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WILLIAMS COHERENCE AND BEYOND

RENATO PELESSONI AND PAOLO VICIG

Abstract. In this paper we discuss the consistency concept of Williams co-
herence for imprecise conditional previsions, presenting a variant of this notion,
which we call W-coherence. It is shown that W-coherence ensures important
consistency properties and is quite general and well-grounded. This is done
comparing it with alternative or anyway similar known and less known consis-
tency definitions. The common root of these concepts is that they variously
extend to imprecision the subjective probability approach championed by de
Finetti. The analysis in the paper is also helpful in better clarifying several
little investigated aspects of these notions. Keywords. Conditional lower

previsions, Williams coherence, envelope theorem, centered convex previsions,
conglomerability.
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1. Introduction

Quite recently, P.M. Williams’ 1975 seminal paper Notes on conditional previ-
sions was published in a slightly revised version [29], preceded by an introductory
paper discussing basic aspects and historical motivations for his work [25]. This
fact confirms that Williams’ ideas on coherence still play a very important role
in the theory of conditional imprecise previsions. In the past, they influenced the
more widespread theory developed by Walley [26]. Williams coherence was also di-
rectly used in some papers to achieve results in different areas, including epistemic
independence [24], problems of checking consistency for conditional imprecise prob-
abilities [27], consistency for unbounded random variables [23]. Yet, certainly also
because of its overall limited diffusion in the scientific community, several aspects
of Williams coherence are still little explored.

A basic motivation for studying Williams coherence is its generality: in the
version we present in the paper, it extends to a very broad conditional setting
Walley’s (unconditional) coherence, which already encompasses as special cases
several uncertainty theories (2-monotone probabilities, precise probabilities, belief
functions, possibility/necessity measures, coherent risk measures,...) applied in
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many different areas, from artificial intelligence to statistics or risk measurement.
Thus extensions of such theories to conditional frameworks can be accommodated
into Williams coherence, exploiting hence the results already established for it. In
many cases, these problems have been so far little investigated; for instance, much
work remains to be done in the area of measuring conditional risks. Williams
coherence is not the only way of extending Walley’s (unconditional) coherence, but
it is a very general and (perhaps) immediate one; it is anyway important to weigh
pros and cons in choosing which coherence notion should be used. This evaluation
affects various issues, some more familiar (like the validity of the envelope theorem),
other ones generally less familiar (like the problem of non-conglomerability).

The main purpose of this paper (extending earlier results in [16], Section 3)
is to investigate more closely the role of Williams coherence, comparing it with
the nearest consistency concepts that have been developed in the literature. Since
Williams’ work was inspired by de Finetti’s ideas, these concepts are among those
following and generalising the subjective probability approach to uncertainty. We
supply some historical information on this in Section 2.1. The hints presented
there are historically not exhaustive, being limited to key contributions and under
the perspective of studying Williams coherence, but they let us mention a few
important properties regarding all of these concepts, which form a basis for making
comparisons among them in the paper. Section 2.2 contains other preliminary
definitions and notions.

We investigateWilliams coherence with a progressively larger perspective through-
out the paper. We start in Section 3.1 by discussing a nimbler variant for it, called
W-coherence (already defined in Section 2.2), which is adopted in the sequel. It
generalises Walley coherence for unconditional lower previsions. In Section 3.2, we
discuss potential generalisations of other unconditional coherence concepts, focusing
in particular on a little explored definition [2, 10]. We supply an interesting inter-
pretation for it, showing that it has no straightforward extension to conditionals,
but deriving some conditions that are either necessary or sufficient for W-coherence.
In Section 3.3 W-coherence is compared with alternative views of conditional coher-
ence developed by Walley [26], proving in particular its equivalence with separate
coherence (when they are comparable, since separate coherence is less general). The
comparison is continued in Section 3.4, discussing non-conglomerability and the dif-
ferent treatment of this property in Williams’ and Walley’s approaches. Concepts
related to W-coherence are discussed in Section 4. In particular, in Section 4.1 we
explore a notion intermediate between W-coherence and dF-coherence, showing its
little significance, while in Section 4.2 we discuss which condition of avoiding loss
- type should be appropriate when adopting W-coherence. It is shown that using
a certain concept of avoiding uniform loss some seemingly inconsistent features of
W-coherence pointed out by Walley can be justified. In Section 4.3 we discuss cen-
tered convexity, a relevant concept, (moderately) weaker than W-coherence. We
point out that centered convexity shares desirable properties with W-coherence,
even though this is true at a lesser extent as far as envelope theorems are con-
cerned. Our conclusions on the role of W-coherence in imprecise probability theory
are contained in Section 5.
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2. Preliminary Issues

We recall first a few notions concerning the description of uncertainty. Following
[3, 8] and others, we use the logical notation to operate with events. This originates
from observing that events are described by propositions of classical logic, and
actually a formal definition of events and conditional events in these terms was
given in [3, 4]. We write B for both an event B and its indicator function |B|
(de Finetti’s convention), appearing from the context which of the two meanings is
intended.

A bounded random variable1 X is represented by a map X : B → R, where B is a
partition of (non-impossible) events. A possible value of X , X(ω), corresponds to
each ω ∈ B, which does not mean that B is unique. For instance, the partition whose
generic event is ‘X = x’ will do if we describe X alone, but a more refined partition
is needed to describe two or more random variables simultaneously. In classical
probability theory, a unique fixed partition (called Ω there, while we reserve the
symbol Ω for the sure event), large enough to describe what matters, is employed.
This is not necessary in general (cf. the discussion in [26], Section 2.1.4) and will
not be pursued here.

When conditioning on some non-impossible event B, the conditional random
variable X |B may be represented by XB : B|B → R, where the elements of the
conditional partition B|B are obtained replacing each ω ∈ B with the conditional
event ω|B, and discarding those ω|B which turn out to be impossible, conditional
on B (i.e., such that assuming B true implies that ω is false). After this is done,
XB(ω|B) = X(ω) holds. In the special case that B = {Ω}, we reobtain uncondi-
tional random variables (X |Ω = X).

The supremum sup(X |B) of X |B may be computed as supω⇒B X(ω) (in the
set-theoretic language: supω∈B X(ω)).

When working with conditional random variables, we shall sometimes employ
the equality

f(X1, . . . , Xn)|B = f(X1|B, . . . , Xn|B)(1)

where f is any real function, returning the random variable f(X1, . . . , Xn) as a
function of X1, . . . , Xn [4]. A typical case we will consider in the paper is f = G,
where G is a ‘gain’.

In the rest of the paper, the domain of the uncertainty measures considered is
usually termed D. Precisely, D is an arbitrary (non-empty) set of bounded random
variables, or more generally of bounded conditional random variables. D may
contain conditional events too, corresponding to those X |B ∈ D such that X is the
indicator of some event, or events when further B = Ω.

A lower prevision P on D is a map P : D → R. An upper prevision P may be
defined through the equality P (−X |B) = −P (X |B) ∀X |B ∈ D, which always lets
us refer to either lower or upper previsions only. A precise prevision P corresponds
to the special case P (X) = P (X) = P (X).

2.1. A Historical Note. We shall deal in this paper with several notions of ‘co-
herence’, or weaker concepts. Their forerunner is de Finetti’s coherence for (uncon-
ditional) precise previsions [8]:

1Also called gamble in [26] or bounded random quantity in [29], whilst random quantities can
be unbounded in [8].
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Definition 1. P : D → R is a dF-coherent precise prevision on D iff, ∀n,m ∈ N,
∀ X1, . . . , Xn, Y1, . . . , Ym ∈ D, ∀ s1, . . . , sn ≥ 0, ∀ r1, . . . , rm ≥ 0, defining G =
∑n

i=1 si(Xi − P (Xi))−
∑m

j=1 rj(Yj − P (Yj)), it holds that supG ≥ 0.

This definition includes that of dF-coherent (precise) probability as a special case,
when all the random variables in D are (indicators of) events. If further D is an
algebra, dF-coherent probabilities coincide with finitely additive probabilities.

The notion of dF-coherent precise prevision is also closely related to that of ex-
pectation: whenever an expectation E(X) is assessed for X , then E(X) is also its
only dF-coherent prevision. However, whenever P (X) is assessed E(X) is not nec-
essarily defined, because no probability on all events ‘X ≤ x’ must be preliminarily
elicited in order to define P (X).

Although de Finetti did not develop extensively a theory of conditional previ-
sions, nor was he much concerned with imprecise previsions, several features in
his approach were influential also in most later generalisations. We mention the
following basic facts, referring to a generic, not specified ‘consistency’ property of
(precise or imprecise) previsions.

A) Previsions are announced on an arbitrary (non-empty) set of random vari-
ables D, and consequently the definition of their consistency is structure-
free.

B) An extension theorem ensures that a consistent prevision can be extended
on any D′ ⊃ D, so that the extension preserves the same type of consistency
on D′.

C) Consistent previsions have a behavioural interpretation in some idealised
betting scheme.

When ‘consistency’ is replaced by ‘dF-coherence’, A), B) and C) are satisfied.2 Con-
cerning the betting scheme, the random variable G in Definition 1 is the gain from
a bet made up of n+m elementary bets, n ‘in favour of’ X1, . . . , Xn (the bettor is
willing to pay siP (Xi) for receiving siXi, i = 1, . . . , n), m ‘against’ Y1, . . . , Ym (the
bettor receives rjP (Yj) to sell rjYj , j = 1, . . . ,m). The definition of dF-coherence
requires that, whatever is the bet, the gain cannot be negative and bounded away
from 0. DF-coherent previsions are linear and homogeneous, if the relevant quan-
tities are in the domain D:

P (αX + βY ) = αP (X) + βP (Y ).(2)

When adding the constraint m ≤ 1 in Definition 1, we obtain Walley’s definition of
coherence for lower previsions:

Definition 2. P : D → R is a coherent lower prevision on D iff, for all n ∈ N,
∀ X0, X1, . . . , Xn ∈ D, ∀ s0, s1, . . . , sn ≥ 0, defining G =

∑n

i=1 si(Xi − P (Xi)) −
s0(X0 − P (X0)), it holds that supG ≥ 0.

Again, items A), B) and C) above are satisfied by this definition. It has a
well-known behavioural interpretation, discussed in [26]. Some consequences of
this interpretation, not all highlighted in [26], may better stress the behavioural
difference with Definition 1. Precisely, P (X) is an agent’s supremum buying price

2The dF-coherent extension is generally not unique. In the special case that the events ‘X ≤ x’
are in D ∀x ∈ R, while X /∈ D, the dF-coherent extension on D∪{X} is unique, and as mentioned
above coincides with E(X).
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forX , and G is the agent’s gain resulting from her/his buying siXi, for i = 1, . . . , n,
and selling s0X0. Coherence implies, writing the last term in G as s0P (X0)−s0X0,
that the agent may be forced to accept at most one of her/his supremum buying
prices, s0P (X0), as an infimum selling price for s0X0. The restriction ‘at most one’
does not apply to Definition 1, because m there may be any natural number. In
general, we shall say that the agent bets on (in favour or against) X with stake s.

With imprecise previsions, there is a fourth property that we will consider:

D) consistent imprecise previsions are characterised by some envelope theorem.

Generally speaking, envelope theorems relate a function in a certain set F to a
set P of other functions with well specified features. These theorems either ensure
that by performing the (pointwise) infimum or supremum on the elements of P we
get a function f ∈ F , or else guarantee that every f ∈ F may be expressed as an
infimum or supremum over some set P , or both (thus characterising the functions
in F). Envelope theorems may be found in many different research areas, like for
instance cooperative games [19]. They are important because:

• they ensure an often simple way of assigning a function f with the desired
consistency properties;

• when being also characterisation theorems, they allow an alternative, indi-
rect definition and interpretation of the functions in F by means of sets of
the (usually simpler) functions in P . Moreover, they allow proving prop-
erties of the functions in F using known results about the functions in
P .

Coherent lower previsions ensure property D): a real function P is a coherent lower
prevision over D if and only if P (X) = infP∈P{P (X)}, ∀X ∈ D (inf is attained),
where P is a set of dF-coherent precise previsions P dominating P on D, i.e.
P (X) ≥ P (X) ∀X ∈ D, ∀P ∈ P [26].

Various generalisations of dF-coherence to conditional (precise or imprecise) pre-
visions have been proposed. The adherence of some of them to A), B) and D) will be
discussed throughout the paper. As for C), all of them have some behavioural inter-
pretation. This aspect will therefore be just outlined. In particular, dF-coherence
for conditional (precise) previsions was developed in the eighties in [9, 17], obeying
the requirements A), B), C) above.

Definition 3. P : D → R is a dF-coherent conditional (precise) prevision on D
iff, for all n,m ∈ N, ∀ X1|B1, . . . , Xn|Bn, Y1|C1, . . . , Ym|Cm ∈ D, ∀ si ≥ 0 (i =
1, . . . , n), ∀ rj ≥ 0 (j = 1, . . . ,m), defining G =

∑n

i=1 siBi(Xi − P (Xi|Bi)) −
∑m

j=1 rjCj(Yj − P (Yj |Cj)), B =
∨n

i=1 Bi ∨
∨m

j=1 Cj, it holds that sup(G|B) ≥ 0.

Here the gain is G|B, a conditional random variable itself. Conditioning on
B has the meaning of considering only those values for G when at least one of
B1, . . . , Bn, C1, . . . , Cm is true. Property (2) generalises to

P (αX + βY |B) = αP (X |B) + βP (Y |B).(3)

Coherence concepts for conditional imprecise previsions were given by Walley
[26], see Section 3.3. But the earliest proposal was that of Williams [29] in 1975.
His work had a limited diffusion in those years, but influenced Walley’s work and
contained in nuce several fundamental results in the theory of imprecise probabili-
ties [25].
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2.2. W-coherence and Other Preliminaries. In a conditional environment, we
adopt the following generalisation of Definition 2 to define a coherent lower prevision
P (·|·):

Definition 4. P : D → R is a coherent conditional lower prevision on D iff,
for all n ∈ N, ∀X0|B0, . . . , Xn|Bn ∈ D, ∀ s0, s1, . . . , sn real and non-negative,
defining B =

∨n

i=0 Bi and G =
∑n

i=1 siBi(Xi−P (Xi|Bi))−s0B0(X0−P (X0|B0)),
sup(G|B) ≥ 0.

It is easy to realise that we would get an equivalent definition (adopted in [27])
by replacing G|B with G|S, where the support S is defined as S =

∨

{Bi : si 6=
0, i = 0, . . . , n}.

Throughout the paper, Definition 4 will be referred to as Williams coherence,
or W-coherence or simply coherence when unambiguous, but as we will explain in
Section 3.1, it is actually a structure-free version of the original Williams coherence.

A weaker notion than W-coherence is that of lower prevision that avoids uniform
loss [27], recalled in Section 4.2. In the unconditional environment it is termed
condition of avoiding sure loss and is defined in [26], Section 2.4.4 (a).

A further consistency notion, centered convexity [13, 14, 15], is weaker than co-
herence, but sufficiently stronger than the conditions of avoiding sure or uniform
loss to allow for interesting properties and applications (for instance, in risk mea-
surement [14]). Its relationship with W-coherence is discussed in Section 4.3.

Formally, the definition of convex lower prevision is obtained from Definition 2
and Definition 4 by introducing just the extra convexity constraint

∑n

i=1 si = s0 (>
0) and eventually by further imposing (this is not restrictive) that s0 = 1 [13, 14].
Again, we could equivalently condition G on its support S rather than on B, as
done in [14, 15]. Centered convexity requires in addition that (0 ∈ D and) P (0) = 0
in the unconditional case, and further that ∀X |B ∈ D, 0|B ∈ D and P (0|B) = 0 in
the conditional case (cf. Definition 10). Centering is quite a natural requirement:
non-centered convex previsions have rather weak consistency properties (see also
Footnote 7), but special instances of them may be found in the risk literature (cf.
[14]).

Let P be a lower prevision defined on an arbitrary set D. Following B) of Section
2.1, any consistency condition satisfied by P should guarantee that there exists an
extension of P satisfying the same condition on any D′ ⊃ D. If such an extension is
not unique, its vaguest or least-committal one, if existing, has a special importance.
This peculiar extension is the natural extension E in the case of coherent or, when
conditioning, W-coherent previsions [25, 26], the convex natural extension Ec for
centered convex (unconditional or conditional) previsions [13, 14]. The natural or
convex natural extensions always exist for these consistency notions, not necessarily
with other ones, like Walley coherence in [26], Section 7.1.4 (b), or non-centered
convexity.

3. Coherence Concepts of Williams and Others

3.1. About Williams’ Definition. Williams’ original definition ([29], Definition
1) differs formally from our definition of W-coherence. One reason is that it refers
to upper rather than lower previsions, but this is unimportant, since using the
conjugacy relation P (−X |B) = −P (X |B) our condition sup(G|B) ≥ 0 corresponds
exactly to his inequality in (A∗) of [29]. The true difference is that his notion is
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not completely structure-free, as it asks in particular that, for every conditioning
event B, the set XB = {X : X |B ∈ D} is a linear space. It follows for instance that
Williams’ definition does not formally generalise Walley coherence for unconditional
previsions (our Definition 2), which is structure-free: when B = Ω for all X |B ∈ D,
the set of all X is constrained to form a linear space XΩ. On the contrary, Definition
4 is in particular a generalisation of Walley’s unconditional coherence and appears
to be, in general, nimbler. The fundamental link between the two versions of
Williams coherence is ensured by the following extension theorem.

Proposition 1. If P : D → R is W-coherent on D (according to Definition 4), it
has a W-coherent extension on any D′ ⊃ D.

Although we are not aware of any published proof for this proposition, never-
theless it should be regarded as essentially known. In fact, it can be proven by
adapting the proofs concerning the convex natural extension in [14], thus prov-
ing that there always exists the natural extension of a W-coherent lower prevision
on any D′ ⊃ D. A proof of this kind is given in the Appendix, for the sake of
completeness. Alternatively, the historically older scheme of de Finetti’s extension
theorem can be followed, with suitable (but basically minor) modifications. After
de Finetti’s path-breaking proof concerning precise (unconditional) previsions in
[7], this scheme was employed in several generalisations (see e.g. [1, 4, 9]). In the
version for W-coherence, its two-step proof shows in the first step that there exist
W-coherent extensions on D′ = D∪{X |B}, ∀X |B, while the second step generalises
the proof to any D′ using Zorn’s lemma or equivalent results. A by-product of the
first step is that the set of admissible W-coherent extensions on X |B is proved to
be a closed interval. Its lower endpoint is the natural extension E(X |B), while
the upper endpoint is the upper extension U(X |B) of P . Thus, the scheme of de
Finetti’s extension theorem does not emphasise the role of the natural extension,
but rather treats the natural and upper extension in a symmetric way.

As an important implication of Proposition 1 in our framework, when D in
Definition 4 does not meet the structure requirements in Williams’ definition it is
always possible to coherently extend P on a set D′ such that these requirements
hold, and there the two notions of coherence coincide. It follows that W-coherent
lower previsions have all the properties established for Williams coherence in [29],
including the important envelope theorem, stating that P is coherent on D if and
only if

P (X |B) = inf
P∈P

P (X |B), ∀X |B ∈ D

where P is a set of dF-coherent precise previsions P (·|·) dominating P (·|·) on D
(∀P ∈ P , P (X |B) ≥ P (X |B), ∀X |B ∈ D). Note that inf is attained.

3.2. From Unconditional to Conditional Coherence. As we have already
pointed out, Definition 4 of W-coherence generalises Walley coherence for uncon-
ditional previsions (Definition 2). But other known definitions are equivalent to
Definition 2. An interesting issue is therefore: why not rather generalise them in a
conditional environment? An answer is that Definition 2 seems more appropriate
for further generalisations.

The matter is relatively simple and well known if we consider a version of co-
herence, equivalent to Definition 2, obtained by restricting the stakes s0, . . . , sn to
be integers (this is Walley’s Definition 2.5.1 in [26]). The constraint on the integer
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stakes can be adopted in a conditional environment too, for W-coherence as well as
for some other consistency notions we discuss in this paper, obtaining equivalent
formulations. However, considering integer combinations only is not enough when
the random variables are unbounded, even in the unconditional case, as shown in
[22]. We are not dealing with unbounded random quantities here, yet in view of
(potentially) pursuing the utmost generality, we prefer not to impose the integer
stakes constraint.

The situation is more complex, and definitely less explored, when turning to the
following less used definition, which is known to be equivalent to Definition 2:

Definition 5. P : D → R is a coherent lower prevision on D iff, for all n ∈ N,
∀ X0, X1, . . . , Xn ∈ D, ∀ r1, . . . , rn ≥ 0, ∀ µ0 ∈ R such that X0 ≥

∑n

i=1 riXi + µ0,
it holds that P (X0) ≥

∑n

i=1 riP (Xi) + µ0.

Definition 5 has a curious story: not mentioned explicitly in [26], although fol-
lowing directly from results established there, it appears in [2], but without being
related to coherence for imprecise previsions, which was later done in [10]. To the
best of our knowledge, Definition 5 has not been given a clear behavioural interpre-
tation yet, nor has its potential generalisation to a conditional environment been
explored. We tackle these issues in this section.

As a first step, we rewrite the condition in Definition 5, that is,

X0 ≥
n
∑

i=1

riXi + µ0 ⇒ P (X0) ≥
n
∑

i=1

riP (Xi) + µ0,(4)

in an equivalent form. Multiply for this the inequalities in (4) by s0 > 0, let
si = ris0 (i = 1, . . . , n), λ0 = µ0s0 and perform the infimum in the first inequality
to obtain:

λ0 ≤ inf(s0X0 −
n
∑

i=1

siXi) ⇒ λ0 ≤ s0P (X0)−
n
∑

i=1

siP (Xi).(5)

If we define I = −s0X0 +
∑n

i=1 siXi, E = −s0P (X0) +
∑n

i=1 siP (Xi), (5) is
rewritten as

λ0 ≤ inf(−I) ⇒ λ0 ≤ −E.(6)

Let us now come to the behavioural interpretation of Definition 5. For any given
bet on X0, . . . , Xn with stakes s0, . . . , sn, I is the bettor’s overall income ensuing
from the bet, while E is her/his expense for betting. Note that I is random,
while E is not. From (6), Definition 5 asks as a necessary and sufficient condition
for coherence that inf(−I) ≤ −E, i.e. that sup(I) ≥ E, for any bet. This is
a reasonable requirement: it does not hold iff sup I < E for some bet, and this
means that a specific bet can be arranged whose ensuing gain G = I −E is strictly
negative and bounded away from zero whatever happens, and the bettor suffers
from a sure loss. It is clear then that Definitions 2 and 5 are equivalent: they both
require that no bet must be such that supG < 0.

The above interpretation also suggests a way to explore extensions of Definition
5 in a conditional framework. Rewrite for this the gain G in Definition 4 high-
lighting the expense and income terms. We have I = −s0B0X0 +

∑n

i=1 siBiXi,
E = −s0B0P (X0|B0) +

∑n

i=1 siBiP (Xi|Bi) and the condition sup(G|B) ≥ 0 in
Definition 4 is written as

sup(I − E|B) ≥ 0.(7)
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The following Proposition is fundamental for discussing the potential generalisa-
tions of Definition 5.

Proposition 2. Consider, as in Definition 4, a bet on X0|B0, . . . , Xn|Bn with
stakes s0, . . . , sn, respectively, and define B =

∨n

i=0 Bi. Let λ0 be any real number.

a) The following condition implies condition (7):

λ0 ≤ inf(−I|B) ⇒ λ0 ≤ inf(−E|B).(8)

b) Condition (7) implies that

λ0 ≤ inf(−I|B) ⇒ λ0 ≤ sup(−E|B)(9)

Proof. a) Let (8) hold, and take λ0 = inf(−I|B). Then inf(−E|B) ≥ inf(−I|B) =
− sup(I|B), that is inf(−E|B) + sup(I|B) ≥ 0. We obtain from this
0 ≤ sup(inf(−E|B) + I|B) ≤ sup(I − E|B), which is (7).

b) Let (7) hold. We obtain, assuming that λ0 ≤ inf(−I|B) at the third inequal-
ity, 0 ≤ sup(I−E|B) ≤ sup(I|B)+sup(−E|B) = sup(−E|B)−inf(−I|B) ≤
sup(−E|B)− λ0. Hence λ0 ≤ sup(−E|B), so that (9) holds. �

When B0 = . . . = Bn = Ω, i.e. when we consider a bet on unconditional random
variables only, both (8) and (9) reduce to (6). As a by-product, we reobtain the
known result that Definitions 2 and 5 are equivalent.

A comparison of conditions (5), (8) and (9) reveals that the expense E is random
in a conditional environment : it depends on the outcomes of B0, . . . , Bn which
(apart from those Bi = Ω, if any) are unknown to the bettor at the betting time.
This fact appears to be the real difficulty in trying to extend Definition 5 to a
conditional form: we actually get two versions, (8) and (9), with weaker properties.
Condition (9) is potentially useful to disprove W-coherence: if it does not hold
for some bet, the given P (·|·) is not W-coherent. Condition (8) is sufficient for
W-coherence, when holding for any bet. A condition slightly simpler than (8) may
be used for the same purpose under an additional constraint, as follows

Proposition 3. Consider a bet in Definition 4 such that ∧n
i=0Bi 6= ∅. The following

condition implies condition (7):

s0P (X0|B0)−
n
∑

i=1

siP (Xi|Bi) ≥ sup(−I|B).(10)

Proof. We equivalently prove that if (7) does not hold, then p∗ = s0P (X0|B0) −
∑n

i=1 siP (Xi|Bi) < sup(−I|B). Noting for this that ∧n
i=0Bi 6= ∅ ensures that p∗

is a possible value for −E|B and hence p∗ ∈ [inf(−E|B), sup(−E|B)], we get 0 >
sup(I −E|B) = sup(−E − (−I)|B) ≥ sup(−E|B)− sup(−I|B) ≥ p∗ − sup(−I|B),
from which p∗ < sup(−I|B) follows. �

To ensure W-coherence using (10), it is necessary that ∧n
i=0Bi 6= ∅, for any bet.

A relevant special case which obeys this constraint is that of the conditioning events
in D forming a monotone (or nested) family, i.e. they can be totally ordered by
implication (or inclusion, in the set-theoretic approach).

Summing up, it does not seem possible to generalise Definition 5 while condition-
ing. This should be ascribed to the nature of the term representing the ‘expense’
in the gain decomposition, which is generally random outside the unconditional
framework.
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3.3. Alternative Concepts of Coherence. A further issue is that a number of
different generalisations of coherence (Definition 2 or equivalent) to a conditional
framework have been proposed in [26]: how do they relate to W-coherence? We
discuss some basic facts about this relationship in this section and the next one. A
further discussion of Walley’s criticism on Williams coherence needs some prelimi-
naries on the concept of avoiding uniform loss, and is therefore presented in Section
4.2.

The coherence concepts defined in Walley’s book [26] include: separate coherence,
which is the first coherence notion in a conditional framework, presented in Section
6.2.2, coherence with unconditional previsions (Section 6.3.2), which is generalised
to coherence in Section 7.1.4 (b), and weak coherence, defined in Section 7.1.4 (a).
Coherence as defined in Section 7.1.4 (b) is the prevailing concept in [26], and will
be referred to as Walley-coherence here.

None of these concepts is structure-free: a common feature is that the condition-
ing events must belong to some partition and every (non-impossible) event B in the
partition is a conditioning event for some X |B ∈ D. Precisely, just one partition
is employed in the case of separate coherence (cf. Definition 6), a finite number of
partitions are used with Walley-coherence or weak coherence, two partitions (one of
which is the trivial partition B0 = {Ω}, i.e. it corresponds to unconditional random
variables) in the case of coherence with unconditional previsions. The reason for
this kind of constraint lies in Walley’s requirement for conglomerability, a concept
discussed in the next section which is itself not structure-free. There are also other
constraints, see e.g. Section 6.3.1, which are less fundamental, in the sense that
several of them are made to simplify the theory but could be removed; [11] is a
paper in this direction.

It ensues that the discussion of, say, Walley-coherence of assignments on rela-
tively simple domains, like D = {X1|B1, X2|B2, X3|(B1 ∧ (B2 ∨ B3))}, cannot be
performed unless these domains are embedded in larger ones, satisfying the con-
straints in [26] (this operation could be not simple, it may require some extension
theorem which is not always available for Walley-coherence).

Because of these features, Walley’s notions of coherence are not always compara-
ble with W-coherence: there are domains where these notions are not defined, while
W-coherence always is. When making comparisons, we must consider W-coherence
only on those domains D which obey the constraints of the coherence notion it is
compared with. When this is done, W-coherence is equivalent to:

a) separate coherence (this is proven in Proposition 5 below);
b) Walley-coherence, with the extra assumption that all partitions Bi of condi-

tioning events in that definition are finite (this equivalence is stated without
proof in [26]); without this assumption, W-coherence is more general than
Walley-coherence.

As for coherence with unconditional previsions, it is a special case of Walley-
coherence. Concerning weak coherence, it is implied by Walley-coherence but its
importance seems essentially instrumental in the theory in [26]. Useful results for in-
terpreting the conceptual difference between weak coherence and Walley-coherence
were recently given in [12].

Separate coherence has an important role in [26], as it is a prerequisite for the
other kinds of coherence. We are going to prove now its equivalence with W-
coherence. We first state a preliminary result, which is of some interest in itself, as
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it simplifies checking W-coherence of P : D → R if the conditioning events of all
X |B ∈ D have a special separation structure.

Proposition 4. Given P : D → R, let C be a partition and suppose that, for any
X |B ∈ D, B implies some event in C. Define ∀C ∈ C, DC = {X |B ∈ D : B ⇒ C}.
If P is W-coherent on each DC , then it is W-coherent on D.

Proof. The assumptions imply that D =
⋃

C∈C DC , and that a generic gain G in
Definition 4 may be written as follows, emphasising that distinct random variables
may have the same conditioning event: G =

∑n

i=1

∑ni

j=1 sijBi(Xij − P (Xij |Bi))−

s0B0(X0 − P (X0|B0)).
Now take, say, B1 and suppose B1 ⇒ C1 ∈ C. Then obviously sup(G|B) ≥

sup(G|
∨

Bi⇒C1
Bi), where

∨

Bi⇒C1
Bi (6= ∅, at least B1 ⇒ C1) sums those Bi

among B0, B1, . . . , Bn that imply C1. But G|
∨

Bi⇒C1
Bi is the conditional gain

of a bet on (some) elements of DC1
only, because those (and only those) Xij |Bi

(or possibly X0|B0) which are not in DC1
are filtered out, when conditioning on

∨

Bi⇒C1
Bi, by their indicators Bi (or B0) which all take value zero. (For in-

stance, if
∨

Bi⇒C1
Bi = B1 ∨ B3, G|B1 ∨ B3 =

∑n1

j=1 s1jB1(X1j − P (X1j)) +
∑n3

j=1 s3jB3(X3j − P (X3j))|B1 ∨ B3). It follows from W-coherence of P on DC1

that sup(G|
∨

Bi⇒C1
Bi) ≥ 0, hence also sup(G|B) ≥ 0. �

Remark. We may replace ‘W-coherent’ with ‘dF-coherent’ in Proposition 4,
getting another true proposition. This is because the preceding proof relies essen-
tially on the structure of D. �

In the sequel we shall apply Proposition 4 in the special case that the events B
themselves form partition C. Let now B be an arbitrary (finite or not) partition of
non-impossible events.

Definition 6. The conditional lower previsions PB(X |B), defined for any B ∈ B
and X ∈ H(B), where H(B) is an arbitrary set of random variables containing B,
are separately coherent iff, for every B ∈ B,

i) PB(B|B) = 1
ii) ∀s0, . . . , sn ≥ 0, ∀X0, . . . , Xn ∈ H(B), defining G =

∑n

i=1 si(Xi−PB(Xi|B))−
s0(X0 − PB(X0|B)), it holds that supG ≥ 0.3

Define now the conditional lower prevision P such that P (X |B) = PB(X |B),
∀B ∈ B, ∀X ∈ H(B) (P is the collection of all PB).

Proposition 5. The lower previsions PB (B ∈ B) in Definition 6 are separately
coherent iff P is W-coherent on D = ∪B∈BDB, where DB = {X |B : X ∈ H(B)}.

Proof. We prove first that W-coherence implies separate coherence. If P is W-
coherent, i) trivially holds. With regard to ii), it follows from

supG = max{sup
B

G, sup
Bc

G} ≥ sup
B

G = sup(G|B) = sup(BG|B) ≥ 0,

the last equality holding by (1), the inequality by W-coherence.
To prove the converse implication, suppose that separate coherence holds. Bet-

ting on B, X0, . . . , Xn ∈ H(B), it follows then sup(s(B −P (B|B)) +
∑n

i=1 si(Xi −
P (Xi|B)) − s0(X0 − P (X0|B))) = sup(s(B − 1) + G) =
max(supB(s(B − 1) +G), supBc(s(B − 1) +G)) ≥ 0.

3This is the definition in [26], after replacing integer stakes with real non-negative ones.
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If we choose s > max(supBc G, 0), the last inequality implies supB(s(B − 1) +
G) ≥ 0, since then supBc(s(B − 1) + G) = −s + supBc G < 0. Using also (1),
supB(s(B − 1) +G) = sup(G|B) = sup(BG|B) = sup(

∑n

i=1 siB(Xi − P (Xi|B)) −
s0B(X0−P (X0|B))|B) ≥ 0, which means, given the arbitrariness of n, X0, . . . , Xn

and s0, . . . , sn ≥ 0, that P is W-coherent on DB. Then W-coherence of P on each
DB implies W-coherence of P on D, because of Proposition 4 (where C, DC are
now B, DB respectively). �

W-coherence and Walley-coherence are equivalent (cf. b) above) when the par-
titions Bi of conditioning events in Walley-coherence are all finite. In general,
properties of W-coherence involving only finitely many distinct conditioning events
hold for Walley-coherence too (a W-coherent assessment or possibly one of its W-
coherent extensions, cf. Proposition 1, may be referred in this case to a finite set
of finite partitions Bi). For instance, several product or sign rules are discussed in
[16] using W-coherence, but they hold with Walley-coherence too. One such rule
is that, if P is W-coherent on D ⊃ {AX |B,A|B,X |A ∧ B} and P (X |A ∧ B) > 0,
then P (AX |B) ≥ P (A|B) · P (X |A ∧B).

In general, W-coherence has the advantage over Walley-coherence that it ver-
ifies properties A), B), D) in Section 2.1, while none of them necessarily holds
with Walley-coherence. Property D) allows also a sensitivity analysis interpreta-
tion of W-coherence. W-coherence is not necessarily conglomerative, while Walley-
coherence is. This is a basic difference, and we comment on it in the next Section
3.4.

Last but not least, we note that the notion of conditional random variable (and
of conditional event) is often left at an informal level in the literature, including
[26, 29]. A formal approach to these and other descriptive tools of uncertainty, only
sketched in Section 2, is developed in [3, 4].

Although the way conditional random variables or events are interpreted is seem-
ingly not particularly relevant in many matters, a greater formalisation turns out
to be useful with other ones. For an example, consider Lemma 6.2.4 in [26]: this
lemma states that, if BX = BY and the separate coherence conditions i), ii) of
Definition 6 hold for a lower prevision P (·|B), then P (X |B) = P (Y |B). The re-
sult depends on the interpretation of conditional lower previsions in [26], which
does not formally define conditional random variables. But using the approach
outlined in Section 2 and in particular (1) with n = 2, X1 = B, X2 = X ,
f(B,X) = BX , and since B|B (the indicator of event B given that B is true)
takes value 1, we get BX |B = (B|B) · (X |B) = X |B, thus condition BX = BY
alone implies X |B = Y |B. Consequently we achieve the more general result that
µ(X |B) = µ(Y |B) whatever the uncertainty measure µ is, not because of coherence
(µ could even be incoherent), but merely because we are evaluating the same thing.

3.4. The Issue of Non-Conglomerability. Suppose that an uncertainty mea-
sure µ is given on a domain D which includes a random variable X and the condi-
tional random variables X |B, for all B in a given partition B. Then µ is conglom-
erable (with respect to X and B) iff

inf
B∈B

µ(X |B) ≤ µ(X) ≤ sup
B∈B

µ(X |B)(11)

while µ is non-conglomerable if (11) does not hold. In words, (11) requires µ(X) to
belong to the smallest interval containing all conditional evaluations µ(X |B).
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When X is (the indicator of) an event and µ is a precise probability P , conglom-
erability may seem an obvious property at first sight, and in fact it holds trivially
if the partition B is finite. When B is infinite, the matter is however much more
complicated [18].

It was de Finetti who discovered in his 1930 paper [6] that dF-coherent prob-
abilities may be non-conglomerable, presenting two nice examples supporting this
seemingly counterintuitive fact. His examples were forerunning the theory, as Def-
inition 2 was not known at those times. We reconsider now one of such examples,
showing that the probability it uses is actually dF-coherent.

Example A number is chosen at random from the set N+ of positive integers.
Define ωn = ‘n is chosen’, and term B0 the partition of all ωn, n ∈ N

+.
If A is the event that an odd number is chosen, clearly P (A) = 1

2 . Defining
Bn = ω2n−1 ∨ω4n−2 ∨ω4n, ∀n ∈ N

+, B1,2 = {B1, . . . , Bn, . . .} is a partition coarser
than B0, and P (A|Bn) =

1
3 , ∀n (any Bn says that either one odd number or two

even ones are selected, so B1 = ‘1, 2 or 4 is chosen’, etc.). It ensues that (11) does
not hold, and P is non-conglomerable.

The example is easily generalised, as noted in [6], replacing B1,2 with the partition
Bh,k such that each of its eventsB′

1, . . . , B
′
n, . . . implies that one out of h+k numbers

is chosen, h numbers being odd, k even. Then P (A|B′
n) = h

h+k
6= 1

2 = P (A), if
h 6= k: P is non-conglomerable.

To prove that P is dF-coherent on D = {A,A|B′
1, . . . , A|B

′
n, . . .}, note that all

possible gains in Definition 1 are of two disjoint types, according to whether they
include (a bet on) A or not. For those who do not sup(G|

∨r

j=1 B
′
ij
) ≥ 0, applying

the remark following Proposition 4 (here DC = {A|B′
n}, P is dF-coherent on DC

since h
h+k

∈ [0, 1]). A generic G including A may be written, in a way shorter but

equivalent to that of Definition 1, as G = s(A− 1
2 ) +

∑r

j=1 sjB
′
ij
(A− h

h+k
), where

s, s1, . . . , sr may take any real value. Among those events ωn of partition B0 such
that ωn ∧ (B′

i1
∨ . . . ∨B′

ir
) = ∅, there are some implying A, while others imply Ac.

If ωn ⇒ A, G(ωn) =
1
2s, when ωn ⇒ Ac, G(ωn) = − 1

2s. In all cases, maxG ≥ 0.
�

As this example shows, there may be instances where quite natural uncertainty
evaluations are consistent, but non-conglomerable. We believe that in principle
non-conglomerability should not be ruled out a priori.

The issue of non-conglomerability is a root difference between Williams’ and
Walley’s approaches to conditional coherence. Williams, following de Finetti, does
not require conglomerability. Thus, for instance, the probability P in the example
is a special case of W-coherent prevision.

Walley asks for conglomerability in the consistency concepts, other than separate
coherence, he develops in a conditional framework. These concepts should comply
with a conglomerative principle ([26], Section 6.3.3); technically, his consistency
notions implement this principle by including terms like G(X |B) =

∑

B∈B B(X −

P (X |B)) in the expressions of the gains4. These terms are well-defined also when
B is infinite, because the factors B are the indicators of events in a partition B.
Thus only one of them is non-null, whatever happens, and hence the summation is
always made up of a single term. Conglomerability implies then various conditions,
similar to (11) ([26], Section 6.5). In the case of Walley-coherent precise previsions,

4We shall meet one such term in Section 4.2.1, equation (13).
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it implies axiom (C14) in [26], Section 6.5.7, i.e.

P (X) ≥ inf
B∈B

P (X |B).(12)

Actually, it is proven in [26] that (12) is equivalent to Walley-coherence for pre-
cise previsions, under certain structure constraints on D. These constraints im-
ply in particular that (X,X |B ∈ D) ⇒ (−X,−X |B ∈ D), a condition ensur-
ing alone that (12) is equivalent to (11), since P (−X) ≥ infB∈B P (−X |B) iff
P (X) ≤ supB∈B(X |B).

In particular, it ensues from this argument that the probability P in the example
(technically, any of its dF-coherent extensions on a set D′ meeting the structure
requirements of Walley-coherence) is not Walley-coherent.

More generally, non-conglomerable dF-coherent conditional previsions are not
Walley-coherent (they do not satisfy conglomerative conditions like (12)). Note that
the term ‘linear prevision’ in [26] identifies dF-coherent previsions in the uncondi-
tional environment (the first five chapters), but corresponds to those dF-coherent
conditional previsions which are conglomerable in a conditional setting (see Section
6.5.7 in [26]).

The issue of conglomerability allows a more in-depth explanation of the dif-
ferences between W-coherence and Walley-coherence. We pinpoint the following
items:

a) If we wish that an uncertainty measure µ is conglomerable, some constraints
must be imposed on its domain D, as appears already from (11): if X |B ∈
D, then it must hold that X |B′ ∈ D ∀B′ in some partition including B.
In particular, this or analogous constraints seem unavoidable in Walley-
coherence, which is necessarily not structure-free.

b) Walley’s approach may be interpreted as a thorough investigation of con-
glomerable imprecise previsions. It can be adopted, if one feels that im-
posing conglomerability does not rule out some significant models in the
specific uncertain situation being investigated.

c) Conglomerable imprecise previsions have some additional properties, ensu-
ing from inequalities like (11), (12), which are helpful in several derivations
and problems. The disadvantage is that they do not always ensure that
the envelope theorem holds, or that there exists a conglomerable natural
extension.

4. Beyond Williams Coherence

We explore in this section howW-coherence relates to other consistency concepts,
either stronger (Section 4.1) or weaker (Sections 4.2, 4.3).

4.1. Between Williams’ and de Finetti’s Coherence? As well-known, coher-
ence for lower previsions (Definition 2) may be obtained formally from dF-coherence
(Definition 1) by restricting the number of bets ‘against’ some X ∈ D (uncon-
strained with dF-coherence) to m ≤ 1. The same constraint distinguishes, in a
conditional framework, W-coherence (Definition 4) from dF-coherence (Definition
3): with W-coherence we can bet against (at most) one X0|B0 ∈ D.

A natural question is then: what if we relax this constraint, for instance asking
- to keep the relaxation at its minimum - that we can bet ‘against’ at most two
X |B ∈ D? Shall we obtain a significant concept of coherence, intermediate between
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W-coherence and dF-coherence? The answer is essentially negative, even in an
unconditional environment. For simplicity, we illustrate this case only.

Definition 7. P : D → R is a bi-coherent lower prevision on D iff, for all n ∈ N,
∀ X1, . . . , Xn, Y1, Y2 ∈ D, ∀ s1, . . . , sn, r1, r2 real and non-negative, defining G =
∑n

i=1 si(Xi − P (Xi))− r1(Y1 − P (Y1))− r2(Y2 − P (Y2)), supG ≥ 0.

Clearly, any bi-coherent lower prevision satisfies Definition 2 as well and is there-
fore coherent. It also avoids sure loss ([26], Section 2.4.4 (a)), like (as well known)
any coherent lower prevision. Further

Proposition 6. Let P : D → R be bi-coherent.

a) If X,Y,X + Y ∈ D, then P (X + Y ) = P (X) + P (Y ).
b) If X,αX ∈ D (α ∈ R), then P (αX) = αP (X).

Proof. To prove a), first observe that the coherence of P implies P (X + Y ) ≥
P (X) + P (Y ) ([26], Section 2.6.1 (e)). For the reverse inequality, put n = 1,
X1 = X + Y , Y1 = X , Y2 = Y , s1 = r1 = r2 = 1 in Definition 7.

When α ≥ 0, b) follows from the coherence of P ([26], Section 2.6.1 (f)). Let us
suppose α < 0. Putting n = 2, X1 = X , X2 = αX , s1 = −α, s2 = 1, r1 = r2 = 0 in
the gain in Definition 7, we get P (αX) ≤ αP (X). The opposite inequality follows
putting n = 0, Y1 = X , Y2 = αX , r1 = −α, r2 = 1. �

Proposition 6 emphasises that any bi-coherent lower prevision is linear and ho-
mogenous on a large enough domain, i. e. it behaves essentially like a dF-coherent
prevision (cf. (2)). Actually, any bi-coherent lower prevision is dF-coherent, when
the domain on which it is defined is sufficiently rich, as the following corollary of
Proposition 6 points out.

Corollary 1. Let P : D → R be bi-coherent. If either −X ∈ D ∀X ∈ D or
X + Y ∈ D ∀X,Y ∈ D, then P is dF-coherent.

Proof. Let −X ∈ D ∀X ∈ D. Since P avoids sure loss, and P (X) = −P (−X)
∀X ∈ D by Proposition 6 b), dF-coherence of P follows at once from Theorem 2.8.2
in [26]. Let now X + Y ∈ D ∀X,Y ∈ D. Since P is coherent, P (X) ≥ P (Y ) + µ,
∀X,Y ∈ D such that X ≥ Y + µ ([26], Section 2.6.1 (d)). Besides, property a) in
Proposition 6 holds. This implies dF-coherence of P by Theorem 2.8.3 in [26]. �

Nevertheless, a bi-coherent P is not necessarily dF-coherent, when the domain
of P does not satisfy the closure properties of Corollary 1, as illustrated by the
following simple example.

Example Let B = {ω1, ω2, ω3} be a partition and P the vacuous coherent lower
prevision on B: P (ωi) = 0 (i = 1, 2, 3). Actually, P is bi-coherent as well. To show
this, we prove that the supremum of any gain in Definition 7 is non-negative. It is
sufficient to inspect only the gains of the form Gi = si(ωi−P (ωi))−sj(ωj−P (ωj))−
sk(ωk −P (ωk)) = siωi− sjωj − skωk (i 6= j 6= k 6= i, i, j, k ∈ {1, 2, 3}, si, sj , sk ≥ 0),
since the non-negativity of the supremum of any other kind of gain in Definition 7
is implied by the coherence of P . Clearly, Gi(ωi) = si ≥ 0 (i = 1, 2, 3), hence P is
bi-coherent, although, patently, P is not dF-coherent. �

We note incidentally that the vacuous lower prevision is not always bi-cohe-
rent, not even on partitions: if the partition in the example were B′ = {ω1, ω2},
then supG < 0 in Definition 7 when G = −ω1 − ω2 = −1 (i.e. when n = 0,
Yi = ωi, ri = 1, i = 1, 2). This also shows that coherence and bi-coherence are not
equivalent, when bi-coherence may differ from dF-coherence.
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Those bi-coherent previsions which are not dF-coherent on D do not satisfy
property B) in Section 2.1, i.e. they do not ensure bi-coherent extensions on any
superset D′ ⊃ D. This is shown by the following corollary.

Corollary 2. Let P : D → R be bi-coherent and let L be any linear space that
contains D. Then P can be bi-coherently extended on L if and only if P is dF-
coherent on D.

Proof. The ‘if’ part follows from the extension theorem for dF-coherent previsions,
the ‘only if’ part from Corollary 1 (implying that any bi-coherent extension of P
on L is dF-coherent on L, hence also on D ⊂ L). �

Thus, for instance, the lower prevision presented in the previous example cannot
be bi-coherently extended to the set of random variables defined on the partition
B. Corollary 2 could be further generalised: there are instances of bi-coherent,
but not dF-coherent, lower previsions that cannot be bi-coherently extended on
supersets which are not even linear spaces. The important message to convey is
anyway already clear: bi-coherence is not particularly significant, because either it
coincides with dF-coherence or, when it can differ from dF-coherence, property B)
of Section 2.1 may not hold, not even in rather common situations.

4.2. The Condition of Avoiding Uniform Loss. In the unconditional case, the
most studied consistency condition weaker than coherence (Definition 2) is that of
avoiding sure loss, obtained formally from Definition 2 putting s0 = 0. With W-
coherence, the corresponding weaker notion is the following

Definition 8. P : D → R avoids uniform loss (AUL) iff, for all n ∈ N
+,

∀ X1|B1, . . . , Xn|Bn ∈ D, ∀ s1, . . . , sn real and non-negative, defining B = ∨n
i=1Bi

and G =
∑n

i=1 siBi(Xi − P (Xi)), it holds that sup(G|B) ≥ 0.

The notion of avoiding uniform loss was used in [27], where other equivalent
characterisations are supplied. When P = P = P , P avoids uniform loss if and only
if P is dF-coherent. Clearly, W-coherence of P implies that P avoids uniform loss.
The AUL condition is generally too weak, as appears already at the unconditional
level (cf. [26], Section 2.5). A more satisfactory notion is that of centered convexity
(cf. Section 4.3).

In this section we explore the relationship between the AUL condition and a sim-
ilar notion introduced in [26], and reconsider an example on W-coherence discussed
in [26] in the light of this.

4.2.1. Walley’s Condition of Avoiding Sure Loss. Given a partition B and two arbi-
trary setsH, K of unconditional random variables, such that 0 ∈ H, B ∈ H ∀B ∈ B,
suppose throughout this section that D has the following special structure: D =
K ∪

⋃

B∈B DB , where DB = {Y |B : Y ∈ H}.

Definition 9. Let P : D → R be such that

a) the restriction of P on K is a(n unconditional) coherent lower prevision;
b) the restrictions of P on each DB, B ∈ B, are separately coherent.

Then P avoids sure loss on D iff, for all m,n ∈ N, ∀ X1, . . . , Xm ∈ K, ∀ Y1, . . . , Yn ∈
H,∀ sj ≥ 0 (j = 1, . . . ,m), ∀ ti ≥ 0 (i = 1, . . . , n),

sup(

m
∑

j=1

sj(Xj − P (Xj)) +

n
∑

i=1

ti
∑

B∈ B

B(Yi − P (Yi|B))) ≥ 0.(13)
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Discussion. Definition 9 is Walley’s Definition 6.3.2 of avoiding sure loss in
[26]; here the following assumptions5 are introduced, without altering Definition
6.3.2:

i) the non-negative coefficients sj , ti are real, but not necessarily integers;
ii) we do not require H, K to be linear spaces, unlike condition (a) in [26],

Section 6.3.1, and modified correspondingly Definition 6.3.2, as indicated
at the end of Section 6.3.1.

An interesting remark is that Definition 9 is formally no extension of the condi-
tion of avoiding sure loss for unconditional previsions (Definition 2.4.4 (a) in [26]):
if K = ∅ and B = {Ω}, it reduces to the notion of coherence (Definition 2). This
depends on assuming b) in Definition 9. The same remark applies to the concepts
of avoiding sure, partial or uniform loss6 defined in [26], chapter 7, since separate
coherence is a prerequisite for them too. �

Proposition 7. If P avoids sure loss on D, it avoids uniform loss on D.

Proof. Given the special structure of D, all gains G in Definition 8 may be written
as follows,

G =
m
∑

j=1

sj(Xj − P (Xj)) +

q
∑

i=1

ki
∑

r=1

tirBi(Yir − P (Yir|Bi)),(14)

with m, q ≥ 0. Suppose P avoids sure loss, and consider the following (exhaustive)
cases.

i) The second summation in (14) is zero (q = 0). Then supG ≥ 0 follows
from Definition 9, a).

ii) The first summation in (14) is zero (m = 0). Separate coherence of P on all
DB (Definition 9, b)) implies W-coherence of P on

⋃

B∈B DB (Proposition
5), which implies that P avoids uniform loss on

⋃

B∈B DB, hence supG|∨q
i=1

Bi ≥ 0.
iii) m · q > 0. This implies sup(G|B) = sup(G|Ω) = supG in Definition 8.

We can write G as a gain of the kind (13), since Bi(Yir − P (Yir |Bi)) =
∑

B∈B B(BiYir − P (BiYir|B)) (we used the fact that BBi = 0 if B 6= Bi,
and that BiYir |B = Bi|B · Yir|B; consequently if B 6= Bi, BiYir |B =
0|B, and P (BiYir|B) = 0). Then G in (14) is a gain of type (13) from a
bet on X1, . . . , Xm, and on the conditional random variables B1Y11|B, . . . ,
BqYqkq

|B, ∀ B ∈ B. Hence supG ≥ 0.

In all cases, G satisfies the conditions in Definition 8. �

Hence, Definition 9 is stronger than Definition 8, when they are comparable.
The key difference is that Definition 9 can be justified following a conglomerative
principle (cf. [26], Section 6.3.3) while Definition 8 does not rely on it. This fact is

5Condition (b) of Section 6.3.1 in [26], i.e. Y ∈ H ⇒ BY ∈ H, ∀B ∈ B, may be replaced
by our assumptions on D, in particular by 0 ∈ H. In fact, given any B,B∗ ∈ B, we have that
B∗Y |B is equal to Y |B, by (1), when B∗ = B, while, when B∗ 6= B, B∗Y |B = 0|B (∈ D).
Therefore, P (B∗Y |B) is defined ∀B,B∗ ∈ B, which is what ensures condition (b) of Section 6.3.1
in [26]. We did not mention condition (c) of Section 6.3.1 because it is unnecessary in the following
derivations.

6Note that the meaning of the term avoiding uniform loss in [26] is different from that used in
this paper, following Definition 8.
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relevant in explaining some of Walley’s remarks on Williams coherence, as we shall
now see.

4.2.2. On the Consistency of Williams Coherence. A critical remark in [26] about
Williams coherence is that it does not always satisfy Walley’s condition of avoiding
sure loss.

The important fact here is that if an agent adopts W-coherence, her/his reference
minimal consistency concept should be Definition 8 of avoiding uniform loss, or
equivalent. Referring to Definition 9 of avoiding sure loss would determine a kind
of inconsistency: the agent requires (with the condition of avoiding sure loss) and
does not require (with W-coherence) conglomerability at the same time.

Keeping the concept of avoiding uniform loss as a reference, the criticism to W-
coherence outlined in some examples in [26] does not apply. We discuss here one
such example ([26], Section 6.6.6).

Let B be a denumerable partition whose elements are indexed in the set Z−{0}
of non-zero integers and call ωz the generic element in B. Define two dF-coherent
precise probabilities P+ and P− on B, as follows. P+(ωz) = 2−z if z > 0, P+(ωz) =
0, ∀ z < 0, while P−(ωz) = 0, ∀z. Extend P+, P− on B =

∨

{z<0} ωz: clearly

P+(B) = 0 (P+ is σ-additive), while the extension of P− is not unique, and we
may dF-coherently choose P−(B) = 1. The extensions on A = Bc =

∨

{z>0} ωz are

then P−(A) = 0, P+(A) = 1.

Define now P = P++P−

2 . Since mixtures of dF-coherent probabilities are dF-

coherent, P is dF-coherent. Let n ∈ IN+, and define Bn = ω−n ∨ ωn. Because
P (Bn) = P (ωn) > 0, the extension of P on ωn|Bn is uniquely determined by
Bayes’ rule, and P (ωn|Bn) = 1. Similarly, P (A|Bn) = 1, while P (A) = 1

2 . Then
P is a dF-coherent conditional probability on D = B ∪ {B,A,Bn, ωn|Bn, A|Bn}:
this follows from the fact that coherent (conditional or not) probabilities can be
dF-coherently extended on any event [4, 8, 9], and that the extension of P on ωn|Bn

and A|Bn is unique. DF-coherence of P on D is equivalent to its avoiding uniform
loss on D, when viewing P as a special imprecise prevision [27]. Thus P does not
incur uniform loss, but it is shown in [26] that it incurs sure loss (in the sense of
Definition 9). This is because P is non-conglomerable, and in fact it does not obey
the conglomerability axiom (12).

Similar conclusions hold for other examples in [26]: inconsistencies arise only
when conglomerability axioms are used in a hybrid way. Thus the very question in
choosing between W-coherence and Walley-coherence (when they do not coincide)
seems to be a problem of imposing or not conglomerability.

4.3. Centered Convexity. While modifications of the definition of W-coherence
towards some notions intermediate between it and dF-coherence seem to yield no
really significant results, the notion of centered convexity is intermediate between
that of avoiding uniform loss and W-coherence and has interesting properties.

Definition 10. P : D → R is a convex conditional lower prevision on D iff
∀n ∈ N

+, ∀X0|B0, . . . , Xn|Bn ∈ D, ∀s1, . . . , sn ≥ 0 :
∑n

i=1 si = 1, defining G =
∑n

i=1 siBi(Xi − P (Xi|Bi)) − B0(X0 − P (X0|B0)), sup{G| ∨n
i=0 Bi} ≥ 0. Further,

P is centered if besides 0|B ∈ D and P (0|B) = 0, ∀X |B ∈ D.

The theory of centered convex previsions was developed in [13, 14, 15], gener-
alising under many respects the theory of W-coherence. These previsions satisfy
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the properties A), B) and C) from Section 2.1, and operationally correspond to the
important notion of convex risk measure.

Property D) in Section 2.1 is the only one, among those stressed in this paper,
where W-coherence still has a definite advantage over centered convexity, at the
current state of art. In the rest of this section, we give some explanation of this fact.
The material is derived from [15], where the interested reader may find more details.
We present here the simplest envelope theorem, whose proof requires preliminarily
the following

Proposition 8. Let P be a set of convex conditional lower previsions defined on
D. If P (X |B) = infQ∈P

{

Q(X |B)
}

is finite ∀X |B ∈ D, P is convex on D.

Proposition 8 generalises to convex conditional lower previsions a statement al-
ready established for coherent [26] or convex unconditional [13] lower previsions.7

The proof is similar to those in [13, 26] and is omitted.
Notation Given D, let E = {B : ∃X |B ∈ D}. �

Theorem 1. (Envelope Theorem) Let P be a set of dF-coherent precise previsions
on D ∪ E such that ∀P ∈ P, P (B) > 0 ∀B ∈ E, and let α : P → R be a real
function. Then

P (X |B) = inf
P∈P

{P (X |B) +
α(P )

P (B)
} ∀X |B ∈ D(15)

is a convex conditional lower prevision on D, whenever the infimum in (15) is finite.

Further, P is centered iff infP∈P{
α(P )
P (B)} = 0, ∀B ∈ E.

Proof. We prove that ∀P ∈ P , ∀α ∈ R, Pα = P (X |B) + α
P (B) is convex. The main

thesis of the theorem then follows from Proposition 8.
To prove that Pα is a convex conditional lower prevision, we show that a generic

G in Definition 10 may be referred to P , after substituting Pα(X |B) with P (X |B)+
α

P (B) , and hence its supremum is non-negative because P is dF-coherent. In fact,

let X0|B0, . . . , Xn|Bn ∈ D, s1, . . . , sn ≥ 0 such that
∑n

i=1 si = 1. Then G can be
written as

G =
∑n

i=1 siBi(Xi −P (Xi|Bi)− α/P (Bi))−B0(X0 − P (X0|B0)− α/P (B0)) =
∑n

i=1 siBi(Xi − P (Xi|Bi)) +
∑n

i=1 si(Bi ∨B0)(Zi − P (Zi|Bi ∨B0))−B0(X0 −
P (X0|B0)), where Zi = α(B0/P (B0)−Bi/P (Bi)) and P (Zi|Bi∨B0)) = α(P (B0|Bi∨
B0)/P (B0)−P (Bi|Bi ∨B0)/P (Bi)) = α(1/P (Bi ∨B0)− 1/P (Bi ∨B0)) = 0 is, by
(3), the only coherent extension of P on Zi|Bi ∨ B0, i = 1, . . . , n. In terms of P ,
the gain G is still conditioned on B, because B is also the logical sum of the new
conditioning events: B =

∨n

i=1 Bi ∨
∨n

i=1(Bi ∨B0)∨B0. It follows supG|B ≥ 0 by
dF-coherence of P .

The proof of the second part of the proposition follows at once from noting that

when X |B = 0|B (15) reduces to P (0|B) = infP∈P{
α(P )
P (B)}. �

Theorem 1 is not a characterisation theorem, and cannot obviously be applied
to arbitrary D and E . One reason for presenting it is that it supplies us with a way

7There is a conceptual difference with coherence: since convexity does not imply Q(X|B) ≥

inf(X|B) (internality), the finiteness condition of the infimum must be required in Proposition 8.
Internality holds when the convex previsions are centered. This fact exemplifies that convexity
without centering may be a rather weak consistency requirement.
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of assessing centered convex previsions in the particular, but important case that
P (B) > 0, ∀ B ∈ B, ∀ P ∈ P .

Another motivation is that it informs us, through (15), about the type of func-
tions upon which the infimum is performed. Convexity requires adding a term

φP (B) to any dF-coherent prevision P (X |B). This term is equal to α(P )
P (B) in Theo-

rem 1. If P is unconditional, it reduces to α(P ), if it is W-coherent, φP ≡ 0, and
we come to the familiar envelope theorems in [26, 29].

An envelope theorem which characterises centered convexity is given in [15],
Theorem 8. We do not report it here, but stress the fact that its practical use
is considerably less immediate than the envelope theorem for W-coherence. In
fact, the set on which the infimum is performed depends on X |B in this theorem.
Also the function φP (B) has a more complex structure, which is influenced by the
ordering of zero probabilities, for each P ∈ P , among the possible conditioning
events. Seemingly, it is technically possible to circumvent such difficulties with W-
coherence because the function φP (B) may be set identically equal to zero there.

Thus W-coherence remains so far the most general concept for which D) in
Section 2.1 has a general practical as well as theoretical significance among those
discussed in this paper.

5. Conclusions

We summarise our conclusions about the role of Williams coherence with the
help of Table 1, where consistency concepts for precise (first) and imprecise pre-
visions (then) are listed in order of increasing generality. Undoubtedly, a strong

Table 1. Some consistency concepts for precise and imprecise previsions

Type of
Prevision

A)
Structure

Free

B)
Extension
Theorem

D) Envelope
Theorem

Characterisation

de Finetti -
coherence

Precise,
unconditional

Yes Yes Does not apply

de Finetti -
coherence

Precise,
conditional

Yes, in later studies Does not apply

Coherence
Lower,

unconditional
Yes Yes Yes

Walley-
coherence

Lower,
conditional

No Not always Not always

W-coherence
Lower,

conditional
Yes Yes Yes

Centered
convexity

Lower,
conditional

Yes Yes
Yes (with
operational
constraints)

motivation for adopting the variant of Williams coherence called W-coherence in
this paper is its generality: it meets all the properties we listed in Section 2.1, a fea-
ture shared by coherence for unconditional lower previsions and the root concept of
dF-coherence. Even the notion beyond W-coherence, i.e. centered convexity, while
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being more general (but weaker) under many respects, fails to ensure a general enve-
lope theorem of comparable ease of use. If we restrict our attention to W-coherence
versus Walley-coherence, we may conclude that whenever they are not equivalent (if
they are we may adopt either one) the choice depends essentially on our willingness
to accept some conglomerative axiom, and some at a large extent consequent do-
main constraints (acceptance of both items results in preferring Walley-coherence).
Given that W-coherence is more general than Walley-coherence, we may even use
W-coherence in principle, and Walley-coherence under specific circumstances, for
instance when studying stochastic processes. This case copes well with the domain
constraints of Walley-coherence, when we are interested in lower previsions like
P (Xn| ∧

n−1
i=1 (Xi = xi)), where xi is a generic value for the random variable Xi. In

fact, the events ∧n−1
i=1 (Xi = xi) form a partition Bn−1, for a given n and by varying

x1, . . . , xn−1 in all (jointly) possible ways.
Similarly, new information in statistical inference may commonly arise from a

partition of possible hypotheses. Again, this is a favourable situation to apply
Walley-coherence, as for its domain constraints, and is in fact largely discussed in
[26]. It has also to be noted that cases where Walley-coherence ensures the existence
of a (conglomerable) extension are pointed out in [26], and that they are of a certain
generality. In other words, the ‘not always’ at the crossing of Walley-coherence and
property B) in Table 1 should be graded.

More generally, the theory of imprecise probabilities shows that there are often
many alternatives for generalising familiar concepts (for instance, independence)
from theories of precise probabilities or previsions, and that frequently there is
no way to keep all the properties of the special precise probability case. Under
these circumstances, we might want to employ different concepts of conditional
consistency, to preserve obtaining certain aims. A presentation of these conflicting
instances is given in [28], where some alternative notions of imprecise conditional
probability are presented. A further investigation of the consistency concepts in the
conditional environment should include also these aspects, as well as other ideas
developed in the literature. In particular, the game-theoretic approach in [20, 21]
was recently related to Walley’s [5], and this could simplify the potential future
work of relating it with Williams’ approach too.

Appendix. Proof of Proposition 1.

We preliminarily recall a characterisation theorem, holding for W-coherent con-
ditional lower previsions defined on a structured domain D∗ [29].

Theorem 2. Let X be a linear space of bounded random variables, E ⊂ X the set
of all indicator functions of events in X . Let also 1 ∈ E and BX ∈ X , ∀B ∈ E,
∀X ∈ X . Define E∅ = E − {∅}, D∗ = {X |B : X ∈ X , B ∈ E∅}. P : D∗ → R is a
W-coherent conditional lower prevision if and only if:

A1) P (X |B) ≥ inf{X |B}, ∀X |B ∈ D∗

A2) P (kX |B) = kP (X |B), ∀X |B ∈ D∗, ∀k ≥ 0
A3) P (X + Y |B) ≥ P (X |B) + P (Y |B), ∀X |B, Y |B ∈ D∗

A4) P (A(X − P (X |A ∧B))|B) = 0, ∀X ∈ X , ∀A,B ∈ E∅ : A ∧B 6= ∅.

As in the unconditional case [26], the concept of natural extension plays a fun-
damental role in extending P .
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Definition 11. Let P : D → R be a conditional lower prevision, X |B an arbitrary
bounded conditional random variable. Define gi = siBi(Xi−P (Xi|Bi)), L(X |B) =
{α : sup{

∑n

i=1 gi − B(X − α)|
∨n

i=1 Bi ∨B} < 0, for some n ≥ 0, Xi|Bi ∈ D, si ≥
0}. The natural extension of P to X |B is E(X |B) = supL(X |B).

It is easily seen that L(X |B) =]−∞, E(X |B)[, a fact which will be used later.
Moreover, the natural extension proves to be bounded from above, when P is W-
coherent.

Proposition 9. Let P : D → R be a W-coherent conditional lower prevision. Then
E(X |B) ≤ sup{X |B} ∀X |B.

Proof. Let c = sup{X |B}, n ≥ 0, Xi|Bi ∈ D, si ≥ 0 (i = 1, . . . , n). Since
B(X − c) ≤ 0, using also W-coherence of P in the last inequality, sup{

∑n

i=1 gi −
B(X − c)|

∨n

i=1 Bi ∨B} ≥ sup{
∑n

i=1 gi|
∨n

i=1 Bi} ≥ 0. This implies c /∈ L(X |B) =
]−∞, E(X |B)[. �

Theorem 3. Let D∗ be defined as in Theorem 2, D ⊂ D∗ and P : D → R W-
coherent. Then E is a W-coherent conditional lower prevision on D∗ and E(X |B) =
P (X |B) ∀X |B ∈ D.

Proof. To prove W-coherence of E, we show that it satisfies properties A1), A2),
A3), A4) in Theorem 2.

As for A1), note that sup{−B(X − α)|B} < sup{−B(X − inf{X |B})|B} ≤ 0,
∀ X |B ∈ D∗, ∀ α < inf{X |B}. This implies E(X |B) ≥ inf{X |B}.

As for A2), let k > 0 (the case k = 0 is trivial), α ∈ L(X |B), n ≥ 0, Xi|Bi ∈ D,
si ≥ 0 (i = 1, . . . , n), W1 =

∑n

i=1 gi − B(X − α) as in Definition 11. Then,
sup{

∑n

i=1 ksi(Xi −P (Xi|Bi))−B(kX − kα)|
∨n

i=1 Bi ∨B} = k sup{W1|
∨n

i=1 Bi ∨
B} < 0. This implies kα ∈ L(kX |B) ∀k > 0, ∀α ∈ L(X |B). Hence E(kX |B) ≥
kE(X |B). The proof of the reverse inequality is similar.

To prove A3), let Y |B ∈ D∗, β ∈ L(Y |B), m ≥ 0, Yj |Cj ∈ D, tj ≥ 0 (j =
1, . . . ,m), hj = tjCj(Yj−P (Yj |CJ )) such that, defining W2 =

∑m

j=1 hj−B(Y −β),

sup{W2|
∨m

j=1 Cj ∨ B} < 0. Preliminarily, write H =
∨n

i=1 Bi ∨
∨m

j=1 Cj ∨ B as

the sum of four disjoint events as follows: H = B ∨ [
∨n

i=1 Bi ∧ (
∨m

j=1 Cj)
c ∧ Bc] ∨

[(
∨n

i=1 Bi)
c ∧

∨m

j=1 Cj ∧Bc]∨ [
∨n

i=1 Bi ∧
∨m

j=1 Cj ∧Bc]. Observe also that supW1,
supW2 are both non-positive, but never simultaneously null, conditional on each of
the four events. This implies sup{W1 +W2|H} = sup{

∑n

i=1 gi+
∑m

j=1 hj −B(X +

Y − (α+ β))|H} < 0. Hence α+ β ∈ L(X + Y |B) ∀α ∈ L(X |B), ∀β ∈ L(Y |B) and
E(X + Y |B) ≥ E(X |B) + E(Y |B) follows.

As for A4), let X |A ∧ B ∈ D∗, W = A(X − E(X |A ∧ B)). To prove that
E(W |B) = supL(W |B) = 0, we show that L(W |B) =]−∞, 0[. Given δ > 0, it en-
sues from the definition of E(X |A∧B) that ∃ n ≥ 0, Xi|Bi ∈ D, si ≥ 0 (i = 1, . . . , n)
such that, defining G =

∑n

i=1 siBi(Xi − P (Xi|Bi)) and Z1 = G − AB(X −
E(X |A ∧ B) + δ), sup{Z1|

∨n

i=1 Bi ∨ (A ∧ B)} < 0. Hence Z2 = G −B(W + δ) =
Z1−BAcδ (≤ Z1) is such that sup{Z2|

∨n

i=1 Bi∨B} = max{sup{Z2|
∨n

i=1 Bi∨(A∧
B)}, sup{Z2|(

∨n

i=1 Bi)
c ∧ Ac ∧ B}} ≤ max{sup{Z1|

∨n

i=1 Bi∨(A∧B)},−δ} < 0 (omit the second argument in the maxima if (
∨n

i=1 Bi)
c∧

Ac ∧ B = ∅). This implies −δ ∈ L(W |B), ∀δ > 0, hence supL(W |B) ≥ 0. But
supL(W |B) = 0, because 0 /∈ L(W |B): by contradiction, assuming 0 ∈ L(W |B)
would imply, as can be easily seen, E(X |A∧B) ∈ L(X |A∧B) =]−∞, E(X |A∧B)[.
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Finally, we prove that E(X |B) = P (X |B) ∀X |B ∈ D. If X |B ∈ D, taking
n = 1, s1 = 1, X1|B1 = X |B in the definition of E(X |B), sup{B(X − P (X |B)) −
B(X − α)|B} = α − P (X |B) < 0, ∀α < P (X |B). Hence E(X |B) ≥ P (X |B). For
the reverse inequality, note that ∀X |B ∈ D, ∀Xi|Bi ∈ D, ∀si ≥ 0 (i = 1, . . . , n),
sup{

∑n

i=1 gi −B(X − P (X |B))|
∨n

i=1 Bi ∨B} ≥ 0, by the coherence of P on D. It
ensues P (X |B) /∈ L(X |B) =]−∞, E(X |B)[. �

Theorem 3 lets us extend any W-coherent conditional lower prevision P : D → R

to any set D′(⊃ D) which meets the structure requirements of D∗ in Theorem 2.
The set D′ does not necessarily satisfy these requirements. When it does not,
consider a partition B on which the random variables in D′ are defined and let X
be the set of all random variables on B, E∅ and D∗ as in Theorem 2. By Theorem
3, E : D∗ → R is a W-coherent conditional lower previsions, extending P to D∗

and therefore to D′ ⊂ D∗ as well.
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