
GRANULAR COMPUTING APPLIED TO ONTOLOGIES

SILVIA CALEGARI AND DAVIDE CIUCCI

Abstract. Granular Computing is an emerging conceptual and computing
paradigm of information processing. A central notion is an information-processing
pyramid with different levels of clarifications. Each level is usually represented
by ‘chunks’ of data or granules, also known as information granules. Rough Set
Theory is one of the most widely used methodologies for handling or defining
granules.
Ontologies are used to represent the knowledge of a domain for specific ap-
plications. A challenge is to define semantic knowledge at different levels of
human-depending detail.

In this paper we prose four operations in order to have several granular
perspectives for a specific ontological commitment. Then these operations are
used to have various views of an ontology built with a rough-set approach. In
particular, a rough methodology is introduced to construct a specific granular
view of an ontology.
Keywords: granular computing, granular information, ontologies, description

logic, rough set theory, ontologies editor.

1. Introduction

In the last decade the need to share different kinds of knowledge and/or infor-
mation among different applications increased the interest in research on ontology.
This term was originally used in Philosophy, where it indicated the systematic ex-
planation of Existence. In Computer Science the term has been used in various
areas, such as knowledge engineering, knowledge representation, qualitative mod-
elling, database design, language engineering, information integration, information
retrieval and extraction, knowledge management and organisation, agent-based sys-
tem, e-commerce design [Guarino(1998)], and recently in computing with words
[Reformat and Ly(2009)]. Ontologies also play a key role in one of the newest and
heavily studied areas: the Semantic Web.

With the support of ontologies, users and systems can communicate with each
other through an easy information integration [Soo and Lin(2001)]. Ontologies
help people and machines to communicate concisely by supporting information
exchange based on semantics rather than just syntax. They provide a seman-
tic structure for sharing concepts across different applications in an unambigu-
ous way. In the Semantic Web an ontology is defined as a formal conceptu-
alisation of a particular domain of interest shared among heterogeneous applica-
tions. It consists of entities, attributes, relationships and axioms to provide a com-
mon understanding of the real world [Lammari and Mtais(2004), Gruber(1993),

TO APPEAR IN INTERNATIONAL JOURNAL OF APPROXIMATE REASONING -
DOI:10.1016/J.IJAR.2009.11.006

1

2 SILVIA CALEGARI AND DAVIDE CIUCCI

Guarino and Giaretta(1995)]. Thus, they are useful in solving one of the key is-
sues in the development of the Semantic Web: to enable machines to exchange
meaningful knowledge across heterogeneous applications to reach the users’ goals.

Granular Computing (GC) is a recent discipline, the name comes from [Lin(1997)],
and it can be viewed as a unifying science of different fields of research which “will
bring us closer to a new paradigm of human-inspired computing” [Yao(2008)]. The
main concepts of GC are of course the one of granule and of multiple levels of gran-
ularity, which are closely linked together. A granule is a chunk of knowledge made
of different objects “drawn together by indistinguishability, similarity, proximity or
functionality” [Zadeh(2008)]. A level is just the collection of granules of similar
nature.
According to the level of granularity taken into account, i.e., to the point of view,
a granule “may be an element of another granule and is considered to be a part
forming the other granule. It may also consist of a family of granules and is con-
sidered to be a whole” [Yao(2008)]. From one level we can pass to a lower level
of granularity, i.e., decompose a whole into parts; this corresponds to “analytical
thinking” whereas, going to an upper level merging parts into wholes, corresponds
to “synthetic thinking” [Yao(2007)]. An example of activity which can be described
by granular computing is structured writing [Yao(2007)]. Indeed, an article (or a
book) can be viewed at different levels, for instance paragraph, section, chapter.

It is clear that a hierarchy of granules can be viewed as a taxonomy, and thus as
a light ontology [Mizoguchi(2004)]. For instance, in [Qiu et al.(2007)] a hierarchy
of this kind is built by an information table using rough-set techniques. What is
more interesting is if in general, granular ideas can be of some help in the ontology
field. What we are going to do is to give a positive answer to this question. Roughly
speaking, we will outline four different operations inspired by granular computing
which can be performed on an ontology and apply them to some cases of study.
These operations have been developed in Protégé in order to obtain a granular
perspective of an ontology in a semi-automatic way [Calegari and Ciucci(2009)].

2. Preliminary notions

In this Section, we give the basic notions we will encounter throughout the paper.
At first, the modeling primitives used for building ontologies are reported. Then,
rough sets and a granular interpretation of ontologies are defined.

2.1. Ontologies. All ontology languages include the definition of modeling prim-
itives, in particular, the conceptual primitives that can be used to formalise the
knowledge about a domain. Usually they also include the formalism for represent-
ing algebraic properties of the relationships (e.g. transitive, symmetric, reflexive,
inverse).

Some years ago, there was an important discussion to tackle the problem for
finding a unique meaning of ontology. Indeed, the Computer Science community is
divided among the researchers that insert instances into the logical structure that
formalises the ontology and the ones that consider the instances outside the formal
definition of ontology. Both these perspectives are correct because this disagreement
is only due to the different use, i.e., to the specific application where the ontology
has to be utilised. In this work we consider the first case and thus Gruber’s formal
definition of an ontology:

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 2 3

Definition 1. [Gruber(1993), Tamma(2001)] An Ontology is defined as the quin-
tuple:

O := {I, C,R,F ,A}

where:

• I is the set of individuals, that is the actual objects of the world. The
individuals are also called instances of the concepts;

• C is the set of concepts, that is the set of the abstractions used to describe
the objects of the world. E = C ∪ I is the set of the entities defined by the
union of the set C and the set I;

• R is the set of relationships defined on the set E s.t. each r ∈ R is an
ordered n-ple r ⊆ En;

• F is the set of functions defined on the set of concepts that return a concept.
That is, each element f ∈ F is a function f : En−1 → E;

• A is a set of axioms, that is first order logic predicates which constrain the
meaning of concepts, relationships and functions.

The concepts and instances are usually hierarchically organised. The most com-
mon and intuitive hierarchy is represented by IS-A relationship (this is also known
in literature as a generalisation/specialisation or subsumption relationship). Gen-
erally, it is assumed that each subclass inherits data structure (e.g. instances) and
behaviour (e.g. methods or properties) from the super-class, that is if A is an
ancestor of B (denoted by A 7→ B) and B 7→ C then, A 7→ C.

Usually, ontologies are formally defined by a language from the Description Logic
(DL) family. In particular, in the Semantic Web case, SHOIN (D) [Horrocks et al.(2003),
Horrocks and Patel-Schneider(2004)] is used to give a semantic to OWL, the W3C
(World Wide Web Consortium) 1 standard language. Here we are not interested
in modifying the syntax and semantic of any DL, thus we do not enter into details
about such a formalism. However, in Section 3, we will use some typical formalism
of DL, which we refer to [Baader et al.(2003)].

2.2. Rough Sets. We now turn our attention to one of the most widely used
approaches to granular computing: rough sets. The rough-set techniques can be
used with two different aims, to handle uncertainty (by defining a lower and an
upper approximation of a set) and to granulate information (usually, by means of
binary relations). In the present work we only deal with this second aspect and
we use equivalence and similarity relations to build granules from instances of an
ontology. Typically in rough-set applications a granule is obtained by looking at
the properties of objects: two objects belong to the same granule if they assume
the same value for all the properties under investigation.

The structure used to deal with these ideas is known as Information Table or
Information System [Pawlak(1981)].

Definition 2. An Information Table is a structure K(X) = 〈X, Att(X),
val(X), F 〉 where: the universe X is a non empty set of objects; Att(X) is a
non empty set of attributes; val(X) is the set of all possible values that can be ob-
served for an attribute a from Att(X) in the case of an object x from X; F (called
the information map) is a mapping F : X × Att(X) → val(X) which associates to

1http://www.w3.org/

4 SILVIA CALEGARI AND DAVIDE CIUCCI

any pair, consisting of an object x ∈ X and of an attribute a ∈ Att(X), the value
F (x, a) ∈ val(X) assumed by a for the object x.

Given a set of attributes D ∈ Att(X), two objects x, y ∈ X are called indis-
cernible with respect to D, and we write xIDy, iff ∀a ∈ D, F (a, x) = F (a, y).

It can be easily verified that ID is an equivalence relation and so it partitions
the universe X in disjoint classes (granules) ED(x) defined as ED(x) := {y ∈ X :
xIDy}.

A generalisation of this classical (Pawlak) approach is obtained by relaxing the
requirement that the indiscernibility relation ID of the Information System is an
equivalence relation. The simplest of this generalisation makes it necessary to drop
the transitivity condition. The result is a similarity (or tolerance), i.e., reflexive
and symmetric, relation [Skowron and Stepaniuk(1996)]. The notion of granule is
defined exactly as above but now, a granule contains the objects which are similar
(and not necessarily equivalent) to a given one.

In our case study we will use a similarity relation obtained by a weakening of the
usual indiscernibility one, which considers equivalent two objects if for all selected
attributes they have the same values. If we relax this requirement, we can say
that two objects are similar if they have the same values only for some attributes.
Formally, let D ⊆ Att(X), then x is similar to y with respect to D and ǫ, with
ǫ ∈ [0, 1], and write xRD,ǫy, iff

(2.1)
|{ai ∈ D : F (x, ai) = F (y, ai)}|

|D|
≥ ǫ

This relation says that two objects are similar if they have at least ǫ|D| attributes
with the same value. It can be easily shown that this is a reflexive and symmetric
relation, but non a transitive one. Let us note that this approach is very close to the
original one of Poincaré in his introduction to similarity relations just by “distances”
[Poincaré(1893)] where in the present case, the distance is d(x, y) := |{ai ∈ D :
F (x, ai) = F (y, ai)}|. This metric has been also considered in [Polkowski(2007),
Polkowski(2008)] and used to define a rough inclusion function.

2.3. Granular interpretations of ontologies. Granularity is the act of repre-
senting and operating the information at different levels of detail. “Granularity
deals with organising data, information, and knowledge in greater or lesser detail
that resides in a granular level or level of granularity and which is granulated ac-
cording to certain criteria, which thereby give a perspective also called view, context,
or dimension on the subject domain, DG, henceforth called granular perspective”
[Keet(2008)]. Following an ontology granular perspective, a granular level LG con-
tains one or more entities (here E , see Section 2.1), that is, representations of
concepts and their instances. However, the ideas about what granularity comprises
can differ among research disciplines which tend to consider or emphasise diverse
aspects of the same entity. Thus, several interpretations of granularity and graph-
ical representations capturing differences in interpretation, representation, and/or
emphasis can be obtained. Keet [Keet(2008)] defines a classification of these possi-
bilities:

i Emphasis on entity types and their instances
ii Emphasis on relation between entities and levels
iii Emphasis on the perspective and criteria for granulation

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 3 5

iv Emphasis on formal representation

In this work, points (i) and (ii) are taken into account. The tree structure is chosen
when it is necessary to define several levels. In this way the graphical representation
is more readable than the circle one generally introduced for granular information.
Figure 1 depicts the graphic structure taken into account. The circles are the
concepts, and the squares are the instances. The numbers beside the tree indicate
the corresponding granular level LG where each concept and instance are collocated.
The multi-classification has been studied by Keet [Keet(2008), Sec 2.3.2]. However,
in our case we can have instances belonging to different granular levels and for a
same LG we can have different types of instances. In the general case, the rule to

0

1

2

3

4

5

Figure 1. Granular classification considered.

select which are the relevant relations for granularity is not specified, both regarding
the relation among the entities in different levels and regarding how granular levels
relate to each other. In our specific case, let us suppose to have an ontological
commitment where each branch of the tree defines a taxonomic relation. In this
way, a layer in the tree structure with the same depth corresponds to a granular
level LG. Thus, an ontology can be reformulated in granular levels by using a tree
structure. In this approach, we define a semi-automatic methodology in order to
obtain an ontological granular perspective of an existing ontology. To this aim, the
instances are disposed in a new classification considering the new granules. In this
perspective, it is very difficult to assign automatically a semantic relation among
all the granular levels (e.g., the IS-A relation is not the unique possible relation).
At the moment, our choice is not to investigate this problem and to insert unknown
as label. Once obtained a granular perspective, the expert of domain will give the
right semantic labels to each relation in order to change the unknown relation with
IS-A, part-of, instance-of,

6 SILVIA CALEGARI AND DAVIDE CIUCCI

3. Granular operations

In this Section the ontology operations inspired by granular computing are pre-
sented. They can be considered as the basis of more complex algorithms, and we
will show some simple examples in Section 4.2.

We distinguish two operations for lowering the level of granularity: elimination
and generalisation, and two for rising it: splitting and refinement. They can be
considered as pairs of inverse operations: elimination is the inverse of refinement
and generalisation the inverse of splitting.

We will describe these operations with respect to a concept of an ontology C
called the focus concept. In the examples the focus concept will be feline.

3.1. Generalisation. A generalisation consists in grouping together a set of dif-
ferent concepts Ci in a unique one C. The criterion adopted to grouping the
concepts Ci is not specified here: it can depend on the context or on the appli-
cation. For example, we can use rough sets or some clustering method, see for
instance [Polkowski and Skowron(2001), Kreinovich(2008), Roychowdhury(2008),
Lingras et al.(2008)]. Figure 2 represents a schematic view of this operation. All
the subconcepts C1 . . . Cm of A, or a part of them C1 . . . Cn, are collapsed in a
unique concept C.

C1

A

CmCn Cn+1

A

C Cn+1 Cm OR

A

C

Figure 2. First Operation: generalisation.

Example 1. As an example let us consider a partial ontology of animals. Here and
in the following diagrams, a straight line represents an IS-A relation and a curve
represents an INSTANCE-OF relation.

animal

MMMMMMMMMMM

tiger lion

�O
�O
�O

=⇒

white-tiger Simba

animal

feline

qqqqqqqqqq

%e%e
%e%e

%e%e

white-tiger Simba

The correspondence of concept C of the general schema is feline, which is obtained
as the union of tiger and lion.

Let us note that in the above example, the subconcept white-tiger and the in-
stance Simba are retained in the new ontology. Indeed, particular attention must be
given to subconcepts and instances. Our choice in the realisation of all the granular
operations is to retain as much information as possible. Thus, the generalisation
operation has the following effect on the ontology:

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 4 7

• All subconcepts of Ci become subconcepts of the focus C. In our example
“white-tiger” becomes a subconcept of “feline”.

• All (direct) instances of Ci become instances of C. In our example “Simba”
becomes an instance of “feline”.

• The common ancestor of all Ci becomes a super-concept of C. In the
example, this role is played by the concept “animal”.

• the properties shared by all concepts Ci are assigned to C, all other prop-
erties of Ci are assigned to all subconcepts of Cj if any, deleted otherwise.

Thus, if our ontology is expressed in DL and we generalise concepts Ci to C, the
operations corresponding to the above points are respectively the following:

(1) Replace all the axioms in the T-Box of the form D ⊑ Ci with axioms
D ⊑ C;

(2) Replace all the axioms in the A-Box of the form a : Ci with axioms a : C;
(3) Find the concept D such that for all Ci, there holds Ci ⊑∗ D and add the

axiom C ⊑ D.
(4) If for all Ci there are axioms of the form Ci ⊑ F in the T-Box, replace them

with axioms C ⊑ F . Replace the remaining axioms Ci ⊑ F with axioms
C′

i ⊑ F where C′
i is a subconcept of Ci.

(5) Delete all other axioms involving concepts Ci.

Let us note that point 4 also includes the conservation of properties shared by all
the subconcepts of Ci, since in DL they are expressed through axioms of this form.
For instance Ci ⊑ ∃HasColor.Red denotes that Ci is Red, and if all Ci are Red then
it makes sense that also C has this property. About the properties not shared by
all the Ci, we decided to assign them to the subconcepts of Ci if any, delete them
on the contrary. This prevents having a non-monotonic form of reasoning. We
note that this is different from [Lammari and Metais(2004)] where, when merging
concepts Ci in a concept C, all properties of all Ci are assigned to C and this fact
is acknowledged to the user.

3.2. Elimination. The difference with generalisation is that the focus concept C
already exists in the ontology. Thus, elimination consists in deleting some or all
of the direct subconcepts of the focus concept C, while retaining all the instances,
direct and indirect.

C1

I1 I2

Cm

C

I1 I2

C

Cn Cn+1 CmCn+1

Figure 3. Second Operation: Elimination.

8 SILVIA CALEGARI AND DAVIDE CIUCCI

Example 2. Considering our animal example, we can, for example, eliminate all
the level below feline, that is the concepts tiger, cat and lion, while retaining all
their instances and subconcepts.

feline

ppppppppppp

KKKKKKKKKK

tiger cat

�O
�O
�O

lion

�O
�O
�O

=⇒

white-tiger Silvester Simba

feline

��
��

��
��

��

�O
�O
�O
�O

�_
�_

�_
�_

�_
�_

white-tiger Silvester Simba

The operations to do are similar to the ones of generalisation except that we do
not add a new concept. In particular, point (1), (2) and (5) are the same, point (3)
is useless in this case, since the ancestor of all Ci is trivially C, and point (4) has
to be changed in the following way.

4a. Compute the intersection of all Ci properties, call it P . If we are deleting
only some and not all the subconcepts of C (as in Figure 3 with C1 . . . Cn),
delete from P the properties not shared by the remaining subconcepts of C
(Cn+1 . . . Cm in Figure 3).

4b. Delete properties in P from all Ci and assign them to C.
4c. For any concept Ci, assign its (remaining) properties to all its subconcepts.

Thus, contrary to generalisation, only properties and non taxonomic axioms are
considered. That is, in case of multiple inheritance we do not want to add taxonomic
relations between concepts on different branches. For example, let us consider the
following case: When eliminating C1, C2, we do not want to add the axiom C ⊑ F .

C1

C

C2 C3

F

I

C

C3

F

I11

Figure 4. Elimination and multiple inheritance.

Moreover, in case not all the subconcepts of C are deleted (i.e., C1 . . . Cn in
Figure 3) only the properties shared by all the subconcepts (C1 . . . Cm) are assigned
to C. Indeed, if some properties of C1 . . . Cn were assigned to C then they will be
incorrectly inherited also by Cn+1 . . . Cm.

Finally, we note that both generalisation and elimination have the following
peculiarity: some or all the direct subconcepts of the focus concept are deleted
but the instances are retained. Let us note that this is different from the usual
behaviour implemented in ontology editors (for example, in Protégé) where it is
not possible to delete a concept which has direct or indirect instances.

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 5 9

3.3. Refinement. The inverse of elimination is refinement, where the focus con-
cept C is detailed adding new sub-concepts to it. The problem here is to pay
attention to instances of C. We have two choices: leave them as instances of C or
if some further knowledge about the domain described by the ontology is available,
assign them to a proper subconcept. These two options are drawn in the diagram
of Figure 5.

I

C

OR
C1

C

Cn C1

I

C

Ci CnI

Figure 5. Third Operation: Refinement.

Example 3. As an example of the two cases, we first consider the situation where
no additional knowledge is available. Thus, when refining the concept feline, its
instance Simba remains an instance of feline.

feline

�O
�O
�O

Simba =⇒

feline

ww
ww

ww
ww

w

$d
$d

$d
$d

$d

tiger lion Simba

Otherwise, if it is known that Simba is a lion the situation can be described by
the following diagram.

feline

�O
�O
�O

Simba =⇒

feline

ww
ww

ww
ww

w

IIIIIIIII

tiger lion

�O
�O
�O

Simba

The operations needed by a refinement are simple.

(1) Add the axioms corresponding to the fact that the new concepts Ci are
subsets of the focus concept C: Ci ⊑ C.

(2) If possible, re-assign the individuals aj belonging to C to the proper (new)
subconcepts Ci. This implies deleting the axioms aj : C in the A-Box and
adding the axioms aj : Ci.

Of course, the last point requires having some external knowledge which can be
given by a domain expert, for instance.

10 SILVIA CALEGARI AND DAVIDE CIUCCI

3.4. Splitting. The difference with respect to refinements is that in the present
case, the focus concept C is not retained, but substituted by more detailed concepts
Ci (See Figure 6). Of course, here the problem of how to manage the subconcepts

C1

A

CmCn Cn+1

A

C Cn+1 Cm OR

A

C

Figure 6. Fourth Operation: Splitting.

and instances of C is more serious. In this case we introduce the constraint that it is
not possible to delete a concept having instances unless the instances are reassigned
to one of the new introduced concepts.

Example 4. According to the previous constraint, it is not possible to perform a
splitting like the following one, since the information about Silvester and Simba is
lost.

animal

feline

�?
�?

�?
�?

�?

�_
�_

�_
�_

�_

=⇒

Silvester Simba

animal

��
��

��
��

??
??

??
??

?

tiger cat lion

On the other hand, it is possible to split feline if it has no instances:

animal

feline =⇒

animal

uuuuuu
uuu

HHHHHHH
HH

tiger cat lion

or, alternatively, if the instances are re-assigned to new concepts:

animal

feline

�?
�?

�?
�?

�?

�_
�_

�_
�_

�_

=⇒

Silvester Simba

animal

��
��

��
��

??
??

??
??

?

tiger cat

�O
�O
�O
�O

lion

�O
�O
�O
�O

Silvester Simba

Of course, only the solution which respects the constraint is feasible in an auto-
matic way, the other one requires the intervention of an expert.

In case the focus concept C has some subconcepts, they can either become
subconcepts of a superconcept of C or be defined by the user as subconcepts of the
new introduced ones.

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 6 11

Example 5. In case of the following ontology

animal

feline

White-Tiger

a splitting of the concept feline can be performed in one of the following two ways

animal

��
��

��
��

??
??

??
??

?

tiger cat lion

white-tiger

animal

ooooooooooooo

��
��

��
��

??
??

??
??

?

white-tiger tiger cat lion

With respect to the knowledge base, to perform this operation in the simplest
case where the focus C has no instances and no sub-concepts we have to:

(1) Delete axioms of the form C ⊑ D where D is any superconcept of the focus
C and introduce axioms Ci ⊑ D, for any new concept Ci;

If C also has some instances or sub-concepts, then, they can be managed as de-
scribed above and the changes in DL-axioms are straightforward. Two further steps
are needed:

2a. For any instance aj of C find a proper concept Ci and substitute the axiom
aj : C in the A-Box with aj : Ci.

2b. For any subconcept Cj of C find a proper concept Ci and substitute the axiom
Cj ⊑ C with Cj ⊑ Ci in the T-Box.

In any case as a last step we have to

(3) Delete all other axioms involving concept C.

4. Case Study

In this Section, we apply our operations to the “WINE ONTOLOGY” defined
in the Protégé platform. By starting from the classical ontology and by using the
rough set methodology of Section 2.2, a granular perspective of the ontology is built.
A comparison between the classical ontology and the granular one is performed. Let
us note that our methodology can be applied to any ontology, and we do not discuss
how the expert has defined this ontological knowledge.

We remark that the four granular operations of Section 3 have been developed in
an ad-hoc Protégé-OWL Editor plugin, thus allowing semi-automatic management
of ontological knowledge [Calegari and Ciucci(2009)].

4.1. Protégé-OWL Editor. As previously stated, ontologies play a central role
in the Semantic Web: they provide a formal model of the knowledge of a domain
that can be exploited by intelligent agents.
A development tool for Semantic Web applications should provide services to access,

12 SILVIA CALEGARI AND DAVIDE CIUCCI

visualise, edit and use ontologies. Furthermore, a tool should include a reasoner
in order to provide intelligent assistance during the definition and evolution of an
ontology. It should also be customisable, extensible and scalable. A final issue for
the Semantic Web development tools is that they should be open source.

Protégé [Noy et al.(2000), Noy et al.(2001), Gennari et al.(2003)] is a platform
for ontology modelling and knowledge acquisition, and it is an open-source tool de-
veloped at Stanford Medical Informatics. Although the development of Protégé was
historically driven by biomedical applications [Gennari et al.(2003)], this system is
domain-independent and has been successfully used for many application areas
like the Semantic Web. The architecture of Protégé consists of two parts, named
“model” and “view”. The Protégé model is the internal representation mechanism
for ontologies and knowledge bases. The view components of Protégé provide a user
interface to display and manipulate the underlying model. A Protégé model can
represent ontologies consisting of classes, properties (slots), property characteristics
(facets and constraints), and instances.

The Protégé-OWL editor [Horridge et al.(2004)] is an extension of the Protégé
core system that supports OWL (in [Gennari et al.(2003)] details on the new archi-
tecture of the system are reported). In particular, the Protégé-OWL editor is the
“OWL Plugin” [Knublauch et al.(2004a), Knublauch et al.(2004b)] that is a large
Protégé plugin with support for OWL. It can be used to load and save OWL files
in various formats, to edit OWL ontologies with custom-tailored graphical widgets,
and to perform intelligent reasoning based on DLs. In particular, a reasoner called
RACER (Renamed ABox and Concept Expression Reasoner) 7 is used. One of its
main services is to test if a class is a subclass of another class, namely to calculate
the inferred ontology class hierarchy.

The OWL Plugin user interface provides various default tabs. The most impor-
tant ones are: “OWLClasses tab”, “Properties tab” and “Individuals tab”.
The “OWLClasses tab” displays the ontology class hierarchy, allows developers to
create and edit classes, and displays the result of the classification. The “Properties
tab” can be used to create and edit the properties in the ontology. The “Individu-
als tab” can be used to create and edit individuals, and to acquire Semantic Web
contents.

4.2. The “WINE ONTOLOGY”. The case study advised to have a granular
perspective of an ontology is the context of the wines. Figure 7 shows a screen-shot
of this ontology. Super-concepts and sub-concepts are visualised by using a tree
structure, and beside each concept the number of instances own by the concept is
indicated. In detail, the concept “Port” is selected and its unique instance “Taylor
Port” with all its properties. In particular, we have loaded the wine project (i.e.,
wines.pprj) and not its owl version (i.e., wines.owl). This is due to the fact that
in the owl version, for each instance, only the properties where a value has been
assigned are visualised, i.e., for “Taylor Port” only Color and Sugar properties. On
the contrary, in this analysis we need to have an exhaustive vision of the domain,
so we preferred to upload the “.pprj” format (see Figure 10(a)).

In the Protégé editor (as in Protégé-OWL editor) the concepts are visualised
by using a JTree Java component. Figure 8 shows the mapping from the Protégé
ontology to the tree structure relative to Figure 1. As defined in Section 2.3 the

7http://www.sts.tu-harburg.de/projects/entry.html#Racer

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 8 13

Figure 7. Wine Ontology.

Wine Ontology

Consumable thing

Meal course Wine grap Wine region

Winery

Drink

Food

WineSoft drink

Dessert wine

Red wine

Rose wine

White wine

Ice Wine
Port Sweet Reisling

White Merlot White Zinfandel

Whitehall Lane Primavera

Selaks Ice Wine Taylor Port
Schloss Rothermel

Trochenbierenauslese

Riesling

Schloss Volrad

Trochenbierenauslese

Riesling

Sauvignon

Blanc

grape

Riesling

grape
Pinot Noir

grape
Pinot Blanc

grape

Petite Verdot

grape

Gamay grape

Malbec grape
Merlot grape

Semillon

grape

Cabernet Franc

grape

Petite Syrah

grape

Cabernet Sauvignon grape

Chardonnay grape

Chenin Blanc grape

Zinfandel

grape

Winery

Bancroft
Chateau

Mouton-Rothschild

Figure 8. Wine Ontology project converted in a tree structure.

white circles are the concepts (or classes, by following the Protégé editor’s point
of view) and the squares are the instances. Furthermore, the colored concepts
are abstract classes whereas the others are concrete classes. For the sake of read-
ability, by considering the concept “Winery”, we have not drawn all 42 instances,
and we have not inserted the instances of the concept “Meal course” since they
are called with un-meaningful names, i.e., the set of instances for “Meal course”

14 SILVIA CALEGARI AND DAVIDE CIUCCI

Red wine

Beaujolais

Cabernet Franc Chianti
Petit Syrah

Pinot Noir Port

Red Bordeaux

Red Merlot

Red Burgundy

Cabernet Sauvignon Red Zinfandel

Graves

Medoc

St. Emillion

Margaux Pauillac

Cotes Chalonnaise

Cotes d’Or

Chateau Morgon

Beaujolais
Whitehall Lane

Cabernet Franc

Cabernet Sauvignon

Forman Cabernet

Sauvignon

Marietta Cabernet

Sauvignon
Santa Cruz Mountain

Vineyard Cabernet

Sauvignon

Sterling Cabernet

Sauvignon
Page Mill Winery

Cabernet Sauvignon

Chianti classico

Marietta Petite Syrah

Sean Thackrey Sirius

Petite Syrah

Taylor Port

Pinot Noir

Lane Tanner

Pinot Noir
Mountadam

Pinot Noir

Mount Eden Vineyard

Estate Pinot Noir

Chateau Margaux Chateau Lafite Rothschild

Pauillac

Forman Cabernet

Sauvignon

Clos De Vougeot Cotes

D’Or

Red Merlot

Gary Farrell

Merlot
Longridge Merlot Sterling Merlot

Cotturi

Zinfandel
Elyse

Zinfandel
Saucelito Canyon

Zinfandel

Marietta

Zinfandel

Red Zinfandel

(a)

Figure 9. Ontology definition of the red wines converted in a tree structure.

is {wines− current00029, wines− current00031, wines− current00032, wines−
current00033, wines − current00035}.

Figure 8 reports only a partial tree structure of the ontology. The focus has
been set on the definition of red wines (see Figure 9). Thus, in our analysis we have
applied granular approaches to this part.

4.3. Granular Technique. In order to have a granular perspective by following a
tree structure of an ontology, two main aspects have to be taken into account: (1)
how to choose the granular levels (2) what the relation is among all the levels. We
will show how the methodology based on rough sets of Section 2.3 has been used
in order to answer these questions and construct an ontology.
Rough Methodology. The granular perspective of the wines ontology has been
built starting from the set of instances I of the classical ontology; in this way, the
classes without individuals have been dropped out. Then the instances are clustered
into granules, analysing the values of their properties assigned in the standard
ontology definition. Consequently, the levels represent the properties and the visit
from a granule to another is performed following the values of the properties.

The first observation is that the instances can be partitioned in disjoint sets
according to the properties which they are defined on. These sets constitute the
macro-granules of knowledge in the granular perspective of the ontology. So, the
first level of the ontology is made up of the granules food, tanninlevel, location
and wine − grape, see Figure 11. Indeed, any of these macro-granules is char-
acterized by having a different set of properties. For example, all the instances
in the macro-granule location are defined only on the set of properties P1 :=

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 9 15

{location, produces}, whereas the instances of the macro granule tanninlevel on
the set of properties P2 := {color, grape, tanninlevel, body,
f lavor, sugar} (see Figure 10(a)).

Remark 1. We observe that the property maker is the inverse relation of the
property producer which, in this granular perspective, has been collocated as a sub-
granule of location. Therefore, in order to not have a duplicate information, the
property maker is not considered as a property of wine (i.e., maker /∈ P2).

In this work the focus is on the granular perspective concerning the definitions
of wines. Thus, the whole screen-shot of the ontology is not proposed, i.e., the
definition of the granule location is skipped and only some instances of food and
wine − grape are shown.

Now, considering only the properties P2 of the granule tanninlevel, we can
induce the Information System 〈I, P2, V al(I), F 〉 where V al(I) is the set of all the
values assumed by properties P2 and F , as usual, the function assigning to a pair
(x, p) the value assumed by the instance x on the property p. Thus, given a set
of properties D ⊆ P2 we can define an equivalence relation and consequently a
partition (granulation) of the set of instances (see Section 2.2). According to the
chosen set D we obtain a different granulation which is used as a different level of
our ontology. Indeed, given D1 ⊆ D2, it is clear that the partition generated by
D2 is finer than the one obtained by D1. Thus, if we start using only one property
to generate the partition, we can obtain a sequence of refinements (levels of the
ontology) adding attributes.

The issue is now to understand the order in which we have to consider the prop-
erties. The first two granular levels have been chosen by considering the properties
having the greatest number of instances with the same value.

Remark 2. As already noticed, not all the instances in the ontology have assigned
a value for all the properties. In the rough set terminology we can say that the infor-
mation system has some missing values [Grzymala-Busse and Grzymala-Busse(2005),
Stefanowski and Tsoukias(2001), Latkowski(2005)]. In our analysis for all the in-
stances all the undefined properties are assigned the default value 1. Let us consider
the previous example “Taylor Port” and all its properties (see Figure 10(a)). In this
case the set of properties is (tannin level==1),(body==1),(color==red),(flavor==1),(sugar==sweet),(grape==
Here the value “1” is considered at the same semantic level of all the other ones,
that is, no special treatment is given for undefined values.

By evaluating all the instances of the wines the property having the greatest
number of instances with the same value is tanninlevel, where the value 1 has
been defined 49 times. The second property chosen is grape with value 1 on 44
instances. However, this criterion is not always the best one since it can give an
unbalanced classification. Thus, for the next level an “average” behaviour has been
taken into account. Thus, color is the third property chosen because it gives a
more balanced classification than the other properties. In detail, red is defined 28
times for this property. On the contrary, according to the “majority” criterium, we
should choose sugar where dry = 36, but sweet = 4, off−dry = 2 and 1= 9. The
next level has been built applying the tolerance relation (2.1), where the similarity
between instances by analysing their properties is considered. At this point, the
set of properties considered for the similarity is D2 := {sugar, f lavor, body}.

1
6

S
IL

V
IA

C
A

L
E

G
A

R
I

A
N

D
D

A
V

ID
E

C
IU

C
C

I

(a
)

G
R

A
P

E

T
A

N
N

IN
L

E
V

E
L

C
O

L
O

R

S
U

G
A

R

F
L

A
V

O
R

B
O

D
Y W

in
e

O
n

to
lo

g
y

(b
)

F
ig

u
r
e

1
0
.

D
efi

n
itio

n
o
f
th

e
g
ra

n
u
la

r
p
ersp

ectiv
e

stru
ctu

re.

Wine Ontology

TANNIN LEVEL

tannin level = 1tannin level=L w

Chateau Morgon

Beaujolais

tannin level=Moderate

Chateau Lafite

Rothschild

Pauillac

FOOD

Cheese Tuna

LOCATION

GRAPE

Grape=Cabernet

Sauvignon grape

GRAPE

Grape=Gamay

grape

WINE GRAPE

Cabernet Franc

grape

Cabernet

Sauvignon grape

COLOR

Color=1

Color=WhiteColor=Red

Whitehall Lane

Primavera

Grape=1

GRAPE

Grape=Chardonnay

grape

COLOR

Color=White

Sterling

Chardonnay

Grape=Semillon

grape

COLOR

Color=Red

Chateau D

Ychem Sauterne

Grape=Cabernet

Sauvignon grape

Sterling Cabernet

Sauvignon

COLOR

Color=Red

Grape=Riesling

grape

COLOR

Color=White

Schloss

Rothermel

Trochenbierenau

slese Riesling

Schloss Volrad

Trochenbierenau

slese Riesling

o

F
ig

u
r
e

1
1
.

W
in

e
O

n
to

lo
g
y

p
ro

ject
a
fter

th
e

a
p
p
lica

tio
n

o
f

th
e

ro
u
g
h

m
eth

o
d
o
lo

g
y,

o
n
ly

fo
r

th
ree

lev
els.

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 10 17

Formally, let D2 ⊆ P2, then given two instances i1, i2 ∈ I, i1 is similar to i2
with respect to D2 and ǫ, with ǫ ∈ [0, 1] iff

(4.1)
|{dj ∈ D2 : F (i1, dj) = F (i2, dj)}|

|D2|
≥ ǫ

This relation says that two instances are similar if they have at least ǫ|D2| prop-
erties with the same value. In our case, two instances belong to the same gran-
ule, if they have at least |(D2 − 1)| properties with the same value, i.e. ǫ :=
|(D2−1)|

|D2|
= 2

3 . For example, Lane Tanner P inot Noir and Marietta Zinfandel

belong to the same granule having 2 properties with the same value, i.e., (flavor
== moderate) and (sugar == dry).

Of course, due to the non transitivity of relation 4.1, we obtain a covering of
the instances and not a partition. Thus, an instance can belong to more granules
at the same time. For example, Marietta Zinfandel belongs to the same granule
of Forman Cabernet Sauvignon since they both have (body == medium) and
(sugar == dry). However, as said before, Marietta Zinfandel also belongs to
the same granule of Lane Tanner P inot Noir when considering flavor and sugar.
Finally, Forman Cabernet Sauvignon and Lane Tanner P inot Noir are not
similar; thus they do not belong to a common granule. Figure 12 shows how the
wine instances are classified by considering their similarity on the set of properties
D2.

This way, the first aspect reported at the beginning of Section 4.3 is considered.
Concerning the second question the answer is less specified than the first one. As
stated in Section 2.3 we did not investigate the problem of semantic assignment to
the relations obtained for this (and in general) granular perspective. Our choice
is to insert unknown as a label. Most of the procedures for ontologies are semi-
automatic approaches; so that once the granular levels have been chosen, the expert
of domain will give the right name for each relation. For this specific domain (i.e.,
wine ontology) IS-A and instance-of are the considered names.
A small example. In this paragraph, a very small and illustrative example is re-
ported in order to clarify how the tree structure is obtained through the application
of the rough methodology. The goal is to cluster instances in granules by analysing
the values of their properties defined in the standard ontology.

As explained at the beginning of this section, the first step is to identify the
set of instances I. We have built a table where the rows are the instances of the
ontology, and the columns are all the properties defined in the ontology. Let us
consider a very small Wine Ontology having 3 instances and 4 properties. Table 1
reports all the details (i.e., which are the instances and the properties with their
values). The second step is to analyse this tabular ontology in order to identify

Table 1. A tabular version of a small Wine Ontology.

Instances Color Flavor Body Location

Longridge Merlot Red Moderate Medium Undefined
Marietta Zinfandel Red Moderate Light Undefined
Chateau-D-Ychem Undefined Undefined Undefined Bordeaux region

the macro-granules for the definition of the first granular level. We can observe

18 SILVIA CALEGARI AND DAVIDE CIUCCI

H

C
lo

s
D

e
V

o
u

g
e

o
t

C
o

te
s

D
O

r

I

M
N

L

C
h

a
te

a
u

M
a

rg
a

u
x

C
h
a

te
a

u
C

h
e

v
a

l

B
la

n
c

S
t
E

m
ili

o
n

S
e

v
re

E
t
M

a
in

e

M
u

s
c
a

d
e

t
C

lo
s

D
e

L
a

P
o

u
s
s
ie

S
a

n
c
e

rr
e

G

C
h

ia
n
ti

c
la

s
s
ic

o

C
o

lo
r=

R
e

d

3

B
o

d
y
=

1
a
n

d
fl
a

v
o

r=
1

a
n

d
(s

u
g

a
r=

S
w

e
e

t
o

r

s
u

g
a

r=
1

)
O

T
a

y
lo

r
P

o
rt

2

(B
o

d
y
=

1
o

r
B

o
d

y
=

M
e
d

iu
m

)

a
n
d

fl
a

v
o

r=
1

a
n
d

(s
u

g
a

r=
S

w
e

e
t
o

r
s
u

g
a

r=
1
)

A

S
a

n
ta

C
ru

z

M
o

u
n

ta
in

V
in

e
y
a

rd

C
a

b
e

rn
e

t

S
a

u
v
ig

n
o

n

F

C

B

D
S

e
a

n
T

h
a

c
k
re

y

S
ir
iu

s
P

e
ti
te

S
y
ra

h

M
o

u
n

t
E

d
e
n

V
in

e
y
a
rd

E
s
ta

te
P

in
o

t

N
o

ir

S
te

rl
in

g

M
e

rl
o

t

C
o

tt
u

ri

Z
in

fa
n

d
e

l

E

F
o

rm
a

n

C
a

b
e

rn
e

t

S
a

u
v
ig

n
o

n

Y

L
a

n
e

T
a

n
n
e

r

P
in

o
t
N

o
ir

1

(
B

o
d

y
=

F
u

ll
o

r

B
o

d
y
=

M
e

d
iu

m
)

a
n

d

fl
a

v
o

r=
S

tr
o

n
g

a
n

d
s
u

g
a

r=
D

ry

lin
k

lin
k

6

U
V M
a

ri
e

tt
a

C
a

b
e

rn
e

t

S
a

u
v
ig

n
o

n

M
a

ri
e

tt
a

P
e

ti
te

S
y
ra

h

T

M
a
ri
e

tt
a

Z
in

fa
n

d
e

l

Z

G
a

ry
F

a
rr

e
ll

M
e

rl
o

t

Q
R

P
a

g
e

M
ill

W
in

e
ry

C
a

b
e

rn
e

t

S
a
u

v
ig

n
o

n

S
a

u
c
e

lit
o

C
a

n
y
o

n

Z
in

fa
n

d
e

l

P

W
h

it
e

h
a

ll
L

a
n

e

C
a

b
e

rn
e

t

F
ra

n
c

S

M
o

u
n

ta
d

a
m

P
in

o
t
N

o
ir

W

L
o
n

g
ri
d

g
e

M
e

rl
o

t

5

B
o

d
y
=

lig
h

t
a

n
d

fl
a

v
o

r=
d

e
lic

a
te

o
r

fl
a

v
o

r=
m

o
d

e
ra

te
a

n
d

(s
u

g
a

r=
d

ry
)

(B
o

d
y
=

m
e

d
iu

m
o

r
B

o
d

y
=

L
ig

h
t)

a
n

d
fl
a

v
o

r=
m

o
d

e
ra

te
a

n
d

s
u
g

a
r=

d
ry

4
B

o
d

y
=

m
e

d
iu

m
a

n
d

fl
a

v
o

r=

S
tr

o
n

g
a

n
d

s
u

g
a

r=
d

ry

Figure 12. Granular perspective of the red wine ontology after
the application of the rough methodology, the last granular level.

that instances are defined on two disjoint sets of properties: P1 := {Location} and
P2 := {Color, F lavor, Body}. Thus, Location belongs to the first level with its
instance Chateau − D − Y chem at the second granular level. Whereas for P2 the
choice of the property to define the first level can be made arbitrarily between Color
and Flavor since they both assume the same values for all their instances. We have
considered Color at the first granular level. The next level has been built applying
the tolerance relation to the D2 := {Flavor, Body} set. Let us remember that two
instances are similar if they have at least ǫ|D2| properties with the same value. In

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 11 19

this illustrative example ǫ := 1
2 , that is, two instances belong to the same granule

having one out of two properties with the same value. Indeed, Longridge Merlot
and Marietta Zinfandel can be clustered to the same granule by having the same
value for the properties Flavor (i.e., Flavor == Moderate). Figure 13 depicts
the final granular perspective obtained after the rough methodology adopted. At

Wine Ontology

Color = Red Location = Bordeaux

region

Chateaux-D-Ychen

Flavor = Moderate and

(Body = Light or Body =

Medium)

Lonridge

Merlot
Marietta

Zinfandel

Figure 13. A small Wine Ontology after the application of the
rough methodology.

this point it is necessary to apply this granular view to the standard ontology, and
a semi-automatic approach is considered. We have developed an ad hoc plug-in
in the Protégé-OWL editor ([Calegari and Ciucci(2009)]). This plug-in applies the
four granular operations proposed in Section 3 in order to manage the ontology and
build the view obtained in Figure 13.

Figure 14. The plug-in developed for the granular operations.

20 SILVIA CALEGARI AND DAVIDE CIUCCI

Rough Methodology: Some considerations. Figure 10(b) depicts the top-
down order obtained after all these considerations. In all the figures the names of
these levels are reported in the tree structure only to increase its readability (e.g.,
the granule color can be eliminated). Furthermore, the labels beside the empty
granules define their semantics and not their names which must be assigned by a
domain expert. With respect to the granular operations of Section 3, we can see
that the final ontology has been obtained through a sequence of refinements. With
each refinement a new layer in the ontology is added, using the partition obtained
by considering a new property. At each stage the instances are correctly assigned
to the newly introduced concepts, simply according to the values they assume on
the new property under investigation. Instead of this top-down procedure, we can
also think of constructing the ontology in a bottom-up fashion, starting from finer
granules towards coarser ones. With respect to the properties P of an Information
System, this can be done by partitioning the universe, using all the properties in P
and then merging the granules according to a new partition obtained by deleting
a property in P . This is the approach followed in [Qiu et al.(2007)]. This new
operation can be obtained as a concatenation of generalisations and refinements as
schematised in the following diagram.

ROOT

oooooooooooo

��
��

��
�

??
??

??
?

G1 G2 . . . Gn =⇒ generalizations

ROOT

��
��

��
�

??
??

??
?

G′
1

. . . G′
m

⇓ refinements

ROOT

��
��

��
��

??
??

??
??

G′
1

��
��

��
��

G′
m

??
??

??
??

G1 G2
. . . Gn

That is, some granules in the first diagram are glued together through generalisation
and then a new level is introduced through refinements, note that m < n.

As a conclusion of this approach let us make a comparison between the granular
and classical perspectives of the ontology. The first consideration is that in the
granular case the knowledge is better represented than in the classical one. For
a user it is more immediate to understand: what is the content of the granule
food; that in location there are the places where the wines are produced; that in
tanninlevel there is the classification of all the wines. In the classical ontology this
classification is reported only at level three and not at the first one, even though it
is an ontology based on the definition of the wines.

However, in this granular perspective some lack of knowledge appears with re-
spect to the standard ontology. Indeed, all the concepts with no instances are not
considered in the granular perspective. As an example, let us consider in the classic

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 12 21

G1

i1 i2

i3 i4

G2

i1 i2

i3

(a)

i4

G1

G2

(b)

ROOT

G1

G2i4

i1 i2 i3

Granular level 1

Granular level 2

Granular level 3

ROOT

G1 G2

i4 i3 i2 i1

(c)

Figure 15. Application of the Normalisation process.

ontology the definition of the concept “Wine” and, in particular, its sub-concepts
“Rose Wine” and “Dessert Wine”. The concept “Rose Wine” is not reported in the
granular perspective because it does not have any instance. The concept “Dessert
Wine” is not mapped exactly into a granule with the same name. But all its
instances are re-classified into sub-granules of the macro granule tanninlevel by
following the values of their properties. For example, the instance “Taylor Port” is
an instance of the concept “Dessert Wine”, but in the granular perspective it is an
instance of the granule having color == red (see Remark 2). However, the meaning
of this concept has been reported in the granular perspective of the ontology. In
fact, the wines are divided by analysing the alcoholic level, this way the new clas-
sification implicitly divides instances into grape wines and not strong sweet wines,
etc. (see Figure 12).
Rough Methodology: Normalisation Phase. After the application of this
rough methodology a problem with redundancy of the information can occur. A
normalisation process tackles this problem in order to obtain a normal form of the
granular perspective.

Let us consider two granules G1 and G2 at the same level LG, where G1 includes
the following set of instances G1 := {i1, i2, i3, i4} whereas G2 is the set G2 :=
{i1, i2, i3}, see Figure 15(a). In this case G2 is redundant with respect to G1, namely
G1 ⊇ G2. The goal of the normalisation process is to solve the problem by merging
the two granules into one. Figure 15(b) shows a graphical representation of this
phase. The new covering is a genuine one, i.e., where Gi ⊆ Gj does not happen
for any pair of granules, according to the terminology of [Bianucci et al.(2007)].
By considering an ontological commitment we can use the principle of inheritance
semantics [Faulstich-Brady(1993)], where each subclass inherits data structure from
the superclass. In the normalisation process the granular subclass G2 inherits all the
common instances from the granular superclass G1. Figure 15(c) depicts the tree
structure in the normal form after the application of the normalisation. Thus, when
G1 ⊇ G2, all the content of the granule G2 becomes a child of the parent G1. In the

22 SILVIA CALEGARI AND DAVIDE CIUCCI

Algorithm 1 a pseudo-code of this operation is reported. The normalisation phase

Algorithm 1 Normalisation Phase

Require: A granular view of an ontology OG with n granules belonging to the
same LG.

Ensure: The normalised ontology OḠ .

1: for i = 1 to n do

2: for j = 1 to n do

3: Compute G∩ := Gi ∩ Gj {∀i 6= j, |Gi| ≥ |Gj | and iff |Gi|, |Gj | have
instances}

4: if (G∩ 6= ∅) and (Gi ⊇ Gj) then

5: Find GPj
, the parent of Gj

6: Delete the relationship between Gj and GPj

7: Delete ∀ik ∈ G∩ all the relationships between Gi and ik
8: Create a new “unknown” relationship between Gj and Gi where ik ∈ I
9: end if{If this check is true it means that G∩ is the set of common instances,

i.e. G∩ = Gj}
10: end for

11: end for

is applied only to granules having instances and these granules have to belong to
the same granular level. Each level has to be linked with the others with taxonomic
relationships in order to guarantee a unique parent for each granular concept. As
presented in Section 2.3, also in this case, the new relation between granules is an
“unknown” semantic relation.

Now, coming back to our case study, Figure 16 shows a graphical representation
of the granular perspective of the red wines after the application of the normalisa-
tion process. In detail, the normalisation has been performed on granules 5 and 6.
In order to have a readable schema we have mapped the names of the instances into
letters, and we have identified the granules with numbers (see Figure 12 and Figure
16). In fact, granule 5 := {P, Q, R, S, T, U, V, Z, W, Y } whereas 6 := {W, Y }, so
that 5 ⊇ 6. In this case, only one normalisation has been considered, but generally
a more complicate situation can occur.

Remark 3. We note that the normalisation can be obtained by the application
of the generalisation and refinement operations introduced in Section 3. In the
generalisation phase, granules G1 and G2, where G1 ⊇ G2, are merged and the new
granule is named G1. Then, a new granule is added by a refinement and called
G2. In this phase, all the common instances become instances of G2 whereas the
others are instances of G1. The following diagram gives a graphical overview of

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 13 23

Color=Red

1 4 5

A

B C D E F

3 2

O

G H I L M N

6

W Y

P

Q

R

S

Z

V

U

T

Figure 16. The red wines ontology after the normalisation process.

these operations.

ROOT

oooooooooooo

OOOOOOOOOOOO

G1

ooooooooooooo

��
��

��
�

??
??

??
?

G2

��
��

��
�

??
??

??
?

i1 i2 i3 i4 i1 i2 i3

⇓ generalisation

ROOT

G1

ooooooooooooooooooooo

��
��

��
��

��
��

??
??

??
??

??
??
=⇒ Refinement

i1 i2 i3 i4

ROOT

G1

xx
xx

xx
xx

x

i4 G2

xx
xx

xx
xx

x

FF
FF

FF
FF

F

i1 i2 i3

5. Discussion

As already mention in Subsection 4.3, our methodology to build an ontology
from an Information System is similar to the one in [Qiu et al.(2007)] where the
difference is the order used to build the ontology, bottom-up instead of top-down.
We underline that [Qiu et al.(2007)] does not show a strategy to select the order
of the properties to consider. Furthermore, in [Doherty et al.(2003)] a “set-based”

24 SILVIA CALEGARI AND DAVIDE CIUCCI

ontology is built from an approximation space. The granules are obtained using an
uncertainty function, which given an object u, returns the set of objects “similar”
to u where the meaning of “similar” depends on the application, i.e., it can be an
indiscernibility, a similarity or also a weaker binary relation. For instance, in their
example 5.1, starting from the set of colors {orange red, red, dark red, yellow, gold,
golden red}, the following ontology is built, starting from the lower level and then
introducing coarser granules:

{or, r, dr, y, g, gr}

��
��

��
��

??
??

??
??

{or, r, dr}

��
��

��
��

{y, g, gr}

??
??

??
??

{or, r} {r, dr} {y, g} {g, gr}

As can be seen, the granules of the lower level are a covering and not a partition,
thus, a weaker binary relation than indiscernibility is used. However, the different
levels are not built looking at the properties of the objects, but putting together
granules with at least a common element. For example, {or, r} and {r, dr} are
joined since their intersection is not empty.
We underline that the main focus of [Doherty et al.(2003)] is to introduce approx-
imate ontologies where concepts are expressed in the form (lower-approximation,
upper-approximation). In our approach we are dealing with exact concepts (i.e.,
granules) and hence classical ontologies. Thus, we do not need such a framework.
This is also the reason why we do not need a Description Logics extended with
rough, fuzzy or probabilistic capabilities. Indeed, in literature, several attempts to
define such new frameworks have been made (see for instance [Lukasiewicz(2008),
Lukasiewicz and Straccia(2008), Bobillo et al.(2009)]). In particular, concerning
the rough approach, the most recent and complete Rough Description Logic is
[Jiang et al.(2009)]. Since our concepts are exact and not approximate, a crisp DL
is sufficient.

In [Lin and Liu(2007)] an attempt is made to formalise the concept of granule
and granular computing in terms of a logical system. Their logical system can be
seen as a subsystem of SHOIN (D); indeed it is first order logic plus relations with
a Tarski-style semantics. Granules are the “semantic sets” |φ| of a given formula
φ, and a granular computing operation is just a function manipulating granules.
Hence, in some sense our operations can be viewed as a granular computing oper-
ation of this kind. However, the formalism in [Lin and Liu(2007)] is not powerful
enough to accurately describe our framework.

In [Bittner and Smith(2003)] an original and particular definition of granular
ontology is given. An ontology is “an inventory of entities existing in reality; all of
which belong to the same level of some granular partition” where a formal defini-
tion of level of granularity is given. The peculiarity of this approach is that this
“granular ontology” does not contain any taxonomic relation; it is just an “inven-
tory of entities”. However, it is possible to define a partial order relation among the
granular ontologies, which gives rise to a “granularity lattice”. Now our operations

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 14 25

of generalisation and splitting can be used to navigate in this lattice, passing from
a coarser to a finer ontology and vice-versa.

6. Conclusions

In this paper the discipline of Granular Computing has been applied to ontologies
in order to have different granular perspective of an ontological commitment. The
granular information is grouped in various levels made up of granules by following
a different level of knowledge. In order to use the same ontology in different do-
mains and by many people for different goals, it is needed to represent the ontology
according to several granular perspectives. Thus, we have defined four operations
to manage the structure of the ontology in different ways. In particular, a rough
methodology is applied to an ontology, and a new granular perspective is obtained.
In this rough methodology the instances are clustered in granules considering their
similarity, i.e., by analysing the values of their properties assigned in the standard
ontology. Thus, the four granular operations can be used for obtaining this granular
view. In our analysis we have considered the wines domain and our attention has
been focused on the definition of red wines. Furthermore, we have proposed a nor-
malisation process in order to reduce the redundancy problem of the information.

Finally, a discussion and comparison with related works from the literature has
been presented.

References

[Baader et al.(2003)] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider,
P. F. (Eds.), 2003. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.

[Bianucci et al.(2007)] Bianucci, D., Cattaneo, G., Ciucci, D., 2007. Entropies and co–entropies
of coverings with application to incomplete information systems. Fundamenta Informaticae
75, 77–105.

[Bittner and Smith(2003)] Bittner, T., Smith, B., 2003. Granular Spatio-Temporal Ontologies.
In: Proceedings of the AAAI Spring Symposium on Foundations and Applications of Spatio-
Temporal Reasoning (FASTR). AAAI Press, Menlo Park, CA, pp. 12–17.

[Bobillo et al.(2009)] Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U., 2009. Fuzzy de-
scription logics under gödel semantics. Int. J. Approx. Reasoning 50 (3), 494–514.

[Calegari and Ciucci(2009)] Calegari, S., Ciucci, D., 2009. An ontologies plug-in for granular oper-
ations. In: ISKE Proceedings. Proceedings Series on Computer Engineering and Information
Science. World Scientific, in press.

[Doherty et al.(2003)] Doherty, P., Grabowski, M., Lukaszewicz, W., Szalas, A., 2003. Towards a
framework for approximate ontologies. Fundamenta Informaticae 57, 147–165.

[Faulstich-Brady(1993)] Faulstich-Brady, A., 1993. A taxonomy of inheritance semantics. In:
IWSSD ’93: Proceedings of the 7th international workshop on Software specification and
design. IEEE Computer Society Press, pp. 194–203.

[Gennari et al.(2003)] Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubzy,
M., Eriksson, H., Noy, N. F., Tu, S. W., 2003. The Evolution of Protégé: An Environment for
Knowledge-Based Systems Development. International Journal of Human-Computer Studies
58 (1), 89–123.

[Gruber(1993)] Gruber, T., 1993. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition 5, 199–220.

[Grzymala-Busse and Grzymala-Busse(2005)] Grzymala-Busse, J., Grzymala-Busse, W., 2005.
Handling missing attribute values. In: Maimon, O., Rokach, L. (Eds.), The Data Mining

and Knowledge Discovery Handbook. Springer, pp. 37–57.
[Guarino(1998)] Guarino, N., 1998. Formal Ontology and Information Systems. In: Guarino, N.

(Ed.), Proceedings of the 1st International Conference on Formal Ontologies in Information
Systems, FOIS’98. IOS Press, pp. 3– 15.

26 SILVIA CALEGARI AND DAVIDE CIUCCI

[Guarino and Giaretta(1995)] Guarino, N., Giaretta, P., 1995. Ontologies and Knowledge Bases:
Towards a Terminological Clarification. In: Mars, N. (Ed.), Towards Very Large Knowledge
Bases: Knowledge Building and Knowledge Sharing. IOS Press, Amsterdam, pp. 25–32.

[Horridge et al.(2004)] Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C., August
2004. A practical Guide To Building OWL Ontologies Using the Protégé-OWL Plugin and
CO-ODE Tools. Tech. Rep. Edition 1.0, The University of Manchester.

[Horrocks and Patel-Schneider(2004)] Horrocks, I., Patel-Schneider, P., 2004. Reducing OWL en-
tailment to description logic satisfiability. Journal of Web Semantics 1, 345–357.

[Horrocks et al.(2003)] Horrocks, I., Patel-Schneider, P., van Harmelen, F., 2003. From SHIQ and
RDF to OWL: the making of a web ontology language. Journal of Web Semantics 1, 7–26.

[Jiang et al.(2009)] Jiang, Y., Wang, J., Tang, S., Xiao, B., 2009. Reasoning with rough descrip-
tion logic: An approximate concepts approach. Information Sciences 179, 600–612.

[Keet(2008)] Keet, C., 2008. A formal theory of granularity. Ph.D. thesis, KRDB Research Centre,
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy.

[Knublauch et al.(2004a)] Knublauch, H., Fergerson, R., Noy, N., Musen, M., 2004a. The protégé
owl plugin: An open development environment for semantic web applications. In: Third
International Semantic Web Conference - ISWC 2004.

[Knublauch et al.(2004b)] Knublauch, H., Musen, M., Rector, A., 2004b. Editing description log-
ics ontologies with the Protégé e OWL plugin. In: International Workshop on Description

Logics. Whistler, BC, Canada.
[Kreinovich(2008)] Kreinovich, V., 2008. Interval Computation as an Important Part of Granular

Computing: An Introduction, Ch. 1. In: [Pedrycz et al.(2008)], pp. 3–31.
[Lammari and Metais(2004)] Lammari, N., Metais, E., 2004. Building and mantaining ontologies:

a set of algorithms. Data & Knowledge Engineering 48, 155–176.
[Lammari and Mtais(2004)] Lammari, N., Mtais, E., 2004. Building and maintaining ontologies:

a set of algorithms. Data and Knowledge Engineering 48, 155–176.
[Latkowski(2005)] Latkowski, R., 2005. Flexible indiscernibility relations for missing attribute

values. Fundamenta informaticae 67, 131–147.
[Lin(1997)] Lin, T., 1997. Granular computing: from rough sets and neighborhood systems to

information granulation and computing in words. In: Proc. European Congress on Intelligent
Techniques and Soft Computing. pp. 1602–1606.

[Lin and Liu(2007)] Lin, Y., Liu, Q., 2007. A logical method of formalization for granular com-
puting. In: 2007 IEEE International Conference on Granular Computing. pp. 22–27.

[Lingras et al.(2008)] Lingras, P., Asharaf, S., Butz, C., 2008. Rough Clustering, Ch. 46. In:
[Pedrycz et al.(2008)], pp. 969–985.

[Lukasiewicz(2008)] Lukasiewicz, T., 2008. Expressive probabilistic description logics. Artificial
Intelligence 172 (6-7), 852–883.

[Lukasiewicz and Straccia(2008)] Lukasiewicz, T., Straccia, U., 2008. Managing uncertainty and
vagueness in description logics for the semantic web. J. Web Semantics 6 (4), 291–308.

[Mizoguchi(2004)] Mizoguchi, R., 2004. Tutorial on ontological engineering: part 3: Advanced
course of ontological engineering. New Gen. Comput. 22 (2), 198–220.

[Noy et al.(2000)] Noy, N., Fergerson, R., Musen, M., 2000. The knowledge model of Protege-2000:
Combining interoperability and flexibility. In: EKAW 2000. pp. 17–32.

[Noy et al.(2001)] Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., Musen,
M. A., 2001. Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems
16 (2), 60–71.

[Pawlak(1981)] Pawlak, Z., 1981. Information systems - theoretical foundations. Information Sys-
tems 6, 205–218.

[Pedrycz et al.(2008)] Pedrycz, W., Skowron, A., Kreinovich, V. (Eds.), 2008. Handbook of Gran-
ular Computing. John Wiley & Sons, Chichester, England.

[Poincaré(1893)] Poincaré, H., 1893. Le continu mathématique. Revue de Métaphysique et de
Morale I, 26–34, (Reprinted in [Poincaré(1903)] as Chapter II).

[Poincaré(1903)] Poincaré, H., 1903. La Science et l’hypothèse. Flammarion, Paris, (English trans-
lation as Science and Hypothesis, Dover, New York, 1952).

[Polkowski(2007)] Polkowski, L., 2007. Granulation of knowledge in decision systems: The ap-
proach based on rough inclusions. The method and its applications. In: RSEIPS07 Proceed-
ings. Vol. 4585 of LNAI. pp. 69–79.

GRANULAR COMPUTING APPLIED TO ONTOLOGIES 15 27

[Polkowski(2008)] Polkowski, L., 2008. Rough mereology in analysis of vagueness. In: RSKT08
Proceedings. Vol. 5009 of LNAI. pp. 187–204.

[Polkowski and Skowron(2001)] Polkowski, L., Skowron, A., 2001. Rough mereological calculi of
granules: a rough set approach to computation. Computational Intelligence 17, 472–492.

[Qiu et al.(2007)] Qiu, T., Chen, X., Liu, Q., Hang, H., 2007. A granular space model for ontology
learning. In: 2007 IEEE International Conference on Granular Computing. pp. 61–65.

[Reformat and Ly(2009)] Reformat, M., Ly, C., 2009. Ontological approach to development of
computing with words based systems. Int. J. Approx. Reasoning 50 (1), 72–91.

[Roychowdhury(2008)] Roychowdhury, S., 2008. Encoding and Deconding Fuzzy Granules, Ch. 8.
In: [Pedrycz et al.(2008)], pp. 171–186.

[Skowron and Stepaniuk(1996)] Skowron, A., Stepaniuk, J., 1996. Tolerance approximation
spaces. Fundamenta Informaticae 27, 245–253.

[Soo and Lin(2001)] Soo, V. W., Lin, C. Y., 2001. Ontology-based information retrieval in a multi-
agent system for digital library. In: 6th Conference on Artificial Intelligence and Applications.
pp. 241–246.

[Stefanowski and Tsoukias(2001)] Stefanowski, J., Tsoukias, A., 2001. Incomplete information
tables and rough classification. Computational Intelligence 17, 545–566.

[Tamma(2001)] Tamma, V., 2001. An ontology model supporting multiple ontologies for knowl-
edge sharing. Ph.D. thesis, University of Liverpool.

[Yao(2007)] Yao, Y., 2007. Structured writing with granular computing strategies. In: 2007 IEEE
International Conference on Granular Computing. pp. 72–77.

[Yao(2008)] Yao, Y., 2008. Granular computing: past, present and future. In: 2008 IEEE Inter-
national Conference on Granular Computing.

[Zadeh(2008)] Zadeh, L., 2008. Is there a need for fuzzy logic? Information Sciences 178, 2751–
2779.

Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–
Bicocca, Viale Sarca 314/16, I–20126 Milano (Italy)

E-mail address: {calegari, ciucci}@disco.unimib.it

