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COMPUTING EXPECTATIONS WITH CONTINUOUS P-BOXES:

UNIVARIATE CASE

LEV UTKIN AND SEBASTIEN DESTERCKE

Abstra
t. Given an impre
ise probabilisti
 model over a 
ontinuous spa
e,


omputing lower/upper expe
tations is often 
omputationally hard to a
hieve,

even in simple 
ases. Be
ause expe
tations are essential in de
ision making

and risk analysis, tra
table methods to 
ompute them are 
ru
ial in many ap-

pli
ations involving impre
ise probabilisti
 models. We 
on
entrate on p-boxes

(a simple and popular model), and on the 
omputation of lower expe
tations

of non-monotone fun
tions. This paper is devoted to the univariate 
ase, that

is where only one variable has un
ertainty. We propose and 
ompare two

approa
hes : the �rst using general linear programming, and the se
ond us-

ing the fa
t that p-boxes are spe
ial 
ases of random sets. We underline the


omplementarity of both approa
hes, as well as the di�eren
es.

1. Introdu
tion

There are many situations where a unique probability distribution 
annot be

identi�ed to des
ribe our un
ertainty about the value assumed by a variable on a

state spa
e. This 
an happen for example when data or expert judgments are not

su�
ient and/or are 
on�i
ting. In su
h 
ases, a solution is to model information by

the means of impre
ise probabilities, that is by 
onsidering either sets of probabil-

ity distributions [17, 14℄ or bounds on expe
tations [18℄. Note that, from a purely

mathemati
al point of view, su
h representations en
ompass many other frame-

works dealing with the representation of in
omplete and 
on�i
ting information,

su
h as random sets [7℄ and possibility theory [12℄.

When 
onsidering su
h models, the expe
tation of a real-valued bounded fun
-

tion over the state spa
e is no longer pre
ise and is lower- and upper-bounded by

some value. In appli
ations involving risk analysis or de
ision making, the de
ision

pro
ess will be based on the values of these lower and upper expe
tations, using

extensions of the 
lassi
al expe
ted utility 
riterion [25℄. When the state spa
e on

whi
h the variable assumes its value is �nite, lower and upper expe
tations 
an be

numeri
ally 
omputed by using, for instan
e, linear programming te
hniques [26℄.

The problem be
omes quite more 
ompli
ated when un
ertainty models are de�ned

over in�nite state spa
es (e.g., the real line, produ
t spa
es, . . . ).

In this latter 
ase, 
omputing exa
tly and analyti
ally the lower and upper

expe
tations of a given fun
tion is impossible most of the time, and there are

very few methods and algorithms around to 
ompute approximations of these

bounds [4, 21, 24℄. In this paper, we study su
h analyti
al solutions for a spe
i�



ase, that is the one where the un
ertainty over a variable is des
ribed by a pair of

upper and lower 
umulative distributions (a so-
alled p-box [13℄). In essen
e, su
h
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a study 
omes down to sear
h the extremal points of the p-box for whi
h the expe
-

tation bounds are rea
hed. The features of these solutions also allow us to suggest

some ways to build more e�
ient numeri
al methods and algorithms, useful when

analyti
al solutions 
annot be 
omputed. We also assume that the fun
tion over

whi
h lower and upper expe
tations have to be 
omputed 
an be non-monotone but

has a (partially) known behaviour. In this paper, we 
on
entrate on the univariate


ase, i.e., where the value assumed by only one variable is tainted with un
ertainty.

The multivariate 
ase as well as the 
ase of mixed strategies (expe
tation bounds


omputed over mixture of fun
tions) are left for forth
oming papers.

P-boxes are one of the simplest and most popular models of sets of probability

distributions, dire
tly extending 
umulative distributions used in the pre
ise 
ase.

P-boxes are often used in appli
ations [16℄, as they 
an be easily derived from small

samples [3℄ or from expert opinions expressed in terms of impre
ise per
entiles.


onsequently, our study is likely to be useful in many pra
ti
al situations. P-box

models 
an also be found in robust Bayesian analysis, where they are known as

distribution band 
lasses [2℄. In other 
ases, the poor expressiveness of p-boxes


ompared to more general sets of probabilities is 
learly a limitation [8℄. However,

as we shall see, their simpli
ity allows for more e�
ient 
omputations, and they


an provide qui
k �rst approximations. Eventually, if these �rst approximations

already allow to take a de
ision, there is no need to 
onsider more 
omplex (and


omputationally demanding) models.

Methods developed in the paper are based on two di�erent approa
hes, and

we found it interesting to emphasize similarities and di�eren
es between these ap-

proa
hes, as well as how one approa
h 
an help the other: the �rst is based on

the fa
t that the 
omputation of bounding expe
tations 
an be viewed as a linear

programming problem, while the se
ond uses the fa
t that a p-box is a parti
ular


ase of a random set [16, 8℄. Approximating lower and upper expe
tations with

these approa
hes mainly 
onsists in dis
retizing the un
ertainty models. In this

sense, they are di�erent from other approa
hes dis
retizing the state spa
e [21, 24℄.

We �rst state the general problem in Se
tion 2, how to solve it by using linear

programming and random sets, and introdu
e the problem of 
onditioning by an

observed event. We then study the 
omputation of lower/upper expe
tations of

a fun
tion over the p-box for di�erent behaviours. Going from the simplest 
ase

to the most general one, we start with monotone fun
tions in Se
tion 3, pursue

with fun
tions having one extrema in Se
tion 4, and �nish by general (bounded)


ontinuous fun
tions in Se
tion 5.

2. General problem statement

We assume that the information about a (real-valued) random variable X is (or


an be) represented by a lower F and upper F 
umulative probability distributions

de�ning the p-box [F , F ] [13℄. Lower F and upper F distributions thus de�ne a set

Φ(F , F ) of pre
ise distributions su
h that

(1) Φ(F , F ) = {F |∀x ∈ R, F (x) ≤ F (x) ≤ F (x)}.

Given a fun
tion h(X), lower (E) and upper (E) expe
tations over [F , F ] of h(X)

an be 
omputed by means of a pro
edure sometimes 
alled natural extension [30,
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31℄, whi
h 
orresponds to the following equations:

E(h) = inf
F∈Φ(F,F )

∫

R

h(x)dF ,E(h) = sup
F∈Φ(F,F )

∫

R

h(x)dF.(2)

Computing the lower (resp. upper) expe
tation 
an be seen as �nding the ex-

tremizing distribution F inside Φ(F , F ) rea
hing the in�mum (resp. supremum) in

Equations (2). If we 
onsider the 
onvex set of probabilities indu
ed by Φ(F , F ),
this is equivalent to �nd the extremum point (i.e., vertex) of this 
onvex set where

the bounds are rea
hed, among all verti
es (here in�nitely many). Solving Equa-

tions (2) exa
tly is usually very di�
ult, although sometimes possible, even when

analyti
al expressions of h, F , F are known. In pra
ti
e, numeri
al methods must

often be used to solve the problem and estimate both the upper and lower ex-

pe
tations. Upper and lower expe
tations are dual [31, 
h.2.℄, in the sense that

E(h) = −E(−h). This will allow us to 
on
entrate only on the lower expe
tations

for some 
ases studied in the sequel. We now detail the two generi
 approa
hes

used throughout the paper to solve the above problem. Note that, through all the

paper, we assume that we restri
t ourselves either to σ-additive probabilities or to

ontinuous fun
tions h, as su
h assumptions are not, from a pra
ti
al standpoint,

very limiting.

We will denote by IA the indi
ator fun
tion of the set A, that is the fun
tion su
h

that IA(x) = 1 if x ∈ A, zero otherwise. The lower (resp. upper) expe
tation of

this fun
tion, E(IA) (resp. E(IA)), have the same value as the lower (resp. upper)

probability P (A) (resp. P (A) of the event A indu
ed by the set Φ(F , F ).

2.1. Linear programming view. Although we assume that the readers have ba-

si
 knowledge of linear programming (for an introdu
tion to the topi
, see for ex-

ample Vanderbei [29℄), we will re
all basi
 results 
oming from this theory when

they are used in the paper.

As sets of probabilities 
an be expressed through linear 
onstraints over expe
-

tations, and as expe
tation is a linear fun
tional, it is quite natural to translate

Equations (2) into linear programs. The linear programs 
orresponding to lower

expe
tation are summarized below.

Primal problem: Dual problem:

Min. v =
∞
∫

−∞

h (x) ρ (x) dx Max. w = c0 +
∞
∫

−∞

(

−c (t)F (t) + d (t)F (t)
)

dt

subje
t to subje
t to

ρ (x) ≥ 0,
∞
∫

−∞

ρ (x) dx = 1, c0 +
∞
∫

x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x
∫

−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.

x
∫

−∞

ρ (x) dx ≥ F (x) .

Where v and w are the obje
tive fun
tions to respe
tively minimize and maximize

for the primal and dual problems, and ρ (x) is a probability density fun
tion having
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a 
umulative distribution inside Φ(F , F ). Sin
e both the primal and dual problems

are feasible (i.e. have solutions satisfying their 
onstraints), then their optimal

solutions 
oin
ide (due to strong duality [29, Ch.5℄) and are equal to E(h).
Numeri
ally solving the above problem 
an be done by approximating the prob-

ability distribution fun
tion F by a set of N points F (xi), i = 1, ..., N , and by

translating equations (2) into the 
orresponding linear programming problem with

N optimization variables and where 
onstraints 
orrespond to equation (1). Those

linear programming problems are of the form

E
∗(h) = inf

N
∑

k=1

h(xk)zk or E
∗
(h) = sup

N
∑

k=1

h(xk)zk(3)

subje
t to

zi ≥ 0, i = 1, ..., N,

N
∑

k=1

zk = 1,

i
∑

k=1

zk ≤ F (xi),

i
∑

k=1

zk ≥ F (xi), i = 1, ..., N.

where the zk are the optimization variables, and obje
tive fun
tion E
∗(h) (resp.

E
∗
(h)) is an approximation of the lower (resp. upper) expe
tation. Note that the

primal problem may not always be feasible (e.g., 
onsider N = 1 and F (x1) −
F (x1) < 1) if N is too small or values xi are badly 
hosen. Also, the inequality

E(h) ≤ E
∗(h) (or its 
onverse) does not always hold when solving the above dis-


retized problem. The approximated solution E
∗
is thus not a guaranteed inner or

outer approximation. A solution to obtain a guaranteed inner approximation is to

repla
e, for i = 1, . . . , N , F (xi) by F (xi+1) in 
onstraints

∑i
k=1 zk ≥ F (xi), with

F (xN+1) = 1, sin
e in this 
ase, any solution to the linear program would be su
h

that, for any x ∈ [xi, xi+1],

F (x) ≤ F (xi+1) ≤
i
∑

k=1

zk ≤ F (xi) ≤ F (x),


onsequently the (dis
rete) 
umulative distributions formed by the values zk, k =
1, . . . , N is in Φ(F , F ). However, for this linear program to have a solution, we

must be able to 
hoose the xi, i = 1, . . . , N on R su
h that F (xi) ≥ F (xi+1). In

addition to not be always possible, this puts ne
essary 
onstraints over the 
hosen

dis
retization of R.

Let us write now the dual linear programming problem for 
omputing E
∗∗(h),

taking points yi di�erent from xi,

(4) E
∗∗(h) = max

(

c0 +

N
∑

i=1

(

diF (yi)− ciF (yi)
)

)

subje
t to c0 ∈ R, ci ≥ 0, di ≥ 0, and

c0 +

N
∑

k=i

(dk − ck) ≤ h(yi), i = 1, ..., N,

where c0, ci, di are the optimization variables, yi = (xi−1 + xi)/2.
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When both problems are dis
retized, equality between their optimal solutions

no longer holds, but 
onverge towards the same value as N grows. To approximate

the solution, one 
an let N grow iteratively until the di�eren
e |E∗(h)− E
∗∗(h)|

is smaller than a given value ε > 0 
hara
terizing the a

ura
y of the solutions.

However, this way of determining the lower and upper expe
tations meets some


omputation di�
ulties if many iterations are needed and if the value of N is

rather large. Indeed, the primal optimization problem have N variables and 3N+1

onstraints. On the other hand, solving the primal and dual approximated problems

only on
e with a small value of N 
an lead to bad approximations of the exa
t value.

Also important is the question of how to 
hoose or sample the values xi to improve

numeri
al 
onvergen
e? In other words, is there some regions that should be more

sampled than others. A generi
 algorithm (for E) would look as follows:

(1) Fix a pre
ision threshold ǫ and an initial value of N
(2) Sample N values xi s.t. F (xi) > 0 and F (xi) < 1
(3) Compute E

∗(h) and E
∗∗(h)

(4) If |E∗(h)− E
∗∗(h)| ≤ ǫ, stop, else in
rease N and return to step 2.

In the sequel, we will see that knowing h and its behaviour 
an signi�
antly

improve both a

ura
y and e�
ien
y of expe
tation bound 
omputations. It also

provides some insight as to how values xi 
ould be sampled.

2.2. Random set view. Now that we have given a global sket
h of the linear

programming approa
h, we 
an detail the one using random sets. Formally, a

random set is a mapping Γ from a probability spa
e to the power set ℘(X) of

another spa
e X , also 
alled a multi-valued mapping. This mapping indu
es lower

and upper probabilities on X [7℄. Here, we 
onsider the unit interval [0, 1] equipped
with Lebesgue measure as the probability spa
e, and ℘(X) are the measurable

subsets of the real line R.

Given the p-box [F , F ], we will denote Aγ = [a∗γ , a
∗
γ ] the set su
h that

a∗γ := sup{x ∈ R : F (x) < γ} = F
−1

(γ),

a∗γ := inf{x ∈ R : F (x) > γ} = F−1(γ),

R

1

F

γ

a∗γ a∗γ

Aγ

F

Figure 1. P-box as random set, illustration
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By extending existing results [16, 13℄ to the 
ontinuous real line [9, 1℄, we 
an


on
lude that the p-box [F , F ] is equivalent to the 
ontinuous random set with a

uniform mass density on [0, 1] and a mapping (see �gure 1) su
h that

Γ(γ) = Aγ = [a∗γ , a
∗
γ ], γ ∈ [0, 1].

Note that both F
−1

(γ), F−1(γ) are non-de
reasing fun
tions of γ. The interest of
this mapping Γ is that it allows us to rewrite equations (2) in the following form:

E(h) =

∫ 1

0

inf
x∈Aγ

h(x) dγ,(5)

E(h) =

∫ 1

0

sup
x∈Aγ

h(x) dγ.(6)

Again, �nding analyti
al solutions of su
h integrals is not easy in the general


ase, but numeri
al approximations 
an be 
omputed (with more or less di�
ulty)

by dis
retizing the p-box on a �nite number of levels γi, the main di�
ulty in the

general 
ase being to �nd the in�mum or supremum of h(X) for ea
h dis
retized

level. Note that, in the �nite 
ase, a random set 
an be represented by non-null

weights, here denoted m, given to subsets of spa
e X and summing up to one (i.e.,

∑

E⊆X m(E) = 1). Let γ0 = 0 ≤ γ1 ≤ . . . ≤ γM = 1 and de�ne the dis
rete

random set Γ su
h that for i = 1, . . . ,M

Γ :=

{

Aγi
= [a∗γi−1 , a

∗
γi
],

m(Aγi
) = γi − γi−1

We denote by Φ(F , F )Γ the set of pre
ise distributions indu
ed by Γ. This dis-


retization, whi
h is an outer approximation of the p-box [F , F ] (i.e., Φ(F , F ) ⊂
Φ(F , F )Γ), is sometimes referred to as the ODM (Outer dis
retization Method) and

has been studied by other authors [23℄. Working with Γ, Equations (5), (6) 
an be

rewritten as

E
Γ(h) =

M
∑

i=1

m(Aγi
) inf
x∈Aγi

h(x) and E
Γ
(h) =

M
∑

i=1

m(Aγi
) sup
x∈Aγi

h(x).

Let us now de�ne another dis
rete random set Γ su
h that for i = 1, . . . ,M

Γ :=

{

Aγi
= [a∗γi

, a∗γi−1
] if a∗γi

≤ a∗γi−1
, ∅ otherwise

m(Aγi
) = γi − γi−1

We denote by Φ(F , F )Γ the set of pre
ise distributions indu
ed by Γ. Γ is an inner

approximation of the p-box (i.e., Φ(F , F )Γ ⊂ Φ(F , F )), and Equations(5), (6) 
an

again be rewritten

E
Γ(h) =

M
∑

i=1

m(Aγi
) inf
x∈Aγi

h(x) and E
Γ
(h) =

M
∑

i=1

m(Aγi
) sup
x∈Aγi

h(x).

Note that when there is an index i for whi
h Aγi
= ∅, Γ does no longer des
ribe a

non-empty set of probabilities, and we will name su
h a random set in
onsistent.

This 
ase 
an be 
ompared to the 
ase when the linear program giving guaranteed

inner approximation has no feasible solutions.

We have that E
Γ(h) ≤ E(h) ≤ E

Γ(h) (due to in
lusions Φ(F , F )Γ ⊂ Φ(F , F ) ⊂

Φ(F , F )Γ ). Thus, to approximate the solution we 
an again let M grow until
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|EΓ(h) − E
Γ(h)| is smaller than a given a

ura
y ε > 0. As in the 
ase of lin-

ear programming, 
hoosing too few levels γi or using poor heuristi
s to �nd the

in�nimum/supremum over sets 
an lead to bad approximations, and if those in�n-

imum/supremum are hard to �nd, 
omputational di�
ulties 
an arise. A generi


algorithm (for E) using random sets would be as follows

(1) Fix a pre
ision threshold ǫ and an initial value of M
(2) Sample M values γi

(3) Compute E
Γ(h) and E

Γ(h)

(4) If |EΓ(h)− E
Γ(h)| ≤ ǫ, stop, else in
rease M and return to step 2.

Note that the distan
e between two 
onse
utive γi, γi+1 does not have to be 
on-

stant. If Γ is in
onsistent, an alternative is to use one of the two random sets Γ1,Γ2

su
h that for i = 1, . . . ,M

Γ1 :=

{

Aγi,1 = [a∗γi−1 , a
∗
γi−1

],

m(Aγi,1) = γi − γi−1,
Γ2 :=

{

Aγi,2 = [a∗γi
, a∗γi

],
m(Aγi,2 ) = γi − γi−1.

The 
orresponding approximations read, for j = 1, 2,

E
Γj (h) =

M
∑

i=1

m(Aγi,j
) inf
x∈Aγi,j

h(x) and E
Γj
(h) =

M
∑

i=1

m(Aγi,j
) sup
x∈Aγi,j

h(x).

Compared to Γ, Γ1,Γ2 have the advantage to always be 
onsistent, but the obtained

approximations 
an either outer- or inner-approximate the exa
t values, even if they


onverge towards it as M in
reases.

2.3. Conditional lower/upper expe
tations. Another quite 
ommon problem

when dealing with impre
ise probabilities is the pro
edure of 
onditioning and the


omputations of asso
iated lower/upper 
onditional expe
tations. Suppose that we

observe an event B = [b0, b1]. Then the lower and upper 
onditional expe
tations,

given the p-box [F , F ] and under 
ondition of B, 
an be determined as follows:

E(h|B) = inf
F≤F≤F

∫

R
h(x)IB(x)dF
∫

R
IB(x)dF

,

E(h|B) = sup
F≤F≤F

∫

R
h(x)IB(x)dF
∫

R
IB(x)dF

.

The above formulas are equivalent to applying Bayes formula to every probability

measure inside Φ(F , F ), and then retrieving the optimal bounds. Other general-

isations of Bayes formula to impre
ise probabilisti
 framework exist [11, 31℄, but

we will restri
t ourselves to the above solution, as it is by far the most used within

frameworks using lower/upper expe
tation bounds. Also, we assume that B is

large enough (or the two distributions [F , F ] 
lose enough) so that F (b1) > F (b0).
This is equivalent to require P (B) > 0, thus avoiding 
onditioning on an event of

probability 0. Indeed, there are still some dis
ussions about what should be done

in presen
e of su
h events (see Miranda [18℄ for an introdu
tory dis
ussion and

Cozman [5℄ for possible numeri
al solutions).

Similarly to un
onditional expe
tations, the above problems 
an numeri
ally be

solved by approximating the probability distribution fun
tion F by a set of N
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points F (xi), i = 1, ..., N , and by writing linear-fra
tional optimization problems

1

and then asso
iated linear programming problems. Problems mentioned for the

un
onditional 
ase 
an again o

ur. The next proposition indi
ates that previous

results 
an be used to provide a more attra
tive formulation of E(h|B),E(h|B).

Proposition 1. Given a p-box [F , F ], a fun
tion h(x) and an event B, the upper

and lower 
onditional expe
tations of h(X) on [F , F ] after observing the event B

an be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),(7)

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),(8)

with

Ψ(α, β) =

∫ β

α

sup
x∈Aγ∩B

h(x)dγ.

Φ(α, β) =

∫ β

α

inf
x∈Aγ∩B

h(x)dγ.

General proof. We 
onsider only upper expe
tation. We do not know how the

extremizing distribution fun
tion behaves outside the interval B. Therefore, we

suppose that the value of the extremizing distribution fun
tion at point b0 is F (b0) =
α ∈ [F (b0), F (b0)] and its value at point b1 is F (b1) = β ∈ [F (b1), F (b1)] (see Fig.
4). Then there holds

∫

R

IB(x)dF (x) = β − α.

Hen
e, we 
an write

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

F≤F≤F

1

β − α

∫

R

h(x)IB(x)dF (x)

= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α













sup
F≤F≤F
F (b0)=α
F (b1)=β

∫

R

h(x)IB(x)dF (x)













= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ.(9)

By using the results obtained for the un
onditional upper expe
tation, we 
an see

that the integrand is equal to Ψ(α, β). The lower expe
tation is similarly proved.

�

1

Problems where the obje
tive fun
tion is a fra
tion of two linear fun
tions and 
onstraints

are linear.
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As value β −α in
reases in Equations (7)-(8), so do the numerator and denomi-

nator, thus playing opposite role in the evolution of the obje
tive fun
tion. Hen
e,

in order to 
ompute the upper (resp. lower) 
onditional expe
tation, one has to

�nd the values β and α su
h that any in
rease (de
rease) in the value β − α is

greater (resp. lower) than the 
orresponding in
rease (resp. de
rease) in Ψ(α, β)
(Φ(α, β)).

A 
rude algorithm to approximate the solution would be to samples di�erent

values α ∈ [F (b0), F (b0)] and β ∈ [F (b1), F (b1)], evaluating Equations (7)-(8) for

all 
ombination [α, β] and retaining the highest obtained value (note that we 
an

have F (b0) ≥ F (b1), hen
e the need to make sure by adding 
onstraint that [α, β]
is not void).

Another interesting point to note is that the proof takes advantage of both views,

sin
e the idea to use levels α and β 
omes from fra
tional linear programming, while

the �nal equation (9) 
an be elegantly formulated by using the random set view.

In any 
ases (lower/upper and 
onditional/un
onditional expe
tations), it is ob-

vious that the extremizing probability distribution F providing the minimum (resp.

maximum) expe
tation of h depends on the form of the fun
tion h. If this form

follows some typi
al 
ases, e�
ient solutions 
an be found to 
ompute lower (resp.

upper) expe
tations. The simplest examples (for whi
h solutions are well known)

of su
h typi
al 
ases are monotone fun
tions.

3. The simple 
ase of monotone fun
tions

We �rst 
onsider the 
ase where h is a monotone fun
tion that is non-de
reasing

(resp. non-in
reasing) in R. We will also introdu
e the running example used

throughout the paper.

3.1. Un
onditional expe
tations. In the 
ase of a monotone non-de
reasing

(resp. non-in
reasing) fun
tion, existing results [31℄ tell us that we have:

E(h) =

∫

R

h(x)dF

(

E(h) =

∫

R

h(x)dF

)

,(10)

E(h) =

∫

R

h(x)dF

(

E(h) =

∫

R

h(x)dF

)

,(11)

and we see from (10)-(11) that lower and upper expe
tations are 
ompletely de-

termined by bounding distributions F and F . Using equations (5)-(6), we get the

following formulas

E(h) =

∫ 1

0

h(a∗γ)dγ

(

E(h) =

∫ 1

0

h(a∗γ)dγ

)

,(12)

E(h) =

∫ 1

0

h(a∗γ)dγ

(

E(h) =

∫ 1

0

h(a∗γ)dγ

)

,(13)

whi
h are the 
ounterparts of equations (10)-(11). Here, expe
tations are totally de-

termined by extreme values of the mappings. When h is non-monotone, equations

(10)-(13) only provide inner approximations of E(h),E(h). When using numeri-


al pro
edures over monotone fun
tions, there appears to be no spe
i�
 sampling

strategies of values that would allow for faster 
onvergen
e.

We now introdu
e the example that will illustrate our results all along the paper.
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Example 1. Assume that we have to estimate the loss in
urred by the failure

of a unit of some industrial item. Suppose that this loss is the fun
tion of time

h(x) = 20 − x, and it is known that the unit time to failure is governed by a

distribution whose bounds are exponential distributions with a failure rate 0.2 and

0.5 (note that only the bounds are of exponential nature). h is de
reasing and


an, for example, model the fa
t that the later the unit fails, the less it 
osts to

repla
e it. Let us 
ompute the expe
ted losses as the expe
tation of h. The lower

and upper distribution fun
tions of the unit time to failure are 1− exp(−0.2x) and
1− exp(−0.5x), respe
tively. Hen
e

E(h) =

∫ ∞

0

(20− x)d(1 − exp(−0.5x)) =

∫ ∞

0

(20− x)0.5e−0.5xdx = 18,

E(h) =

∫ ∞

0

(20− x)d(1 − exp(−0.2x)) =

∫ ∞

0

(20− x)0.2e−0.2xdx = 15.

Finally, we obtain that the expe
ted losses are in the interval [15, 18].

Let us use the random set approa
h. Sin
e F
−1

(γ) = −2 ln(1 − γ) = a∗γ and

F−1(γ) = −5 ln(1− γ) = a∗γ , then

E(h) =

∫ 1

0

(20 + 2 ln(1− γ))dγ = 18,

E(h) =

∫ 1

0

(20 + 5 ln(1− γ))dγ = 15.

We get the same values of the lower and upper expe
tations of h.

3.2. Conditional expe
tations. We now 
onsider that we want to know the lower

and upper expe
tations in the 
ase where event B = [b0, b1] o

urs. That is, we want
to 
ompute Equations (7), (8) for a monotone h. Lower and upper expe
tations

are then given by the following proposition.

Proposition 2. Given a p-box [F , F ], a monotone fun
tion h(x) and an event B,

the upper and lower 
onditional expe
tation of h(X) on [F , F ] after observing the

event B 
an be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

)

,

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

inf
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(

h(b0)
(

F (b0)− F (b0)
)

+

∫ F
−1

(F (b1))

b0

h(x)dF (x)

)
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if h is non-de
reasing and

E(h|B) =
1

F (b1)− F (b0)

(

h(b0)
(

F (b0)− F (b0)
)

+

∫ F
−1

(F (b1))

b0

h(x)dF (x)

)

,

E(h|B) =
1

F (b1)− F (b0)

(

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

)

,

if h is non-in
reasing.

Proof. We will only prove the upper expe
tation for non-de
reasing fun
tion h.
Lower expe
tation 
an be derived likewise, and the 
ase of non-in
reasing fun
tions

is then obtained by using duality between lower and upper expe
tations.

When h is non-de
reasing, we know that supx∈Aγ∩B h(x) is a non-de
reasing

fun
tion of γ that 
oin
ides with F−1
. Using the integral mean value theorem, we

know that there exists some z ∈ [b0, b1] su
h that E(h|B) = h(z), whatever the

hoi
e of α, β. For maximizing E(h|B), values α, β should be 
hosen so that the

retained values z and h(z) (
oin
iding with F−1
) are as high as possible. As h is

non-de
reasing, this 
orresponds to values α = F (b0), β = F (b1), whi
h settles the

denominator of the obje
tive fun
tion. We then have

∫ β

α

sup
x∈Aγ∩B

h(x)dγ =

∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(

F (b1)− F (b1)
)

,

be
ause for values γ ∈ [F (b0), F (b1)], supremum of h(x) on Aγ ∩B is obtained for

x = F−1(γ), while for γ ∈ [F (b1), F (b1)], supremum of h(x) = b1. �

R

1

F

α

β

bo B b1
1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

F

Optimal F for E(h|B)

R

1

F
α

β

bo B

b1

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

F

Optimal F for E(h|B)

Figure 2. Conditional expe
tations with monotone non-

in
reasing fun
tions

Example 2. We 
onsider the same p-box [F , F ] and fun
tion h as in Example 1,

but now we 
onsider that we want to know the in
urred loss in 
ase x ∈ B = [1, 8],
that is the failure is supposed to happen between 1 and 8 units of time. We have

F (b0) = 1− exp(−0.2 · 1) = 0.18, F (b0) = 1− exp(−0.5 · 1) = 0.39,

F (b1) = 1− exp(−0.2 · 8) = 0.8, F (b1) = 1− exp(−0.5 · 8) = 0.98,
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and we get

E(h|B) =
1

0.8− 0.18

(

(20− 1) (0.39− 0.18) +

∫ F
−1

(0.8)

1

(20− x)0.5e−0.5xdx

)

= 18.298,

E(h|B) =
1

0.98− 0.39

(

(20− 8) (0.98− 0.8) +

∫ 8

F−1(0.39)

(20− x)0.2e−0.2xdx

)

= 14.219.

Note that, if we 
ompare above values with those of Example 1, we have [E(h),E(h)] ⊂
[E(h|B),E(h|B)].

The above results indi
ate that, when h is monotone, 
omputing lower/upper ex-

pe
tations exa
tly remains easy. Also, when using numeri
al methods, they provide

insight as to how values should be sampled. For example, when 
omputing upper


onditional expe
tation by linear programming, values only need to be sampled

in [b0, F
−1

(b1)], and b0 should be among the sampled values, sin
e an important

probability mass is 
on
entrated at this value (see Fig. 2). When using random

set approa
h and dis
retizing the unit interval [0, 1], one should take γ1 = Fb0
and γ2 = F (b0), and not 
onsider �ner dis
retization of this interval, as this would

not in
rease the pre
ision. As we shall see, similar results 
an be derived for more


omplex 
ases.

4. Fun
tion with one maximum

In this se
tion, we study the 
ase where the fun
tion h has one maximum at

point a, i.e. h is in
reasing (resp. de
reasing) in (−∞, a] (resp. [a,∞)). The 
ase
of h having one minimum follows by 
onsidering the fun
tion −h and the duality

between lower and upper expe
tations.

4.1. Un
onditional expe
tations. As for monotone h, we �rst study the 
ase of

un
onditional expe
tations. Before giving the main result, we show the next lemma

that will be useful in subsequent proofs.

Lemma 1. Given a p-box [F , F ] and a 
ontinuous fun
tion h(x) with one maximum

at x = a, there is always a solution γ ∈ [F (a), F (a)] to the following equation

(14) h
(

F
−1

(γ)
)

= h
(

F−1(γ)
)

.

Proof. let us 
onsider the fun
tion

ϕ (α) = h
(

F
−1

(α)
)

− h
(

F−1 (α)
)

,

whi
h, being a substra
tion of two 
ontinuous fun
tions (by supposition), is 
on-

tinuous. Sin
e the fun
tion h has its maximum at point x = a, then, by taking

α = F (a), we get the inequality

ϕ (γ) = h
(

F
−1

(F (a))
)

− h (a) ≤ 0

and, by taking γ = F (a), we get the inequality

ϕ (γ) = h (a)− h
(

F−1
(

F (a)
))

≥ 0.



EXPECTATIONS AND P-BOXES 13

1

F

F

a

α

1

a

α

Optimal F for E(h) Optimal F for E(h)

Figure 3. Optimal distributions F with unimodal h

Consequently, there exists γ in the interval

(

F (a) , F (a)
)

su
h that ϕ (γ) = 0 (sin
e
ϕ is 
ontinuous). �

The next proposition shows that, as for monotone h, the fa
t of knowing that

h has one maximum in x = a allows us to derive 
losed-form expressions of lower

and upper expe
tations. The results of the proposition are illustrated in Fig. 3.

Proposition 3. If the fun
tion h has one maximum at point a ∈ R, then the upper

and lower expe
tations of h(X) on [F , F ] are

(15) E(h) =

a
∫

−∞

h(x)dF + h(a)
[

F (a)− F (a)
]

+

∞
∫

a

h(x)dF ,

(16) E(h) =







F
−1

(α)
∫

−∞

h(x)dF +

∞
∫

F−1(α)

h(x)dF






,

or, equivalently

E(h) =

F (a)
∫

0

h(a∗
γ
)dγ + [F (a)− F (a)]h(a) +

1
∫

F (a)

h(a
∗γ
)dγ(17)

(18) E(h) =

α
∫

0

h(a∗γ)dγ +

1
∫

α

h(a∗γ)dγ,

where α is the solution of equation

(19) h
(

F
−1

(α)
)

= h
(

F−1(α)
)

.

su
h that α ∈ [F (a), F (a)].

Proof using linear programming. We assume that the fun
tion h (x) is di�er-
entiable in R and has a �nite value as x → ∞. The lower and upper 
umulative

probability fun
tions F and F are also assumed to be di�erentiable. We also 
on-

sider the primal and dual problems 
onsidered in Se
tion 2.1 and re
alled below.
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Primal problem: Dual problem:

Min. v =
∞
∫

−∞

h (x) ρ (x) dx Max. w = c0 +
∞
∫

−∞

(

−c (t)F (t) + d (t)F (t)
)

dt

subje
t to subje
t to

ρ (x) ≥ 0,
∞
∫

−∞

ρ (x) dx = 1, c0 +
∞
∫

x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x
∫

−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.

x
∫

−∞

ρ (x) dx ≥ F (x) .

The proof of Equations (15)-(16) and (19) 
an be separated in three main steps:

(1) We propose a feasible solution of the primal problem.

(2) We then 
onsider the feasible solution of the dual problem 
orresponding

to the one proposed for the primal problem.

(3) We show that the two solutions 
oin
ide and, therefore, a

ording to the

basi
 duality theorem of linear programming, these solutions are optimal

ones.

First, we 
onsider the primal problem. Let a′ and a′′ be real values. The fun
tion

ρ (x) =







dF (x) /dx, x < a′

0, a′ ≤ x ≤ a′′

dF (x) /dx, a′′ < x

is a feasible solution to the primal problem if the following 
onditions are respe
ted:

∫ ∞

−∞

ρ (x) dx = 1,

whi
h, given the above solution, 
an be rewritten

∫ a′

−∞

dF +

∫ ∞

a′′

dF = 1,

whi
h is equivalent to the equality

(20) F (a′) = F (a′′) .

We now interest ourselves in the dual problem. Let us �rst 
onsider the sole 
on-

straint

(21) c0 +

∫ ∞

x

(−c (t) + d (t)) dt ≤ h (x) ,

whi
h is the equivalent of the primal 
onstraint ρ (x) ≥ 0. We then 
onsider the

following feasible solution to the dual problem as c0 = h (∞),

c (x) =

{

h′ (x) , x < a′

0, x ≥ a′
d (x) =

{

0, x < a′′

−h′ (x) , x ≥ a′′
.

The inequalities c (x) ≥ 0 and d (x) ≥ 0 are valid provided we have the inequalities
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a′ ≤ a ≤ a′′ (i.e. interval [a′, a′′] en
ompasses maximum of h). By integrating c (x)
and d (x), we get the in
reasing fun
tion

C (x) = −

∫ ∞

x

c (t) dt =

{

h (x) − h (a′) , x < a′

0, x ≥ a′

and the de
reasing fun
tion

D (x) =

∫ ∞

x

d (t) dt =

{

h (a′′)− h (∞) , x < a′′

h (x) − h (∞) , x ≥ a′′
.

Let us rewrite 
ondition (21) as follows:

(22) c0 + C (x) +D (x) ≤ h (x) .

If x < a′, equation (22) be
omes

c0 + h (x)− h (a′) + h (a′′)− h (∞) ≤ h (x) .

And, repla
ing the inequality by an equality (simply taking the upper bound of the


onstraint), we obtain

(23) h (a′′) = h (a′) .

If a′ < x < a′′, we have c0 + h (a′′) − h (∞) ≤ h (x) whi
h means that for all

x ∈ (a′, a′′) we have h (a′′) (= h (a′)) ≤ h (x) (i.e. h (a′′) and a′ are the minimal

values of the fun
tion h (x) in interval x ∈ (a′, a′′).) If x ≥ a′′, then we get the

trivial equality c0 + h (x)− h (∞) = h (x). The two proposed solutions are valid i�

there exist solutions to Eq. (20) and Eq. (23), respe
tively for the primal and dual

problem. That su
h solutions exist 
an be seen by 
onsidering Lemma1 and taking

a′ = F
−1

(γ) and a′′ = F−1 (γ), with γ the solution of Eq. (19). We then �nd the

admissible values of the obje
tive fun
tions

vmin =

∫ a′

0

h (x) dF +

∫ ∞

a′′

h (x) dF ,

wmax = c0 +

∫ ∞

0

(

−c (t)F (t) + d (t)F (t)
)

dt.

By using integration by parts together with equations (20)-(23), we 
an show that

equality wmax = vmin holds, with γ the parti
ular solution of equation (19) for

whi
h optimum is rea
hed, as was to be proved. �

Proof using random sets. Let us now 
onsider equations (6)-(5). Looking �rst

at equation (6), we see that before γ = F (a), the supremum of h on Aγ is h(a∗γ),

sin
e h is in
reasing between [∞, a]. Between γ = F (a) and γ = F (a), the supre-
mum of h on Aγ is f(a). After γ = F (a), we 
an make the same reasoning as for

the in
reasing part of h (ex
ept that it is now de
reasing). Finally, this gives us

the following formula:

(24) E(h) =

F (a)
∫

0

h(a∗γ)dγ +

F (a)
∫

F (a)

h(a)dγ +

1
∫

F (a)

h(a∗γ)dγ

whi
h is equivalent to (17). Let us now turn to the lower expe
tation. Before

γ = F (a) and after γ = F (a), �nding the in�nimum is again not a problem (it is

respe
tively h(a∗γ) and h(a∗γ)). Between γ = F (a) and γ = F (a), sin
e we know
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that h is in
reasing before x = a and de
reasing after, in�nimum is either h(a∗γ)
or h(a∗γ). This gives us equation

(25) Eh =

F (a)
∫

0

h(a∗γ)dγ +

F (a)
∫

F (a)

min(h(a∗γ), h(a
∗
γ))dγ +

1
∫

F (a)

h(a∗γ)dγ

and if we use equations (20),(23) as in the �rst proof (reasoning used in the �rst

proof to show that they have a solution is general, and thus appli
able here), we

know that there is a level α s.t. h(F
−1

(α)) = h(F−1(α)), and for whi
h the above

equation simplify in equation (19). �

Figure 3 shows that the extremizing distribution 
orresponding to upper ex-

pe
tation 
onsists in 
on
entrating as mu
h probability mass as possible on the

maximum, as 
ould have been expe
ted, while the 
umulative distribution rea
hing

the lower expe
tation 
onsists of an horizontal jump avoiding higher values. As

we shall see, �nding the level α satisfying Equation (20) and at whi
h this jump

o

urs is sometimes feasible, and in this 
ase exa
t lower and upper expe
tations


an be found. In other 
ases, when 
omputing the upper expe
tation by numeri
al

methods and linear programming, results indi
ate that it is important to in
lude

the value a 
orresponding to the maximum of h in the sampled value, as well as

values 
lose to it when 
omputing the upper expe
tation. When using the random

set approa
h, they show that there are no need to 
onsider values γ inside the in-

terval [F (a), F (a)], the bounds being su�
ient. For the lower expe
tation, results

indi
ate that when using linear programming, it is preferable to sample outside the

interval [F
−1

(α), F−1(α)].
However, it 
an happens that the exa
t value of α 
annot be 
omputed, but

that the integrals in Eq.(15)-(16) 
an still be solved. In this 
ase, lower and upper

expe
tations have to be approximated, for example by s
anning a more or less wide

range of possible values for α (see [28℄ for an example).

Example 3. We still 
onsider the same p-box as in Example 1, but we now suppose

that the loss is modelled by the fun
tion h(x) = 60 − (x − 5)2. This loss fun
tion


an express the idea that it is preferable for the unit to fail when it begins to work

or when it has worked for a long time, rather than when it works at full 
apa
ity,

as the 
ost of slowing a whole produ
tion line would then be quite higher. h has one

maximum at a = 5, and we get

Eh = h(5)
[

F (5)− F (5)
]

+

∫ 5

0

h(x)dF (x) +

∫ ∞

5

h(x)dF (x)

= 60 · (exp(−0.2 · 5)− exp(−0.5 · 5)) + 31.321 + 4.268

= 52.736.

Sin
e F
−1

(α) = −2 ln(1 − α) and F−1(α) = −5 ln(1 − α), then α 
an be found by

solving the following equality

60− (−2 ln(1− α)− 5)2 = 60− (−5 ln(1− α)− 5)2.

Hen
e, we have two solutions α = 1 − exp(−10/7) and α = 0. Sin
e F
−1

(0) =
F−1(0), then the se
ond solution has to be removed. Therefore, we get α = 1 −
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exp(−10/7) = 0.76. Hen
e, we obtain

Eh =

∫ −2 ln(1−0.76)

−∞

h(x)dF (x) +

∫ ∞

−5 ln(1−0.76)

h(x)dF (x)

=

∫ 2.85

−∞

(

60− (x− 5)2
)

0.5e−0.5xdx+

∫ ∞

7. 14

(

60− (x − 5)2
)

0.2e−0.2xdx

= 29.745.

Finally, we obtain the interval of expe
ted losses [29.745, 52.736]. Using the random
set approa
h, we get

E(h) =

1−exp(−0.5·5)
∫

0

(

60− (−5 ln(1− γ)− 5)2
)

dγ + h(5)
[

F (5)− F (5)
]

+

1
∫

1−exp(−0.2·5)

(

60− (−2 ln(1− γ)− 5)2
)

dγ

= 52.736.

E(h) =

0.76
∫

0

(

60− (−5 ln(1− γ)− 5)2
)

dγ +

1
∫

0.76

(

60− (−2 ln(1− γ)− 5)2
)

dγ

= 29.745.

If the fun
tion h is symmetri
 about a, i.e., the equality h(a − x) = h(a + x)
is valid for all x ∈ R, then the value of α in (19) does not depend on h and is

determined as

a− F
−1

(α) = F−1(α)− a.

Note that expressions (10),(11) 
an be obtained from (15),(16) by taking a → ∞.

4.2. Conditional expe
tations. We now 
onsider 
onditioning by an event B =
[b0, b1], while h is still assumed to have one maximum. The following proposition

indi
ates how lower and upper 
onditional expe
tations 
an be 
omputed in this


ase.

Proposition 4. If the fun
tion h has one maximum at point a ∈ R, then the upper

and lower 
onditional expe
tations of h(X) on [F , F ] after observing the event B
are

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),
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with

Ψ(α, β) = I(α<F−1(a))

∫ a

F−1(α)

h(x)dF + I
(β>F

−1
(a))

∫ F
−1

(β)

a

h(x)dF

+ h(a)
(

min(F (a), β) −max(F (a), α)
)

Φ(α, β) = h(b0)
(

F (b0)− α
)

+

∫ F
−1

(ε)

b0

h(x)dF

+ h(b1) (β − F (b1)) +

∫ b1

F−1(ε)

h(x)dF

Here I(a<b) is the indi
ator fun
tion taking 1 if a < b and 0 if a ≥ b; ε is one of

the roots of the following equation:

(26) h
(

F
−1

(ε)
)

= h
(

F−1(ε)
)

.

Proof. The proof follows from Proposition 1 where Ψ(α, β),Φ(α, β) are respe
tively
repla
ed by formulas given in Proposition 3. �

Example 4. We 
onsider the same h as in Example 3, the same p-box [F , F ] as
in the other examples, and the 
onditioning event B = [1, 8]. From Example 3, the

solutions of Eq. (26) are ε = 1−exp(−10/7) = 0.76, F−1(ε) = 7.14, F
−1

(ε) = 2.85.
We also have a = 5, F (a) = 1 − exp(−0.2 · 5) = 0.63, F (a) = 1 − exp(−0.5 · 5) =
0.92. Let us �rst 
on
entrate on

E(h|B) = sup
0.18≤α≤0.39
0.8≤β≤0.98

1

β − α
Ψ(α, β),

where

Ψ(α, β) = I(α<0.63)

∫ 5

−5 ln(1−α)

(

60− (x − 5)2
)

0.2e−0.2xdx

+ I(β>0.92)

∫ −2 ln(1−β)

5

(

60− (x− 5)2
)

0.5e−0.5xdx

+ 60
(

min(1− e−0.5·5, β)−max(1− e−0.2·5, α)
)

=
(

25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32
)

+ 60 (min (0.92, β)− 0.63)

+ I(β>0.92)

(

4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73
)

sin
e 0.18 ≤ α ≤ 0.39, we have I(α<0.63) = 1. Let us then 
onsider the two sets of

value [0.8, 0.92] and (0.92, 0.98] for whi
h I(β>0.92) takes di�erent values, and the

respe
tive fun
tions Ψ1(α, β),Ψ2(α, β) asso
iated to them:

Ψ1(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32 + 60 (β − 0.63)

Ψ2(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32

+ 4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73 + 17.4

It 
an be 
he
ked that the derivative

dΨ1(α,β)/(β−α)/dβ is positive for 0.18 ≤ α ≤ 0.39,
hen
e the maximum of Ψ1(α, β)/(β − α) is a
hieved at β = 0.98. Also, sin
e
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Figure 4. Optimal distribution (thi
k) for 
omputing upper 
on-

ditional expe
tation on B = [1, 8]

Ψ1(α, 0.98)/(0.98− α) de
reases as α in
reases, we have

sup
1

β − α
Ψ1(α, β) =

1

0.98− 0.18
Ψ1(0.18, 0.98) = 56.52.

A similar analysis for

Ψ2(α,β)/(β−α) shows that maximum is a
hieved for α = 0.39,
β = 0.8. Hen
e

sup
1

β − α
Ψ2(α, β) =

1

0.8− 0.39
Ψ2(0.39, 0.8) = 59.57.

and, �nally, we have E(h|B) = max(56.52, 59.57) = 59.57. Figure 4 gives an illus-

tration of the extremizing 
umulative distribution for whi
h this upper 
onditional

expe
tation is rea
hed.

Let us now detail the 
omputations for

E(h|B) = inf
0.18≤α≤0.39
0.8≤β≤0.98

1

β − α
Φ(α, β),

where

Φ(α, β) =
(

60− (1− 5)2
)

(0.39− α) +

∫ 2.85

1

(

60− (x − 5)2
)

0.5e−0.5xdx

+
(

60− (8− 5)2
)

(β − 0.8) +

∫ 8

7.14

(

60− (x− 5)2
)

0.2e−0.2xdx

= 51β − 44α− 3.54.

The fun
tion

1
β−αΦ(α, β) in
reases as α in
reases by arbitrary 0.8 ≤ β ≤ 0.98 and

in
reases as β in
reases. This implies that E(h|B) = 1/(0.8−0.18) (51 · 0.8− 44 · 0.18− 3.54) =
47.32.

Note that, in the general 
ase, four fun
tions Ψi (
orresponding to all 
ombina-

tions of values of I(α<F−1(a)), I(β>F
−1

(a))
inside {0, 1}2) would have to be 
onsidered

in the 
omputation of E(h|B). Example 4 well illustrates the fa
t that when h is

non-monotone, analyti
al solutions 
an still be found in some 
ases, but that they

tend to be
ome tedious to 
ompute. This will be 
on�rmed in the next se
tion.
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5. Fun
tions with lo
al maxima/minima

Now we 
onsider a general form of the fun
tion h, i.e., the fun
tion h (x) has

alternate lo
al maxima at point ai, i = 1, 2, ... and minima at point bi, i = 0, 1, 2, ...,
su
h that

(27) b0 < a1 < b1 . . . < bi < ai < bi+1 < . . .

Note that, in this 
ase, studying the shape of the extremizing 
umulative distribu-

tion rea
hing lower expe
tation is su�
ient, thanks to the duality between lower

and upper expe
tation.

Proposition 5. If lo
al maxima (ai) and minima (bi) of the fun
tion h satisfy


ondition (27), then the extremizing distribution F for 
omputing the lower un
on-

ditional expe
tation E(h) has dis
ontinuities (verti
al jumps) at points bi, i = 1, ....
of the size

min
(

F (bi) , αi+1

)

−max (F (bi) , αi) .

Between points bi−1 and bi, that is between dis
ontinuities numbered i− 1 and i,
the extremizing 
umulative probability distribution fun
tion F is of the form:

F (x) =







F (x) , x < a′

α, a′ ≤ x ≤ a′′

F (x) , a′′ < x
,

where α is the root of the equation

h
(

max
(

F
−1

(α) , bi−1

))

= h
(

min
(

F−1 (α) , bi
))

in interval

[

F (ai) , F (ai)
]

, and a′,a′′ are su
h that

a′ = max
(

F
−1

(α) , bi−1

)

, a′′ = min
(

F−1 (α) , bi
)

.

The upper expe
tation E(h) 
an be found from the 
ondition E(h) = −E(−h).

Proof using linear programming. This proof is based on the investigation of

the following lo
al primal and dual optimization problems for 
omputing the lower

expe
tation of h in �nite interval [b0, b1) where h has one maximum at point a1:

Primal problem:

Min. v =
∫ b1
b0

h (x) f (x)dx

subje
t to

f (x) ≥ 0, F0 ≥ 0, F1 ≥ 0,
−
∫ x

b0
f (t) dt− F0 ≥ −F (x) ,

∫ x

b0
f (t) dt+ F0 ≥ F (x) ,

−F0 ≥ −F (b0) ,F0 ≥ F (b0) ,
−F1 ≥ −F (b1) ,F1 ≥ F (b1) ,
∫ b1
b0

f (t) dt+ F0 − F1 = 0.

Dual problem:

Max. w = −c0F (b0) + d0F (b0)− c1F (b1)

+d1F (b1) +
∫ b1
b0

(

−F (x) c (x) + F (x) d (x)
)

dx

subje
t to

e+
∫ b1
x

(−c (t) + d (t)) dt ≤h (x) ,

e− c0 + d0 +
∫ b1
b0

(−c (t) + d (t)) dt ≤0,

−e− c1 + d1 ≤ 0,
c (x) ≥ 0,c0 ≥ 0,c1 ≥ 0,
d (x) ≥ 0,d0 ≥ 0,d1 ≥ 0,e ∈ R

The optimal solutions of the above problems 
orrespond to the extremizing dis-

tribution for values x ∈ [b0, b1). F0 := F (b0) and F1 := F (b1) respe
tively stand for

the values of the extremizing F in b0 and b1. The proof then follows in two main

steps:
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Figure 5. Four 
ases of pie
e-wise extremizing F

(1) Find optimal solution (that is, propose a feasible solution whi
h 
oin
ide for

both the primal and dual problem) for the above primal and dual problems,

and 
onsequently the values of the extremizing F between any two lo
al

minima [bi, bi+1]
(2) Show that the 
ombination of these pie
e-wise extremizing F 
orrespond

to a 
umulative distribution.

Step (1) of the proof To �nd optimal solution between x ∈ [b0, b1], we will


onsider every possible 
ases. First, we 
an di�erentiate between two main 
ases,

depending on the inequality relation between F (b0) and F (b1).
Case 1. F (b0) > F (b1). The optimal solution in this 
ase is of the form: it


orresponds to the solution f (x) = 0, F (x) = F0 = F1 = α, where α is an arbitrary

number satisfying the 
ondition F (b1) < α < F (b0) for the primal problem and to

the solution c (x) = d (x) = 0, c0 = d0 = c1 = d1 = e = 0 for the dual problem. See

Fig. 5 for an illustration

Case 2. F (b0) ≤ F (b1). This 
ase is similar to the one 
onsidered in Se
tion 4,

sin
e between [b0, b1), h has a maximum for x = a1 and is in
reasing (resp. de-


reasing) in [b0, a1] (resp. [a1, b1)). We will therefore pro
eed in the same way as

in the proof of Proposition 3 to �nd the optimal solution. First re
all (Lemma 1)

that there is a value α whi
h is a root of the fun
tion

ϕ (α) = h
(

max
(

F
−1

(α) , b0

))

− h
(

min
(

F−1 (α) , b1
))
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with α ∈
[

F (a1) , F (a1)
]

. Three sub
ases 
an now o

ur, depending whether α is

inside [F (b0) , F (b1)] or is higher/lower than any value in this interval. We now

give details about ea
h of these sub
ases, the reasoning being similar to the one

in the proof of Proposition 3. All sub
ases and asso
iated extremizing distribution

are illustrated in Fig. 5

Sub
ase 2.1. F (b0) ≤ α ≤ F (b1) (α ∈ [F (b0) , F (b1)]). Let us denote a′ =

F
−1

(α), a′′ = F−1 (α). Then the optimal solution is of the form:

f (x) =







dF (x)/dx, b0 < x < a′

0, a′ 6 x 6 a′′

dF (x) /dx, a′′ < x < b1

,

F0 = F (b0) , F1 = F (b1) .

This implies that

F (x) =

∫ x

b0

f (t) dt+ F0 =







F (x) , b0 < x < a′

α, a′ 6 x 6 a′′

F (x) , a′′ < x < b1

.

Let us now give the 
orresponding solution to the dual problem, and show that

they are equal. A

ording to relations between primal/dual problem, we have that

if a′ < x < b1, then c (x) = 0, and if b0 < x < a′′, then d (x) = 0. It is obvious that
d0 = c1 = 0. Consider the 
onstraint

e+

∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for di�erent intervals of x.
Let a′′ < x < b1. Then there holds

e+

∫ b1

x

d (t) dt = h (x) .

Hen
e d (x) = −h′ (x) and e = h (b1).
Let a′ ≤ x ≤ a′′. Then the following inequality

e+

∫ b1

a′′

d (t) dt ≤ h (x)

or h (a′′) ≤ h (x) has to be valid. Indeed, the inequality is valid due to the 
ondition

h (a′) = h (a′′).
Let b0 < x < a′. Then

e−

∫ a′

x

c (t) dt+

∫ b1

a′′

d (t) dt = h (x)

or

−

∫ a′

x

c (t) dt+ h (a′′) = h (x) .

Hen
e c (x) = h′ (x). The equality

e− c0 + d0 +

∫ b1

b0

(−c (t) + d (t)) dt = 0

shows that

h (b1)− c0 − h (a′) + h (b0)− h (b1) + h (a′′) = 0
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and c0 = h (b0). It follows from the equality −e − c1 + d1 = 0 that there holds

d1 = e = h (b1). In sum, we have

c (x) =

{

h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) =

{

0, b0 < x < a′′

−h′ (x) , a′′ 6 x 6 b1
,

c0 = h (b0) , d0 = c1 = 0, d1 = e = h (b1) .

Let us now show that the two obtained solution 
oin
ide:

zmin =

∫ a′

b0

h (x) dF (x) +

∫ b1

a′′

h (x) dF (x)

wmax = −F (b0)h (b0) + F (b1)h (b1)−

∫ a′

b0

F (x)h′ (x)dx−

∫ b1

a′′

F (x) h′ (x)dx

or

wmax = −F (b0)h (b0) + F (b1)h (b1)

+

∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

+

∫ b1

a′′

h (x) dF (x) − F (b1)h (b1) + F (a′′)h (a′′)

= zmin.

Hen
e the proposed solution is the optimal one.

Sub
ase 2.2. α > F (b1) ([F (b0) , F (b1)] ≤ α). Denote a′ = F
−1

(α). Then

the optimal solution to the initial problem is:

f (x) =

{

dF (x) /dx, b0 < x < a′

0, a′ 6 x 6 b1
, F0 = F (b0) , F1 = α,

F (x) =

∫ x

b0

f (t) dt+ F0 =

{

F (x) , b0 < x < a′

α, a′ 6 x 6 b1
.

The 
orresponding solution for the dual problem is su
h that if a′ < x < b1, then
c (x) = 0, and if b0 < x < b1, then d (x) = 0, hen
e we have d0 = c1 = 0. Again,


onsider the 
onstraint

e+

∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for di�erent intervals. Let a′ < x < b1. Then the 
ondition e ≤ h (x) must be valid.
Let b0 < x < a′. Then there holds

e −

∫ a′

x

c (t) dt = h (x) .

Consequently, there hold the equalities c (x) = h′ (x) and e = h (a′). Hen
e the

inequality e = h (a′) ≤ h (x) is valid for the interval a′ < x < b1. The equality

e− c0 + d0 +

∫ b1

b0

(−c (t) + d (t)) dt = 0
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shows that h (a′) − c0 − h (a′) + h (b0) = 0, and, therefore, c0 = h (b0). It follows

from the equality −e− c1+ d1 = 0 that there holds d1 = e = h (a′). In sum, we get

c (x) =

{

h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) = 0, c0 = h (b0) , d0 = c1 = 0, d1 = e = h (a′) .

The obtained solutions for the primal and dual problems are su
h that:

zmin =

∫ a′

b0

h (x) dF (x) ,

wmax = −F (b0)h (b0) + F (a′)h (a′)−

∫ a′

b0

F (x) h′ (x)dx

or

wmax = −F (b0)h (b0) + F (a′)h (a′)

+

∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

= zmin.

Consequently, this is the optimal solution.

Sub
ase 2.3. α < F (b0) (α ≤ [F (b0) , F (b1)]). Denote a′′ = F−1
(

F (b0)
)

.

Then the optimal solution to the primal problem is

f (x) =

{

0, b0 6 x 6 a′′

dF (x) /dx, a′′ < x < b1
, F0 = α, F1 = F (b1) .

F (x) =

{

α, b0 6 x 6 a′′

F (x) , a′′ < x < b1
.

and the proof is similar to the one of above 
ases. Optimal shape of F for any

interval [bi, bi+1] 
an be obtained by repla
ing b0 and b1 by respe
tively bi and

bi+1 in the above proofs, as they are general (as pi
tured on Fig. 5). All is left to

prove is that the 
on
atenated F obtained by the pie
e-wise extremizing solutions

is in
reasing (i.e., that Fi for [bi−1, bi] is lower or equal than Fi for [bi, bi+1]).
Step (2) of the proof Now we show that the joint extremizing distribution

fun
tion is in
reasing. Without loss of generality we 
onsider only two intervals

[b0, b1] and [b1, b2]. The maximal value of the fun
tion F (x) in the interval [b0, b1]
is max

(

F (b0) , F (b1)
)

for all the 
ases. The minimal value of the fun
tion F (x) in

the interval [b1, b2] is min
(

F (b1) , F (b2)
)

for all the 
ases.

If F (b2) ≥ F (b0), then

min
(

F (b1) , F (b2)
)

≥ max
(

F (b0) , F (b1)
)

.

This means that the fun
tion is in
reasing.

If F (b2) < F (b0), then F (b1) < F (b0) and we 
an take F (x) = F (b1) for the
left interval. On the other hand, F (b2) < F (b1) and we 
an take F (x) = F (b1)
for the left interval. It follows from the 
ondition F (b1) < F (b1) that the fun
tion
F (x) is in
reasing in two neighbour intervals.

Figure 6 gives an example of a general extremizing distribution. �
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Proof using random sets. For 
onvenien
e, we will 
onsider that h begins with

a lo
al minimum and ends with a lo
al maximum an. Formulas when h begins

(resp. ends) with a lo
al maximum (resp. minimum) are similar. Lower/upper

expe
tations 
an be 
omputed as follows:

E(h) =

F (bn)
∫

0

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ))dγ +

1
∫

F (bn)

h(a∗γ)dγ,

E(h) =

F (a1)
∫

0

h(a∗γ)dγ +

F (an)
∫

F (a1)

max
ai∈Aγ

(h(a∗γ), h(ai), h(a
∗
γ))dγ.

We 
on
entrate on the formula giving the lower expe
tation (details for upper one

are similar). The most interesting part is the �rst integral. We 
onsider a parti
ular

level γ. Let B = {bi, . . . , bj} (i ≤ j) be the set of lo
al minima in
luded in the set

Aγ (B 
an be empty). bi−1 and bj+1 are the 
losest lo
al minima outside Aγ . We

then 
onsider the minimal ∆γ := γ+ δγ su
h that minbi∈Aγ
(h(a∗γ), h(bi), h(a

∗
γ)) 6=

minbi∈A∆γ
(h(a∗,∆γ), h(bi), h(a

∗
∆γ)) withminx∈A∆γ

h(x) 6= h(a∗,∆γ) ifminx∈Aγ
h(x) =

h(a∗,γ) and minx∈A∆γ
h(x) 6= h(a∗∆γ) if minx∈Aγ

h(x) = h(a∗γ). As in LP proof, four

di�erent 
ases 
an o

ur:

Case A: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(bk′),

with k 6= k′ and where h(bk) and h(bk′) are respe
tively the lowest lo
al minima

of h(x) for x ∈ Aγ and x ∈ A∆γ . That is, probability mass is 
on
entrated on bk
from γ to ∆γ, and 
on
entrates on bk′

for values γ′ ≥ ∆γ. This 
orrespond to Case

1. of Fig. 5 and of the previous proof. In Fig. 6, it 
orresponds to the extremizing

distribution between b2 and b3.
Case B: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(a∗γ)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(a∗∆γ).

This 
an happen when any lo
al minimum inside Aγ ,A∆γ is higher than lo
al

minima just outside it. In this 
ase, it 
an happen that minimal values stand at

the bounds of intervals Aγ′
for any γ ≤ γ′ ≤ ∆γ. This 
orresponds to Case 2.1.

of Fig. 5 and of the previous proof. In Fig. 6, it 
orresponds to the extremizing

distribution between b4 and b5.
Case C: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(a∗∆γ).
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1

α1
α2

α3

α4

b1 b2 b3 b4 b5a1 a2 a3 a4

Figure 6. Example of Optimal F with general h

With h(bk) the lowest lo
al minima for bk ∈ Aγ . The minimum shift from the left

bound of Aγ (
oin
iding with F ) to bk. This 
orresponds to Case 2.2. of Fig. 5

and of the previous proof. In Fig. 6, it 
orresponds to the extremizing distribution

between b1 and b2.
Case D: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = ha∗γ)

and

min
bi∈A∆γ

(h(a∗,∆γ), h(bi), h(a
∗
∆γ)) = h(bk′).

With h(bk′) the lowest lo
al minima for bk′ ∈ A∆γ . Situation is similar to the

previous 
ase, and 
orresponds to Case 2.3. of Fig. 5 and of the previous proof. In

Fig. 6, it 
orresponds to the extremizing distribution between b3 and b4.
When minbi∈Aγ

(h(a∗γ), h(bi), h(a
∗
γ)) = minbi∈A∆γ

(h(a∗γ), h(bi), h(a
∗
γ)) = h(bk)

with bk ∈ Aγ∩A∆γ , probability mass stay 
on
entrated on bk, and this 
orresponds

to a dis
ontinuity mentioned in Proposition 5. By letting γ evolve from 0 to 1, we
get the extremizing 
umulative distribution of Proposition 5. �

Looking at the extremizing distribution F pi
tured in Figure 6, we 
an see that


omputing the lower expe
tation 
onsists in 
on
entrating probability masses over

lo
al minima, while giving the less possible amount of probability mass to higher

values of h(x), as in the 
ase of a fun
tion having one maximum. Thus, our results


on�rm what 
ould have intuitively be guessed at �rst sight. They also give an-

alyti
al and 
omputational tools to 
ompute lower and upper expe
tations. They

are illustrated in the next example.

Example 5. We 
onsider the same p-box [F , F ] as in the previous examples (see

Example 1). However, we assume that the loss fun
tion is of the type h(x) =
(0.6x) cos(x). It 
ould, for instan
e, model the return of a game based on the move-

ment of a pendulum. It 
ould also model the loss in
urred by a unit failure whose

fun
tioning alternate between low and full 
apa
ity (failure during low 
apa
ity peri-

ods 
osting less). As a loss after failure has to be positive, one 
an 
onsider h(x)+µ,
with µ a positive 
onstant

2

. h(x) is os
illating between lo
al maxima and minima.

2

This does not 
hange further 
al
ulations, as E(h+ µ) = E(h) + µ.
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These extrema are solutions of cos(x) = x sin(x):

a1 = 0.860, b1 = 3.426, a2 = 6.437, b2 = 9.529, a3 = 12.645,

b3 = 15.771, a4 = 18.902, b4 = 22.036, a5 = 25.172, b5 = 28.31.

We will 
ompute the extremizing distribution for ea
h intervals [bi, bi+1) for i =
1, . . . , 5, with b0 = 0. Let us analyze the �rst interval [0, b1). The value α ∈ (0, 1)
in this interval 
an be found as a root of the equation

(max (−2 ln(1− α), 0)) · cos(max (−2 ln(1− α), 0))

= (min (−5 ln(1− α), 3.426)) · cos(min (−5 ln(1 − α), 3.426)).

However, many di�erent values of α ∈ (0, 1) are solutions to the above equations.

Relying on the proof of Proposition 5 and on the various sub
ases exposed therein

(see Fig. 5), we should, for a given interval [bi, bi+1), take only root(s) whi
h pro-

vides the interval [a′, a′′] su
h that ai ∈ [a′, a′′]. For [0, b1), this 
orresponds to

α = 0.215, for whi
h values a′, a′′ are

a′ = max (−2 ln(1 − α), bi−1) = max (−2 ln(1− 0.215), 0) = 0.483,

a′′ = min (−5 ln(1− α), bi) = min (−5 ln(1 − 0.215), 3.426) = 1.209.

It 
an be seen from the above that a1 = 0.860 ∈ [0.483, 1.209]. We 
an now deter-

mine the extremizing distribution fun
tion in [0, b1), whi
h is as follows:

F (x) =







1− exp(−0.5 · x), x < 0.483
0.215, 0.483 ≤ x ≤ 1.209
1− exp(−0.2 · x), 1.209 < x < 3.426

.

This 
orresponds to the 
ase 2.1. of Figure 5. the "jump" (i.e., probability mass)

at point b1 is of the size

min (1− exp(−0.5 · 3.426), 0.808)−max (1− exp(−0.2 · 3.426), 0.215) = 0.312.

Sin
e F (3.426)− F (3.426) = 0.33 > 0.312, this means that the extremizing distri-

bution in [b1, b2) starts with a 
onstant value F (b1) = F (3.426) + 0.312 = 0.808
and with an horizontal line. Moreover, we 
an 
he
k that 0.808 is the right starting

point sin
e it is a root of the equation

max (−2 ln(1− α), 3.426) · cos(max (−2 ln(1− α), 3.426)

= min (−5 ln(1− α), 9.529) · cos(min (−5 ln(1− α), 9.529) .

And we have a′ = 3.426 and a′′ = 8.263 for α = 0.808. By taking into a

ount the

analysis of the �rst interval, we 
an write

F (x) =

{

0.808, 3.426 ≤ x ≤ 8.263
1− exp(−0.2 · x), 8.263 < x < 9.529

.

This 
orrespond to 
ase 2.3. of Figure 5. the jump at b2 has value 9.77 × 10−2
,

and we have again F (9.529)− F (9.529) = 0.14 > 9.77 × 10−2
. Analysis for other

intervals are similar (they all belong to 
ase 2.3.). For the third interval [b2, b3),
α = 0.948, a′ = 9.529, a′′ = 14.831 and we have

F (x) =

{

0.949, 9. 529 ≤ x ≤ 14. 831
1− exp(−0.2 · x), 14. 831 < x < 15.771

.
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The jump at b3 is of value 2.867× 10−2
, and for [b3, b4), we have α = 0.986, a′ =

15.771, a′′ = 21.255 and

F (x) =

{

0.986, 15.771 ≤ x ≤ 21.255
1− exp(−0.2 · x), 21.255 < x < 22.036

.

The jump at b4 is of value 8.189 × 10−3
, and for [b4, b5), we have α = 0.996,

a′ = 22.036, a′′ = 27.62 and

F (x) =

{

0.996, 22.036 ≤ x ≤ 27.62
1− exp(−0.2 · x), 27.62 < x < 28.31

.

The jump at point b5 is of the size 3.076× 10−3
.

Note that jump sizes de
rease as index i in
rease. This is not true in general,

and is here due to the parti
ular shape of h(x). By 
omputing the extremizing dis-

tribution for every interval [bi−1, bi), we 
an rea
h the lower expe
tation. That is, if

we note Ei(h) the lower expe
tation of h 
omputed with the extremizing distribution

obtained for i intervals [bj−1, bj), j = 1, . . . , i, and if h have a �nite number of lo
al

maxima and minima, say r, then E(h) = Er(h). However, in this example, r = ∞
and E(h) = limr→∞ Er(h). Therefore, only an approximate solution 
an be found

3

.

We 
an therefore let r in
rease until

∣

∣Er(h)− Er−1(h)
∣

∣ ≤ ε, with ε > 0 a pres
ribed

pre
ision. For instan
e, we have

E1(h) =

∫ 0.483

0

0.6x cos(x) · 0.5e−0.5xdx

+

∫ 3.426

1.209

0.6x cos(x) · 0.2e−0.2xdx

+ 0.6 · 3.426 cos(3.426) · 0.312

= −0.82.

Pursuing the 
omputations, we have

E2(h) = −1.558, E3(h) = −1.9, E4(h) = −2.033, E5(h) = −2.093.

If we take ε = 0.1, then |E5(h)− E4(h)| = 0.06 < 0.1, and we 
onsider E5(h) =
−2.093 as a su�
ient approximation of the true (but unknown) lower approxima-

tion. Upper expe
tation of h 
an be obtained by 
onsidering the fun
tion −h(x) and
by 
omputing E(−h). Hen
e E(h) = −E(−h) = 1.94 (approximation with ε = 0.1).

This example is useful in two respe
ts: �rst, it illustrates why it is useful to have

results 
on
erning the pie
e-wise extremizing distribution; se
ond, it shows that

even when analyti
al 
al
ulations are possible, it is not always possible to 
ompute

an exa
t value, hen
e the interest of the generi
 methods proposed in Se
tion 2.

This is parti
ularly true when h has an in�nity of lo
al extrema and when F , F
have in�nite support. It also addresses the question of the 
hoi
e of levels α when

many solutions are possible.

Coming ba
k to numeri
al approximations using linear programming, our results

indi
ates that some regions should be sampled in priority. For example, when 
om-

puting lower expe
tations, one should primarily 
onsider values bi (lo
al minima)

and sample in neighbourhoods of these values, as it is where probability masses are


on
entrated. The 
onverse (sampling around lo
al maxima) holds when 
omputing

upper expe
tations.

3

We assume here that the expe
tation E(h) exists.
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If we now 
onsider random set, we 
an formulate the problem of 
omputing lower

expe
tations as follows: let m be the number of lo
al minima, and let γj∗ , γj∗ be

the two values bounding the probability mass 
on
entrated on lo
al minima bj , for
j = 1, . . . ,m (for example, for the lo
al minima b2 in Figure 6, we would have

γ2∗ = α1, γ2∗ = α2), then

(28) E(h) =

m
∑

j=1

(

γj∗
∫

γ(j−1)∗

min(h(a∗γ), h(a
∗
γ))dγ + (γ(j)∗ − γj∗)h(bj)).

This 
omes down to sum all the probability masses 
on
entrated on lo
al minima,

and to 
al
ulate integrals when the extremizing distribution 
oin
ide either with F
or F . Note that, as in Example 5, m 
ould be equal to ∞. This formulation 
learly

shows that, when using numeri
al methods with the random set approa
h, there is

no need to dis
retize in �ner intervals the intervals [γj∗ , γ(j)∗ ], as it won't improve

the pre
ision of the result.

The 
ase of 
onditional expe
tation with general fun
tion will not be treated

here, as it would require long development that wouldn't bring many new ideas.

6. Con
lusions

We have 
onsidered the problem of 
omputing lower and upper expe
tations on

p-boxes and parti
ular fun
tions under two di�erent approa
hes: by using linear

programming and by using the fa
t that p-boxes are spe
ial 
ases of random sets.

Although the two approa
hes try to solve equivalent problems, their di�eren
es

suggest di�erent ways to approximate the solutions of those problems. As we have

seen, knowing the behaviour of the fun
tion over whi
h lower and upper expe
ta-

tions are to be estimated 
an greatly in
rease the 
omputational e�
ien
y (and

even permit analyti
al 
omputation).

However, more important than their di�eren
es is the 
omplementarity of both

approa
hes. Indeed, one approa
h 
an shed light on some problems obs
ured by the

other approa
h (e.g., the level α of proposition 3). Another advantage of 
ombining

both approa
hes is the ease with whi
h some problems are solved and the elegant

formulation resulting from this 
ombination (e.g., the 
onditional 
ase). Let us

nevertheless note that the 
onstraint programming approa
h 
an be applied to

impre
ise probabilities in general, while the random set approa
h is indeed limited

to random sets.

In this paper, we have 
on
entrated on the 
ase where un
ertainty bears on one

variable. The 
ase where multiple variables are tainted with un
ertainty des
ribed

by p-boxes will be studied in a forth
oming paper. Con
erning future work related

to this topi
, three lines of resear
h seem interesting to us:

• study of other simple representations : it is desirable to a
hieve similar

studies for other simple un
ertainty representations involving sets of proba-

bilities. This in
ludes probability intervals [6℄, possibility distributions [10℄,


louds [20℄.

• Dis
retization s
hemes : when exa
t solutions 
annot be 
omputed, what is

the best 
hoi
e of points x1, . . . , xN or of levels γ1, . . . , γM , respe
tively to

approximate the solution by using LP or RS (already mentioned by other

authors [23℄). We have mentioned how our results 
an possibly help in this
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task, but proposing generi
 algorithms and empiri
ally testing them largely

remains to be done.

• Convex mixture of fun
tions : in some appli
ations, one 
an 
hoose a strat-

egy that is a 
onvex mixture between a �nite set of options having utility

h1, . . . , hN . For su
h 
ases, one often has to �nd the weights λ1, . . . , λN

su
h that

∑

i=1,N λihi have the maximal lower expe
tation. It would be

interesting to study whether similar results as the ones exposed in this paper

also exists for this problem when using simple un
ertainty representations

(e.g., p-boxes).

We would like to end this paper with two �nal remarks:

• it is 
lear from our results that extreme distributions over whi
h the upper

and lower expe
tations will be rea
hed will be, in general, dis
ontinuous.

Sin
e any dis
ontinuous fun
tions 
an be approximated as 
lose as one

wants by 
ontinuous ones, we do not see it as a big �aw. However, in

some 
ases, it 
ould be desirable to add 
onstraints about whi
h 
umulative

distributions inside [F , F ] are admissible. This kind of questions is adressed,

for example, by Kozine and Krymsky [15℄.

• We mention at the beginning of the paper that our study is restri
ted to the


ase where either 
umulative distributions were assumed to be σ-additive
or where h was 
ontinuous. Again, this is not a big limitation when dealing

with pra
ti
al appli
ations, and this avoids many mathemati
al subtleties

arising with the 
onsideration of �nitely additive probabilities [19℄.
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