
Variable elimination for influence diagrams with super-value nodes

Manuel Luque and Francisco Javier Dı́ez
Departamento de Inteligencia Artificial. UNED

28040, Madrid, Spain

Abstract

In the original formulation of influence diagrams, each model contained exacly one utility
node. Tatman and Shachter (1990) introduced the possibility of having super-value nodes
that represent the sum or the product of their parents’ utility functions. However the
algorithm they proposed for dealing with super-value nodes has two shortcomings: it
requires dividing potentials when reversing arcs, and it tends to introduce unnecessary
variables in the resulting policies. In this paper we propose a new algorithm for influence
diagrams with super-value nodes that avoids these shortcomings and will be in general
much more efficient than their arc-reversal algorithm.

1 INTRODUCTION

In the original proposal by
Howard and Matheson (1984), each influence
diagram (ID) had only one utility node, whose
parents were necessarily random nodes or deci-
sion nodes. Later, Tatman and Shachter (1990)
proposed the inclusion of super-value nodes,
which are utility nodes whose parents are
utility nodes, and adapted the arc-reversal
algorithm (Olmsted, 1983; Shachter, 1986) to
cope with super-value nodes of type sum and
product. Other algorithms, which evaluate
an ID by recursively eliminating its variables
(Shenoy, 1992; Jensen et al., 1994), are in
general more efficient than arc reversal because
they do not need to divide potentials. They
permit that the ID to contain several utility
nodes (the global utility will be the sum of all
of them) but do not admit explicit super-value
nodes. All these algorithms try to keep the
separability of the utility function as long as
possible during the evaluation of the ID, not
only for the sake of efficiency, but also to
avoid the introduction of redundant variables
in the resulting policies. However, all of them
may introduce redundant variables, and for
this reason some authors have proposed other
algorithms that analyze the graph in order to
detect those actually required (Faguiouli and

Zaffalon, 1998; Shachter, 1998; Nielsen and
Jensen, 1999; Nilsson and Lauritzen, 2000;
Vomlelova and Jensen, 2002).

In this paper we will try to join the advan-
tages of all the previous algorithms in a new one
that (1) does not require the reversal of arcs,
(2) admits super-value nodes, and (3) keeps
the policy domains as small as possible with-
out the need of auxiliary algorithms for elimi-
nating redundant variables. The process con-
sists in transforming the utility function before
eliminating each variable, in order to keep its
separability as long as possible.

The remainder of this paper is structured
as follows. In Section 1.1 we introduce some
basic definitions. In Section 2 we present a
new algorithm by explaining how to eliminate
chance variables (Sec. 2.1) and decision vari-
ables (Sec. 2.2). We discuss related work and
future research lines in Section 3, and conclude
in Section 4.

1.1 DEFINITIONS

An ID with super-value nodes is an acyclic di-
rected graph that consists of three disjoint sets
of nodes: decision nodes VD, chance nodes
VC , and utility nodes VU . Given that each
node represents a variable, we will use indif-
ferently the terms variable and node. Chance
nodes/variables represent events that are not



under the direct control of the decision maker.
The decision nodes correspond to actions under
the direct control of the decision maker. We
suppose that there is a total ordering among the
decisions, which indicates the order in which the
decisions are made.

We differentiate two types of utility nodes:
ordinary, whose parents are decision and/or
chance nodes, and super-value, whose parents
are utility nodes, and may in turn by of two
types, sum and product. We assume that there
is a utility node U0 having no children.

An arc from decision Di to decision Dj means
that Di is made before Dj . We assume that
there is a total ordering of the decisions. An
arc from a chance node Xi to a decision node
Dj means that the value of variable Xi is known
when the decision is made. We assume the non-
forgetting hypothesis, which means that a vari-
able Xi known for a decision Dj is also known
for any posterior decision Dk, even if there is
not an explicit link Xi → Dk. A chance or de-
cision node without descendants is said to be
barren.

The quantitative information that defines an
ID is given by assigning to each random node
Xi a probability distribution p(Xi|pa(Xi)) for
each configuration of its parents, pa(Xi), and
assigning to each ordinary utility node Uj a
function ψj(pa(Uj)) that maps the configura-
tions of its parents onto the real numbers. The
utility associated to a super-value node of type
sum/product is the sum/product of the utility
functions of its parents (Tatman and Shachter,
1990).

The matrix of an ID ψ is defined by

ψ =

(

∏

i

p(Xi|pa(Xi))

)

ψ0 (1)

The total ordering of the decisions
{D1, . . . , Dn} induces a partition of the
chance variables {C0,C1, ...,Cn}, where Ci is
the set of variables known for Di and unknown
for Di+1.

The maximum expected utility of an ID whose
chance and decision variables are all discrete is

defined by

MEU (∆∗) =
∑

c0

max
d1

. . .
∑

cn−1

max
dn

∑

cn

ψ (2)

An optimal policy δDi
is a function that maps

each configuration of the variables at the left of
Di in the above expression onto the value di of
Di (more exactly, one of the values of Di) that
maximize(s) the expression at the right of Di:

δDi
(c0, d1, . . . , di−1, ci−1)

= argmax
di∈Di

∑

ci

max
di+1

. . .
∑

cn−1

max
dn

∑

cn

ψ (3)

However, in many cases δDi
does not

depend on some of the variables in
{C0, D1, . . . , Di−1,Ci−1}, which are then
called redundant variables. When a variable is
redundant as a consequence of the form of the
graph, it is said to be structurally redundant.

For instance, for the graph given in Figure 1,

MEU (∆∗) =
∑

B

max
D

∑

A

P (a) · P (b)·

(U1(a) + (U2(a, d) + U3(b)))

In principle, the domain of the policy δD is
{B}, but we will later see that, as a conse-
quence of the separability of the utility function,
dom(δD) = ∅, i.e., variable B is structurally re-
dundant for the decision D.

Figure 1: Graph of a small influence diagram
containing two super-value nodes.

The evaluation of an ID consists in finding its
MEU and a policy for each variable. The com-
putational complexity of performing the sum-
mation on Ci in Equation 2 grows exponentially



with the number of variables in Ci. Therefore,
it is in general more efficient to sum out its vari-
ables one by one. The cost of this recursive
elimination depends on the form of the func-
tions that define the matrix ψ (see Eq. 1) and
on the order in which the variables are elimi-
nated. The determination of the optimal elimi-
nation sequence is a NP-complete problem that
we will not address in this paper. Our work fo-
cuses on how to eliminate a variable, either by
summation or by maximization, with a double
goal: to eliminate it efficiently and to preserve
the separability of the matrix as much as possi-
ble.

2 VARIABLE-ELIMINATION ON

A TREE OF POTENTIALS

The basic idea of our algorithm consists in rep-
resenting the matrix of an influence diagram as
a tree of potentials (ToP), in which terminal
nodes represent probability potentials φi or util-
ity potentials ψj , and non-terminal nodes rep-
resent either the sum or the product of the po-
tentials represented by their children.

The construction of the ToP proceeds as fol-
lows. The root will always be a non-terminal
node of type product. Each probability poten-
tial of the ID is added a child of the root. Then,
we examine the bottom node of the ID, U0. If
it is an ordinary utility node or a super-value
node of type sum, it is also added as a child of
the root. On the other hand, if U0 is a super-
value node of type product, its parents in the
ID are added as children of the root in the ToP.
All the other utility nodes in the ID must be
added analogously, so that the ToP reproduces
the tree of utility nodes in the ID, although
upside-down, together with the probability po-
tentials. This way the ToP represents the ma-
trix of the ID.

The ToP for the ID in Figure 1, which repre-
sents the potential P (a) ·P (b) · [U1(a)+U2(a, d) ·
U3(b)], will consist of a product node with three
children, a sum node with two children, and a
product node with two children.

A super-value node in an ID is redundant if
it is of the same type (either sum or product)

as its child. A non-terminal node in the ToP is
redundant if it is of the same type as its parent.
Therefore the ToP will be free of redundancies if
and only if the ID was so. However a redundant
node in a ToP can be removed by transferring
its children to its parent.

In the context of trees of potentials, we will
sometimes use indifferently the terms node and
potential.

We describe in the next two subsections how
to eliminate chance and decision variables from
a ToP by applying the sum and max operators,
respectively. We will assume that the ToP does
not contain redundant nodes.

2.1 ELIMINATION OF A CHANCE
VARIABLE

The elimination of a chance variable A consists
in applying the operator

∑

A to the ToP. We
divide this process in two phases: we first unfork
the ToP, and then eliminate A in the leaves of
the new ToP. The following definitions will help
us to explain the algorithm.

Definition 1 A node of type product n is
forked with respect to (wrt) a variable A if A
belongs to the domain of some of its descendant
leaves.

Definition 2 A ToP is forked wrt A if at least
one of its (product) nodes is forked wrt Ȧ. Oth-
erwise, it is non-forked.

2.1.1 Algorithm for eliminating forked
nodes

Each node in a ToP may be implemented
as an object having a boolean property,
forkedTree, which is initialized to true for non-
terminal nodes (which means that the tree
rooted at this node may be forked wrt A) and
to false for terminal nodes.

The class ToPNode implements a method,
unfork, which takes variable A as a parameter
and returns a boolean value. The purpose of
this method is to unfork the node ni receiv-
ing the message and all its descendants. The
method returns true if the potential ψi depends
on A; otherwise, it returns false.

If ni is a leaf node, it is already unforked,
and the method can immediately return true or



false. If ni is a non-terminal node, it sends the
message unfork to all its children in order to
unfork its subtrees and to know how many of
its children depend on A. Then n1 compacts its
leaves, i.e., multiplies together all its children
that are terminal and dependant on A, and re-
places them by their product . If no children of
n1 depend on A, then the property forkedTree
is set to false and the method returns false. If
ni is a sum node or if exactly one child depends
on A, then forkedTree is set to false and the
method returns true. It ni is a product node
and two or more children depend on A, then ni

is forked and must be unforked by iteratively
distributing some of its potentials, as follows.

Let n1 and n2 be two of the children of ni

depending on A. Given that the tree has no
redundant nodes, n1 and n2 must be either ter-
minal or sum nodes, and since the leaves of ni

have been compacted, at least one of the two
—say n1— must be of type sum. Then n2 will
be distributed wrt the summands of n1.

Let us assume that n1 has j terminal chil-
dren and k− j non-terminal children, as shown
in Figure 2. Each terminal child n1,l will be
replaced by a product node having n′

1,l (see
Fig. 3). If the potential ψ1,l depends on A, we
will mark the new non-terminal node n′

1,l as un-

forkedTree=false1, and n′
1,l will receive the mes-

sage unfork. Analogously, each non-terminal
child n1,l —which must be of type product, be-
cause the tree has no redundant nodes— will
add n2 to its children, as shown in Figure 3.
Again, if the potential ψ1,l depended on A be-
fore adding n2, then n1,l must be marked as
unforkedTree=false and receive again the mes-
sage unfork. Then, we must mark n1 as un-
forkedTree=false so that n1 will receive the mes-
sage unfork.

As a result of the distribution, the number
of children of n depending on A has decreased
by one. If n is still forked, it will be necessary

1The purpose of the boolean property forkedTree,
whose purpose is to avoid the examination of subtrees
already unforked, must be set to true for n1,l so that
the fork method can process them again. However, the
subtrees of n1,l, which are already marked as forkedTree
will not be processed again, unless it is required by a
subsequent distribution of n2.

Figure 2: A tree of potentials (ToP) We assume
that both n1 and n2 depend on the chance vari-
able to be eliminated, A.

Figure 3: A ToP equivalent to the previous one,
in which n2 has been distributed with respect to
n1.

to distribute other of the child nodes that de-
pend on A—say n3— until n becomes unforked.
Then the property forkedTree is set to false and
the method returns true (because n depends on
A).

The algorithm for the method unfork may be
summarized as follows:

Algorithm 3 (unfork)
if forkedTree=true
send the message unfork to the children of ni

if ni is of type product then
compact its leaves;
while ni is forked {

distribute n2 wrt the sum node n1;
send again the message unfork to n1;
};

forkedTree:=false;
if ψi depends on A then
return true

else
return false;

It is clear that both the compaction of the
leaves and the distribution of a potential pre-



serve the value of the potential, because

ψ2 ×
k
∑

l=1

ψ1,l =
k
∑

l=1

ψ2 × ψ1,l (4)

Then, in order to guarantee the correctness of
the method, it suffices to prove that the algo-
rithm terminates. We prove it by induction on
the number of summands that would result in
the expansion of the tree.

Definition 4 The number of summands of the
expansion of a ToP rooted at node n, denoted
by s(n), is defined recursively as follows. If n
is a terminal node, then s(n) = 1. If n has
m children, n1, . . . , nm, and n is of type sum,
then s(n) =

∑m
i=1

s(ni); if n is of type product,
s(n) =

∏m
i=1

s(ni).

Lemma 5 Given the distribution operation ex-
plained above (see Figures 2 and 3), s(n′

1,l) <
s(ni).

Proof. We have that s(ni) = s(n1) · . . . ·
s(nm), which implies that s(ni) ≥ s(n1). Given
that n1 has more than one child and s(n1) =
∑k

l=1
s(n1,l), then s(n1) > s(n1,l) for all l,

s(n1) > 1, and s(ni) > s(n2).
If n1,l was a leaf node, then s(n′

1,l) = s(n2)
and s(n′

1,l) < s(ni). If n1,l was a non-terminal
node then s(n′

1,l) = s(n1,l) · s(n2) < s(n1) ·
s(n2) ≤ s(n1) · . . . · s(nm) = s(ni), which proves
the lemma.

Theorem 6 For every ToP, the algorithm fork
terminates in a finite number of steps.

Proof. We prove it by induction on the num-
ber of summands of the root of the tree, s(r),
taking into account that the number of children
of every node is finite.

If s(r) = 1 then the tree has only one ter-
minal node or one product node having a finite
number of leaves, and clearly the algorithm ter-
minates.

Let us now assume that the theorem holds
for all the trees such that s(r) ≤ n and let us
examine a tree such that s(r) = n + 1 ≥ 2. If
r is of type sum, then each subtree of r has at
most n summands (because r has at least two
children), and therefore the fork method ter-
minates for each child of r and for r itself. If

r is of type product, then at least one of the
children of r, say ni, must be of type sum (oth-
erwise s(r) would be 1). Therefore, the number
of summands for the other children of r is at
most n, which means that fork terminates. Sim-
ilarly, the number of summands of each child
of ni is at most n, which means that the al-
gorithm terminates for each child of ni and for
ni. When all the children of r have responded
to the fork message, it may happen that two
them, n1 and n2, depend on A. It is then neces-
sary to distribute one of them, say n2, wrt the
other, as shown in Figures 2 and 3, and to send
again the message fork to n1. Since the lemma
above states that s(n′

1,l) is at most n, the fork
method terminates for the children of n1 and,
consequently, for n1 itself. If ni has still other
children that depend on A, they must also be
distributed wrt n1, but the process terminates
for each node, and given that the number of
children of ni is finite, the whole process termi-
nates.

In the above example, whose potential was
P (a) · P (b) · [U1(a) + U2(a, d) · U3(b)], after dis-
tributing P (a) with respect to the sum node and
compacting the leaves, the new potential will be
P (b) · [U ′

1(a) + U ′
2(a, d) · U3(b)], where U

′
1(a) =

P (a) · U1(a) and U
′
2(a, d) = P (a) · U2(a, d).

2.1.2 Elimination of a chance variable
from a non-forked tree

When the tree is not forked, the process of
eliminating a chance variable A can be under-
stood as “transferring” the

∑

A operator from
the root of the ToP to the leaves that depend
on A, according with the following theorem.

Theorem 7 Let t be a ToP non-forked wrt
A representing the potential ψ. The potential
∑

A ψ is equivalent to the potential represented
by the ToP t′ obtained by replacing in t each
terminal node ψi depending on A in its domain
with the potential

∑

A ψi.

Proof. We prove the theorem by induction
on the depth of the ToP, d. When d = 1, the
tree has only one node, and the potential of the
tree is the same as that of the node. If ψ de-
pends on A, the theorem holds trivially. If ψ



does not depend on A, then
∑

A ψ = ψ, and no
substitution is necessary.

Theorem 8 Proof. Let us assume that the
theorem holds for any tree whose depth is not
greater than h and that there is a tree t of depth
d + 1, whose root r is necessarily an opera-
tor node having m children, t1, ..., tm, such that
each tree ti represents a potential ψi.
If r is a sum node, the potential represented

by the tree t is the sum of the ψi’s:

ψ = ψ1 + ...+ ψm (5)

Therefore,
∑

A

ψ =
∑

A

ψ1 + ...+
∑

A

ψm (6)

and, according with the induction hypothesis,
each potential

∑

A ψi can be obtained by sum-
ming out A on the terminal nodes that depend
of A.
If r is a product node, at most one of its chil-

dren will depend on A. If none of them depends
on A, then

∑

A ψ = ψ and the theorem holds.
If one potential, say ψj, depends on A, then

∑

A

ψ =
∑

A

m
∏

i=1

ψi =





∏

i6=j

ψi





∑

A

ψj (7)

Since the depth of tj is d, the theorem holds be-
cause of the induction hypothesis.

In the above example, whose unforked tree
represented the potential P (b)·[U ′

1(a)+U
′
2(a, d)·

U3(b)], U
′
1(a) must be replaced with the con-

stant u1 =
∑

a U
′
1(a), and U

′
2(a, d) with U2(d) =

∑

a U2(a, d).

2.2 ELIMINATION OF A DECISION
VARIABLE

The elimination of a decision variable D from a
potential ψ that does not depend on D is triv-
ial, because maxD ψ = ψ. The elimination from
a terminal potential is immediate. The elimina-
tion of D from a potential ψ represented by a
ToP whose root is of type sum and only one of
its children ψj depends on D can be simplified
to its elimination from ψi because

max
D

ψ = max
D

∑

i

ψi = max
D

ψj +
∑

i6=j

ψi (8)

However, when there are more potentials, say
{ψi}i∈J , that depend on D, we can only apply
that

max
D

ψ = max
D





∑

j∈J

ψj



+
∑

i/∈J

ψi (9)

If a potential ψ is given by the product of several
potentials, the equation

max
D

ψ = max
D

m
∏

i=1

ψi =





∏

i6=j

ψi



max
D

ψj (10)

can be applied only if all the ψi’s other than ψj

are non-negative and independent of D. In the
rest of this section we will assume that all the
potentials that make part of a product are non-
negative in order to be able to apply the above
equation.2

Then, the elimination of a decision variableD
is algorithmically more simple —although com-
putationally more expensive— than the elimi-
nation of a chance node: when a node at a ToP
has more than one children that depend on D,
all these children must be reduced into a unique
terminal node before eliminating D. We will re-
duce first the lower nodes by performing a depth
first search. The resulting tree will contain just
one terminal potential depending on D, say ψD.
The elimination of D just amounts to replacing
ψD in the potential with a new potential

ψ′
D = max

D
ψD (11)

which does not depend on D. The optimal pol-
icy for decision D is

δD = argmax
d∈D

ψD (12)

Given a decision Di, the domain of δDi
will

then be dom(ψDi
)\{Di}, which is a subset of

the variables in {C0, D1, . . . , Di−1,Ci−1}, be-
cause the rest of the variables have been elimi-
nated before Di. In practice, dom(δDi

) will be a

2We believe that it is a reasonable assumption, be-
cause in our experience in building influence diagrams
for medical applications we have often encountered neg-
ative utilities, but never as multiplicative factors of other
utilities. In any case, the algorithm should check it be-
fore applying Equation 10.



proper subset of such variables, because the ap-
plication of Equations 8 to 10 prevents that the
variables that do not belong to the ψj ’s make
part of the domain of ψD.

In the above example, after eliminating A the
potential represented by the ToP is U1 +U2(d) ·
U3(b). The maximization of this potential leads
to u1 + u2 · U3(b), where u2 = maxd U(d). The
optimal policy is δD() = argmax

d∈D
U(d), and its

domain is empty, as mentioned above. This way,
our algorithm has not included the structurally
redundant variable B, without needing to ana-
lyze the graph of the ID with an auxiliary algo-
rithm.

However, it is possible that the distribution
of a potential n2 during the elimination of a
chance variable A may duplicate a potential de-
pending on A, say ψi, on different branches of
the tree. This potential may be multiplied by
the potentials that depend on D, thus adding
the variables in ψi —other than A, which has
already been eliminated— to the domain of ψD,
even if ψi were a common factor that could have
been taken out by applying Equation 10. An is-
sue that remains to be analyzed is whether this
hypothetical situation may actually occur, and
if so, how to detect the common factors, in or-
der to guarantee that our algorithm does not
include structurally redundant variables in the
returned policies.

3 RELATED WORK AND

FUTURE RESEARCH

The algorithm that we have presented in the
previous sections preserves the separability of
the utility function in many situations in which
other algorithms would join several potentials.
For instance, in the above example, the al-
gorithm by Tatman and Shachter (1990) would
join U1, U2, and U3 into a single potential be-
fore eliminating A. This has two shortcom-
ings. The first one is the burden of operat-
ing with bigger potentials. The second one is
that after eliminating A, B is still a parent of
D, and consequently the policy δD returned by
this algorithm would depend on B, even though
this variable is structurally redundant. An ad-

ditional shortcoming of the algorithm by Tat-
man and Shachter is the need to divide po-
tentials when reversing an arc. For this rea-
son variable-elimination algorithms are in gen-
eral more efficient than arc-reversal (Bielza and
Shenoy, 1999).3

However, variable-elimination algorithms de-
veloped up to date (Shenoy, 1992; Jensen et
al., 1994; Jensen, 2001) were not able to deal
with IDs having a structure of super-value nodes
such as the one in our example. The algorithms
for detecting structural redundancies (Faguiouli
and Zaffalon, 1998; Shachter, 1998; Nielsen
and Jensen, 1999; Nilsson and Lauritzen, 2000;
Vomlelova and Jensen, 2002) have the same
shortcoming, so they cannot help the Tatman-
Shachter algorithm to remove redundant vari-
ables.

Even for some problems that could be solved
by variable-elimination, standard algorithms
will include redundant variables—see for in-
stance the example in (Jensen, 2001, Figure 7.4)

An open question is: given an ID without
product super-value nodes, is our algorithm
more efficient than previous ones? We claim
that in general it is, because the separability of
the utility function, which our algorithm tries
to keep as long as possible, leads to smaller
potentials. However, the elimation of the next
variable may join together some potentials that
our algorithm has tried to keep separated, thus
making some distributions of potentials unnec-
essary and counterproductive. It is necessary
to carry out experiments in order to empiri-
cally compare the efficiency of the available al-
gorithms.

As a consequence, another open issue is to
develop criteria, at least of heuristic nature, for
deciding if it is worthy in a certain situation

3If the purpose of the evaluation of an ID is just to
obtain the global utility and the optimal policy for each
decision (Eqs. 2 and 3) then variable-elimination algo-
rithms do not need to divide potentials. However, if we
are interested in knowing as well the utility correspond-
ing to each option of a decision, then variable-elimination
algorithms must differentiate probability potentials from
utility potentials and normalize (wrt A, the chance vari-
able to be eliminated) the probability potential that will
be multiplied by the utility potential—see (Jensen, 2001)
for the details.



to distribute potentials or to combine them, de-
pending on the variables that will be eliminated
afterwards.

Clearly, it is also very important to develop
heuristics for finding close-to-optimal elimina-
tion orderings, given the impact that this or-
dering usually has on the efficiency of the algo-
rithm. However, it is a difficult problem, given
that the optimal ordering not only depends on
the domains of the ordinary utility nodes, but
also on how they are combined by the super-
value nodes, taking into account that from the
point of view of variable elimination a sum node
behaves in a different way from a product node,
and the elimination of a chance variable is very
different from the elimination of a decision vari-
able.

Finally, we have to study the issue mentioned
in the last paragraph of Section 2.2, namely
whether our algorithm may include structurally
redundant variables in the policies, and if so,
how to fix it in order to avoid this problem.

4 CONCLUSION

We have presented a new variable-elimination
algorithm for evaluating influence diagrams
with super-value nodes, which could not be eval-
uated with previous variable-elimination algo-
rithms. Another advantage of our algorithm
with respect to both variable-elimination meth-
ods and to arc reversal algorithms is that —
at least in general— it does not include struc-
turally redundant variables. An issue that must
be studied is whether our algorithm may ac-
tually return policies with redundant variables,
and if so, how to fix this shortcoming.

References

C. Bielza and P. P. Shenoy. 1999. A comparison
of graphical techniques for asymmetric decision
problems. Management Science, 45(11):1552–
1569.

E. Faguiouli and M. Zaffalon. 1998. A note about
redundancy in influence diagrams. International
Journal of Aproximate Reasoning, 19(3-4):231–
246.

R. A. Howard and J. E. Matheson. 1984. Influence
diagrams. In R. A. Howard and J. E. Matheson,
editors, Readings on the Principles and Applica-
tions of Decision Analysis, pages 719–762. Strate-
gic Decisions Group, Menlo Park, CA.

F. Jensen, F. V. Jensen, and S. L. Dittmer. 1994.
From influence diagrams to junction trees. In Pro-
ceedings of the 10th Conference on Uncertainty in
Artificial Intelligence (UAI’94), pages 367–373,
San Francisco, CA. Morgan Kaufmann Publish-
ers.

F. V. Jensen. 2001. Bayesian Networks and Deci-
sion Graphs. Springer-Verlag, New York.

T. D. Nielsen and F. V. Jensen. 1999. Wellde-
fined decision scenarios. In Proceedings of the 15th
Conference on Uncertainty in Artificial Intelli-
gence (UAI’99), pages 502–511, San Francisco,
CA. Morgan Kaufmann Publishers.

D. Nilsson and S. Lauritzen. 2000. Evaluating influ-
ence diagrams using limids. In Proceedings of the
16th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI’00), pages 436–445, San
Francisco, CA. Morgan Kaufmann Publishers.

S. M. Olmsted. 1983. On Representing and
Solving Decision Problems. Ph.D. thesis, Dept.
Engineering-Economic Systems, Stanford Univer-
sity, CA.

R. D. Shachter. 1986. Evaluating influence dia-
grams. Operations Research, 34:871–882.

R. D. Shachter. 1998. Bayes-ball: The rational
pastime (for determining irrelevance and requi-
site information in belief networks and influence
diagrams). In Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelli-
gence (UAI’98), pages 480–487, San Francisco,
CA. Morgan Kaufmann Publishers.

P. P. Shenoy. 1992. Valuation based systems for
bayesian decision analysis. Operations Research,
40(3):463–484.

J. A. Tatman and R. D. Shachter. 1990. Dynamic
programming and influence diagrams. IEEE
Transactions on Systems, Man, and Cybernetics,
20(2):365–379.

M. Vomlelova and F. V. Jensen. 2002. An extension
of lazy evaluation for influence diagrams avoiding
redundant variables in the potentials. In Proceed-
ings of the First European Conference on Prob-
abilistic Graphical Models, pages 186–193. J. A.
Gamez and A. Salmeron (eds.).


