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COMPUTING EXPECTATIONS WITH CONTINUOUS P-BOXES:

UNIVARIATE CASE

LEV UTKIN AND SEBASTIEN DESTERCKE

Abstrat. Given an impreise probabilisti model over a ontinuous spae,

omputing lower/upper expetations is often omputationally hard to ahieve,

even in simple ases. Beause expetations are essential in deision making

and risk analysis, tratable methods to ompute them are ruial in many ap-

pliations involving impreise probabilisti models. We onentrate on p-boxes

(a simple and popular model), and on the omputation of lower expetations

of non-monotone funtions. This paper is devoted to the univariate ase, that

is where only one variable has unertainty. We propose and ompare two

approahes : the �rst using general linear programming, and the seond us-

ing the fat that p-boxes are speial ases of random sets. We underline the

omplementarity of both approahes, as well as the di�erenes.

1. Introdution

There are many situations where a unique probability distribution annot be

identi�ed to desribe our unertainty about the value assumed by a variable on a

state spae. This an happen for example when data or expert judgments are not

su�ient and/or are on�iting. In suh ases, a solution is to model information by

the means of impreise probabilities, that is by onsidering either sets of probabil-

ity distributions [17, 14℄ or bounds on expetations [18℄. Note that, from a purely

mathematial point of view, suh representations enompass many other frame-

works dealing with the representation of inomplete and on�iting information,

suh as random sets [7℄ and possibility theory [12℄.

When onsidering suh models, the expetation of a real-valued bounded fun-

tion over the state spae is no longer preise and is lower- and upper-bounded by

some value. In appliations involving risk analysis or deision making, the deision

proess will be based on the values of these lower and upper expetations, using

extensions of the lassial expeted utility riterion [25℄. When the state spae on

whih the variable assumes its value is �nite, lower and upper expetations an be

numerially omputed by using, for instane, linear programming tehniques [26℄.

The problem beomes quite more ompliated when unertainty models are de�ned

over in�nite state spaes (e.g., the real line, produt spaes, . . . ).

In this latter ase, omputing exatly and analytially the lower and upper

expetations of a given funtion is impossible most of the time, and there are

very few methods and algorithms around to ompute approximations of these

bounds [4, 21, 24℄. In this paper, we study suh analytial solutions for a spei�

ase, that is the one where the unertainty over a variable is desribed by a pair of

upper and lower umulative distributions (a so-alled p-box [13℄). In essene, suh
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a study omes down to searh the extremal points of the p-box for whih the expe-

tation bounds are reahed. The features of these solutions also allow us to suggest

some ways to build more e�ient numerial methods and algorithms, useful when

analytial solutions annot be omputed. We also assume that the funtion over

whih lower and upper expetations have to be omputed an be non-monotone but

has a (partially) known behaviour. In this paper, we onentrate on the univariate

ase, i.e., where the value assumed by only one variable is tainted with unertainty.

The multivariate ase as well as the ase of mixed strategies (expetation bounds

omputed over mixture of funtions) are left for forthoming papers.

P-boxes are one of the simplest and most popular models of sets of probability

distributions, diretly extending umulative distributions used in the preise ase.

P-boxes are often used in appliations [16℄, as they an be easily derived from small

samples [3℄ or from expert opinions expressed in terms of impreise perentiles.

onsequently, our study is likely to be useful in many pratial situations. P-box

models an also be found in robust Bayesian analysis, where they are known as

distribution band lasses [2℄. In other ases, the poor expressiveness of p-boxes

ompared to more general sets of probabilities is learly a limitation [8℄. However,

as we shall see, their simpliity allows for more e�ient omputations, and they

an provide quik �rst approximations. Eventually, if these �rst approximations

already allow to take a deision, there is no need to onsider more omplex (and

omputationally demanding) models.

Methods developed in the paper are based on two di�erent approahes, and

we found it interesting to emphasize similarities and di�erenes between these ap-

proahes, as well as how one approah an help the other: the �rst is based on

the fat that the omputation of bounding expetations an be viewed as a linear

programming problem, while the seond uses the fat that a p-box is a partiular

ase of a random set [16, 8℄. Approximating lower and upper expetations with

these approahes mainly onsists in disretizing the unertainty models. In this

sense, they are di�erent from other approahes disretizing the state spae [21, 24℄.

We �rst state the general problem in Setion 2, how to solve it by using linear

programming and random sets, and introdue the problem of onditioning by an

observed event. We then study the omputation of lower/upper expetations of

a funtion over the p-box for di�erent behaviours. Going from the simplest ase

to the most general one, we start with monotone funtions in Setion 3, pursue

with funtions having one extrema in Setion 4, and �nish by general (bounded)

ontinuous funtions in Setion 5.

2. General problem statement

We assume that the information about a (real-valued) random variable X is (or

an be) represented by a lower F and upper F umulative probability distributions

de�ning the p-box [F , F ] [13℄. Lower F and upper F distributions thus de�ne a set

Φ(F , F ) of preise distributions suh that

(1) Φ(F , F ) = {F |∀x ∈ R, F (x) ≤ F (x) ≤ F (x)}.

Given a funtion h(X), lower (E) and upper (E) expetations over [F , F ] of h(X)
an be omputed by means of a proedure sometimes alled natural extension [30,
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31℄, whih orresponds to the following equations:

E(h) = inf
F∈Φ(F,F )

∫

R

h(x)dF ,E(h) = sup
F∈Φ(F,F )

∫

R

h(x)dF.(2)

Computing the lower (resp. upper) expetation an be seen as �nding the ex-

tremizing distribution F inside Φ(F , F ) reahing the in�mum (resp. supremum) in

Equations (2). If we onsider the onvex set of probabilities indued by Φ(F , F ),
this is equivalent to �nd the extremum point (i.e., vertex) of this onvex set where

the bounds are reahed, among all verties (here in�nitely many). Solving Equa-

tions (2) exatly is usually very di�ult, although sometimes possible, even when

analytial expressions of h, F , F are known. In pratie, numerial methods must

often be used to solve the problem and estimate both the upper and lower ex-

petations. Upper and lower expetations are dual [31, h.2.℄, in the sense that

E(h) = −E(−h). This will allow us to onentrate only on the lower expetations

for some ases studied in the sequel. We now detail the two generi approahes

used throughout the paper to solve the above problem. Note that, through all the

paper, we assume that we restrit ourselves either to σ-additive probabilities or to
ontinuous funtions h, as suh assumptions are not, from a pratial standpoint,

very limiting.

We will denote by IA the indiator funtion of the set A, that is the funtion suh

that IA(x) = 1 if x ∈ A, zero otherwise. The lower (resp. upper) expetation of

this funtion, E(IA) (resp. E(IA)), have the same value as the lower (resp. upper)

probability P (A) (resp. P (A) of the event A indued by the set Φ(F , F ).

2.1. Linear programming view. Although we assume that the readers have ba-

si knowledge of linear programming (for an introdution to the topi, see for ex-

ample Vanderbei [29℄), we will reall basi results oming from this theory when

they are used in the paper.

As sets of probabilities an be expressed through linear onstraints over expe-

tations, and as expetation is a linear funtional, it is quite natural to translate

Equations (2) into linear programs. The linear programs orresponding to lower

expetation are summarized below.

Primal problem: Dual problem:

Min. v =
∞
∫

−∞

h (x) ρ (x) dx Max. w = c0 +
∞
∫

−∞

(

−c (t)F (t) + d (t)F (t)
)

dt

subjet to subjet to

ρ (x) ≥ 0,
∞
∫

−∞

ρ (x) dx = 1, c0 +
∞
∫

x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x
∫

−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.

x
∫

−∞

ρ (x) dx ≥ F (x) .

Where v and w are the objetive funtions to respetively minimize and maximize

for the primal and dual problems, and ρ (x) is a probability density funtion having
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a umulative distribution inside Φ(F , F ). Sine both the primal and dual problems

are feasible (i.e. have solutions satisfying their onstraints), then their optimal

solutions oinide (due to strong duality [29, Ch.5℄) and are equal to E(h).
Numerially solving the above problem an be done by approximating the prob-

ability distribution funtion F by a set of N points F (xi), i = 1, ..., N , and by

translating equations (2) into the orresponding linear programming problem with

N optimization variables and where onstraints orrespond to equation (1). Those

linear programming problems are of the form

E
∗(h) = inf

N
∑

k=1

h(xk)zk or E
∗
(h) = sup

N
∑

k=1

h(xk)zk(3)

subjet to

zi ≥ 0, i = 1, ..., N,

N
∑

k=1

zk = 1,

i
∑

k=1

zk ≤ F (xi),

i
∑

k=1

zk ≥ F (xi), i = 1, ..., N.

where the zk are the optimization variables, and objetive funtion E
∗(h) (resp.

E
∗
(h)) is an approximation of the lower (resp. upper) expetation. Note that the

primal problem may not always be feasible (e.g., onsider N = 1 and F (x1) −
F (x1) < 1) if N is too small or values xi are badly hosen. Also, the inequality

E(h) ≤ E
∗(h) (or its onverse) does not always hold when solving the above dis-

retized problem. The approximated solution E
∗
is thus not a guaranteed inner or

outer approximation. A solution to obtain a guaranteed inner approximation is to

replae, for i = 1, . . . , N , F (xi) by F (xi+1) in onstraints

∑i
k=1 zk ≥ F (xi), with

F (xN+1) = 1, sine in this ase, any solution to the linear program would be suh

that, for any x ∈ [xi, xi+1],

F (x) ≤ F (xi+1) ≤
i
∑

k=1

zk ≤ F (xi) ≤ F (x),

onsequently the (disrete) umulative distributions formed by the values zk, k =
1, . . . , N is in Φ(F , F ). However, for this linear program to have a solution, we

must be able to hoose the xi, i = 1, . . . , N on R suh that F (xi) ≥ F (xi+1). In

addition to not be always possible, this puts neessary onstraints over the hosen

disretization of R.

Let us write now the dual linear programming problem for omputing E
∗∗(h),

taking points yi di�erent from xi,

(4) E
∗∗(h) = max

(

c0 +

N
∑

i=1

(

diF (yi)− ciF (yi)
)

)

subjet to c0 ∈ R, ci ≥ 0, di ≥ 0, and

c0 +

N
∑

k=i

(dk − ck) ≤ h(yi), i = 1, ..., N,

where c0, ci, di are the optimization variables, yi = (xi−1 + xi)/2.
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When both problems are disretized, equality between their optimal solutions

no longer holds, but onverge towards the same value as N grows. To approximate

the solution, one an let N grow iteratively until the di�erene |E∗(h)− E
∗∗(h)|

is smaller than a given value ε > 0 haraterizing the auray of the solutions.

However, this way of determining the lower and upper expetations meets some

omputation di�ulties if many iterations are needed and if the value of N is

rather large. Indeed, the primal optimization problem have N variables and 3N+1
onstraints. On the other hand, solving the primal and dual approximated problems

only one with a small value of N an lead to bad approximations of the exat value.

Also important is the question of how to hoose or sample the values xi to improve

numerial onvergene? In other words, is there some regions that should be more

sampled than others. A generi algorithm (for E) would look as follows:

(1) Fix a preision threshold ǫ and an initial value of N
(2) Sample N values xi s.t. F (xi) > 0 and F (xi) < 1
(3) Compute E

∗(h) and E
∗∗(h)

(4) If |E∗(h)− E
∗∗(h)| ≤ ǫ, stop, else inrease N and return to step 2.

In the sequel, we will see that knowing h and its behaviour an signi�antly

improve both auray and e�ieny of expetation bound omputations. It also

provides some insight as to how values xi ould be sampled.

2.2. Random set view. Now that we have given a global sketh of the linear

programming approah, we an detail the one using random sets. Formally, a

random set is a mapping Γ from a probability spae to the power set ℘(X) of

another spae X , also alled a multi-valued mapping. This mapping indues lower

and upper probabilities on X [7℄. Here, we onsider the unit interval [0, 1] equipped
with Lebesgue measure as the probability spae, and ℘(X) are the measurable

subsets of the real line R.

Given the p-box [F , F ], we will denote Aγ = [a∗γ , a
∗
γ ] the set suh that

a∗γ := sup{x ∈ R : F (x) < γ} = F
−1

(γ),

a∗γ := inf{x ∈ R : F (x) > γ} = F−1(γ),

R

1

F

γ

a∗γ a∗γ

Aγ

F

Figure 1. P-box as random set, illustration
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By extending existing results [16, 13℄ to the ontinuous real line [9, 1℄, we an

onlude that the p-box [F , F ] is equivalent to the ontinuous random set with a

uniform mass density on [0, 1] and a mapping (see �gure 1) suh that

Γ(γ) = Aγ = [a∗γ , a
∗
γ ], γ ∈ [0, 1].

Note that both F
−1

(γ), F−1(γ) are non-dereasing funtions of γ. The interest of
this mapping Γ is that it allows us to rewrite equations (2) in the following form:

E(h) =

∫ 1

0

inf
x∈Aγ

h(x) dγ,(5)

E(h) =

∫ 1

0

sup
x∈Aγ

h(x) dγ.(6)

Again, �nding analytial solutions of suh integrals is not easy in the general

ase, but numerial approximations an be omputed (with more or less di�ulty)

by disretizing the p-box on a �nite number of levels γi, the main di�ulty in the

general ase being to �nd the in�mum or supremum of h(X) for eah disretized

level. Note that, in the �nite ase, a random set an be represented by non-null

weights, here denoted m, given to subsets of spae X and summing up to one (i.e.,

∑

E⊆X m(E) = 1). Let γ0 = 0 ≤ γ1 ≤ . . . ≤ γM = 1 and de�ne the disrete

random set Γ suh that for i = 1, . . . ,M

Γ :=

{

Aγi
= [a∗γi−1 , a

∗
γi
],

m(Aγi
) = γi − γi−1

We denote by Φ(F , F )Γ the set of preise distributions indued by Γ. This dis-

retization, whih is an outer approximation of the p-box [F , F ] (i.e., Φ(F , F ) ⊂
Φ(F , F )Γ), is sometimes referred to as the ODM (Outer disretization Method) and

has been studied by other authors [23℄. Working with Γ, Equations (5), (6) an be

rewritten as

E
Γ(h) =

M
∑

i=1

m(Aγi
) inf
x∈Aγi

h(x) and E
Γ
(h) =

M
∑

i=1

m(Aγi
) sup
x∈Aγi

h(x).

Let us now de�ne another disrete random set Γ suh that for i = 1, . . . ,M

Γ :=

{

Aγi
= [a∗γi

, a∗γi−1
] if a∗γi

≤ a∗γi−1
, ∅ otherwise

m(Aγi
) = γi − γi−1

We denote by Φ(F , F )Γ the set of preise distributions indued by Γ. Γ is an inner

approximation of the p-box (i.e., Φ(F , F )Γ ⊂ Φ(F , F )), and Equations(5), (6) an

again be rewritten

E
Γ(h) =

M
∑

i=1

m(Aγi
) inf
x∈Aγi

h(x) and E
Γ
(h) =

M
∑

i=1

m(Aγi
) sup
x∈Aγi

h(x).

Note that when there is an index i for whih Aγi
= ∅, Γ does no longer desribe a

non-empty set of probabilities, and we will name suh a random set inonsistent.

This ase an be ompared to the ase when the linear program giving guaranteed

inner approximation has no feasible solutions.

We have that E
Γ(h) ≤ E(h) ≤ E

Γ(h) (due to inlusions Φ(F , F )Γ ⊂ Φ(F , F ) ⊂

Φ(F , F )Γ ). Thus, to approximate the solution we an again let M grow until
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|EΓ(h) − E
Γ(h)| is smaller than a given auray ε > 0. As in the ase of lin-

ear programming, hoosing too few levels γi or using poor heuristis to �nd the

in�nimum/supremum over sets an lead to bad approximations, and if those in�n-

imum/supremum are hard to �nd, omputational di�ulties an arise. A generi

algorithm (for E) using random sets would be as follows

(1) Fix a preision threshold ǫ and an initial value of M
(2) Sample M values γi

(3) Compute E
Γ(h) and E

Γ(h)

(4) If |EΓ(h)− E
Γ(h)| ≤ ǫ, stop, else inrease M and return to step 2.

Note that the distane between two onseutive γi, γi+1 does not have to be on-

stant. If Γ is inonsistent, an alternative is to use one of the two random sets Γ1,Γ2

suh that for i = 1, . . . ,M

Γ1 :=

{

Aγi,1 = [a∗γi−1 , a
∗
γi−1

],

m(Aγi,1) = γi − γi−1,
Γ2 :=

{

Aγi,2 = [a∗γi
, a∗γi

],
m(Aγi,2 ) = γi − γi−1.

The orresponding approximations read, for j = 1, 2,

E
Γj (h) =

M
∑

i=1

m(Aγi,j
) inf
x∈Aγi,j

h(x) and E
Γj
(h) =

M
∑

i=1

m(Aγi,j
) sup
x∈Aγi,j

h(x).

Compared to Γ, Γ1,Γ2 have the advantage to always be onsistent, but the obtained

approximations an either outer- or inner-approximate the exat values, even if they

onverge towards it as M inreases.

2.3. Conditional lower/upper expetations. Another quite ommon problem

when dealing with impreise probabilities is the proedure of onditioning and the

omputations of assoiated lower/upper onditional expetations. Suppose that we

observe an event B = [b0, b1]. Then the lower and upper onditional expetations,

given the p-box [F , F ] and under ondition of B, an be determined as follows:

E(h|B) = inf
F≤F≤F

∫

R
h(x)IB(x)dF
∫

R
IB(x)dF

,

E(h|B) = sup
F≤F≤F

∫

R
h(x)IB(x)dF
∫

R
IB(x)dF

.

The above formulas are equivalent to applying Bayes formula to every probability

measure inside Φ(F , F ), and then retrieving the optimal bounds. Other general-

isations of Bayes formula to impreise probabilisti framework exist [11, 31℄, but

we will restrit ourselves to the above solution, as it is by far the most used within

frameworks using lower/upper expetation bounds. Also, we assume that B is

large enough (or the two distributions [F , F ] lose enough) so that F (b1) > F (b0).
This is equivalent to require P (B) > 0, thus avoiding onditioning on an event of

probability 0. Indeed, there are still some disussions about what should be done

in presene of suh events (see Miranda [18℄ for an introdutory disussion and

Cozman [5℄ for possible numerial solutions).

Similarly to unonditional expetations, the above problems an numerially be

solved by approximating the probability distribution funtion F by a set of N
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points F (xi), i = 1, ..., N , and by writing linear-frational optimization problems

1

and then assoiated linear programming problems. Problems mentioned for the

unonditional ase an again our. The next proposition indiates that previous

results an be used to provide a more attrative formulation of E(h|B),E(h|B).

Proposition 1. Given a p-box [F , F ], a funtion h(x) and an event B, the upper

and lower onditional expetations of h(X) on [F , F ] after observing the event B
an be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),(7)

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),(8)

with

Ψ(α, β) =

∫ β

α

sup
x∈Aγ∩B

h(x)dγ.

Φ(α, β) =

∫ β

α

inf
x∈Aγ∩B

h(x)dγ.

General proof. We onsider only upper expetation. We do not know how the

extremizing distribution funtion behaves outside the interval B. Therefore, we

suppose that the value of the extremizing distribution funtion at point b0 is F (b0) =
α ∈ [F (b0), F (b0)] and its value at point b1 is F (b1) = β ∈ [F (b1), F (b1)] (see Fig.
4). Then there holds

∫

R

IB(x)dF (x) = β − α.

Hene, we an write

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

F≤F≤F

1

β − α

∫

R

h(x)IB(x)dF (x)

= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α













sup
F≤F≤F
F (b0)=α
F (b1)=β

∫

R

h(x)IB(x)dF (x)













= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ.(9)

By using the results obtained for the unonditional upper expetation, we an see

that the integrand is equal to Ψ(α, β). The lower expetation is similarly proved.

�

1

Problems where the objetive funtion is a fration of two linear funtions and onstraints

are linear.
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As value β −α inreases in Equations (7)-(8), so do the numerator and denomi-

nator, thus playing opposite role in the evolution of the objetive funtion. Hene,

in order to ompute the upper (resp. lower) onditional expetation, one has to

�nd the values β and α suh that any inrease (derease) in the value β − α is

greater (resp. lower) than the orresponding inrease (resp. derease) in Ψ(α, β)
(Φ(α, β)).

A rude algorithm to approximate the solution would be to samples di�erent

values α ∈ [F (b0), F (b0)] and β ∈ [F (b1), F (b1)], evaluating Equations (7)-(8) for

all ombination [α, β] and retaining the highest obtained value (note that we an

have F (b0) ≥ F (b1), hene the need to make sure by adding onstraint that [α, β]
is not void).

Another interesting point to note is that the proof takes advantage of both views,

sine the idea to use levels α and β omes from frational linear programming, while

the �nal equation (9) an be elegantly formulated by using the random set view.

In any ases (lower/upper and onditional/unonditional expetations), it is ob-

vious that the extremizing probability distribution F providing the minimum (resp.

maximum) expetation of h depends on the form of the funtion h. If this form

follows some typial ases, e�ient solutions an be found to ompute lower (resp.

upper) expetations. The simplest examples (for whih solutions are well known)

of suh typial ases are monotone funtions.

3. The simple ase of monotone funtions

We �rst onsider the ase where h is a monotone funtion that is non-dereasing

(resp. non-inreasing) in R. We will also introdue the running example used

throughout the paper.

3.1. Unonditional expetations. In the ase of a monotone non-dereasing

(resp. non-inreasing) funtion, existing results [31℄ tell us that we have:

E(h) =

∫

R

h(x)dF

(

E(h) =

∫

R

h(x)dF

)

,(10)

E(h) =

∫

R

h(x)dF

(

E(h) =

∫

R

h(x)dF

)

,(11)

and we see from (10)-(11) that lower and upper expetations are ompletely de-

termined by bounding distributions F and F . Using equations (5)-(6), we get the

following formulas

E(h) =

∫ 1

0

h(a∗γ)dγ

(

E(h) =

∫ 1

0

h(a∗γ)dγ

)

,(12)

E(h) =

∫ 1

0

h(a∗γ)dγ

(

E(h) =

∫ 1

0

h(a∗γ)dγ

)

,(13)

whih are the ounterparts of equations (10)-(11). Here, expetations are totally de-

termined by extreme values of the mappings. When h is non-monotone, equations

(10)-(13) only provide inner approximations of E(h),E(h). When using numeri-

al proedures over monotone funtions, there appears to be no spei� sampling

strategies of values that would allow for faster onvergene.

We now introdue the example that will illustrate our results all along the paper.
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Example 1. Assume that we have to estimate the loss inurred by the failure

of a unit of some industrial item. Suppose that this loss is the funtion of time

h(x) = 20 − x, and it is known that the unit time to failure is governed by a

distribution whose bounds are exponential distributions with a failure rate 0.2 and

0.5 (note that only the bounds are of exponential nature). h is dereasing and

an, for example, model the fat that the later the unit fails, the less it osts to

replae it. Let us ompute the expeted losses as the expetation of h. The lower

and upper distribution funtions of the unit time to failure are 1− exp(−0.2x) and
1− exp(−0.5x), respetively. Hene

E(h) =

∫ ∞

0

(20− x)d(1 − exp(−0.5x)) =

∫ ∞

0

(20− x)0.5e−0.5xdx = 18,

E(h) =

∫ ∞

0

(20− x)d(1 − exp(−0.2x)) =

∫ ∞

0

(20− x)0.2e−0.2xdx = 15.

Finally, we obtain that the expeted losses are in the interval [15, 18].

Let us use the random set approah. Sine F
−1

(γ) = −2 ln(1 − γ) = a∗γ and

F−1(γ) = −5 ln(1− γ) = a∗γ , then

E(h) =

∫ 1

0

(20 + 2 ln(1− γ))dγ = 18,

E(h) =

∫ 1

0

(20 + 5 ln(1− γ))dγ = 15.

We get the same values of the lower and upper expetations of h.

3.2. Conditional expetations. We now onsider that we want to know the lower

and upper expetations in the ase where event B = [b0, b1] ours. That is, we want
to ompute Equations (7), (8) for a monotone h. Lower and upper expetations

are then given by the following proposition.

Proposition 2. Given a p-box [F , F ], a monotone funtion h(x) and an event B,

the upper and lower onditional expetation of h(X) on [F , F ] after observing the

event B an be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

)

,

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

inf
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(

h(b0)
(

F (b0)− F (b0)
)

+

∫ F
−1

(F (b1))

b0

h(x)dF (x)

)
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if h is non-dereasing and

E(h|B) =
1

F (b1)− F (b0)

(

h(b0)
(

F (b0)− F (b0)
)

+

∫ F
−1

(F (b1))

b0

h(x)dF (x)

)

,

E(h|B) =
1

F (b1)− F (b0)

(

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

)

,

if h is non-inreasing.

Proof. We will only prove the upper expetation for non-dereasing funtion h.
Lower expetation an be derived likewise, and the ase of non-inreasing funtions

is then obtained by using duality between lower and upper expetations.

When h is non-dereasing, we know that supx∈Aγ∩B h(x) is a non-dereasing

funtion of γ that oinides with F−1
. Using the integral mean value theorem, we

know that there exists some z ∈ [b0, b1] suh that E(h|B) = h(z), whatever the
hoie of α, β. For maximizing E(h|B), values α, β should be hosen so that the

retained values z and h(z) (oiniding with F−1
) are as high as possible. As h is

non-dereasing, this orresponds to values α = F (b0), β = F (b1), whih settles the

denominator of the objetive funtion. We then have

∫ β

α

sup
x∈Aγ∩B

h(x)dγ =

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

,

beause for values γ ∈ [F (b0), F (b1)], supremum of h(x) on Aγ ∩B is obtained for

x = F−1(γ), while for γ ∈ [F (b1), F (b1)], supremum of h(x) = b1. �

R

1

F

α

β

bo B b1
1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

F

Optimal F for E(h|B)

R

1

F
α

β

bo B

b1

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

F

Optimal F for E(h|B)

Figure 2. Conditional expetations with monotone non-

inreasing funtions

Example 2. We onsider the same p-box [F , F ] and funtion h as in Example 1,

but now we onsider that we want to know the inurred loss in ase x ∈ B = [1, 8],
that is the failure is supposed to happen between 1 and 8 units of time. We have

F (b0) = 1− exp(−0.2 · 1) = 0.18, F (b0) = 1− exp(−0.5 · 1) = 0.39,

F (b1) = 1− exp(−0.2 · 8) = 0.8, F (b1) = 1− exp(−0.5 · 8) = 0.98,
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and we get

E(h|B) =
1

0.8− 0.18

(

(20− 1) (0.39− 0.18) +

∫ F
−1

(0.8)

1

(20− x)0.5e−0.5xdx

)

= 18.298,

E(h|B) =
1

0.98− 0.39

(

(20− 8) (0.98− 0.8) +

∫ 8

F−1(0.39)

(20− x)0.2e−0.2xdx

)

= 14.219.

Note that, if we ompare above values with those of Example 1, we have [E(h),E(h)] ⊂
[E(h|B),E(h|B)].

The above results indiate that, when h is monotone, omputing lower/upper ex-

petations exatly remains easy. Also, when using numerial methods, they provide

insight as to how values should be sampled. For example, when omputing upper

onditional expetation by linear programming, values only need to be sampled

in [b0, F
−1

(b1)], and b0 should be among the sampled values, sine an important

probability mass is onentrated at this value (see Fig. 2). When using random

set approah and disretizing the unit interval [0, 1], one should take γ1 = Fb0
and γ2 = F (b0), and not onsider �ner disretization of this interval, as this would

not inrease the preision. As we shall see, similar results an be derived for more

omplex ases.

4. Funtion with one maximum

In this setion, we study the ase where the funtion h has one maximum at

point a, i.e. h is inreasing (resp. dereasing) in (−∞, a] (resp. [a,∞)). The ase
of h having one minimum follows by onsidering the funtion −h and the duality

between lower and upper expetations.

4.1. Unonditional expetations. As for monotone h, we �rst study the ase of

unonditional expetations. Before giving the main result, we show the next lemma

that will be useful in subsequent proofs.

Lemma 1. Given a p-box [F , F ] and a ontinuous funtion h(x) with one maximum

at x = a, there is always a solution γ ∈ [F (a), F (a)] to the following equation

(14) h
(

F
−1

(γ)
)

= h
(

F−1(γ)
)

.

Proof. let us onsider the funtion

ϕ (α) = h
(

F
−1

(α)
)

− h
(

F−1 (α)
)

,

whih, being a substration of two ontinuous funtions (by supposition), is on-

tinuous. Sine the funtion h has its maximum at point x = a, then, by taking

α = F (a), we get the inequality

ϕ (γ) = h
(

F
−1

(F (a))
)

− h (a) ≤ 0

and, by taking γ = F (a), we get the inequality

ϕ (γ) = h (a)− h
(

F−1
(

F (a)
))

≥ 0.
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1

F

F

a

α

1

a

α

Optimal F for E(h) Optimal F for E(h)

Figure 3. Optimal distributions F with unimodal h

Consequently, there exists γ in the interval

(

F (a) , F (a)
)

suh that ϕ (γ) = 0 (sine
ϕ is ontinuous). �

The next proposition shows that, as for monotone h, the fat of knowing that

h has one maximum in x = a allows us to derive losed-form expressions of lower

and upper expetations. The results of the proposition are illustrated in Fig. 3.

Proposition 3. If the funtion h has one maximum at point a ∈ R, then the upper

and lower expetations of h(X) on [F , F ] are

(15) E(h) =

a
∫

−∞

h(x)dF + h(a)
[

F (a)− F (a)
]

+

∞
∫

a

h(x)dF ,

(16) E(h) =







F
−1

(α)
∫

−∞

h(x)dF +

∞
∫

F−1(α)

h(x)dF






,

or, equivalently

E(h) =

F (a)
∫

0

h(a∗
γ
)dγ + [F (a)− F (a)]h(a) +

1
∫

F (a)

h(a
∗γ
)dγ(17)

(18) E(h) =

α
∫

0

h(a∗γ)dγ +

1
∫

α

h(a∗γ)dγ,

where α is the solution of equation

(19) h
(

F
−1

(α)
)

= h
(

F−1(α)
)

.

suh that α ∈ [F (a), F (a)].

Proof using linear programming. We assume that the funtion h (x) is di�er-
entiable in R and has a �nite value as x → ∞. The lower and upper umulative

probability funtions F and F are also assumed to be di�erentiable. We also on-

sider the primal and dual problems onsidered in Setion 2.1 and realled below.
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Primal problem: Dual problem:

Min. v =
∞
∫

−∞

h (x) ρ (x) dx Max. w = c0 +
∞
∫

−∞

(

−c (t)F (t) + d (t)F (t)
)

dt

subjet to subjet to

ρ (x) ≥ 0,
∞
∫

−∞

ρ (x) dx = 1, c0 +
∞
∫

x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x
∫

−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.

x
∫

−∞

ρ (x) dx ≥ F (x) .

The proof of Equations (15)-(16) and (19) an be separated in three main steps:

(1) We propose a feasible solution of the primal problem.

(2) We then onsider the feasible solution of the dual problem orresponding

to the one proposed for the primal problem.

(3) We show that the two solutions oinide and, therefore, aording to the

basi duality theorem of linear programming, these solutions are optimal

ones.

First, we onsider the primal problem. Let a′ and a′′ be real values. The funtion

ρ (x) =







dF (x) /dx, x < a′

0, a′ ≤ x ≤ a′′

dF (x) /dx, a′′ < x

is a feasible solution to the primal problem if the following onditions are respeted:

∫ ∞

−∞

ρ (x) dx = 1,

whih, given the above solution, an be rewritten

∫ a′

−∞

dF +

∫ ∞

a′′

dF = 1,

whih is equivalent to the equality

(20) F (a′) = F (a′′) .

We now interest ourselves in the dual problem. Let us �rst onsider the sole on-

straint

(21) c0 +

∫ ∞

x

(−c (t) + d (t)) dt ≤ h (x) ,

whih is the equivalent of the primal onstraint ρ (x) ≥ 0. We then onsider the

following feasible solution to the dual problem as c0 = h (∞),

c (x) =

{

h′ (x) , x < a′

0, x ≥ a′
d (x) =

{

0, x < a′′

−h′ (x) , x ≥ a′′
.

The inequalities c (x) ≥ 0 and d (x) ≥ 0 are valid provided we have the inequalities
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a′ ≤ a ≤ a′′ (i.e. interval [a′, a′′] enompasses maximum of h). By integrating c (x)
and d (x), we get the inreasing funtion

C (x) = −

∫ ∞

x

c (t) dt =

{

h (x) − h (a′) , x < a′

0, x ≥ a′

and the dereasing funtion

D (x) =

∫ ∞

x

d (t) dt =

{

h (a′′)− h (∞) , x < a′′

h (x) − h (∞) , x ≥ a′′
.

Let us rewrite ondition (21) as follows:

(22) c0 + C (x) +D (x) ≤ h (x) .

If x < a′, equation (22) beomes

c0 + h (x)− h (a′) + h (a′′)− h (∞) ≤ h (x) .

And, replaing the inequality by an equality (simply taking the upper bound of the

onstraint), we obtain

(23) h (a′′) = h (a′) .

If a′ < x < a′′, we have c0 + h (a′′) − h (∞) ≤ h (x) whih means that for all

x ∈ (a′, a′′) we have h (a′′) (= h (a′)) ≤ h (x) (i.e. h (a′′) and a′ are the minimal

values of the funtion h (x) in interval x ∈ (a′, a′′).) If x ≥ a′′, then we get the

trivial equality c0 + h (x)− h (∞) = h (x). The two proposed solutions are valid i�

there exist solutions to Eq. (20) and Eq. (23), respetively for the primal and dual

problem. That suh solutions exist an be seen by onsidering Lemma1 and taking

a′ = F
−1

(γ) and a′′ = F−1 (γ), with γ the solution of Eq. (19). We then �nd the

admissible values of the objetive funtions

vmin =

∫ a′

0

h (x) dF +

∫ ∞

a′′

h (x) dF ,

wmax = c0 +

∫ ∞

0

(

−c (t)F (t) + d (t)F (t)
)

dt.

By using integration by parts together with equations (20)-(23), we an show that

equality wmax = vmin holds, with γ the partiular solution of equation (19) for

whih optimum is reahed, as was to be proved. �

Proof using random sets. Let us now onsider equations (6)-(5). Looking �rst

at equation (6), we see that before γ = F (a), the supremum of h on Aγ is h(a∗γ),

sine h is inreasing between [∞, a]. Between γ = F (a) and γ = F (a), the supre-
mum of h on Aγ is f(a). After γ = F (a), we an make the same reasoning as for

the inreasing part of h (exept that it is now dereasing). Finally, this gives us

the following formula:

(24) E(h) =

F (a)
∫

0

h(a∗γ)dγ +

F (a)
∫

F (a)

h(a)dγ +

1
∫

F (a)

h(a∗γ)dγ

whih is equivalent to (17). Let us now turn to the lower expetation. Before

γ = F (a) and after γ = F (a), �nding the in�nimum is again not a problem (it is

respetively h(a∗γ) and h(a∗γ)). Between γ = F (a) and γ = F (a), sine we know
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that h is inreasing before x = a and dereasing after, in�nimum is either h(a∗γ)
or h(a∗γ). This gives us equation

(25) Eh =

F (a)
∫

0

h(a∗γ)dγ +

F (a)
∫

F (a)

min(h(a∗γ), h(a
∗
γ))dγ +

1
∫

F (a)

h(a∗γ)dγ

and if we use equations (20),(23) as in the �rst proof (reasoning used in the �rst

proof to show that they have a solution is general, and thus appliable here), we

know that there is a level α s.t. h(F
−1

(α)) = h(F−1(α)), and for whih the above

equation simplify in equation (19). �

Figure 3 shows that the extremizing distribution orresponding to upper ex-

petation onsists in onentrating as muh probability mass as possible on the

maximum, as ould have been expeted, while the umulative distribution reahing

the lower expetation onsists of an horizontal jump avoiding higher values. As

we shall see, �nding the level α satisfying Equation (20) and at whih this jump

ours is sometimes feasible, and in this ase exat lower and upper expetations

an be found. In other ases, when omputing the upper expetation by numerial

methods and linear programming, results indiate that it is important to inlude

the value a orresponding to the maximum of h in the sampled value, as well as

values lose to it when omputing the upper expetation. When using the random

set approah, they show that there are no need to onsider values γ inside the in-

terval [F (a), F (a)], the bounds being su�ient. For the lower expetation, results

indiate that when using linear programming, it is preferable to sample outside the

interval [F
−1

(α), F−1(α)].
However, it an happens that the exat value of α annot be omputed, but

that the integrals in Eq.(15)-(16) an still be solved. In this ase, lower and upper

expetations have to be approximated, for example by sanning a more or less wide

range of possible values for α (see [28℄ for an example).

Example 3. We still onsider the same p-box as in Example 1, but we now suppose

that the loss is modelled by the funtion h(x) = 60 − (x − 5)2. This loss funtion

an express the idea that it is preferable for the unit to fail when it begins to work

or when it has worked for a long time, rather than when it works at full apaity,

as the ost of slowing a whole prodution line would then be quite higher. h has one

maximum at a = 5, and we get

Eh = h(5)
[

F (5)− F (5)
]

+

∫ 5

0

h(x)dF (x) +

∫ ∞

5

h(x)dF (x)

= 60 · (exp(−0.2 · 5)− exp(−0.5 · 5)) + 31.321 + 4.268

= 52.736.

Sine F
−1

(α) = −2 ln(1 − α) and F−1(α) = −5 ln(1 − α), then α an be found by

solving the following equality

60− (−2 ln(1− α)− 5)2 = 60− (−5 ln(1− α)− 5)2.

Hene, we have two solutions α = 1 − exp(−10/7) and α = 0. Sine F
−1

(0) =
F−1(0), then the seond solution has to be removed. Therefore, we get α = 1 −
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exp(−10/7) = 0.76. Hene, we obtain

Eh =

∫ −2 ln(1−0.76)

−∞

h(x)dF (x) +

∫ ∞

−5 ln(1−0.76)

h(x)dF (x)

=

∫ 2.85

−∞

(

60− (x− 5)2
)

0.5e−0.5xdx+

∫ ∞

7. 14

(

60− (x − 5)2
)

0.2e−0.2xdx

= 29.745.

Finally, we obtain the interval of expeted losses [29.745, 52.736]. Using the random
set approah, we get

E(h) =

1−exp(−0.5·5)
∫

0

(

60− (−5 ln(1− γ)− 5)2
)

dγ + h(5)
[

F (5)− F (5)
]

+

1
∫

1−exp(−0.2·5)

(

60− (−2 ln(1− γ)− 5)2
)

dγ

= 52.736.

E(h) =

0.76
∫

0

(

60− (−5 ln(1− γ)− 5)2
)

dγ +

1
∫

0.76

(

60− (−2 ln(1− γ)− 5)2
)

dγ

= 29.745.

If the funtion h is symmetri about a, i.e., the equality h(a − x) = h(a + x)
is valid for all x ∈ R, then the value of α in (19) does not depend on h and is

determined as

a− F
−1

(α) = F−1(α)− a.

Note that expressions (10),(11) an be obtained from (15),(16) by taking a → ∞.

4.2. Conditional expetations. We now onsider onditioning by an event B =
[b0, b1], while h is still assumed to have one maximum. The following proposition

indiates how lower and upper onditional expetations an be omputed in this

ase.

Proposition 4. If the funtion h has one maximum at point a ∈ R, then the upper

and lower onditional expetations of h(X) on [F , F ] after observing the event B
are

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),
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with

Ψ(α, β) = I(α<F−1(a))

∫ a

F−1(α)

h(x)dF + I
(β>F

−1
(a))

∫ F
−1

(β)

a

h(x)dF

+ h(a)
(

min(F (a), β) −max(F (a), α)
)

Φ(α, β) = h(b0)
(

F (b0)− α
)

+

∫ F
−1

(ε)

b0

h(x)dF

+ h(b1) (β − F (b1)) +

∫ b1

F−1(ε)

h(x)dF

Here I(a<b) is the indiator funtion taking 1 if a < b and 0 if a ≥ b; ε is one of

the roots of the following equation:

(26) h
(

F
−1

(ε)
)

= h
(

F−1(ε)
)

.

Proof. The proof follows from Proposition 1 where Ψ(α, β),Φ(α, β) are respetively
replaed by formulas given in Proposition 3. �

Example 4. We onsider the same h as in Example 3, the same p-box [F , F ] as
in the other examples, and the onditioning event B = [1, 8]. From Example 3, the

solutions of Eq. (26) are ε = 1−exp(−10/7) = 0.76, F−1(ε) = 7.14, F
−1

(ε) = 2.85.
We also have a = 5, F (a) = 1 − exp(−0.2 · 5) = 0.63, F (a) = 1 − exp(−0.5 · 5) =
0.92. Let us �rst onentrate on

E(h|B) = sup
0.18≤α≤0.39
0.8≤β≤0.98

1

β − α
Ψ(α, β),

where

Ψ(α, β) = I(α<0.63)

∫ 5

−5 ln(1−α)

(

60− (x − 5)2
)

0.2e−0.2xdx

+ I(β>0.92)

∫ −2 ln(1−β)

5

(

60− (x− 5)2
)

0.5e−0.5xdx

+ 60
(

min(1− e−0.5·5, β)−max(1− e−0.2·5, α)
)

=
(

25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32
)

+ 60 (min (0.92, β)− 0.63)

+ I(β>0.92)

(

4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73
)

sine 0.18 ≤ α ≤ 0.39, we have I(α<0.63) = 1. Let us then onsider the two sets of

value [0.8, 0.92] and (0.92, 0.98] for whih I(β>0.92) takes di�erent values, and the

respetive funtions Ψ1(α, β),Ψ2(α, β) assoiated to them:

Ψ1(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32 + 60 (β − 0.63)

Ψ2(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32

+ 4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73 + 17.4

It an be heked that the derivative

dΨ1(α,β)/(β−α)/dβ is positive for 0.18 ≤ α ≤ 0.39,
hene the maximum of Ψ1(α, β)/(β − α) is ahieved at β = 0.98. Also, sine
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Figure 4. Optimal distribution (thik) for omputing upper on-

ditional expetation on B = [1, 8]

Ψ1(α, 0.98)/(0.98− α) dereases as α inreases, we have

sup
1

β − α
Ψ1(α, β) =

1

0.98− 0.18
Ψ1(0.18, 0.98) = 56.52.

A similar analysis for

Ψ2(α,β)/(β−α) shows that maximum is ahieved for α = 0.39,
β = 0.8. Hene

sup
1

β − α
Ψ2(α, β) =

1

0.8− 0.39
Ψ2(0.39, 0.8) = 59.57.

and, �nally, we have E(h|B) = max(56.52, 59.57) = 59.57. Figure 4 gives an illus-

tration of the extremizing umulative distribution for whih this upper onditional

expetation is reahed.

Let us now detail the omputations for

E(h|B) = inf
0.18≤α≤0.39
0.8≤β≤0.98

1

β − α
Φ(α, β),

where

Φ(α, β) =
(

60− (1− 5)2
)

(0.39− α) +

∫ 2.85

1

(

60− (x − 5)2
)

0.5e−0.5xdx

+
(

60− (8− 5)2
)

(β − 0.8) +

∫ 8

7.14

(

60− (x− 5)2
)

0.2e−0.2xdx

= 51β − 44α− 3.54.

The funtion

1
β−αΦ(α, β) inreases as α inreases by arbitrary 0.8 ≤ β ≤ 0.98 and

inreases as β inreases. This implies that E(h|B) = 1/(0.8−0.18) (51 · 0.8− 44 · 0.18− 3.54) =
47.32.

Note that, in the general ase, four funtions Ψi (orresponding to all ombina-

tions of values of I(α<F−1(a)), I(β>F
−1

(a))
inside {0, 1}2) would have to be onsidered

in the omputation of E(h|B). Example 4 well illustrates the fat that when h is

non-monotone, analytial solutions an still be found in some ases, but that they

tend to beome tedious to ompute. This will be on�rmed in the next setion.
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5. Funtions with loal maxima/minima

Now we onsider a general form of the funtion h, i.e., the funtion h (x) has

alternate loal maxima at point ai, i = 1, 2, ... and minima at point bi, i = 0, 1, 2, ...,
suh that

(27) b0 < a1 < b1 . . . < bi < ai < bi+1 < . . .

Note that, in this ase, studying the shape of the extremizing umulative distribu-

tion reahing lower expetation is su�ient, thanks to the duality between lower

and upper expetation.

Proposition 5. If loal maxima (ai) and minima (bi) of the funtion h satisfy

ondition (27), then the extremizing distribution F for omputing the lower unon-

ditional expetation E(h) has disontinuities (vertial jumps) at points bi, i = 1, ....
of the size

min
(

F (bi) , αi+1

)

−max (F (bi) , αi) .

Between points bi−1 and bi, that is between disontinuities numbered i− 1 and i,
the extremizing umulative probability distribution funtion F is of the form:

F (x) =







F (x) , x < a′

α, a′ ≤ x ≤ a′′

F (x) , a′′ < x
,

where α is the root of the equation

h
(

max
(

F
−1

(α) , bi−1

))

= h
(

min
(

F−1 (α) , bi
))

in interval

[

F (ai) , F (ai)
]

, and a′,a′′ are suh that

a′ = max
(

F
−1

(α) , bi−1

)

, a′′ = min
(

F−1 (α) , bi
)

.

The upper expetation E(h) an be found from the ondition E(h) = −E(−h).

Proof using linear programming. This proof is based on the investigation of

the following loal primal and dual optimization problems for omputing the lower

expetation of h in �nite interval [b0, b1) where h has one maximum at point a1:

Primal problem:

Min. v =
∫ b1
b0

h (x) f (x)dx

subjet to

f (x) ≥ 0, F0 ≥ 0, F1 ≥ 0,
−
∫ x

b0
f (t) dt− F0 ≥ −F (x) ,

∫ x

b0
f (t) dt+ F0 ≥ F (x) ,

−F0 ≥ −F (b0) ,F0 ≥ F (b0) ,
−F1 ≥ −F (b1) ,F1 ≥ F (b1) ,
∫ b1
b0

f (t) dt+ F0 − F1 = 0.

Dual problem:

Max. w = −c0F (b0) + d0F (b0)− c1F (b1)

+d1F (b1) +
∫ b1
b0

(

−F (x) c (x) + F (x) d (x)
)

dx

subjet to

e+
∫ b1
x

(−c (t) + d (t)) dt ≤h (x) ,

e− c0 + d0 +
∫ b1
b0

(−c (t) + d (t)) dt ≤0,

−e− c1 + d1 ≤ 0,
c (x) ≥ 0,c0 ≥ 0,c1 ≥ 0,
d (x) ≥ 0,d0 ≥ 0,d1 ≥ 0,e ∈ R

The optimal solutions of the above problems orrespond to the extremizing dis-

tribution for values x ∈ [b0, b1). F0 := F (b0) and F1 := F (b1) respetively stand for

the values of the extremizing F in b0 and b1. The proof then follows in two main

steps:
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Figure 5. Four ases of piee-wise extremizing F

(1) Find optimal solution (that is, propose a feasible solution whih oinide for

both the primal and dual problem) for the above primal and dual problems,

and onsequently the values of the extremizing F between any two loal

minima [bi, bi+1]
(2) Show that the ombination of these piee-wise extremizing F orrespond

to a umulative distribution.

Step (1) of the proof To �nd optimal solution between x ∈ [b0, b1], we will

onsider every possible ases. First, we an di�erentiate between two main ases,

depending on the inequality relation between F (b0) and F (b1).
Case 1. F (b0) > F (b1). The optimal solution in this ase is of the form: it

orresponds to the solution f (x) = 0, F (x) = F0 = F1 = α, where α is an arbitrary

number satisfying the ondition F (b1) < α < F (b0) for the primal problem and to

the solution c (x) = d (x) = 0, c0 = d0 = c1 = d1 = e = 0 for the dual problem. See

Fig. 5 for an illustration

Case 2. F (b0) ≤ F (b1). This ase is similar to the one onsidered in Setion 4,

sine between [b0, b1), h has a maximum for x = a1 and is inreasing (resp. de-

reasing) in [b0, a1] (resp. [a1, b1)). We will therefore proeed in the same way as

in the proof of Proposition 3 to �nd the optimal solution. First reall (Lemma 1)

that there is a value α whih is a root of the funtion

ϕ (α) = h
(

max
(

F
−1

(α) , b0

))

− h
(

min
(

F−1 (α) , b1
))
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with α ∈
[

F (a1) , F (a1)
]

. Three subases an now our, depending whether α is

inside [F (b0) , F (b1)] or is higher/lower than any value in this interval. We now

give details about eah of these subases, the reasoning being similar to the one

in the proof of Proposition 3. All subases and assoiated extremizing distribution

are illustrated in Fig. 5

Subase 2.1. F (b0) ≤ α ≤ F (b1) (α ∈ [F (b0) , F (b1)]). Let us denote a′ =

F
−1

(α), a′′ = F−1 (α). Then the optimal solution is of the form:

f (x) =







dF (x)/dx, b0 < x < a′

0, a′ 6 x 6 a′′

dF (x) /dx, a′′ < x < b1

,

F0 = F (b0) , F1 = F (b1) .

This implies that

F (x) =

∫ x

b0

f (t) dt+ F0 =







F (x) , b0 < x < a′

α, a′ 6 x 6 a′′

F (x) , a′′ < x < b1

.

Let us now give the orresponding solution to the dual problem, and show that

they are equal. Aording to relations between primal/dual problem, we have that

if a′ < x < b1, then c (x) = 0, and if b0 < x < a′′, then d (x) = 0. It is obvious that
d0 = c1 = 0. Consider the onstraint

e+

∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for di�erent intervals of x.
Let a′′ < x < b1. Then there holds

e+

∫ b1

x

d (t) dt = h (x) .

Hene d (x) = −h′ (x) and e = h (b1).
Let a′ ≤ x ≤ a′′. Then the following inequality

e+

∫ b1

a′′

d (t) dt ≤ h (x)

or h (a′′) ≤ h (x) has to be valid. Indeed, the inequality is valid due to the ondition

h (a′) = h (a′′).
Let b0 < x < a′. Then

e−

∫ a′

x

c (t) dt+

∫ b1

a′′

d (t) dt = h (x)

or

−

∫ a′

x

c (t) dt+ h (a′′) = h (x) .

Hene c (x) = h′ (x). The equality

e− c0 + d0 +

∫ b1

b0

(−c (t) + d (t)) dt = 0

shows that

h (b1)− c0 − h (a′) + h (b0)− h (b1) + h (a′′) = 0
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and c0 = h (b0). It follows from the equality −e − c1 + d1 = 0 that there holds

d1 = e = h (b1). In sum, we have

c (x) =

{

h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) =

{

0, b0 < x < a′′

−h′ (x) , a′′ 6 x 6 b1
,

c0 = h (b0) , d0 = c1 = 0, d1 = e = h (b1) .

Let us now show that the two obtained solution oinide:

zmin =

∫ a′

b0

h (x) dF (x) +

∫ b1

a′′

h (x) dF (x)

wmax = −F (b0)h (b0) + F (b1)h (b1)−

∫ a′

b0

F (x)h′ (x)dx−

∫ b1

a′′

F (x) h′ (x)dx

or

wmax = −F (b0)h (b0) + F (b1)h (b1)

+

∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

+

∫ b1

a′′

h (x) dF (x) − F (b1)h (b1) + F (a′′)h (a′′)

= zmin.

Hene the proposed solution is the optimal one.

Subase 2.2. α > F (b1) ([F (b0) , F (b1)] ≤ α). Denote a′ = F
−1

(α). Then

the optimal solution to the initial problem is:

f (x) =

{

dF (x) /dx, b0 < x < a′

0, a′ 6 x 6 b1
, F0 = F (b0) , F1 = α,

F (x) =

∫ x

b0

f (t) dt+ F0 =

{

F (x) , b0 < x < a′

α, a′ 6 x 6 b1
.

The orresponding solution for the dual problem is suh that if a′ < x < b1, then
c (x) = 0, and if b0 < x < b1, then d (x) = 0, hene we have d0 = c1 = 0. Again,

onsider the onstraint

e+

∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for di�erent intervals. Let a′ < x < b1. Then the ondition e ≤ h (x) must be valid.
Let b0 < x < a′. Then there holds

e −

∫ a′

x

c (t) dt = h (x) .

Consequently, there hold the equalities c (x) = h′ (x) and e = h (a′). Hene the

inequality e = h (a′) ≤ h (x) is valid for the interval a′ < x < b1. The equality

e− c0 + d0 +

∫ b1

b0

(−c (t) + d (t)) dt = 0
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shows that h (a′) − c0 − h (a′) + h (b0) = 0, and, therefore, c0 = h (b0). It follows

from the equality −e− c1+ d1 = 0 that there holds d1 = e = h (a′). In sum, we get

c (x) =

{

h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) = 0, c0 = h (b0) , d0 = c1 = 0, d1 = e = h (a′) .

The obtained solutions for the primal and dual problems are suh that:

zmin =

∫ a′

b0

h (x) dF (x) ,

wmax = −F (b0)h (b0) + F (a′)h (a′)−

∫ a′

b0

F (x) h′ (x)dx

or

wmax = −F (b0)h (b0) + F (a′)h (a′)

+

∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

= zmin.

Consequently, this is the optimal solution.

Subase 2.3. α < F (b0) (α ≤ [F (b0) , F (b1)]). Denote a′′ = F−1
(

F (b0)
)

.

Then the optimal solution to the primal problem is

f (x) =

{

0, b0 6 x 6 a′′

dF (x) /dx, a′′ < x < b1
, F0 = α, F1 = F (b1) .

F (x) =

{

α, b0 6 x 6 a′′

F (x) , a′′ < x < b1
.

and the proof is similar to the one of above ases. Optimal shape of F for any

interval [bi, bi+1] an be obtained by replaing b0 and b1 by respetively bi and

bi+1 in the above proofs, as they are general (as pitured on Fig. 5). All is left to

prove is that the onatenated F obtained by the piee-wise extremizing solutions

is inreasing (i.e., that Fi for [bi−1, bi] is lower or equal than Fi for [bi, bi+1]).
Step (2) of the proof Now we show that the joint extremizing distribution

funtion is inreasing. Without loss of generality we onsider only two intervals

[b0, b1] and [b1, b2]. The maximal value of the funtion F (x) in the interval [b0, b1]
is max

(

F (b0) , F (b1)
)

for all the ases. The minimal value of the funtion F (x) in

the interval [b1, b2] is min
(

F (b1) , F (b2)
)

for all the ases.

If F (b2) ≥ F (b0), then

min
(

F (b1) , F (b2)
)

≥ max
(

F (b0) , F (b1)
)

.

This means that the funtion is inreasing.

If F (b2) < F (b0), then F (b1) < F (b0) and we an take F (x) = F (b1) for the
left interval. On the other hand, F (b2) < F (b1) and we an take F (x) = F (b1)
for the left interval. It follows from the ondition F (b1) < F (b1) that the funtion
F (x) is inreasing in two neighbour intervals.

Figure 6 gives an example of a general extremizing distribution. �
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Proof using random sets. For onveniene, we will onsider that h begins with

a loal minimum and ends with a loal maximum an. Formulas when h begins

(resp. ends) with a loal maximum (resp. minimum) are similar. Lower/upper

expetations an be omputed as follows:

E(h) =

F (bn)
∫

0

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ))dγ +

1
∫

F (bn)

h(a∗γ)dγ,

E(h) =

F (a1)
∫

0

h(a∗γ)dγ +

F (an)
∫

F (a1)

max
ai∈Aγ

(h(a∗γ), h(ai), h(a
∗
γ))dγ.

We onentrate on the formula giving the lower expetation (details for upper one

are similar). The most interesting part is the �rst integral. We onsider a partiular

level γ. Let B = {bi, . . . , bj} (i ≤ j) be the set of loal minima inluded in the set

Aγ (B an be empty). bi−1 and bj+1 are the losest loal minima outside Aγ . We

then onsider the minimal ∆γ := γ+ δγ suh that minbi∈Aγ
(h(a∗γ), h(bi), h(a

∗
γ)) 6=

minbi∈A∆γ
(h(a∗,∆γ), h(bi), h(a

∗
∆γ)) withminx∈A∆γ

h(x) 6= h(a∗,∆γ) ifminx∈Aγ
h(x) =

h(a∗,γ) and minx∈A∆γ
h(x) 6= h(a∗∆γ) if minx∈Aγ

h(x) = h(a∗γ). As in LP proof, four

di�erent ases an our:

Case A: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(bk′),

with k 6= k′ and where h(bk) and h(bk′) are respetively the lowest loal minima

of h(x) for x ∈ Aγ and x ∈ A∆γ . That is, probability mass is onentrated on bk
from γ to ∆γ, and onentrates on bk′

for values γ′ ≥ ∆γ. This orrespond to Case

1. of Fig. 5 and of the previous proof. In Fig. 6, it orresponds to the extremizing

distribution between b2 and b3.
Case B: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(a∗γ)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(a∗∆γ).

This an happen when any loal minimum inside Aγ ,A∆γ is higher than loal

minima just outside it. In this ase, it an happen that minimal values stand at

the bounds of intervals Aγ′
for any γ ≤ γ′ ≤ ∆γ. This orresponds to Case 2.1.

of Fig. 5 and of the previous proof. In Fig. 6, it orresponds to the extremizing

distribution between b4 and b5.
Case C: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(a∗∆γ).



26 L. UTKIN AND S. DESTERCKE

1

α1
α2

α3

α4

b1 b2 b3 b4 b5a1 a2 a3 a4

Figure 6. Example of Optimal F with general h

With h(bk) the lowest loal minima for bk ∈ Aγ . The minimum shift from the left

bound of Aγ (oiniding with F ) to bk. This orresponds to Case 2.2. of Fig. 5

and of the previous proof. In Fig. 6, it orresponds to the extremizing distribution

between b1 and b2.
Case D: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = ha∗γ)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(bk′).

With h(bk′) the lowest loal minima for bk′ ∈ A∆γ . Situation is similar to the

previous ase, and orresponds to Case 2.3. of Fig. 5 and of the previous proof. In

Fig. 6, it orresponds to the extremizing distribution between b3 and b4.
When minbi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = minbi∈A∆γ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

with bk ∈ Aγ∩A∆γ , probability mass stay onentrated on bk, and this orresponds

to a disontinuity mentioned in Proposition 5. By letting γ evolve from 0 to 1, we
get the extremizing umulative distribution of Proposition 5. �

Looking at the extremizing distribution F pitured in Figure 6, we an see that

omputing the lower expetation onsists in onentrating probability masses over

loal minima, while giving the less possible amount of probability mass to higher

values of h(x), as in the ase of a funtion having one maximum. Thus, our results

on�rm what ould have intuitively be guessed at �rst sight. They also give an-

alytial and omputational tools to ompute lower and upper expetations. They

are illustrated in the next example.

Example 5. We onsider the same p-box [F , F ] as in the previous examples (see

Example 1). However, we assume that the loss funtion is of the type h(x) =
(0.6x) cos(x). It ould, for instane, model the return of a game based on the move-

ment of a pendulum. It ould also model the loss inurred by a unit failure whose

funtioning alternate between low and full apaity (failure during low apaity peri-

ods osting less). As a loss after failure has to be positive, one an onsider h(x)+µ,
with µ a positive onstant

2

. h(x) is osillating between loal maxima and minima.

2

This does not hange further alulations, as E(h+ µ) = E(h) + µ.
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These extrema are solutions of cos(x) = x sin(x):

a1 = 0.860, b1 = 3.426, a2 = 6.437, b2 = 9.529, a3 = 12.645,

b3 = 15.771, a4 = 18.902, b4 = 22.036, a5 = 25.172, b5 = 28.31.

We will ompute the extremizing distribution for eah intervals [bi, bi+1) for i =
1, . . . , 5, with b0 = 0. Let us analyze the �rst interval [0, b1). The value α ∈ (0, 1)
in this interval an be found as a root of the equation

(max (−2 ln(1− α), 0)) · cos(max (−2 ln(1− α), 0))

= (min (−5 ln(1− α), 3.426)) · cos(min (−5 ln(1 − α), 3.426)).

However, many di�erent values of α ∈ (0, 1) are solutions to the above equations.

Relying on the proof of Proposition 5 and on the various subases exposed therein

(see Fig. 5), we should, for a given interval [bi, bi+1), take only root(s) whih pro-

vides the interval [a′, a′′] suh that ai ∈ [a′, a′′]. For [0, b1), this orresponds to

α = 0.215, for whih values a′, a′′ are

a′ = max (−2 ln(1 − α), bi−1) = max (−2 ln(1− 0.215), 0) = 0.483,

a′′ = min (−5 ln(1− α), bi) = min (−5 ln(1 − 0.215), 3.426) = 1.209.

It an be seen from the above that a1 = 0.860 ∈ [0.483, 1.209]. We an now deter-

mine the extremizing distribution funtion in [0, b1), whih is as follows:

F (x) =







1− exp(−0.5 · x), x < 0.483
0.215, 0.483 ≤ x ≤ 1.209
1− exp(−0.2 · x), 1.209 < x < 3.426

.

This orresponds to the ase 2.1. of Figure 5. the "jump" (i.e., probability mass)

at point b1 is of the size

min (1− exp(−0.5 · 3.426), 0.808)−max (1− exp(−0.2 · 3.426), 0.215) = 0.312.

Sine F (3.426)− F (3.426) = 0.33 > 0.312, this means that the extremizing distri-

bution in [b1, b2) starts with a onstant value F (b1) = F (3.426) + 0.312 = 0.808
and with an horizontal line. Moreover, we an hek that 0.808 is the right starting

point sine it is a root of the equation

max (−2 ln(1− α), 3.426) · cos(max (−2 ln(1− α), 3.426)

= min (−5 ln(1− α), 9.529) · cos(min (−5 ln(1− α), 9.529) .

And we have a′ = 3.426 and a′′ = 8.263 for α = 0.808. By taking into aount the

analysis of the �rst interval, we an write

F (x) =

{

0.808, 3.426 ≤ x ≤ 8.263
1− exp(−0.2 · x), 8.263 < x < 9.529

.

This orrespond to ase 2.3. of Figure 5. the jump at b2 has value 9.77 × 10−2
,

and we have again F (9.529)− F (9.529) = 0.14 > 9.77 × 10−2
. Analysis for other

intervals are similar (they all belong to ase 2.3.). For the third interval [b2, b3),
α = 0.948, a′ = 9.529, a′′ = 14.831 and we have

F (x) =

{

0.949, 9. 529 ≤ x ≤ 14. 831
1− exp(−0.2 · x), 14. 831 < x < 15.771

.
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The jump at b3 is of value 2.867× 10−2
, and for [b3, b4), we have α = 0.986, a′ =

15.771, a′′ = 21.255 and

F (x) =

{

0.986, 15.771 ≤ x ≤ 21.255
1− exp(−0.2 · x), 21.255 < x < 22.036

.

The jump at b4 is of value 8.189 × 10−3
, and for [b4, b5), we have α = 0.996,

a′ = 22.036, a′′ = 27.62 and

F (x) =

{

0.996, 22.036 ≤ x ≤ 27.62
1− exp(−0.2 · x), 27.62 < x < 28.31

.

The jump at point b5 is of the size 3.076× 10−3
.

Note that jump sizes derease as index i inrease. This is not true in general,

and is here due to the partiular shape of h(x). By omputing the extremizing dis-

tribution for every interval [bi−1, bi), we an reah the lower expetation. That is, if

we note Ei(h) the lower expetation of h omputed with the extremizing distribution

obtained for i intervals [bj−1, bj), j = 1, . . . , i, and if h have a �nite number of loal

maxima and minima, say r, then E(h) = Er(h). However, in this example, r = ∞
and E(h) = limr→∞ Er(h). Therefore, only an approximate solution an be found

3

.

We an therefore let r inrease until

∣

∣Er(h)− Er−1(h)
∣

∣ ≤ ε, with ε > 0 a presribed

preision. For instane, we have

E1(h) =

∫ 0.483

0

0.6x cos(x) · 0.5e−0.5xdx

+

∫ 3.426

1.209

0.6x cos(x) · 0.2e−0.2xdx

+ 0.6 · 3.426 cos(3.426) · 0.312

= −0.82.

Pursuing the omputations, we have

E2(h) = −1.558, E3(h) = −1.9, E4(h) = −2.033, E5(h) = −2.093.

If we take ε = 0.1, then |E5(h)− E4(h)| = 0.06 < 0.1, and we onsider E5(h) =
−2.093 as a su�ient approximation of the true (but unknown) lower approxima-

tion. Upper expetation of h an be obtained by onsidering the funtion −h(x) and
by omputing E(−h). Hene E(h) = −E(−h) = 1.94 (approximation with ε = 0.1).

This example is useful in two respets: �rst, it illustrates why it is useful to have

results onerning the piee-wise extremizing distribution; seond, it shows that

even when analytial alulations are possible, it is not always possible to ompute

an exat value, hene the interest of the generi methods proposed in Setion 2.

This is partiularly true when h has an in�nity of loal extrema and when F , F
have in�nite support. It also addresses the question of the hoie of levels α when

many solutions are possible.

Coming bak to numerial approximations using linear programming, our results

indiates that some regions should be sampled in priority. For example, when om-

puting lower expetations, one should primarily onsider values bi (loal minima)

and sample in neighbourhoods of these values, as it is where probability masses are

onentrated. The onverse (sampling around loal maxima) holds when omputing

upper expetations.

3

We assume here that the expetation E(h) exists.
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If we now onsider random set, we an formulate the problem of omputing lower

expetations as follows: let m be the number of loal minima, and let γj∗ , γj∗ be

the two values bounding the probability mass onentrated on loal minima bj , for
j = 1, . . . ,m (for example, for the loal minima b2 in Figure 6, we would have

γ2∗ = α1, γ2∗ = α2), then

(28) E(h) =

m
∑

j=1

(

γj∗
∫

γ(j−1)∗

min(h(a∗γ), h(a
∗
γ))dγ + (γ(j)∗ − γj∗)h(bj)).

This omes down to sum all the probability masses onentrated on loal minima,

and to alulate integrals when the extremizing distribution oinide either with F
or F . Note that, as in Example 5, m ould be equal to ∞. This formulation learly

shows that, when using numerial methods with the random set approah, there is

no need to disretize in �ner intervals the intervals [γj∗ , γ(j)∗ ], as it won't improve

the preision of the result.

The ase of onditional expetation with general funtion will not be treated

here, as it would require long development that wouldn't bring many new ideas.

6. Conlusions

We have onsidered the problem of omputing lower and upper expetations on

p-boxes and partiular funtions under two di�erent approahes: by using linear

programming and by using the fat that p-boxes are speial ases of random sets.

Although the two approahes try to solve equivalent problems, their di�erenes

suggest di�erent ways to approximate the solutions of those problems. As we have

seen, knowing the behaviour of the funtion over whih lower and upper expeta-

tions are to be estimated an greatly inrease the omputational e�ieny (and

even permit analytial omputation).

However, more important than their di�erenes is the omplementarity of both

approahes. Indeed, one approah an shed light on some problems obsured by the

other approah (e.g., the level α of proposition 3). Another advantage of ombining

both approahes is the ease with whih some problems are solved and the elegant

formulation resulting from this ombination (e.g., the onditional ase). Let us

nevertheless note that the onstraint programming approah an be applied to

impreise probabilities in general, while the random set approah is indeed limited

to random sets.

In this paper, we have onentrated on the ase where unertainty bears on one

variable. The ase where multiple variables are tainted with unertainty desribed

by p-boxes will be studied in a forthoming paper. Conerning future work related

to this topi, three lines of researh seem interesting to us:

• study of other simple representations : it is desirable to ahieve similar

studies for other simple unertainty representations involving sets of proba-

bilities. This inludes probability intervals [6℄, possibility distributions [10℄,

louds [20℄.

• Disretization shemes : when exat solutions annot be omputed, what is

the best hoie of points x1, . . . , xN or of levels γ1, . . . , γM , respetively to

approximate the solution by using LP or RS (already mentioned by other

authors [23℄). We have mentioned how our results an possibly help in this
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task, but proposing generi algorithms and empirially testing them largely

remains to be done.

• Convex mixture of funtions : in some appliations, one an hoose a strat-

egy that is a onvex mixture between a �nite set of options having utility

h1, . . . , hN . For suh ases, one often has to �nd the weights λ1, . . . , λN

suh that

∑

i=1,N λihi have the maximal lower expetation. It would be

interesting to study whether similar results as the ones exposed in this paper

also exists for this problem when using simple unertainty representations

(e.g., p-boxes).

We would like to end this paper with two �nal remarks:

• it is lear from our results that extreme distributions over whih the upper

and lower expetations will be reahed will be, in general, disontinuous.

Sine any disontinuous funtions an be approximated as lose as one

wants by ontinuous ones, we do not see it as a big �aw. However, in

some ases, it ould be desirable to add onstraints about whih umulative

distributions inside [F , F ] are admissible. This kind of questions is adressed,

for example, by Kozine and Krymsky [15℄.

• We mention at the beginning of the paper that our study is restrited to the

ase where either umulative distributions were assumed to be σ-additive
or where h was ontinuous. Again, this is not a big limitation when dealing

with pratial appliations, and this avoids many mathematial subtleties

arising with the onsideration of �nitely additive probabilities [19℄.
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