair of possibility distribu-

tions, and that generalized p-boxes are speial ases of random sets.

Their interpretation in terms of lower and upper on�dene bounds on

a olletion of nested subsets makes them intuitive simple representa-

tions. Figure 1 realls the onnetions established in the ompanion

paper between the studied representations, going from the most (top)

to the least (bottom) general.

The present paper ompletes Figure 1 by adding louds to it, mak-

ing one step further towards the uni�ation of unertainty models.
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Credal sets

Coherent lower/upper probabilities

2-monotone apaities

Random sets (∞-monotone)

Generalized p-boxes

P-boxes

Probabilities

Probability Intervals

Possibilities

Figure 1. Relationships among representations. A −→
B A generalizes B. A 99K B: B is representable by A

Clouds, enoded by a pair of fuzzy sets, were reently introdued by

Neumaier [17℄ as a means to ope with impreision while remaining

omputationally tratable, even in high dimensional spaes. Reently,

Fuhs and Neumaier [15℄ have applied louds to spae shuttle design

problem, demonstrating some of the potential of the representation.

Moreover, as louds are syntatially equivalent to interval-valued fuzzy

sets with some boundary onditions, analyzing their onnetion with

respet to other unertainty theories also provides some insight about

how interval-valued fuzzy sets an be interpreted by suh theories. As

we shall see, generalized p-boxes, studied in the ompanion paper, on-

stitute a bridge between louds, possibility distributions and usual p-

boxes.

The paper is divided into �ve main setions; Setion 2 studies the

formalism of louds and relates them to pairs of possibility distributions

and to generalized p-boxes. It is shown that generalized p-boxes are

equivalent to a partiular subfamily of louds, named here omonotoni

louds. Setion 3 studies non-omonotoni louds. Sine the lower

probability they indue are in general even not 2-monotone, simpler

outer and inner approximations are proposed; Setion 4 then studies

relations between louds and probability intervals. As neither of them

is a speial ase of the other, some transformations of probability inter-

vals into outer-approximating louds are proposed. Setion 5 extends

some of our results to the ase of ontinuous models de�ned on the
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real line, sine suh models are often enountered in appliations. The

partiular ase of thin louds, for whih both upper and lower distri-

butions oinide is emphasized, as they have non-empty redal sets in

the ontinuous setting.

To make the paper easier to read, longer proofs have been moved to

the appendix. We will often refer to useful results from the ompanion

paper [7℄, where basis about other representations and unertainty

theories onsidered here an be found. Some de�nitions are realled

in footnotes. In the �rst four setions, we onsider that our uner-

tainty onerns the value that a variable ould assume on a �nite set

X ontaining n elements.

2. Clouds

Clouds were introdued by Neumaier [17℄ as a probabilisti general-

izations of intervals.

De�nition 1. A loud [δ, π] is de�ned as a pair of mappings δ : X →
[0, 1] and π : X → [0, 1] from the set X to the unit interval [0, 1], suh
that

• δ is pointwise less than or equal to π (i.e. δ ≤ π),
• π(x) = 1 for at least one element x in X ,

• δ(y) = 0 for at least one element y in X .

δ and π are respetively the lower and upper distributions of a loud.

As mappings δ, π are mathematially equivalent to two nested fuzzy

membership funtions, a loud [δ, π] is mathematially equivalent to an

interval-valued fuzzy set (IVF)[21℄ with boundary onditions (π(x) = 1
and δ(y) = 0). More preisely, it is mathematially equivalent to an

interval-valued membership funtion whereby the membership value

of eah element x of X lies in [δ(x), π(x)]. Sine a loud is equiva-

lent to a pair of fuzzy membership funtions, at most 2|X| − 2 values

(notwithstanding boundary onstraints on δ and π) are needed to fully

determine a loud on a �nite set. Two subases of louds onsidered by

Neumaier [17℄ are the thin and fuzzy louds. A thin loud is de�ned as

a loud for whih δ = π, while a fuzzy loud is a loud for whih δ = 0.
Neumaier de�nes the redal set

1 P[δ,π] indued by a loud [δ, π], as:
(1)

P[δ,π]={P ∈ PX |P ({x ∈ X|δ(x) ≥ α}) ≤ 1−α ≤ P ({x ∈ X|π(x) > α})}

where PX is the set of probability measures onX . Interestingly enough,

this de�nition gives a mean to interpret IVF sets in terms of redal

1

A redal set P is a losed onvex set of probability distributions, here desribed

by onstraints on probabilities of some events.
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sets, or in terms of impreise probabilities, eventually ending up with

a behavioral interpretation of IVF by using Walley's [20℄ theory of

impreise probabilities.

Let 0 = γ0 < γ1 < . . . < γM = 1 be the ordered distint values taken

by both δ and π on elements of X , then denote the strong and regular

uts as

(2) Bγi
= {x ∈ X|π(x) > γi} and Bγi = {x ∈ X|π(x) ≥ γi}

for the upper distribution π and

(3) Cγi
= {x ∈ X|δ(x) > γi} and Cγi = {x ∈ X|δ(x) ≥ γi}

for the lower distribution δ. Note that in the �nite ase, Bγi
= Bγi+1

and Cγi
= Cγi+1

, with γM+1 = 1, and also

∅ = BγM
⊂ BγM−1

⊆ . . . ⊆ Bγ0
= X ; ∅ = CγM ⊆ CγM−1

⊆ . . . ⊆ Cγ0 = X

and sine δ ≤ π, this implies that Cγi ⊆ Bγi , hene Cγi ⊆ Bγi−1
, for all

i = 1, . . . ,M . In suh a �nite ase, a loud is said to be disrete. In

terms of onstraints bearing on probabilities, the redal set P[δ,π] of a

�nite loud is equivalently de�ned by the �nite set of inequalities:

(4) i = 0, . . . ,M, P (Cγi) ≤ 1− γi ≤ P (Bγi
)

under the above inlusion onstraints. Note that some onditions, in

addition to boundary ones advoated in De�nition 1, must hold for

P[δ,π] to be non-empty in the �nite ase. In partiular, distribution δ
annot be equal to π (i.e. δ(x) 6= π). Otherwise, we have Cγi = Bγi−1

(=
Bγi), that is π and δ have a ommon γi-ut, and there is no probability

distribution satisfying the onstraint 1− γi−1 ≤ P (Cγi) ≤ 1− γi sine
γi−1 < γi. So, thin �nite louds indue empty redal sets.

Example 1. This example illustrates the notion of a loud and will be

used in the next setions to illustrate various results. Let us onsider

a set X = {u, v, w, x, y, z} and the following loud [δ, π], pitured in

Figure 2, de�ned on this set:

u v w x y z
π 0.75 1 1 0.75 0.75 0.5
δ 0.5 0.5 0.75 0.5 0 0

The values γi orresponding to this loud are

0 ≤ 0.5 ≤ 0.75 ≤ 1

γ0 ≤ γ1 ≤ γ2 ≤ γ3.
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0 X

1

u v w x y z

0.25

0.5

0.75

: δ
: π

Figure 2. Cloud [δ, π] of Example 1

Constraints assoiated to this loud and orresponding to Equation (4)

are

P (Cγ3 = ∅) ≤ 1− 1 ≤ P (Bγ3
= ∅)

P (Cγ2 = {w}) ≤ 1− 0.75 ≤ P (Bγ2
= {v, w})

P (Cγ1 = {u, v, w, x}) ≤ 1− 0.5 ≤ P (Bγ1
= {u, v, w, x, y})

P (Cγ0 = X) ≤ 1− 0 ≤ P (Bγ0
= X)

2.1. Clouds in the setting of possibility theory. To relate louds

with possibility distributions

2

, �rst onsider the ase of fuzzy louds

[δ, π]. In this ase, δ = 0 and Cγi = ∅ for i = 1, . . . ,M , whih means

that onstraints given by Equations (4) redue to 1 − γi ≤ P (Bγi
) for

i = 0, . . . ,M whih, by using Proposition 2.5 of the ompanion pa-

per [7℄, indues a redal set Pπ equivalent to the one indued by the

possibility distribution π. This shows that fuzzy louds are equiva-

lent to possibility distributions. The following proposition is a diret

onsequene of this observation:

Proposition 1. Unertainty modeled by a loud [δ, π] is representable
by the pair of possibility distributions 1− δ and π, and we have:

P[δ,π] = Pπ ∩ P1−δ

Proof of Proposition 1. Consider a loud [δ, π] and the onstraints

induing the redal set P[δ,π]. As for generalized p-boxes, these on-

straints an be split into two sets of onstraints, namely, for i =
0, . . . ,M , P (Cγi) ≤ 1 − γi and 1 − γi ≤ P (Bγi

). Sine Bγi
are strong

uts of π, then by Proposition 2.5. in [7℄ we know that these onstraints

de�ne a redal set equivalent to Pπ.

2

A possibility distribution is a mapping π : X → [0, 1], with π(x) = 1 for at least
one element, and induing a redal set Pπ suh that P ∈ Pπ i� 1 − α ≤ P ({x ∈
X |π(x) > α} for all α ∈ [0, 1]
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Note then that P (Cγi) ≤ 1 − γi is equivalent to P (Cc
γi
) ≥ γi (where

Cc
γi
= {x ∈ X|1−δ(x) > 1−γi}). By onstrution, 1−δ is a normalized

possibility distribution. Interpreting these inequalities in the light of

Proposition 2.5. in [7℄, we see that they de�ne the redal set P1−δ. By

merging the two set of onstraints, we get Pδ,π = Pπ ∩ P1−δ. �

This proposition shows that, as for generalized p-boxes, the redal

set indued by a loud is representable by a pair of possibility distri-

butions [12℄. This analogy between generalized p-boxes and louds is

studied in Setion 2.3. This result also on�rms that a loud [δ, π] is
equivalent to its mirror loud [1− π, 1− δ] (1− π beoming the lower

distribution, and 1− δ the upper one).

Example 2. Possibility distributions π, 1− δ representing the loud of

Example 1 are:

u v w x y z
π 0.75 1 1 0.75 0.75 0.5

1− δ 0.5 0.5 0.25 0.5 1 1

2.2. Clouds with non-empty redal sets. We now explore under

whih onditions a loud [δ, π] indues a non-empty redal set P[δ,π].

Using the fat that louds are representable by pairs of possibility

distributions, and applying Chateauneuf [2℄ harateristi ondition

(∀A ⊂ X,Bel1(A) + Bel2(A
c) ≤ 1) under whih the redal sets as-

soiated to two belief funtions Bel1 and Bel2 have a non-empty inter-

setion, the following neessary and su�ient ondition obtains:

Proposition 2. A loud [δ, π] has a non-empty redal set if and only

if

∀A ⊆ X,max
x∈A

π(x) ≥ min
y 6∈A

δ(y)

Proof. Chateauneuf's ondition applied to possibility distributions π1

and π2 reads ∀A ⊆ X,Π1(A) + Π2(A
c) ≥ 1. Choose π1 = π and

π2 = 1− δ. In partiular Π2(A
c) = 1−miny 6∈A δ(y). �

A naive test for non-emptiness based on Proposition 2 would have

exponential omplexity, but in the ase of louds, it an be simpli-

�ed as follows: suppose the spae X = {x1, . . . , xn} is indexed suh

that π(x1) ≤ π(x2) · · · ≤ π(xn) = 1 and onsider an event A suh that

maxx∈A π(x) = π(xi). The tightest onstraint of the formmaxx∈A π(x) =
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π(xi) ≥ miny 6∈A δ(y) is when hoosing A = {x1, . . . xi}. Cheking non-

emptiness then omes down to heking the following set of n − 1 in-

equalities:

(5) j = 1, . . . , n− 1 π(xi) ≥ min
j>i

δ(xj).

This gives us an e�ient tool to hek the non-emptiness of a given

loud on a �nite set, or to build a non-empty loud from the knowl-

edge of either δ or π. For instane, knowing δ, the loud [δ, π] suh
that π(xi) = minj>i δ(xj), j = 1, . . . , n− 1 is the most restritive non-

empty loud one may build, assuming the ordering π(x1) ≤ π(x2) · · · ≤
π(xn) = 1 (hanging this assumption yields another non-empty loud).

Now, onsider the extreme ase of a loud for whih Cγi = Bγi
for all

i = 1, . . . ,M in equation (4). In this ase, P (Bγi
) = P (Cγi) = 1 − γi

for all i = 1, . . . ,M . Suppose distribution π takes distint values on

all elements of X . Ordering elements of X by inreasing values of π(x)
(∀i, π(xi) > π(xi−1)) enfores δ(xi) = π(xi−1), with δ(x1) = 0. Let

δπ be this lower distribution. The (almost thin) loud [δπ, π] satis�es
equations (5), and sine P (Bγi

) = 1− γi, the indued redal set P[δπ,π]

ontains the single probability measure P with distribution p(xi) =
π(xi) − π(xi−1) for all xi ∈ X , with π(x0) = 0. So if a �nite loud

[δ, π] is suh that if δ > δπ, it indues an empty redal set P[δ,π]; and if

δ ≤ δπ, then the indued redal set P[δ,π] is not empty.

Equations (5) an be extended to the ase of any two possibility

distributions π1, π2 for whih we want to hek whether Pπ1
∩ Pπ2

is

empty or not. This is meaningful beause the setting of louds does not

over all pairs π1, π2 suh that Pπ1
∩ Pπ2

6= ∅. To hek it, �rst reall

that for any two possibility distributions π1, π2, we do have Pmin(π1,π2) ⊆
Pπ1

∩ Pπ2
, but, in general, the onverse inlusion [11℄ does not hold.

From this remark, we have

• Pπ1
∩Pπ2

6= ∅ as soon as min(π1, π2) is a normalized possibility

distribution.

• Not all pairs π1, π2 suh that Pπ1
∩Pπ2

6= ∅ derive from a loud

[1 − π2, π1]. Indeed, the normalization of min(π1, π2) does not
imply that 1− π2 ≤ π1.

2.3. Generalized p-boxes as a speial kind of louds. We re-

mind [7℄ that a generalized p-box [F , F ] is de�ned by two omono-

toni mappings F : X → [0, 1], F : X → [0, 1] with F ≤ F and

F (x) = F (x) = 1 for at least one element x of X . They indue a pre-

order≤[F,F ] onX suh that x ≤[F,F ] y if F (x) ≤ F (y) and F (x) ≤ F (y),
and elements of X are here indexed suh that i ≤ j implies xi ≤[F ,F ] xj .
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A generalized p-box [F , F ] indues the following redal set:

(6) P[F ,F ] = {P ∈ PX |i = 1, . . . , n, αi ≤ P (Ai) ≤ βi}.

Where Ai = {x1, . . . , xi}, αi = F (xi) and βi = F (xi) are lower and

upper on�dene bounds on set Ai. Note that A1 ⊆ . . . ⊆ An, α1 ≤
. . . ≤ αn and β1 ≤ . . . ≤ βn. The proposition below lays bare the nature

of the relationship between suh generalized p-boxes and louds:

Proposition 3. Let [δ, π] be a loud de�ned on X. Then, the three

following statements are equivalent:

(i) The loud [δ, π] an be enoded as a generalized p-box [F , F ] suh
that P[δ,π] = P[F,F ]

(ii) δ and π are omonotoni (δ(x) < δ(y) ⇒ π(x) ≤ π(y))
(iii) Sets {Bγi

, Cγj |i, j = 0, . . . ,M} form a nested sequene (i.e. are

ompletely (pre-)ordered with respet to inlusion).

Proof of Proposition 3. We use a yli proof to show that state-

ments (i), (ii), (iii) are equivalent.

(i)⇒(ii) From the assumption, δ = 1−πF and π = πF . Hene, using

Proposition 3.3 in [7℄ and the de�nition of a generalized p-box, δ and

π are omonotone, hene (i)⇒(ii).

(ii)⇒(iii) we will show that if (iii) does not hold, then (ii) does not

hold either. Assume sets {Bγi
, Cγj |i, j = 0, . . . ,M} do not form a

nested sequene, meaning that there exists two sets Cγj , Bγi
with j < i

s.t. Cγj 6⊂ Bγi
and Bγi

6⊂ Cγj . This is equivalent to asserting ∃x, y ∈ X
suh that δ(x) ≥ γj, π(x) ≤ γi, δ(y) < γj and π(y) > γi. This implies

δ(y) < δ(x) and π(x) < π(y), and that δ, π are not omonotoni.

(iii)⇒(i) Assume the sets Bγi
and Cγj form a globally nested sequene

whose urrent element is Ak. Then the set of onstraints de�ning a

loud an be rewritten in the form αk ≤ P (Ak) ≤ βk, where αk =
1 − γi and βk = min{1 − γj|Bγi

⊆ Cγj} if Ak = Bγi
; βk = 1 − γi

and αk = max{1− γj|Bγj ⊆ Cγi} if Ak = Cγi. Sine 0 = γ0 < α1 <
. . . < αM = 1, these onstraints are equivalent to those desribing a

generalized p-box (Equations (6)). This ends the proof. �

Proposition 3 indiates that only those louds for whih δ and π are

omonotoni an be enoded by generalized p-boxes, and from now

on, we shall all suh louds omonotoni. Using proposition 3.3 of

the ompanion paper [7℄ and given a omonotoni loud [δ, π], we an
express this loud as the following generalized p-box F , F de�ned for

any x ∈ X :

(7) F (x) = π(x) and F (x) = min{δ(y)|y ∈ X, δ(y) > δ(x)}.
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Conversely, note that any generalized p-box [F , F ] an be enoded by

a omonotoni loud, simply taking δ = 1−πF and π = πF (see Propo-

sition 3.3 in [7℄). This means that generalized p-boxes are speial ases

of louds, and that omonotoni louds and generalized p-boxes are

equivalent representations. Also note that a omonotoni loud [δ, π]
and the equivalent generalized p-box [F , F ] indue the same omplete

pre-order on elements ofX , that we note≤[F ,F ] to remain oherent with

the notations of the ompanion paper [7℄. We onsider that elements

x of X are indexed aordingly, as already spei�ed.

In pratie, this means that all the results that hold for generalized

p-boxes also hold for omonotoni louds, and onversely. In partiular,

omonotoni louds are speial ases of random sets

3

, in the sense that,

for any omonotoni loud [δ, π], there is a belief funtion Bel suh that

P[δ,π] = PBel. Adapting Equations (13) of the ompanion paper [7℄ to

the ase of a omonotoni loud [δ, π], this random set is suh that, for

j = 1, . . . ,M :

(8)

{

Ej = {x ∈ X|(π(x) ≥ γj) ∧ (δ(x) < γj)}
m(Ej) = γj − γj−1.

Note that in the formalism of louds this random set an be expressed

in terms of the sets {Bγi , Cγi|i = 0, . . . ,M}. Namely, for j = 1, . . . ,M :

(9)

{

Ej = Bγj−1
\ Cγj = Bγj \ Cγj

m(Ej) = γj − γj−1.

Example 3. From the loud in Example 1, Cγ3 ⊂ Cγ2 ⊂ Bγ2 ⊂ Cγ1 ⊂
Bγ1 ⊂ Bγ0, and the onstraints de�ning P[δ,π] an be transformed into

0 ≤Cγ2 = {w} ≤ 0.25

0.25 ≤Bγ2 = {v, w} ≤ 0.5

0.25 ≤Cγ1 = {u, v, w, x} ≤ 0.5

0.5 ≤Bγ1 = {u, v, w, x, y} ≤ 1.

They are equivalent to the generalized p-box [F , F ] pitured on Figure 3:

u v w x y z

F 0.75 1 1 0.75 0.75 0.5
F 0.5 0.75 1 0.5 0.5 0

3

A random set is a non-negative mapping m : ℘(X) → [0, 1] suh that

∑

E⊂X
m(E) = 1;m(∅) = 0. It is also ompletely haraterized by the belief

funtion Bel suh that ∀A ⊂ X , Bel(A) =
∑

E⊆A
m(E). The redal set PBel

indued by suh a random set is PBel = {P ∈ PX |∀A ⊆ X,Bel(A) ≤ P (A)}
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0

xi

1

x1(z) x2(y) x3(x) x4(u) x5(v) x6(w)

0.25

0.5

0.75

1

: F
: F

Figure 3. Generalized p-box [F, F ] orresponding to

loud of Example 1

.

The following ordering is ompatible with the two distributions (see

Figure 3): z <[F,F ] y <[F,F ] x =[F,F ] u <[F,F ] v <[F,F ] w

And the orresponding random set, given by Equations (9) or (8), is:

m({x5, x6}) = 0.25; m({x2, x3, x4, x5}) = 0.25; m({x1, x2}) = 0.5

Comonotoni louds being speial ases of louds, we may wonder

if some of the results presented in this setion extend to louds that

are not omonotoni (and alled non-omonotoni). In partiular, an

unertainty modeled by a non-omonotoni loud be exatly modeled

by an equivalent random set?

3. The Nature of Non-omonotoni Clouds

When [δ, π] is a non-omonotoni loud, Proposition 1 linking louds

and possibility distributions still holds, but Proposition 3 does not hold

any longer. As we shall see, non-omonotoni louds appear to be less

interesting, at least from a pratial point of view, than omonotoni

ones.

3.1. Charaterization. One way of haraterizing an unertainty model

is to �nd the maximal natural number n suh that the lower probabil-

ity

4

indued by this unertainty model is always n-monotone (see [7℄

or Chateauneuf and Ja�ray [3℄ for further details on n-monotoniity

5

).

This is how we will proeed with non-omonotoni louds: let [δ, π] be
a non-omonotoni loud, and P[δ,π] the indued redal set. The ques-

tion is: what is the (minimal) n-monotoniity of the assoiated lower

4

The lower probability P indued by a redal set P is P (A) = minP∈P P (A) for
any A ⊆ X .

5

Here we only need 2-monotoniity: A set-funtion g with domain 2X is 2-

monotone if and only if ∀A,B ⊆ X, g(A) + g(B) ≤ g(A ∪B) + g(A ∩B).
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0 Xv w x y z

0.25

0.5

0.75

: δ
: π

Figure 4. Cloud [δ, π] of Example 4

probability P indued by P[δ,π]? To address this question, let us start

with an example:

Example 4. Consider a set X with �ve elements {v, w, x, y, z} and

the following non-omonotoni loud [δ, π] pitured on Figure 4:

v w x y z
π 1 1 0.5 0.5 0.25
δ 0 0.5 0.25 0 0

This loud is non-omonotoni, sine π(v) > π(x) and δ(v) < δ(x).
The redal set P[δ,π] an also be de�ned by the following onstraints:

P (Cγ2 = {w}) ≤ 1− 0.5 ≤ P (Bγ2
= {v, w})

P (Cγ1 = {w, x}) ≤ 1− 0.25 ≤ P (Bγ1
= {v, w, x, y})

with γ2 = 0.5 and γ1 = 0.25. Now, onsider the events Bγ2
, Cc

γ1
, Bγ2

∩
Cc

γ1
, Bγ2

∪ Cc
γ1
. We an hek that

P (Bγ2
) = 0.5 P (Cc

γ1
) = 0.25

P (Bγ2
∩ Cc

γ1
= {v}) = 0 P (Bγ2

∪ Cc
γ1

= {v, w, y, z}) = 0.5

sine at most a 0.5 probability mass an be assigned to x. Then the in-

equality P (Bγ2
∩Cc

γ1
)+P (Bγ2

∪Cc
γ1
) < P (Bγ2

)+P (Cc
γ1
) holds, indiating

that the lower probability indued by the loud is not 2-monotone.

This example shows that at least some non-omonotoni louds in-

due lower probability measures that are not 2-monotone. The follow-

ing proposition gives a general haraterization of a large family of suh

non-omonotoni louds:

Proposition 4. Let [δ, π] be a non-omonotoni loud and assume

there is a pair of events Bγi
, Cγj in the loud s.t. Bγi

∩Cγj 6∈ {Bγi
, Cγj , ∅}

and Bγi
∪Cγj 6= X (i.e. Bγi

, Cγj are just overlapping and do not over

the whole set X). Then, the lower probability measure of the redal set

Pδ,π is not 2−monotone.
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The proof of Proposition 4 an be found in the appendix. It omes

down to showing that for any non-omonotoni loud with a pairBγi
, Cγj

of events satisfying the proposition, the situation exhibited in the above

example always ours, namely the existene of two subsets of the form

Bγi
and Cc

γj
for whih 2-monotoniity fails. This indiates that ran-

dom sets do not generalize suh non-omonotoni louds. It suggests

that suh non-omonotoni louds are likely to be less tratable when

proessing unertainty: for instane, simulation of suh louds via sam-

pling methods will be di�ult to implement, and the omputation of

lower/upper expetation too (sine Choquet integral annot be om-

puted from redal sets for measures failing 2-monotoniity).

Note that omonotoni louds and louds desribed by Proposition 4

over a large number of possible disrete louds, but that there remains

some "small" subfamilies, i.e. those non-omonotoni louds for whih

∀i, j, Bγi
∩ Cγj ∈ {Bγi

, Cγj , ∅}, or Bγi
∪ Cγj = X . As suh families are

very peuliar, we do not onsider them further here.

3.2. Outer approximation of a non-omonotoni loud. We pro-

vide, in this setion and the next one, some pratial means to ompute

guaranteed outer and inner approximations of the exat probability

bounds indued by a non-omonotoni loud, eventually leading to an

easier handling of suh louds.

Given a loud [δ, π], we have proven that P[δ,π] = Pπ ∩P1−δ, where π
and 1−δ are possibility distributions. As a onsequene, the upper and
lower probabilities of P[δ,π] on any event an be bounded from above

(resp. from below), using the possibility measures and the neessity

measures indued by π and π = 1−δ. The following bounds, originally
onsidered by Neumaier [17℄, provide, for all event A of X , an outer

approximation of the range of P (A):
(10)

max(Nπ(A), N1−δ(A))≤ P (A) ≤P (A)≤ P (A) ≤min(Ππ(A),Π1−δ(A)),

where P (A), P (A) are the lower and upper probabilities indued by

P[δ,π]. Remember that probability bounds generated by possibility dis-

tributions alone are of the form [0, β] or [α, 1]. Using a loud and ap-

plying Equation (10) lead to tighter bounds of the form [α, β] ⊂ [0, 1],
while remaining simple to ompute. Nevertheless, these bounds are

not, in general, the tightest ones enlosing P (A) indued by P[δ,π], as

the next example shows:

Example 5. Let [δ, π] be a loud de�ned on a set X, suh that distri-

butions δ and π takes up to four di�erent values on elements x of X
(inluding 0 and 1). These values are suh that 0 = γ0 < γ1 < γ2 <
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γ3 = 1, and the distributions δ, π are suh that

π(x) = 1 if x ∈ Bγ2
; δ(x) = γ2 if x ∈ Cγ2 ;

= γ2 if x ∈ Bγ1
\Bγ2

; = γ1 if x ∈ Cγ1 \ Cγ2 ;
= γ1 if x 6∈ Bγ1

. = 0 if x 6∈ Cγ1 .

Sine P (Bγ1
) ≥ 1−γ1 and P (Cγ2) ≤ 1−γ2, from Equations (4), we an

hek that P (Bγ1
\Cγ2) = P (Bγ1

∩Cc
γ2
) = γ2−γ1. Now, by de�nition of

a neessity measure, Nπ(Bγ1∩Cc
γ2
) = min(Nπ(Bγ1

), Nπ(C
c
γ2
)) = 0 sine

Ππ(Cγ2) = 1 beause Cγ2 ⊆ Bγ1
and Ππ(Bγ1

) = 1. Considering distri-

bution δ, we an have N1−δ(Bγ1
∩Cc

γ2
) = min(N1−δ(Bγ1

), N1−δ(C
c
γ2
)) =

0 sine N1−δ(Bγ1
) = ∆δ(B

c
γ1
) = 0 and Cγ1 ⊆ Bγ1

(whih means that

the elements x of X that are in Bc
γ1

are suh that δ(x) = 0). Equation
(10) an thus result in a trivial lower bound (i.e. equal to 0), di�erent

from P (Bγ1
∩ Cc

γ2
).

Bounds given by Equation (10), are the main motivation for louds,

after Neumaier [17℄. Sine these bounds are, in general, not optimal,

Neumaier's laim that they are only vaguely related to Walley's previ-

sions or to random sets is not surprising. Equation (10) appears less

useful in the ase of omonotoni louds, for whih optimal lower and

upper probabilities of events an be more easily omputed (see Remark

3.7 in [7℄).

3.3. Inner approximation of a non-omonotoni loud. The pre-

vious outer approximation is easy to ompute and allows to larify some

of Neumaier's laims. Nevertheless, it is still unlear how to pratially

use these outer bounds in subsequent treatments (e.g., propagation, fu-

sion). The inner approximation of a loud [δ, π] proposed now is a ran-

dom set, whih is easy to exploit in pratie. This inner approximation

is obtained as follows:

Proposition 5. Let [δ, π] be a non-omonotoni loud de�ned on X.

Let us then de�ne, for j = 1, . . . ,M , the following random set:

{

Ej = {x ∈ X|(π(x) ≥ γj) ∧ (δ(x) < γj)}
m(Ej) = γj − γj−1

where 0 = γ0 < . . . γj < . . . < γM = 1 are the distint values taken by

δ, π on elements of X, Ej are the foal elements with masses m(Ej) of
the random set. This random set is an inner approximation of [δ, π],
in the sense its redal set PBel is inluded in P[δ,π].

In the ase of non-omonotoni louds satisfying Proposition 4, the

inlusion is strit. This inner approximation appears to be a natural
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andidate, sine on events of the type

{Bγi , Cγi, Bγi \ Cγj |i = 0, . . . ,M ; j = 0, . . . ,M ; i ≤ j}

, it gives optimal bounds, and it is exat when the loud [δ, π] is omono-

toni.

4. Clouds and probability intervals

There is no diret relationship between louds and probability inter-

vals [5℄. Nevertheless, we an study how to transform a set of proba-

bility intervals into a loud. Suh transformations an be useful when

one wishes to work with louds but information is given in terms of

probability intervals. There are mainly two paths that an be followed

to do this transformation:

• the �rst uses the representability of louds by pairs of possibility

distributions, and extends existing transformations of probabil-

ity intervals into a single possibility distribution.

• The seond uses the equivalene between generalized p-boxes

and omonotoni louds

4.1. Exploiting probability-possibility transformations. The prob-

lem of transforming a probability distribution into a quantitative pos-

sibility distribution has been addressed by many authors [9℄. A onsis-

teny priniple between (preise) probabilities and possibility distribu-

tions was �rst informally stated by Zadeh [22℄: what is probable should

be possible. It was later translated by Dubois and Prade [10, 13℄ as

the following mathematial onstraint. Given a possibility distribu-

tion π obtained by the transformation of a probability measure P ,
this distribution should be suh that, for all events A of X , we have

P (A) ≤ Π(A), with Π the possibility measure of π whih is said to

dominate P . There are multiple possibility distributions satisfying this

requirement, and Dubois and Prade [8, 13℄ proposed to add the follow-

ing ordinal equivalene onstraint, suh that for two elements x, y in

X

p(x) ≤ p(y) ⇐⇒ π(x) ≤ π(y)

and to hoose the least spei� possibility distribution (π′
is more spe-

i� than π if π′ ≤ π) respeting these two onstraints.

The unique solution [10℄ is as follows: let us onsider probability

masses suh that p1 ≤ . . . ≤ pn with pj = p(xj). When all probabilities

are di�erent, Dubois and Prade probability-possibility transformation
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an be formulated as

πi =

i
∑

j=1

pj

with πi = π(xi). When some elements have equal probability, the

above equation must be used on the ordered partition indued by the

probability weights, using uniform probabilities inside eah element of

the partition.

Reversing the ordering of the pi's in the above formula yields another

possibility distribution πi =
∑n

j=i pj, with πi = π(xi). Letting δ =
1 − π, distribution δ is of the form δπ introdued in setion 2.2, that

is, [δ, π] is a loud suh that δi = πi−1 for all i > 1, with δ1 = 0
and δi = δ(xi). It is preisely the tightest loud ontaining P , in the

sense that Pπ ∩ Pπ = {P}. This shows that, at least when probability

masses are preise, transformation into possibility distributions an be

extended to get a seond possibility distribution suh that this pair of

distributions is equivalent to a loud that singles out P exatly.

When working with impreise probability assignments, i.e. with a

probability interval L,6 a partial order ≤L (atually, an interval order)

is indued by probability weights on X and de�ned by:

x ≤L y ⇐⇒ u(x) ≤ l(y)

and two elements x, y are inomparable if intervals [l(x), u(x)], [l(y), u(y)]
interset. The problem of transforming a probability interval into an

outer-approximating possibility distribution by extending Dubois and

Prade transformation is studied in detail by Masson and Denoeux [16℄.

We �rst reall their method, before proposing its extension to louds.

Let CL be a set of linear extensions of the partial order ≤L: a linear

extension <l∈ CL is a linear ordering of X ompatible with the partial

order ≤L. Let σl be the permutation suh that σl(x) is the rank of

element x in the linear extension <l. Given the partial order ≤L,

Masson and Denoeux [16℄ propose the following proedure:

(1) For eah linear order <l∈ CL and eah element x, solve

(11) πl(x) = max
{p(y)|y∈X}

∑

σl(y)≤σl(x)

p(y)

6

A probability interval on a spae X is a tuple of intervals {[l(x), u(x)]lx ∈ X}
enlosing the probabilities p(x), x ∈ X .
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under the onstraints











∑

x∈X

p(x) = 1

∀x ∈ X, l(x) ≤ p(x) ≤ u(x)
p(σ−1

l (1)) ≤ p(σ−1
l (2)) ≤ . . . ≤ p(σ−1

l (n))

(2) The most informative distribution π dominating all distribu-

tions πl
is:

(12) π(x) = max
<l∈C

πl(x).

This proedure ensures that the resulting possibility distribution π
outer-approximate PL (i.e. PL ⊆ Pπ).

Now, onsider that the possibility distribution π given by Equation

(12) is the upper distribution of a loud [δ, π]. To extend above pro-

edure, we have to build a seond possibility distribution πδ suh that

PL ⊆ Pπδ
and suh that the pair [1− πδ, π] de�nes a loud. To ahieve

this, we propose to use the same method as Masson and Denoeux [16℄,

simply reversing the inequality under the summation sign in Equation

(11). The proedure that builds πδ then beomes

(1) For eah order <l∈ CL and eah element x, solve

πl
δ(x) = max

{p(y)|y∈X}

∑

σl(x)≤σl(y)

p(y)(13)

= 1− min
{p(y)|y∈X}

∑

σl(y)<σl(x)

p(y) = 1− δl(x)(14)

with the same onstraints as in the �rst transformation.

(2) The most informative distribution dominating all distributions

πl
δ(x) is:

(15) πδ(x) = 1− δ(x) = max
<l∈C

πl
δ(x).

And we an hek the following property:

Proposition 6. Given probability interval L, the loud [1−πδ, π] built
from the two possibility distributions πδ, π obtained via the above pro-

edures is suh that the indued redal set P[1−πδ,π] outer-approximate

PL. In the degenerate ase of a preise probability distribution, this

loud ontains this distribution only.

Proof. The two possibility distributions π, πδ are suh that PL ⊂ Pπ

and PL ⊂ Pπδ
by onstrution, so PL ⊂ (Pπ ∩ Pπδ

). The �nal result

is thus more preise than a single possibility distribution dominating

PL. When L redues to a preise probability distribution {p}, the
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transformations give the following possibility distributions (elements

of X are ordered in aordane with the order of probability masses):

π(xi) =
∑

j≤i

pj

and

πδ(xi) =
∑

j≥i

pj = 1−
∑

j<i

pj = 1− δ(xi) = 1− π(xi−1).

Hene, the only probability distribution in the loud [δ, π] is given by

pi = π(xi)− π(xi−1). �

So, this method onstruts a loud outer-approximating any proba-

bility interval. It diretly extends known methods used in possibility

theory.

Example 6. Let us take the same probability interval as in the example

given by Masson and Denoeux [16℄, on the set X = {w, x, y, z}, and
summarized in the following table

w x y z
l 0.10 0.34 0.25 0

u 0.28 0.56 0.46 0.08

The partial order is given by Ly < Lx;Lz < {Lx, Lw, Ly}. There are

three possible linear extensions <l∈ CL

<1
l= (Lz, Lw, Ly, Lx); <2

l= (Lz, Lw, Lx, Ly); <3
l= (Lz, Ly, Lw, Lx)

orresponding to the following πδ's:

<i
l πδ(w) πδ(x) πδ(y) πδ(z)
1 1 0.16 0.63 1

2 1 0.9 0.46 1

3 0.75 0.5 1 1

max 1 0.9 1 1

and, �nally, the obtained loud is:

w x y z
π 0.64 1 1 0.08

δ 0 0.1 0 0

where π is the possibility distribution obtained by Masson and De-

noeux [16℄ using their method. Note that the loud is only a little more

informative than the upper distribution taken alone (indeed, the only

added onstraint is that p(x) ≤ 0.9).
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4.2. Using generalized p-boxes. Sine generalized p-boxes and omono-

toni louds are equivalent representations, we an diretly use transfor-

mations of probability intervals into generalized p-boxes (using Equa-

tions (14) in [7℄) to get an outer-approximating omonotoni loud.

Consider the following example:

Example 7. Let us onsider the same probability intervals as in ex-

ample 6 and the following order relationship R on the elements: z <R

w <R y <R x. The omonotoni loud equivalent to the generalized

p-box assoiated to this order is:

w x y z

F = π 0.36 1 0.66 0.08

F 0.1 1 0.44 0

δ 0 0.44 0.1 0

And, using related results in the ompanion paper [7℄, we know that

the redal set P[δ,π] indued by this loud is suh that PL ⊆ P[δ,π] and

that we an reover the information modeled by a probability interval

by means of at most |X|/2 louds built by this method (Proposition

3.8 in [7℄).

Both proposed methods transform a probability interval L into a

loud [δ, π] outer-approximating L (in the sense that PL ⊂ P[δ,π], and

in the ase of a preise probability distribution, eah method reovers

it exatly.

However, if we ompare the louds resulting from Examples 6 and 7,

it is lear that the seond method (Example 7) is more preise than

the �rst one (Example 6). Moreover, using the �rst method, it is in

general impossible to reover the information provided by the original

probability interval. This shows that the �rst method an be very

onservative. This is mainly due to the fat that even if it onsiders

every possible ordering of elements, it is only based on the partial order

indued by the probability interval. Thus, if a natural ordering of

elements exists, the seond method seems to be preferable. Otherwise,

it is harder to justify the fat of onsidering one partiular order rather

than another one, and the �rst method should be applied. In this

ase, one has to be aware that a lot of information an be lost in the

proess. One may also �nd out the ordering induing the most preise

omonotoni loud, but this question remains open.

5. Continuous louds on the real line

It often happens that unertainty is de�ned on the real line. It is

thus important to know if results obtained so far an be extended to
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ontinuous settings. In the following, we onsider louds de�ned on a

bounded interval [r, r].
First, let us reall that, as in the disrete ase, a loud [δ, π] de�ned

on the real line is a pair of distributions suh that, for any element

r ∈ R, [δ(r), π(r)] is an interval and there is an element r for whih

δ(r) = 0, and another r′ for whih π(r′) = 1. Thin louds (π = δ) and
fuzzy louds (δ = 0) have the same de�nition as in the ase of �nite

set. The redal set P[δ,π] indued by a loud on the real line is suh

that:

(16)

P[δ,π] = {P |P ({r ∈ R, δ(r) ≥ α}) ≤ 1− α ≤ P ({r ∈ R, π(r) > α})},

where P is a σ-additive probability distribution

7

.

5.1. General results. As Proposition 2.5 in [7℄ has been proven for

very general spaes [4℄, results whose proof is based on this proposi-

tion diretly extend to models on the real line. Similarly, the proof of

Proposition 3 extends diretly to ontinuous models on the real line.

Hene, the following statements still hold:

• if [δ, π] is a loud, 1 − δ, π are possibility distributions, and

P[δ,π] = P1−δ ∩ Pπ,

• if [F, F ] is a generalized p-box de�ned on the reals, then P[F,F ] =
PπF

∩ PπF
with, for all r ∈ R:

πF (r) = F (r)

and

πF (r) = 1− sup{F (r′)|r′ ∈ R;F (r′) < F (r)}

with πF (r) = 0.
• generalized p-boxes and omonotoni louds are equivalent rep-

resentation

Note that, for louds on the real line, we an de�ne a weaker no-

tion of omonotoniity: a (ontinuous) loud [δ, π] is said to be weakly

omonotoni if the sign of the derivative of distributions δ, π is the

same in every point r of the real line R. Being weakly omonotoni

is not su�ient to be equivalent to a generalized p-box, sine if π
and δ are only weakly omonotoni, then it is possible to �nd two

values r and r′ suh that δ(r) < δ(r′) and π(r) > π(r′). In this

ase, the (pre-)ordering jointly indued by the two distributions is not

7

To avoid mathematial subtleties that would require speial are, we restrit

ourselves to σ-additive probability distributions rather than onsidering �nitely

additive ones.



20 S. DESTERCKE, D. DUBOIS, AND E. CHOJNACKI

π

δ

1
ρ

Fig. 5.A

π

δ

1

Fig. 5.C

π
δ

rr′

1

Fig. 5.B

Figure 5. Illustration of omonotoni (A), weakly

omonotoni (B) and non-omonotoni louds (C) on the

real line.

omplete, and the de�nition of omonotoniity is not satis�ed. Fig-

ures 5.A, 5.B and 5.C respetively illustrate the notion of omono-

toni, non-omonotoni and weakly omonotoni louds on the reals.

Figure 5.A illustrates a omonotoni loud (and, onsequently, a gener-

alized p-box) for whih elements are ordered aording to their distane

to the mode ρ (i.e., for this partiular loud, two values x, y in R are

suh that x <[F,F ] y if and only if |ρ − x| > |ρ − y|). Note that Fig-

ure 5.A is a good illustration of the potential use of a generalized p-box,

as already notied (see beginning of setion 3 in ompanion paper [7℄).

We an now extend the propositions linking louds and generalized

p-boxes with random sets. In partiular, the following result extends

Proposition 4 to the ontinuous ase:

Proposition 7. Let the distributions [δ, π] desribe a ontinuous loud

on the reals and P[δ,π] be the indued redal set. Then, the random set

de�ned by the Lebesgue measure on the unit interval α ∈ [0, 1] and the

multimapping α −→ Eα suh that

Eα = {r ∈ R|(π(r) ≥ α) ∧ (δ(r) < α)}

de�nes a redal set PBel inner-approximating Pπ,δ (PBel ⊆ Pπ,δ).

The proof an be found in the appendix. It omes down to using

sequenes of disrete louds outer- and inner-approximating [δ, π] and
onverging to it, and then to onsider inner-approximations of those

disrete louds given by Proposition 5. This proposition has two orol-

laries:

Corollary 8. Let [δ, π] be a omonotoni loud with ontinuous dis-

tributions on the real line. Then the redal set P[δ,π] is also the redal

set of a ontinuous random set with uniform mass density, whose foal

sets are of the form, for α ∈ [0, 1]:

Eα = {r ∈ R|(π(r) ≥ α) ∧ (δ(r) < α)}.
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To obtain the result, simply observe that the inner-approximation of

Proposition 5 beomes exat for disrete omonotoni louds, whih are

speial ases of random sets. In partiular, this is true for the sequenes

of disrete omonotoni louds outer- and inner-approximating [δ, π]
and onverging to it. So, this sequene of random sets onverge to a

ontinuous random set at the limit. Another interesting partiular ase

is the one of uniformly ontinuous p-boxes.

Corollary 9. The redal set P[F,F ] desribed by two ontinuous and

stritly inreasing umulative distributions F , F forming a lassial p-

box on the reals is equivalent to the redal set desribed by the ontin-

uous random set with uniform mass density, whose foal sets are sets

of the form [x(α), y(α)] where x(α) = F
−1
(α) and y(α) = F−1(α).

This is beause stritly inreasing ontinuous p-boxes are speial

ases of omonotoni louds (or, equivalently, of generalized p-boxes).

To hek that, in this ase, Eα = [x(α), y(α)], it su�es to onsider the

possibility distributions πF , πF and to hek that infr{πF (r) ≥ α)} =
x(α) and that supr{1 − πF (r) < α} = y(α).The strit inreasingness

property an be relaxed to intervals where the umulative funtions

are onstant, provided one onsider pseudo-inverses when building the

ontinuous random set.

These results are interesting, for they an make the omputation

of lower and upper expetations over ontinuous generalized p-boxes

easier. Another interesting point is that the framework developed by

Smets [19℄ onerning belief funtions on the reals an be applied to

omonotoni louds. Also note that above results extend and give alter-

native proofs to other results given by Alvarez [1℄ onerning ontinuous

p-boxes.

5.2. Thin louds. The ase of thin louds, for whih π = δ, is inter-
esting. In this ase, onstraints (4) de�ning the redal set P[δ,π] redue

to P (π(x) ≥ α) = P (π(x) > α) = 1 − α for all α ∈ (0, 1). As notied
earlier, when X is �nite, thin louds de�ne empty redal sets, but is

no longer the ase when it is de�ned on the real line, as the following

proposition shows:

Proposition 10. If π is a ontinuous possibility distribution on the

real line, then the redal set P[π,π] = Pπ ∩ P1−π is not empty.

Proof of Proposition 10. Let F (x) = Π((−∞, x]), with x ∈ R. F
is the distribution funtion of a probability measure Pπ suh that for

all α ∈ [0, 1], Pπ({x ∈ R|π(x) > α}) = 1 − α, where the sets {x ∈
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R|π(x) > α} form a ontinuous nested sequene (see [8℄ p. 285). Suh

a probability lies in Pπ. Moreover,

Pπ({x ∈ R|π(x) > α}) = Pπ({x ∈ R|π(x) ≥ α})

due to uniform ontinuity of π. We also have

Pπ({x ∈ R|π(x) > α}) = 1− Π({x ∈ R|π(x) ≥ α}c) = 1−∆({x ∈ R|π(x) ≥ α})
again due to uniform ontinuity. Sine

1−∆({x ∈ R|π(x) ≥ α}) = supx|π(x)≥α 1− π(x), this means Pπ ∈ P(1−
π). �

A thin loud is a partiular ase of omonotoni loud. It indues

a omplete pre-ordering on the reals. If this pre-order is linear, it

means that for any α ∈ [0, 1], there is only one value r ∈ R for whih

π(r) = α, and that Pπ ∩ P1−π ontains only one probability measure.

In partiular, if the order is the natural order of real numbers, this thin

loud redues to an usual umulative distribution. When the pre-order

has ties, it means that for some α ∈ [0, 1], there are several values in

r ∈ R suh that π(r) = α. Using Corollary 8, we an model the redal

set Pπ ∈ P(1−π) by the random set with uniform mass density, whose

foal sets are of the form

Eα = {r ∈ R|π(r) = α}

In this ase, we an hek that Bel({r ∈ R|π(r) ≥ α}) = 1 − α, in
aordane with Equation (4).

Finally, onsider the spei� ase of a thin loud modeled by an

unimodal distribution π (formally, a fuzzy interval). In this ase, eah

foal set assoiated to a value α is a doubleton {x(α), y(α)} where

{x|π(x) ≥ α} = [x(α), y(α)]. Notieable probability distributions that

are inside the redal set indued by suh a thin loud are the umulative

distributions F+ and F− suh that for all α in [0, 1] F−1
+ (α) = x(α) and

1 − F−1
− (α) = y(α) (they respetively orrespond to a mass density

onentrated on values x(α) and y(α)). All probability measures with

umulative funtions of the form λ ·F++(1−λ) ·F− also belong to the

redal set (for λ = 1
2
, this distribution is obtained by evenly dividing

mass density between elements x(α) and y(α)). Other distributions

inside this set are onsidered by Dubois et al. [8℄.

6. Conlusion

In this paper Neumaier louds are ompared to other unertainty

representations, inluding generalized p-boxes introdued in the om-

panion paper [7℄. Properties of the loud formalism are explained in the

light of other representations. We are now ready to omplete Figure 1
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Lower/upper prev.

Lower/upper prob.

2-monotone apaities

Random sets (∞-monot)

Comonotoni louds

Generalized p-boxes

P-boxes

Probabilities

Probability Intervals

General louds

Possibilities

Figure 6. Representation relationships: ompleted

summary with louds. A −→ B: B is a speial ase

of A. A 99K B: B is representable by A

with louds. This ompleted piture is given by Figure 6. New relation-

ships and representations oming from this paper and its ompanion

are in bold lines.

The next step is to explore omputational aspets of eah formalism

as done by De Campos et al. [5℄ for probability intervals. In partiular,

we need to answer the following questions: how do we de�ne operations

of fusion, marginalization, onditioning or propagation for eah of these

models? Are the representations preserved after suh operations, and

under whih assumptions? What is the omputational omplexity of

these operations? Can the models presented here be easily eliited or

integrated? If many results already exist for random sets, possibility

distributions and probability intervals, few have been derived for gen-

eralized p-boxes or louds, due to their novelty. The results presented

in this paper and its ompanion an be helpful to perform suh a study.

Reent appliations of louds to engineering design problems [15℄ indi-

ate that this model an be useful, and that suh a study should be

done to gain more insight about the potential of suh models. In par-

tiular, the mathematial properties of omonotoni louds appear to
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be quite attrative. Our study thus indiates how louds and general-

ized p-boxes an be interpreted in the framework of other unertainty

theories.

Another issue is to extend presented results to more general spaes,

to general lower/upper previsions or to ases not onsidered here (e.g.

ontinuous louds with some disontinuities), possibly by using existing

results [19, 6℄.
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Appendix

We �rst reall a useful result by Chateauneuf [2℄ onerning the in-

tersetion of redal sets indued by random sets. Consider two random

sets {(Fi, qi·)|i = 1, . . . k} and {(Gj, q·j)|j = 1, . . . l} on X , with Fi, Gj

the foal elements, qi·, q·j the orresponding masses and PF and PG

the indued redal sets. Consider then the set Q of all random sets Q
of the form {(Fi ∩ Gj, qij)|i = 1, . . . k; , j = 1, . . . l}, with Fi ∩ Gj the

foal sets and qij the masses suh that qi· =
∑l

j=1 qij and q·j =
∑k

i=1 qij
with the onstraint that qij = 0 whenever Fi ∩Gj = ∅. Then the lower

probability indued by the redal set PF ∩ PG is

P (A) = min
P∈P1∩P2

P (A) = min
Q∈Q

BelQ(A), ∀A ⊆ X,

where BelQ is the belief funtion indued by the random set Q.

Proof of Proposition 4. We �rst state a short Lemma allowing us

to emphasize the idea behind the proof of the latter proposition.

Lemma 1. Let (F1, F2), (G1, G2) be two pairs of sets suh that F1 ⊂ F2,

G1 ⊂ G2, G1 * F2 and G1 ∩ F1 6= ∅. Let also πF , πG be two possibility

distributions suh that the orresponding belief funtions are de�ned by

mass assignments mF (F1) = mG(G2) = λ, mF (F2) = mG(G1) = 1−λ.
Then, the lower probability of the non-empty redal set P = PπF

∩PπG

is not 2−monotone.

http://www.mat.univie.ac.at/~neum
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Proof of Lemma 1. Chateauneuf's result is applied to the possibil-

ity distributions de�ned in Lemma 1. The main idea is to exhibit

two events and omputing their lower probabilities, showing that 2-
monotoniity is violated. Consider the set M of matries M of the

form

G1 G2

F1 m11 m12

F2 m21 m22

where

m11 +m12 = m22 +m12 = λ

m21 +m22 = m21 +m11 = 1− λ
∑

mij = 1

Eah suh matrix is a normalized (i.e. suh that m(∅) = 0) joint mass

distribution for the random sets indued from possibility distributions

πF , πG, viewed as marginal belief funtions. Following Chateauneuf [2℄,

for any event E ⊆ X , the lower probability P (E) indued by the redal

set P = PπF
∩ PπG

is

(17) P (E) = min
M∈M

∑

(Fi∩Gj)⊂E

mij

Now onsider the four events F1, G1, F1 ∩ G1, F1 ∪ G1. Studying the

relations between sets and the onstraints on the values mij , we an

see that

P (F1) = λ; P (G1) = 1− λ; P (F1 ∩G1) = 0.

For F1 ∩ G1, just onsider the matrix m12 = λ,m21 = 1 − λ. To

show that the lower probability is not even 2−monotone, it is enough

to show that P (F1 ∪G1) < 1. To ahieve this, onsider the following

mass distribution

m11 = min(λ, 1− λ) m21 = 1− λ−m11

m12 = λ−m11 m22 = min(λ, 1− λ).

It an be heked that this matrix is in the set M, and yields

P (F1 ∪G1) = m12 +m11 +m21 = m11 + λ−m11 + 1− λ−m11

= 1−m11 = 1−min(λ, 1− λ) = max(1− λ, λ) < 1

sine (F2 ∩ G2) * (F1 ∪ G1) (due to the fat that G1 * F2). Then

the inequality P (F1 ∪ G1) + P (F1 ∩ G1) < P (F1) + P (G1) violates

2-monotoniity. �
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To prove Proposition 4, we again use the result by Chateauneuf [2℄,

and we exhibit a pair of events for whih 2-monotoniity fails. Chateauneuf

results are appliable to louds, sine possibility distributions are equiv-

alent to nested random sets. Consider a �nite loud desribed by Equa-

tions (4) and the following matrix Q of weights qij

Cc
γ1

· · · Cc
γj

· Cc
γi+1

· · · Cc
γM

Bγ0
q11 . . . q1j · q1(i+1) . . . q1M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bγj−1
qj1 . . . qjj · qj(i+1) . . . qjM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bγi
q(i+1)1 . . . q(i+1)j · q(i+1)(i+1) . . . q(i+1)M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

BγM−1
qM1 . . . qMj · qM(i+1) . . . qMM

Respetively all Bel1 and Bel2 the belief funtions equivalent to the

possibility distributions respetively generated by the olletions of sets

{Bγi
|i = 0, . . . ,M − 1} and {Cc

γi
|i = 1, . . . ,M}. Using the fat that

possibility distributions an be mapped into random sets, we have

m1(Bγi
) = γi+1 − γi for i = 0, . . . ,M − 1, and m2(C

c
γj
) = γj − γj−1 for

j = 1, . . . ,M . As in the proof of Lemma 1, we onsider every possi-

ble joint random set suh that m(∅) = 0 built from the two marginal

belief funtions Bel1, Bel2. Following Chateauneuf, let Q be the set of

matries Q s.t.

qi· =
M
∑

j=1

qij = γi − γi−1

q·j =

M
∑

i=1

qij = γj − γj−1

If i, j s.t. Bγi
∩ Cc

γj
= ∅ then qij = 0

and the lower probability of the redal set P[δ,π] on event E is suh that

(18) P (E) = min
Q∈Q

∑

(Bγi
∩Cc

γj
)⊂E

qij .

Now, by hypothesis, there are at least two overlapping sets Bγi
, Cγj i >

j that are not inluded in eah other (i.e. Bγi
∩ Cγj 6∈ {Bγi

, Cγj , ∅}).
Let us onsider the four events Bγi

, Cc
γj
, Bγi

∩Cc
γj
, Bγi

∪Cc
γj
, whih are

all di�erent by hypothesis. Considering Equation (18), the matrix Q
and the relations between sets, inlusions Bγm

⊂ . . . ⊂ Bγ0
, Cc

γ0
⊂
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. . . ⊂ Cc
γm

and, for i = 0, . . . , m, Cγi ⊂ Bγi
imply:

P (Bγi
) = 1− γi; P (Cc

γj
) = γj; P (Bγi

∩ Cc
γj
) = 0.

For the last result, just onsider the mass distribution qkk = γk−1 − γk
for k = 1, . . . , m.

Next, onsider event Bγi
∪Cc

γj
(whih is di�erent from X by hypoth-

esis), and let them play the role of events F1, G1 in Lemma 1. Suppose

all masses are suh that qkk = γk−1 − γk, exept for masses (in bold-

fae in the matrix) qjj, q(i+1)(i+1). Then, Cc
γj

⊂ Cc
γi+1

, Bγi
⊂ Bγj−1

,

Cc
γj

* Bγj−1
by de�nition of a loud and Bγi

∩ Cc
γj

6= ∅ by hypothesis.

Finally, using Lemma 1, onsider the mass distribution

q(i+1)(i+1) = γi+1 − γi − q(i+1)j q(i+1)j = min(γi+1 − γi, γj − γj−1)

qj(i+1) = min(γi+1 − γi, γj − γj−1) qjj = γj − γj−1 − q(i+1)j .

It always gives a matrix in the set Q. By onsidering every subset of

Bγi
∪ Cc

γj
, we thus get the following inequality

P (Bγi
∪ Cc

γj
) ≤ γj−1 + 1− γi+1 +max(γi+1 − γi, γj − γj−1).

And, similarly to what was found in Lemma 1, we get

P (Bγi
∪ Cc

γj
) + P (Bγi

∩ Cc
γj
) < P (Bγi

) + P (Cc
γj
),

whih shows that the lower probability is not 2−monotone. �

Proof of Proposition 5. First, we know that the random set given

in Proposition 5 is equivalent to

{

Ej = Bγj−1
\ Cγj = Bγj \ Cγj

m(Ej) = γj − γj−1

Now, if we onsider the matrix given in the proof of Proposition 4,

this random set omes down, for i = 1, . . . ,M to assign masses qii =
γi − γi−1. Sine this is a legal assignment, we are sure that for all

events E ⊆ X , the belief funtion of this random set is suh that

Bel(E) ≥ P (E), where P is the lower probability indued by the loud.

The proof of Proposition 4 shows that this inlusion is strit for louds

satisfying the latter proposition (sine the lower probability indued by

suh louds is not 2-monotone). �

Proof of Proposition 7. We build outer and inner approximations

of the ontinuous random set that onverge to the belief measure of

the ontinuous random set, while the orresponding louds of whih

they are inner approximations themselves onverge to the uniformly

ontinuous loud.
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Figure 7. Inner and outer approximations of a non-

omonotoni louds

First, onsider a �nite olletion 0 = α0 < α1 < . . . < αn = 1 of equidis-
tant levels αi (αi−1 − αi = 1/n, ∀i = 1, . . . , n). Then, onsider the fol-
lowing disrete non-omonotoni louds [δn, πn], [δn, πn] that are re-

spetively outer and inner approximations of the loud [δ, π]: for every
value r in R, do the following transformation

π(r) = α with α ∈ [αi−1, αi] then πn(r) = αi and πn(r) = αi−1

δ(r) = α′
with α′ ∈ [αj−1, αj] then δn(r) = αj−1 and δn(r) = αj

This onstrution is illustrated in Figure 7 for the partiular ase when

both π and δ are unimodal. In this partiular ase, for i = 1, . . . , n

{x ∈ R|π(x) ≥ α} = [x(αi−1), y(αi−1)] with α ∈ [αi−1, αi]

{x ∈ R|δ(x) > α} = [u(αi), v(αi)] with α ∈ [αi−1, αi]

{x ∈ R|π(x) ≥ α} = [x(αi), y(αi)]α ∈ [αi−1, αi]

{x ∈ R|δ(x) > α} = [u(αi−1), v(αi−1)]α ∈ [αi−1, αi]

Given the above transformations, P(πn) ⊂ P(π) ⊂ P(πn), and

limn→∞P(πn) = P(π) and also limn→∞P(πn) = P(π). Similarly,

P(1 − δn) ⊂ P(1 − δ) ⊂ P(1 − δn), limn→∞P(1 − δn) = P(1 − δ)
and limn→∞P(1 − δn) = P(1 − δ). Sine the set of probabilities in-

dued by the loud [δ, π] is P(π) ∩ P(1 − δ), it is lear that the two

redal sets P(πn) ∩ P(1− δn) and P(πn) ∩ P(1− δn), are respetively
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inner and outer approximations of P(π) ∩ P(1− δ). Moreover:

lim
n→∞

P(πn) ∩ P(1− δn) = P(π) ∩ P(1− δ)

lim
n→∞

P(πn) ∩ P(1 − δn) = P(π) ∩ P(1 − δ).

The random sets that are inner approximations (by proposition 5) of

the �nite louds [δn, πn] and [δn, πn] onverge to the ontinuous random
set de�ned by the Lebesgue measure on the unit interval α ∈ [0, 1] and
the multimapping α −→ Eα suh that

Eα = {r ∈ R|(π(r) ≥ α) ∧ (δ(r) < α)}.

In the limit, it follows that this ontinuous random set is an inner

approximation of the ontinuous loud. �

Institut de Radioprotetion et Sûreté nuléaire, Bât 720, 13115

St-Paul lez Durane, FRANCE

E-mail address : sdesterke�gmail.om

Université Paul Sabatier, IRIT, 118 Route de Narbonne, 31062 Toulouse

E-mail address : dubois�irit.fr

Institut de Radioprotetion et Sûreté nuléaire, Bât 720, 13115

St-Paul lez Durane, FRANCE

E-mail address : eri.hojnaki�irsn.fr



This figure "cloudinnerouter.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/0808.2779v1

http://arxiv.org/ps/0808.2779v1

	1. Introduction
	2. Clouds
	2.1. Clouds in the setting of possibility theory
	2.2. Clouds with non-empty credal sets
	2.3. Generalized p-boxes as a special kind of clouds

	3. The Nature of Non-comonotonic Clouds
	3.1. Characterization
	3.2. Outer approximation of a non-comonotonic cloud
	3.3. Inner approximation of a non-comonotonic cloud

	4. Clouds and probability intervals
	4.1. Exploiting probability-possibility transformations
	4.2. Using generalized p-boxes

	5. Continuous clouds on the real line
	5.1. General results
	5.2. Thin clouds

	6. Conclusion
	References
	Appendix

