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Abstract

Time series are found widely in engineering and science. We study forecasting
of stochastic, dynamic systems based on observations from multivariate time
series. We model the domain as a dynamic multiply sectioned Bayesian net-
work (DMSBN) and populate the domain by a set of proprietary, cooperative
agents. We propose an algorithm suite that allows the agents to perform one-
step forecasts with distributed probabilistic inference. We show that as long as
the DMSBN is structural time-invariant (possibly parametric time-variant), the
forecast is exact and its time complexity is exponentially more efficient than
using dynamic Bayesian networks (DBNs). In comparison with independent
DBN-based agents, multiagent DMSBNs produce more accurate forecasts. The
effectiveness of the framework is demonstrated through experiments on a supply
chain testbed.
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1. Introduction

Many application domains in engineering, science and economics are com-
plex, stochastic, and dynamic systems. For an intelligent agent to act effec-
tively in such a domain, it is often necessary to predict the future develop-
ment based on past observations. We model these dynamic systems as multi-
dimensional stochastic processes, and we refer to dynamic systems, dynamic
domains, and multi-dimensional stochastic processes, interchangeably. When
observed, a multi-dimensional stochastic processes gives rise to a discrete time,
multivariate time series [1, 2]. The primary inference that we address is one-
step-ahead forecasting of these systems from the corresponding time series.
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Multivariate time series, especially economic time series, are commonly ana-
lyzed using the vector autoregressive (VAR) models [1]. These models relate the
current, value of a series to values in the past through autoregressive coeflicients
which do not vary with time.

Alternatively, time series are represented by state-space models, also referred
to as multivariate dynamic linear models (DLMs) [3]. These are full probabilistic
versions of the well known Kalman Filter, which is formally defined only in
terms of the first and second moments of the process. Like the Kalman filter,
they admit fast simple closed form recurrences, linking one-step-ahead forecast
distributions to past observations. DLMs distinguish states of dynamic systems
and observations that are dependent on the states. The evolution of states is
encoded by the state equation (or system equation), and the dependency of
observations on states is encoded by the observation equation. The class of
VAR models are formally a subclass of multivariate DLMs, which generalize
VAR models so that their natural autoregressive parameters are allowed to be
dynamically changing.

Graphical models have become important tools in time series analysis in the
last two decades, enhancing both VAR and state-space modeling. Dahlhaus and
Elchler [4] consider two classes of graphical VAR models. In the first class, each
observation variable at each specific time is represented as a node in the graph.
In the second class, each univariate series is represented as a node. Both classes
are mixed graphs with both directed and undirected links.

The state-space modeling is enhanced mostly by extending static Bayesian
networks (BNs) [5] into DBNs [6]. In a DBN, each state or observation vari-
able at each specific time is represented as a node in a directed acyclic graph
(DAG). Each variable is associated with a conditional probability distribution
that quantifies the strength of its dependency on its parent variables. DBNs
therefore give a convenient qualitative framework that provides a compact rep-
resentation of independence relationships that lie at the core of standard mul-
tivariate DLMs. This can be used to elegantly extend DLMs to non-Gaussian,
non-linear domains. Exact inference in DBNs, including monitoring and fore-
casting, is often carried out by some form of elimination and message passing,
e.g., [7, 8]. However, although the prior joint distribution over all variables in a
DBN is factorized, the message to be passed during elimination is not factorable
(Proposition 1 in [8]), and the message size is exponential on the number of per-
sistent state variables. Approximate inference in DBNs has thus been preferred,
e.g. [9, 10], in order to scale up.

An alternative class of graphical state-space models that allows exact fore-
casting without the disintegration of factorization is studied by Queen and Smith
[11] and is termed multiregression dynamic models (MDMs). In MDMs, obser-
vation variables form nodes in a temporally extended DAG, while state vari-
ables are not represented in the graph. It was shown that if state variables
are independent of each other a priori, they would remain so after observation.
Furthermore, for linear MDMs, the first two moments of forecast distributions
over observation variables can be calculated algebraically in closed form so that
no approximation methods are necessary.



All above models assume a single-agent paradigm. To address the distri-
bution of knowledge and data and to explore the benefit of distributed com-
putation, analysis of time series under the multiagent paradigm has been seen
in recent years. In [12], one-step-ahead forecasting is performed by a team of
agents working for the same principal, and each agent is based on an artificial
neural network with unique parameters. The agents compete to become a vot-
ing member and the forecast is determined through majority voting by voting
agents. In [13], an agent plays the role of a manufacturer in a competitive mar-
ket populated by self-interested agents and over a simulated year. The focus
of the study is on one-step-ahead price forecasting by analysis of both the cur-
rent time series (over the current year) as well as series from other years which
generally involve different market conditions and different agents.

In both of the above multiagent systems, agents are competitive, although
they work for the same principal in the former and for different principals in
the latter. In [14], a dynamic system populated by cooperative agents is consid-
ered. The graphical models used by agents extend multiply sectioned Bayesian
networks (MBSNs) [15] for static domains to dynamic domains. It does not con-
sider time series with regularly spaced observations. Instead, a set of necessary
observations needed to infer about a given subset of state variables is computed.

In this work, we consider one-step-ahead forecasting of a distributed, dy-
namic process with a cooperative multiagent system, fed by a distributed time
series. QOur approach extends the DBN-based graphical state-space modeling
from single-agent to cooperative multiagent. Our forecasting algorithm suite
belongs to the exact methods. Yet, in comparison with the equivalent DBN,
our method improves the computational complexity significantly by reducing
the total message size exponentially.

The remainder of the paper is organized as follows: Section 2 reviews the
background on time series, DBNs and MSBNs. Section 3 defines the DMSBN
representation of dynamic domains. Its multiagent adaptation is presented in
Section 4 and is illustrated with an application. A number of properties of
DMSBNS, including their structural and parametric time variability, are defined
and analyzed in Section 5. A multiagent forecasting algorithm suite for time-
invariant DMSBNs is presented in Section 6, and its exactness and complexity
are analyzed in Section 7. How to transform parametric time-variant DMSBNs
into time invariant DMSBNS is presented in Section 8. Our experimental results
are reported in Section 9. We make concluding remarks in Section 10.

2. Background

In this section, we review the background and terminology on time series and
three classes of graphical models: BNs for modeling a static domain under the
single-agent paradigm, DBNs for modeling a dynamic domain under the single-
agent paradigm, and MSBNs for modeling a static and distributed domain under
the cooperative multiagent paradigm. In this work, variables in all graphical
models considered are assumed discrete.



2.1. Bayesian Networks
A BN [5] typically models a static, stochastic domain.

Definition 1. A BN is a triplet G = (V,G,P). V is a set of variables. G
is a DAG whose nodes are labeled by elements of V. Fach variable v € V
is conditionally independent of its non-descendant variables in G given the set
w(v) of its parent variables. P is a set of conditional probability tables (CPTs)

P={P(v|r(v))lveV}

The joint probability distribution (JPD) over V is the product P(V) =
[Toev Pl (v)).

2.2. Time Series

The behavior of a dynamic system is often recorded through a time series.
In this work, we consider discrete time series over a finite time period T of
k +1 time intervals (normally equally spaced). Below, we write a row vector as
(v1,v2, ...) and its transposition as (v, v, ...)".

Definition 2. A multivariate time series over time period T = {0, 1, ..., k}
is a multi-dimensional stochastic process of vectors (x;1,xi2,...) observed at
times i € T, where T" CT. Each {x;;} is a component series. A component
series s complete if it contains a observation for each i € T. Otherwise, it
has missing values.

2.3. Dynamic Bayesian Networks
A DBN [6] models a dynamic system over T' = {0, 1, ..., k}.

Definition 3. A DBN of horizon k is a quadruplet

Vi is a set of variables for time intervali. G; is a DAG whose nodes are labeled by
elements of V;. F; is a set of arcs each directed from a node in G;—1 to a node

in G;. Fach v € Uf:ovi is conditionally independent of its non-descendants
given its parents w(v). P; is a set of CPTs P; = {P(v|w(v))|v € V;}.

G models a dynamic system whose condition at time interval ¢ is represented
by the set of variables V;. The cardinality of V; is assumed independent of time
i, namely |V;| = |Vj| for i # j, and we denote 7 = |Vj|. The collection of
the mth variable in V[, through V}, forms a one-dimensional stochastic process.
That is, for each m = 1, ..., 7, the collection of variables {vom, ..., Vkm} where
vym € V; forms a one-dimensional stochastic process. Hence, G models the
multi-dimensional stochastic process

SPr = (vi1, ..., Vi) (vij € Vi, €T).



Normally, V; is partitioned into two sets: a set Y; of state variables that are
generally unobservable and a second set X; of sensor variables that are observed
but not necessarily at each time interval. The dependence and independence
relations among variables in V; are represented by the graph G;. The state
transition from time ¢ — 1 to ¢ is represented by the set F; of temporal arcs
normally between state variables, i.e., from Y;_; to Y;. Since no arc directly
connects Y;_; and Y; for j > 1, SPr is assumed to be a first-order Markov
process. The strength of dependency signified by G; and the uncertainty of
transition signified by F; are quantified by CPTs in P;. Observations over X;
form a time series, i.e.,

TSy = (x“,xig, )/ (xij € X;,1 € T - T)

is a multivariate time series.

Figure 1 shows the DAG structure of a DBN, where Vi = {a1, b1, ¢1,d1, €1, f1},
the arcs in Gl are El = {(Ql,bl), (bl,dl), (01,61), (dl,el), (el,fl)}, and Fl =
{(a0,b1), (fo, f1)}. Note that G; and G2 are not isomorphic and we return to
this issue in Section 5.

Figure 1: The structure of a DBN.

From Def. 3, the JPD over V = Uf:o V; is the product

k
p(v) =11 II Peir@)).

i=0veV;

Exact inference with a DBN can be performed in the same way as with a
BN, but both the time and space complexity will be O(k). The complexity
can be reduced to being independent of £ by recursively eliminating a historical
portion of the DBN and passing a message with relevant information into a
future portion. For example, one of the earliest exact methods [7] keeps only a
segment of the DBN in memory, dynamically adds a new segment to the current
segment, converts the expanded segment into a cluster tree, removes a part of
the cluster tree corresponding to history, and uses the reduced cluster tree for
inference.



In [8], the above dynamic expansion and reduction are replaced by a precom-
piled cluster tree template reused repeatedly during inference, further improving
the efficiency. At each recursive step, before the cluster tree in the memory is
discarded, it sends a message to the newly loaded template. The message is ab-
sorbed into the template which is then used to process new observations. This
approach will be extended in Section 6 for multiagent forecasting. Below, we
define components of a DBN used in the template and message computation.

Definition 4. In a DBN G of horizon k, subset FI; = {z|3 (z,y) € Fit1} is
the forward interface of V; (0 < i < k). Denote G; = (V;, E;), where E; is
the set of arcs, and D; = (V; UFI;_1,E; UF;). The pair S; = (D;, P;) is the
slice of the DBN for time i and D; is the structure of S;.

In Figure 1, FIl = {al,fl}, and Dl = {ao,fo,al,bl,cl,dl,el,fl}. Each
slice is enclosed in a dashed frame. Note that the slice of time 7 includes the
forward interface from time ¢ — 1. Note also that the first subscript is used to
index temporal distribution of variables and dependency structures.

2.4. Multiply Sectioned Bayesian Networks

An MSBN [15] typically models a static, spatially distributed domain. By
adequately decomposing the domain, an MSBN supports exact, distributed in-
ference about the domain by a set of cooperative agents.

The domain dependence relations are represented distributively by a set of
(overlapping) graphs. The terminology used to describe the relation among
these graphs is defined below.

Definition 5. Let G' = (V' E?) (i = 0,1) be two graphs. G° and G' are
graph-consistent if subgraphs of G° and G' spanned by VO NV (keeping
nodes in VO NV and arcs among them only) are identical. Given two graph-
consistent graphs G* = (Vi E) (i = 0,1), the graph G = (VOU V!, E°UE') is
the union of G° and G*, denoted by G = G° U G*.

Given a graph G = (V, E), a decomposition of V into VO and V' such that
VOUVE =V and VNV £ 0, and subgraphs G* (i = 0,1) of G spanned by
Vi, G is said to be sectioned into G° and G*.

In Figure 2, the graph G to the right is the union of graphs G° and G* on
the left. On the other hand, G is sectioned into G° and G'.
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Figure 2: Illustration of graph union and section.



To support exact, distributed probabilistic inference, the stochastic domain
as well as its dependency structure are decomposed according to the following
conditions. Def. 6 specifies graph-theoretically how domain variables and their
dependence structure are decomposed and distributed into a hypertree.

Definition 6. Let G = (V, E) be a connected graph sectioned into subgraphs
{G" = (V' E")}. Let the subgraphs be organized into an undirected tree ¥ where
each node is uniquely labeled by a G* and each link between G* and G™ is labeled
by the non-empty interface VF N V™ such that for each G* and G7 in ¥ and
each G® on the path between G* and G7, VINVI C V. Then ¥ is a hypertree
over G. Each G' is a hypernode and each interface is a hyperlink. A pair
of hypernodes connected by a hyperlink is said to be adjacent.

Figure 3: Graph G in (a) is sectioned into subgraphs in (c) with the hypertree in (b).

Figure 3 illustrates the sectioning of graph G (a) into the four subgraphs (c).
The corresponding hypertree is shown in (b). The interface between hypernodes
G and G is the set {f, g,h}. Note that the hypertree of Def. 6 satisfies the
running intersection property.

Def. 6 only specifies the composition of interfaces. Def. 7 below further
constrains the structure within an interface. This condition ensures that an
interface induces conditional independence through d-separation [5].

Definition 7. Let G be a directed graph sectioned into subgraphs {G'} such that
a hypertree over G exists. A node x (whose parent set in G, possibly empty, is



denoted w(x)) contained in more than one subgraph is a d-sepnode if there
exists at least one subgraph that contains w(x). An interface I is a d-sepset if
every x € I is a d-sepnode.

If a node = occurs in both G* and G° (a # b), its parent set 7%(x) in G®
may differ from its parent set 7°(z) in G?, as well as from its parent set 7(z) in
G. In Figure 3, 7°(i) = {f} while 7%(i) = {f, g} = 7(i). The interface {f,4,j}
between Gy and G2 is a d-sepset because 7(f) and m(i) are contained in Ga,
and m(j) is contained in Go.

Def. 8 combines the above definitions to specify the dependence structure of
an MSBN.

Definition 8. A hypertree MSDAG G = |J; G*, where each G" is a DAG,
is a connected DAG such that (1) there exists a hypertree W over G, and (2)
each hyperlink in U is a d-sepset.

Def. 9 defines an MSBN. Note that the superscript is used to index spatial
distribution of variables and dependency structures.

Definition 9. An MSBN M s a triplet M = (V,G,P). V. = J, V" is the
domain where each V* is a set of variables, called a subdomain. G = J; G" (a
hypertree MSDAG) is the structure where nodes of each DAG G* are labeled by
elements of V'. Each x € V is conditionally independent of its non-descendants
given its parents w(x) in G.

P =, P is a collection of CPTs, where P* = {P(z|r(z))|z € V'}, subject
to the following condition: For each x, exactly one of its occurrences (in a G°
containing {x} U m(x)) is associated with P(x|m(x)), and each occurrence in
other DAGSs is associated with a constant (uniform) CPT.

Each triplet S° = (Vi, G, P?) is called a subnet of M. Two subnets S* and
S7 are adjacent if G* and G? are adjacent on the hypertree.

From Def. 9, the JPD over V is the product

prv)=11 I] P@lr(v)).

i veV?

An MSBN models the domain V' through subnets over its subdomains. When
these subdomains are naturally distributed, they can be populated by multiple
agents so that each subnet is embodied by a distinct agent. We refer to the
MSBN associated with these agents as a multiagent MSBN. The multiagent
MSBN enables agents to reason about the domain by distributed inference. The
hypertree defines the agent organization and specifies the direct communication
links among agents. For instance, let Figure 3 be the structure of a (trivial)
MSBN populated by agents A% through A®. According to the hypertree, A°
directly communicates with A2 only. The interfaces in the hypertree define the
content, of messages between agents, and are referred to as agent interfaces.

For exact, distributed inference by a multiagent system, each subnet is com-
piled into a local junction tree (JT), which is a cluster tree that satisfies the



running intersection property. Each cluster is associated with a potential defined
from CPTs in the corresponding subnet. These local JTs are linked according
to corresponding agent interfaces. The multiagent MSBN is thus compiled into
a linked junction forest (LJF) and each local JT is embodied by an agent. To
reason about the domain, an agent can perform a local operation UnifyBelief
to update its belief over its subdomain relative to its own observations after the
last communication. The operation involves two rounds of message passing in
the local JT. Furthermore, communication can be initiated by any agent and
involve all agents through the operation CommunicateBelief, which updates
the belief of each agent over its subdomain relative to observations made by
all agents. The operation involves two rounds of message passing along the
hypertree and each message between two agent is a potential over their agent
interface. Details on these operations can be found in [15].

3. Dynamic Multiply Sectioned Bayesian Networks

In this section, we consider the modeling of a domain that is both dynamic
and spatially distributed. At any given time, the domain is decomposed into
overlapping subdomains. The temporal evolution of each subdomain is repre-
sented by a DBN (to be formalized in Section 5) which can be embodied by a
distinct agent. The slices at time interval ¢ from all DBNs form an MSBN (to be
formalized in Section 5) and represent the condition of the distributed domain.
We first define such a model formally as a DMSBN. We present its multiagent
adaptation in Section 4 illustrated with an application. Several important prop-
erties of DMSBNSs are defined and analyzed in Section 5. In the following, the
first subscript is used to index the temporal evolution and the first superscript
is used to index the spatial distribution.

Definition 10. A DMSBN DM of horizon k is a quadruplet

Vi=U; V7 is the domain for time interval i, where V; is a subdomain for
time i. G; =, a7 (a hyperl_free _MSDAG) is the structure for_ time 1, wherci
nodes of each DAG G? = (V?,E?) are labeled by elements of V. F; = U, F}
is a collection of temporal arcs, where Ff is a set of arcs each directed from
a node in G}_, to a node in G7. Eachv € Uf:o Vi is conditionally independent
of its non-descendants given its parents w(v) in Uf:o G;.

P; =, P} is a collection of CPTs, where P} = {P(x|r(z))|x € V{}, subject
to the following condition: For each x € V;, exactly one of its occurrences (in a
G} containing {x} Un(z)) is associated with P(z|m(z)), and each occurrence in
other DAGs for time i is associated with a constant CPT. _

The forward interface of subdomain Vi (0 <i < k) is FI] = {z|3 (z,y) €
F! .} with FI? | = 0.



The jth subnet of DM for time i is a triplet S} = (Vf,éi,fr’f) Its
(enlarged) subdomain is V' = VI U FIJ_|. Its (enlarged) subnet structure is
G = (V7 E7), where B/ = E? U F/. The set of CPTs (one per node) in the
subnet is P! = {P(z|r(x))|x € V} except that each x € FI)_| is assigned a
constant CPT.

A slice of DM for time i is

;= st = U UeL U e,
J J J

J

The condition of the dynamic system at time 4 is represented by V; = | ; Vl-j

and the cardinality of Vij is assumed independent of i. Each collection of

variables {vém,v{m,...,vim}, where v{m € Vij and 1 < m < |V0j|, forms a
one-dimensional stochastic process. Denote n = |[Vp|. DM models a multi-
dimensional first-order Markov stochastic process

SPT:(v’ila"'avin)/ (UszVMZGT)

The JPD over V =¥, V; is

P(V) = [ P (ln(v)),

veV

where P*(v|m(v)) = P(v|m(v)) if v occurs in a unique V7. Otherwise, P*(v|7(v))
equals P(v|m(v)) associated with the occurrence of v that is assigned a non-
constant CPT.

Def. 10 defines a DMSBN based on the forward interface. This is not neces-
sary as our results apply to other temporal interfaces as well, such as backward
interface [§].

4. Multiagent DMSBNs and an Application

Although not required by Def. 10, DMSBNSs are particularly useful for mod-
eling a dynamic domain that is spatially or otherwise distributed and can benefit
from multiagent processing. Under the multiagent paradigm, the domain is pop-
ulated by a set of agents. Each agent A7 is in charge of the subdomain V; at
time ¢ and embodies the subnet Sg for i = 0,1,...,k. That is, A7 is associated
with the multi-dimensional stochastic process

(vi1, vig, )" (Vim € Vij,i eT).

To take advantage of the interdependence between processes at different agents,
at any time ¢, subdomains are organized into a hypertree, and agents can com-
municate through interfaces specified by the hypertree. We refer to an interface
on the hypertree as an agent interface.

10



We assume that agents generally work for different principals. Therefore, as-
sociated with the spatial distribution of variables, there is also the distribution
of ownership and interest. However, agents working for different principals do
not have to be competitive. Two assumptions are often made for DMSBN-based
multiagent systems. The first is the proprietary assumption: The knowledge of
A7 over V? and S is proprietary. Hence, variables in V; that are not contained
in any agent interface of A7 are private variables of A7. The dependency struc-
ture among them as well as numerical parameters that quantify the structure
are also private to A7. As a result, a centralized representation and processing
of a DMSBN is not feasible.

The second assumption is common interest: Agents share a common interest
that motivates them to cooperate truthfully within the limit of their privacy.
Hence, agents can form agreeable interfaces, and variables contained in agent
interfaces are public. Furthermore, any message exchanged regarding public
variables is consistent with the true belief of the sending agent. No messages
regarding private variables will be communicated.

We refer to a DMSBN as a multiagent DMSBN if it is populated by a set
of agents to whom the proprietary and common interest assumptions hold. We
consider below an application of multiagent DMSBNs.

Supply chain forecasting Manufacturers in a supply chain are related by
recursive supplier-consumer relations. For each supplier to meet the needs of
production operations for workers (to be hired or laid-off), equipment (to be
purchased or reconfigured), materials (to be ordered and shipped) and so on,
arrangements must often be made in advance. Forecasts allow such needs to be
anticipated so that necessary arrangements are made in time.

More specifically, consider the issue from the equipment perspective. Man-
ufacturing of a particular part, device, or component requires setup and recon-
figuration of equipment. Per-part cost is reduced if setup is performed once
for a large batch of the same part. Constant switching between manufacturing
of different parts increases per-part cost and should be avoided. On the other
hand, if production exceeds demand significantly, maintaining a large inventory
over an extended period is also costly. Hence, accurate prediction of short-term
demand allows the optimal planning of manufacturing operations.

Supply chain forecast can be performed by a multiagent system where each
manufacturer is served by a computational agent. These agents can model the
domain as a DMSBN. Figure 4 illustrates a DMSBN for a three-agent system
with T = {0,1}. The spatial distribution is shown along the horizontal di-
rection. For example, G}, G} and G3 for time 0 are shown in dashed boxes
on the top row, and the corresponding agents A%, A! and A? are indicated.
These graphical structures encode the following dependence relations. For each
supplier, availability of skilled workers, adequate equipment, and material (or
component) ordered constrain the level of production, which in turn determines
the amount of supply produced and influences the unit cost. Availability of
skilled workers influences the workers’ wage, which in turn affects the unit cost.
The unit cost is also affected by the sale price of the material from the next
supplier down the chain. The amount of supply and the order incoming from

11



A2 (product supplier) Al (component supplier) AO(material supplier)
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Figure 4: The structure of a DMSBN for supply chain forecasting.

the next supplier up the chain determine the inventory left and affect the unit
sale price. Note that production} is a private variable for agent A!, while price}
is a public variable between A' and A2.

The temporal evolution is shown vertically. For example, G3 (bottom left) is
placed below GZ. The set F? of temporal arcs consists of those going from the
upper left box into the bottom left box. They encode the following temporal
dependency. The current availability of workers, the current wage level, and the
current availability of equipment are dependent on their status in the previous
time. The current supply is also affected by the previous level of inventory.

In supply chains, the demand (from a consumer) of a component (satisfied
by a supplier) generates a demand of parts (produced by other suppliers) that
the component is composed of. This interdependency among suppliers makes
isolated forecasting by individual manufacturers less accurate. A cooperative
forecasting is advantageous as each agent benefits from knowledge and observa-
tions of other agents over their subdomains. More accurate forecasting allows
better planning and more cost-effective operations for all suppliers. Hence,
DMSBNSs have an advantage over isolated DBNs as will be shown in Section 9.

5. Properties of DMSBNs

In general, as time evolves, the jth subnet of a DMSBN for any fixed j
may change both its graphical structure and its parameters. We describe this
property of DMSBNs with the time variability defined below.

12



Definition 11. A DMSBN is structural time-invariant if for all i # j,
G; and G; are isomorphic and F; and F; are isomorphic. Otherwise, it is
structural time-variant.

In a structural time-invariant DMSBN, parameter sets P; and P; for some
1 # 4 (i > 0,7 > 0) are equivalent if for every variable x; in G; and its
isomorphic counterpart x; in G, P(x;|n(x;)) € P; is identical to P(xj|m(x;)) €
P;.

A structural time-invariant DMSBN is also parametric time-invariant if
foralli#j (i>0,j>0), P, and P; are equivalent. Otherwise, the DMSBN
is parametric time-variant.

A DMSBN is time-invariant if it is both structural time-invariant and
parametric time-invariant .

If a dynamic domain can be modeled by a structural time-invariant DMSBN|
it must be the case that at any fixed time, the set of dependence relations (tem-
poral or atemporal) do not change over time. Hence, graph substructures of
the DMSBN are isomorphic. If the domain can be modeled by a time-invariant
DMSBN, then in addition, relative to the dependence structure, the strengths
of dependence relations do not change over time (CPTs are equivalent). Time-
invariant DMSBNs can be more effectively processed than their time-variant
counterpart because agents can reuse template subnets, as we explain in Sec-
tions 6 and 7. Although parametric time-variant DMSBNs appear to be out of
reach by such template-based processing, we show in Section 8 that as long as
they are structural time-invariant, they can be transformed into time-invariant
DMSBNSs and hence be amendable to such processing. We will refer to the class
of multi-dimensional stochastic processes that can be modeled by structural
time-invariant DMSBNs as structural time-invariant processes.

The time variability defined above should not be confused with stationar-
ity and homogeneity, two commonly referred-to properties of stochastic pro-
cesses. A stochastic process is stationary if the joint distribution of any col-
lection of m variables of the process does not change when shifted in time
[1, 3]. A process that can be represented by a time-invariant DMSBN may
not be stationary. A Markov chain {vg,v1, ...}, for instance, generally has
P(v1) =), P(vilve)P(vo) # P(vo) even if P(vit1]v;) does not change with i.
Hence, time-invariability does not imply stationarity.

A Markov process is homogenous if the conditional probability distribution
of its state transition does not change when shifted in time [16]. A DMSBN
can be viewed as consisting of a state model (state variables in V; and relevant
part of G; and P;), a transition model (F; and relevant part of P;), and a sensor
model (sensor variables in V; and relevant part of G; and P;). Homogeneity
focuses on invariability for the transition model, while time-invariability requires
invariability for the state model and the sensor model as well. Hence, time-
invariability is not equivalent to homogeneity.

INote that a parametric time-invariant DMSBN is also a time-invariant DMSBN.
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Below, we establish the fundamental relations between DBNs, MSBNs, and
DMSBNSs. This not only gains insight into the syntax and semantics of DMS-
BNs, but also suggests the application of inference methods for DBNs and MS-
BNs to Bayesian forecasting with DMSBNs. Proposition 1 establishes the re-
lation between DBNs and DMSBNSs. Its proof is straightforward by comparing
Def. 3 and Def. 10.

Proposition 1. Let DM be a DMSBN of horizon k. Then, for each j,

k k k k
par = (w2t U s )
i=0 i=0 i=1 i=0
is a DBN.

Note that from Def. 10, for each variable x with multiple occurrences at
time 4, only one occurrence is associated with the non-constant P(z|r(x)) and
each other occurrence is associated with a constant CPT. Hence, the product
of CPTs at nodes in the DBN DM/ is not necessarily identical to the marginal
of JPD from DM marginalized down to Uf:o V7. This issue must be addressed
when the method for inference in DBNs is extended to DMSBNSs.

Proposition 2 establishes the relation between MSBNs and DMSBNs.

Proposition 2. Let DM be a DMSBN of horizon k and M; be a slice of DM
for time i. Then M; is an MSBN.

Proof: The proof is straightforward by comparing Def. 9 and Def. 10 and noting
the following: Although in each subnet S? of M;, G? is enlarged into G7 with

FI)_, and F/, the temporal arcs F/ do not introduce direct connection between
GJ and G7* for all m # j. Hence, whenever G; = |, G is a hypertree MSDAG,
Gi = U, G is also a hypertree MSDAG. O

Note that for each x € F I _, in the subnet Sg , it has no parent in Sg and

is assigned a constant CPT in Def. 10. Hence, P(FI/_,) as defined by S7 is a
constant distribution as well. More precisely, the following marginalization

Z H H p(v|7(v)) (where f/l = Uf/f)
VAFIL_, 7 pv|r(v)eP?

is a constant distribution. This issue must be addressed when the method for
inference in MSBNs is extended to DMSBNs. We summarize this fact in the
following Lemma, which is needed in our later analysis.

Lemma 1. Let DM be a DMSBN of horizon k and M; be a slice of DM for
time ¢ > 0. Then, in each subnet, the distribution over the forward interface
I,

P )= S JI I pllr)  (where Vi ={JV7)

VA\FII_, J  p(u|=(v))eP]

1s a constant distribution.
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An important property of MSBNs is that they support distributed, exact
inference by multiagent systems. This property results from the fact that the
JPD P(V) of the MSBN can be factorized according to subdomains. As shown
in Proposition 1 from [8], although the prior joint distribution over all variables
in a DBN is factorized, the message to be passed during inference by elimina-
tion is not factorable, and its size is exponential on the number of persistent
state variables. Without a subdomain based factorization, exact inference in
DMSBNSs cannot be distributed to multiagent.

To resolve this issue, we require that the time series associated with the
DMSBN satisfy the following sufficiency condition. It asserts that, before a
forecast is made, all variables in the agent interface are observed.

Definition 12. Let DM be a multiagent DMSBN over T = {0, ..., k},

and 11; be the set of all public variables in V;. Let T'S be a time series over
T- ={0,....k— 1},

TS:(.IU,.IQ,...)/ (xij € X; ng,zeT/ng)

Then TS is a time series associated with DM. TS is sufficient iff
II; C X; and for each x;; € II;, the component series {x;;} is complete in T~ .

In Def. 12, the DMSBN is over k + 1 intervals while the time series is over
k intervals. This sets the stage for multiagent forecasting for time k based
on observations over the previous intervals. The sufficiency condition says that
variables in agent interfaces must be observed without missing values. The rela-
tion IT; C X; C V; says that additional observations on private variables may be
made and with missing values. We assume that the time series associated with
a multiagent DMSBN satisfies the sufficiency condition. We refer to this as the
sufficient time series assumption, or agent interface observability assumption.
We show in the next two sections that this assumption enables exact forecasting
by multiagent, distributed computation.

6. Multiagent Bayesian Forecasting in Time-Invariant DMSBNs

In this section, we consider multiagent one-step-ahead forecasting with a
time-invariant multiagent DMSBN DM over T' and a sufficient associated time
series T'S. To simplify the description, we assume that at each time ¢ € T, the
observations in TS up to i —1 are available to agents before the forecast for time
1 is made. We also assume that no forecast is made for ¢ = 0. The forecasting
proceeds as follows:

At time i = 0, agents communicate through the MSBN M, to acquire prior
distributions for their respective subdomains. That is, each agent A7 acquires
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the prior P(Voj) for i = 0. Then, each agent A7 makes a set of (local) ob-
servations obsé in T'S and updates belief about its subdomain VOj to get the
posterior distribution P(\A/Oj|0bsé) for i+ = 0. Due to the d-sepset condition of
agent interface and the agent interface observability, this step can be performed
at each agent’s local JT without communication. By marginalizing P(\A/OJ |obs),
the posterior P(FI}|obs)) over the forward interface is obtained. This is the
message to be propagated into the subnet for i = 1.

After that, the MSBN M, is loaded into agents. At each agent A7, the
message P(FI}|obs)) is absorbed into the subnet for V7. Through the MSBN
M, agents communicate and make forecast for i+ = 1. That is, each agent
A7 obtains the prior P(V{|obsg) for i = 1, where obsy includes all (global)
observations in TS for i = 0.

From then on, at each time ¢ > 1, each agent Aj_ acquires observations
obs? from TS, updates its belief into the posterior P(V/|obs?, ..., 0bs?) through
inference at its local JT, and obtains the marginal P(FI/|obs}, ..., 0bs]) over
the forward interface. After that, the MSBN M, is loaded into agents; the
message P(F1I]|obs), ..., obs]) is absorbed at each agent A7; agents communicate
through M; ;1 to obtain the prior P(Vii1|0bso, ..., 0bs;) for i+ 1 at each A’; and
the forecast for ¢ + 1 is made accordingly.

Similar to inference in multiagent MSBNs, the above computation is best
performed through a compiled representation of the DMSBN. The subnets for
each time ¢ are compiled into an LJF. As the DMSBN is assumed time-invariant,
the LJF can be compiled once and reused for each time interval. The compilation
is similar to that for MSBNs, except that for each subnet of time i, FI} | is
contained in a cluster in the local JT and so is FI/ (see Proposition 1 in [8]).
We denote the local JT of agent A7 compiled from its subnet S7 by T7.

@]

equipg | C1

eqp’, inv', wag, wag’, wkr
AU WY S A S Co

‘ 7777777777777777777777777 / 77777777 : eqp’, inv', wag’, wkr, wkr’
: | Ce

1
ordery ! cost, inv, inv', prod, sply
| G
3 cost, inv, ord2, sply eqp, inv, inv’, prio, prod, wag, wkr

— C,

cost, inv, inv’, pri0, prod, wag
cost, ord2, pri, sply Cs eqp, inv', ord, pri0, prod, wkr
Cs

e 3 Cg
| price } cost} price9 |

eqp, eqp’, inv', wag, wkr

Figure 5: The structures of subnet S (a) and local JT T}! (b) for agent Al in Figure 4.

Figure 5 (a) shows the structure of subnet S} for the DMSBN illustrated
in Figure 4. The structure of the corresponding local JT T} is shown in (b).
Variable labels are simplified in (b). For variables in V! (lower box in (a)),
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wage; is labeled as wag, price! as pri0, and order? as ord2. For variables in

FI! | (upper box in (a)), wage}_; is labeled as wag'.

Intervalg Intervaly Interval,

obsy forecast; | obs; forecast, | obs, forecasts

Init Forecast Forecast Forecast

Figure 6: Timing of multiagent one-step-ahead forecasting.

Figure 6 illustrates the timing of agent activities. The first row shows the
physical time intervals and their bounds. In the second row, the label obsg in-
dicates the time when observations are made from time series TS for interval
0, and the label forecast; indicates the time when the forecast for time 1 is
available. The overall computation is grouped into two algorithms InitialOb-
servation and Forecast specified below. The third row illustrates the timing
when each of the algorithms is executed in relation to the timing mentioned
above, where Init stands for InitialObservation.

Algorithm 1 (InitialObservation). At start of interval 0, each agent A
does the following:

1 load local JT Tg into memory;
2 enter local observations from TS for time 0;
3 perform UnifyBelief in T} ;

Algorithm 2 (Forecast). At end of interval i > 0, each agent A does the
following:

1 retrieve potential B(FI!) from its local JT T/ ;

2 replace Tl-j by Tl-jJrl in memory; _

8 find a cluster Q in TijJrl such that Q O FI;

4 absorb B(FI?) into potential B(Q) with B'(Q) = B(Q) * B(FI!);
5 respond to call on CommunicateBelief;

6 make forecast for time i + 1;

During interval i + 1, A7 does the following:

7 enter local observations from TS for time i+ 1;

8 perform UnifyBelief in Tl-jJrl;

Note that for each € FI/ | in the subnet S, it has no parent in SJ
and is assigned a constant distribution. Hence, B(FI/_ ;) in T} is a constant
distribution immediately after the local JT is loaded into memory.

CommunicateBeliefis called upon an arbitrary agent during each interval.
In the next section, we show that forecasts produced by a multiagent DMSBN
based on the above algorithm suite are exact.
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7. Exactness and Complexity of Forecasting

Theorem 1 below establishes that Bayesian forecasting in a multiagent DMSBN
using InitialObservation and Forecast is exact.

Theorem 1. After execution of InitialObservation at each agent, followed by
Forecast from time interval 0 to i —1, followed by the first 6 lines of Forecast
at the end of interval i, the one-step-ahead forecasts for time i + 1 are exact.

Before proving the theorem, we briefly introduce the necessary formal no-
tions which are detailed in [15]. Recall from Def. 10, each subnet S/ in the
MSBN M; has the enlarged subdomain f/ij and the structure Gi . As is shown
in the proof of Proposition 2, if U ng is a hypertree MSDAG, then U Jéf is also
a hypertree MSDAG. We denote the mth interface in this hypertree by I;m

Each subnet S7 is compiled into a local JT TV with its potential By (V)
defined through potentials over its clusters?. The argument in B (V7) indicates
the set of variables over which the potential is defined and the slubscript, when
used, emphasizes the object with which the potential is associated, as there
may be multiple potentials over the same argument each attached to a different
object. S7 is associated with one or more agent interfaces. For each interface
IAZ”, agent A’ maintains its potential using a data structure called a linkage tree
which we denote by L;". We denote this potential by Brm (Im).

Let LF; denote the LJF compiled from MSBN M;, both over the enlarged
domain V; = U; V7. The joint system potential (JSP) of LF; is defined as

Brr, (Vi) = HBTg V) 11 Bew (2,

where Bpm (I'™) is the belief over the mth agent interface held by any relevant
agent.

We say that two potentials over the same set of variables are equivalent if
they differ by no more than a constant factor. A JT T} is consistent if for each
pair of clusters @ and @', the potential over QNQ’ computed from either cluster
is equivalent. After UnifyBelief is performed in 77, it is consistent. The LJF
LF; is locally consistent if each local JT is consistent.

When subnets S/ and S¢ are related by interface I, agent A7 maintains
JT T/ and linkage tree L7, while A9 maintains T¢ and L*. JTs T/ and T}
are interface consistent if each of them is consistent and the following potentials
are equivalent: the potential over I;m computed from BTij (Vij), the potential
Brmj (IAlm), the potential over I;m computed from Bra (\A/iq), and the potential
BL;nq(IA;”). Note that the first two are maintained by A7 and the last two by

2Strictly speaking, it also involves potentials over intersections of adjacent clusters, called
separators.
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A?. The LJF LF; is interface consistent if every two local JTs related by an
interface are interface consistent.

The LJF LF; is globally consistent if it is locally consistent and interface
consistent. After CommunicateBelief is performed in LFj;, it is globally con-
sistent. The following theorem (based on Section 8.6 in [15]) establishes that
CommunicateBelief guarantees exact inference in an MSBN.

Theorem 2. Let the JPD over a domain V be P(V). Let a LJIF over V
be globally consistent, and its JSP be equivalent to P(V). Let a set obs of
observations be entered into the LJF and CommunicateBelief be performed.
Then the following conditions hold:

1. The JSP is equivalent to P(V|obs).
2. The potential of each local JT over V7 is equivalent to ZV\Vj P(V7|obs).

3. For each cluster C in each local JT, the cluster potential Bo(C) is equiva-
lent to Y o P(V]obs).

With the above formal notions on MSBNs, we prove Theorem 1 below.

Proof of Theorem 1: We prove by induction on time interval i. For the base
case ¢ = 0, we consider execution of InitialObservation and the first 6 lines
of Forecast.

During InitialObservation, the LJF loaded in line 1 (denote it by LFy) is
globally consistent and its JSP is equivalent to P(Vp). In line 2, observations
are entered at each agent. As agent interfaces are d-sepsets and the interface
observability holds, each (enlarged) subdomain VOJ is conditionally independent
of each other subdomain \70k where k # j, given observations on agent interfaces
between them. Therefore, line 3 is equivalent to CommunicateBelief without
actual communication. After line 3, LFj is globally consistent. From Theorem 2
and the fact that FIJ is contained in a single cluster in T, B(F'I}) retrieved
from that cluster is exact. That is,

B(FI}) = const x P(FI}|obs}) = const x P(FI}|obs),

where ‘const’ is a constant factor and obsg is the set of observations made at
1 = 0 by all agents. Note that the second equality holds due to the interface
observability.

Moving to Forecast, based on the above argument, B(FIj) retrieved at
line 1 is exact. At line 2, LF is loaded. From Lemma 1, marginalization of
B(Q) to FI} is a constant distribution. Therefore, before line 4 is executed,
B(Q) = const x P(Q\ FI}|FI}), and the potential associated with local JT 77
is B(V{’) = constx P(V{ \ FI}|FI}). After line 4 is executed, the potential over
@ becomes

B'(Q) = const x P(Q\ FI}|FI}) « P(FI}|obs)) = const x P(Q|obs}).
This implies that the potential of le becomes

B'(V{) = const x P(V] \ FI}|FI}) x P(FI}|obs}) = const x P(V{|obs}).
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That is, the potential over le has been conditioned on observation obsé. This,
however, renders LF} no longer globally consistent. Note that the conditional
independence between subdomains discussed above does not hold in LF; as
its agent interfaces have not yet been observed at this point. Line 5 regains
global consistence in LF;. From Theorem 2, the JSP for LF} is equivalent to
P(Vi|obsg), the potential of T7 is equivalent to P(V |obsg), and for each cluster
C of le , the cluster potential is equivalent to P(C|obsp). Hence, the forecast
for ¢ = 1 at line 6 is exact. This concludes the proof for the base case.

We make the inductive assumption for ¢ = m. Assume when line 6 of
Forecast is executed at the end of interval m, LF,,; is globally consistent and
its JSP is equivalent to P(V;,41|0bso, ..., 0bsy,).

Next we consider the time interval ¢ = m+1. This involves the last two lines
of Forecast executed at the start of the interval and the first 6 lines of Forecast
executed at the end of the same interval (see Figure 6). Each agent completes
lines 7 and 8 with respect to LF,,;1. Due to d-sepset agent interfaces and
interface observability, each subdomain V. 11 is conditionally independent on
each other subdomain Vn’i 41 Where k # j, given observations on agent interfaces
between them at times ¢ = 0, ..., m+ 1. Therefore, line 8 is equivalent to Com-
municateBelief. After line 8, LF,,;; is globally consistent, and B(FI} )

retrieved from a cluster in 77, 41 inline 1 during the next execution of Forecast
satisfies _ _ _ _
B(FI},.,) = constx P(FI] . |obs],...,0bs], ).

m

At line 2, LF, 42 is loaded by agents. After line 4, the potential over Tgl 12
becomes _ _ _ _

B/(V#HQ) = const * P(V$+2|0bsé, .y 0bS) 1),
and LF,, 2 is not globally consistent. After line 5, LF,,+2 regains global con-
sistence and its JSP is equivalent to P(Vm+2|0b50, cee; 0bSm11). For each cluster
C' in any local JT, its potential is equivalent to P(C|obso, ..., 0bs;,+1). Hence,
forecast at line 6 on ¢ = m + 2 is exact. O

Next, we consider the time complexity for one-step-ahead forecasting using
Forecast. This is essentially the complexity of CommunicateBelief which
dominates the computation. As CommunicateBelief is performed using the
LJF, we use the following parameters to characterize the DMSBN and LJF. Let
n be the total number of agents in the multiagent DMSBN, x be the maximum
number of possible values of a variable, m be the maximum number of clusters
in a local JT, and ¢ be the cardinality of the largest cluster in all local JTs.
Then from [15], the time complexity of CommunicateBelief, and hence that
of Forecast, is O(n m k?). Since the LJF is reused for each time 7, the space
complexity of Forecast is also O(n m x?). _ _

Each subnet S7 of DMSBN contains two forward interfaces FI} ; and FI],
each of which is contained in a single cluster in the local JT. One of them
is often the largest cluster in the local JT (Cy in Figure 5 (b)). In sparse
DMSBNS, the cardinality of this cluster is often close to |FI}|. Furthermore,
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we have |FI/| = |F1JJrl (see Def. 10). Hence, ¢ can be approximated by the
cardinality of the largest set of temporal arcs,

¢~ ¢ =max|F]|.
i,

Replacing ¢ with ¢, we have the time complexity of Forecast as O(n m x?).
Note that this is the complexity of computation performed by all agents.

Two observations can be made: First, the complexity is independent of
the time. This is important as the computational cost will not grow as other
inference methods have experienced (see [14]).

More importantly, the complexity is ezponentially reduced from that of exact
inference based on an equivalent single-agent DBN. In particular, if the spatial
distribution is ignored, a DMSBN becomes a DBN with F; = U;F} being its
set of temporal arcs. Denote ® = max; |F;| (the maximization has no effect for
structural time-invariant DMSBNs). Assume that exact inference is performed
with the single-agent DBN using a method such as [7, 8]. Also assume that the
number of clusters in the resultant JT has about the same number of clusters as
the number of clusters in all local JTs in a LJF. That is, the number of clusters
in the resultant JT is approximately n m. Then the time complexity of exact
inference with the single-agent DBN is O(n m x%).

If we assume that the cardinality of F! in the DMSBN does not vary sig-
nificantly with j, we have the approximate relation ® = n ¢. It then follows
that forecasting using the multiagent DMSBN reduces the time complexity ex-

ponentially by a factor of
RO — b (1),

8. Domains Expressible by Parametric Time-Variant DMSBNs

In this section, we consider forecasting in domains expressible by structural
time-invariant but parametric time-variant DMSBNs. In such domains, the set
of dependence relations (that we care to model) is invariant over time, but CPTs
for some variables may drift over time (due to factors that we choose not to
represent explicitly). In our supply chain example, suppose that the availability
of qualified workers at time ¢ mainly depends on the availability at time ¢ —
1 and we have chosen to ignore all other factors. However, the distribution
P(worker!|worker!_,) may drift between two CPTs §(worker!|worker!_,) and

Y(worker! lworker! ) due to the combined influence from the status of the
economy, the season, and so on. With the parametric time variability, it no
longer appears feasible to precompile and reuse the same LJF template as in
Forecast. We show below that is not necessarily the case.

One way to handle the parametric time variability is to add a binary parent
variable, say a! € {a~,a"}, to worker]. The CPT associated with worker] is
redefined as

J J
P(worker]|worker;]_,,
J

P(worker! |worker?

) = O(worker! |worker? ),

1 +) = Yp(worker! jworker?_,).
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The drifting of the original distribution is encoded by a temporal arc between
al and a]_,, as shown in Figure 7.

worker]
i-1

—

workerJi

Figure 7: The modified substructure of a parametric time-variant DMSBN.

In general, let the distribution P(v;|7(v;)) be drifting between a set of w > 1
CPTs

{0[1](vi| 7 (vs), ..., Olw] (vi|7 (v;) }.

Create a new parent variable a; € {a[l],...,a[w]} for v;. Define the new CPT
associated with v; as

P(vilm(vi), ai = a[m]) = O[m](vi|m(vi))

for m = 1,...,w. Connect a; and a;—; by a temporal arc and define the CPT
P(a;|ai—1). Note that P(a;|a;—1) is independent of 7. That is, it is time-
invariant.

With the above modification for each relevant variable, the parametric time-
variant DMSBN is transformed into a time-invariant DMSBN, and the forecast-
ing algorithm Forecast is applicable. Hence, our multiagent forecasting method
is applicable to all structural time-invariant DMSBNs no matter whether they
are parametric time-invariant or not.

Note that the variable a; is generally unobservable, but its value can be
monitored and predicted as a side effect of Forecast.

9. Experiments

We first present our experiments on dynamic domains that can be mod-
eled directly as time-invariant DMSBNs and then on domains that are directly
expressible as structural time-invariant and parametric time-variant DMSBNs.

9.1. Domains Expressible by Time-Invariant DMSBNs

To evaluate multiagent forecasting with time-invariant DMSBNs, we com-
pare their forecasting performance with equivalent DBNs. The dynamic domain
is a supply chain consisting of a product supplier, a component supplier and a
material supplier. Each supplier is aided by an agent. A multiagent team con-
sists of three agents which populate the supply chain DMSBN in Figure 4. A
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single-agent team consists of three independent agents (no communication and
cooperation between them) each of which embodies a different DBN induced by
the above DMSBN (see Proposition 1). Hence, the two teams of agents have
the same background knowledge about the domain (and will be associated with
the same time series) but differ in whether the knowledge is used cooperatively.

The dynamic domain is simulated by logic sampling performed using a cen-
tralized DBN that is obtained by ignoring the spatial distribution of the above
DMSBN. Each simulation generates a sufficient, multivariate time series of hori-
zon k = 6, which we refer to as a scenario. The scenario is hidden from both
agent teams but are partially revealed to them during forecasting as time ¢ pro-
gresses. Therefore, the scenario is consistent with the model carried by agents.
Both agents teams and the domain simulation are implemented using the Web-
Weavr toolkit3.

Each agent in each team makes one-step-ahead forecast in its subdomain for
each of the 6 time intervals. For all three agents in each team, a subtotal of 13
variables (underlined in Figure 4) are forecasted at each step and a total of 78
variables are forecasted over 6 intervals. For each variable, the forecast is its
value with the highest posterior marginal and is compared against its value in
the scenario. The fraction of variables forecasted correctly by three agents over
6 intervals is used as the performance measure of the agent team, referred to as
forecasting accuracy (in the range [0, 1]).

Each batch of experiments is conducted on a group of 30 scenarios. For
each scenario, five forecasting sessions (Si,...,55) may be run. Sz, Sy and Ss
are run by the DMSBN agent team, and S; and Ss are run by the DBN agent
team. In sessions S7 and So, only variables in agent interfaces are observed
as assumed by interface observability. Additional observations are made in S5
and Sy (identically). In S5, both the agent interface and forward interface are
observed. Since future events are independent of all current events given the
forward interface, agents have the most informative observations in Ss. In short,
sessions differ by the agent team and the amount of observations available to
agents, which is summarized in Table 1.

Table 1: Forecasting sessions

Si So S3 Sa S5
Agent team DBN | DMSBN | DBN | DMSBN | DMSBN
Agent int. observed v v v v v
Addition observations v v
Forward int. observed v

In general, probabilistic reasoning involves inference of both deductive and
abductive nature. Consider a directed path x — ... - y — ... — z in a BN. If

3 Available at http://www.cis.uoguelph.ca/~yxiang/.
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the posterior on y is needed, then the observation of x drives deductive inference
and the observation of z drives abductive inference. Intuitively, forecasting is
similar to deductive inference in the temporal direction, without the assistance
of the abductive counterpart. As a result, the accuracy of forecasting is heavily
dependent on the causal strength* between the current state and future events.
To take this dependency into account in our evaluation, we control the level of
causal strength of the dynamic domain in the experiment (and parameterize the
graphical model accordingly) as follows.

Let v be a variable in the DMSBN associated with P(v|m(v)). For each
instantiation 7(v) of m(v), denote w(v|w(v)) = maz,P(v|r(v)), where maxi-
mization is over all possible values of v. Hence, w(v|w(v)) is a simple indicator
of the causal strength. The closer it is to 1, the more predicable the value of
v given mw(v). To set the level of causal strength for a DMSBN, a parameter
t € (0.5, 1) is specified, and for each variable v, w(v|7(v)) is lower-bounded by ¢.
We simulated three groups of scenarios (30 each), G1, G2 and G3, with strength
parameter ¢t = 0.93, 0.8, 0.7, respectively.

Figure 8 summarizes the forecasting accuracy for the batch of experiments
run on GG; with causal strength 0.93. By comparing results between S; and Ss,
and between S3 and Sy, it can be seen that the DMSBN team has more accurate
forecasting than the DBN team. By comparing results between S; and Ss3, and
between S, Sy and Ss, it can be seen that more observations result in more
accurate forecasts by each team. The same general trend can be seen in Figure 9
which summarizes the forecasting accuracy for the batch of experiments run on
G2 with causal strength 0.80. Furthermore, S5 is run on Gjs.

Note that each line in the above figures is intended to highlight results from
the same team. Since the experiment for each scenario is independent, the slopes
of each line have no meaningful relevance.

The statistical significance of the above outcome is evaluated using the stu-
dent’s t-test, and the result is summarized in Table 2. The null hypothesis is
that p; and p; from sessions S; and S; are the same. The alternative hypoth-
esis is stated in the 2nd column. In three tests, the alternative hypothesis is
accepted with a significance level greater than 99.99%, and in one greater than
96%.

Table 2: Summary of p-values for t-test wrt time-invariant domains.

Sessions | Alternative Batch = G1, Batch = Gy,
compared | hypothesis | causal strength = 0.93 | causal strength = 0.80
S1 vs So Mo > 0.000089608 0.031166752
Ss vs Sy e > 3 0.000000005 0.000177155

In addition, we run session S5 for each scenario in G3 with causal strength

4We use the term ‘causal’ loosely here.

24



1.00

N R

0.90

Accuracy

1 2 3 45 6 7 8 91011121314 1516 17 1819 2021 22 23 24 25 26 27 28 29 30

Figure 8: Forecast accuracy for causal strength 0.93. The horizontal axis is labeled by scenario
index. The vertical axis is labeled by forecasting accuracy € [0,1]. Mean accuracies and
standard deviations for sessions S7 through S5 are as follows: pu3 = 0.63,01 = 0.17,u2 =
0.70,02 = 0.20, u3 = 0.67,03 = 0.17, 4 = 0.80,04 = 0.19, us = 0.83,05 = 0.18.
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Figure 9: Forecast accuracy for causal strength 0.80. Mean accuracies and standard deviations
for Sj through S5 are as follows: pu; = 0.55,01 = 0.18,u2 = 0.59,02 = 0.20,u3 = 0.60,03 =
0.17, 44 = 0.69,04 = 0.20, u5 = 0.71,05 = 0.20.
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0.70. The average accuracy over the 30 scenarios is pus = 0.58 (standard de-
viation o5 = 0.21). From the mean accuracies of S5 in G1, G2 and Gj, i.e.,
0.83, 0.70 and 0.58, respectively, it is clear that, in dynamic domains of stronger
causal strength, more accurate forecasting can be achieved.

9.2. Domains Expressible by Parametric Time-Variant DMSBNs

Next, we present our experiment on domains that are directly expressible
by structural time-invariant but parametric time-variant DMSBNs. The para-
metric time variability of the domain is enabled by making 6 variables in V;
(evenly distributed among three agents) parametrically time-variant. That is,
their CPTs are set to drift with time. For three of them, the CPT drifts be-
tween two alternative versions and for the other three, the CPT drifts between
four alternatives. For each variable above, its CPT will drift with probability
0.07. We refer to these variables as being parametrically time-variant or simply
time-variant.

We encode the domain using the technique described in Section 8. Denote
the corresponding DMSBN as DMy,. An equivalent DBN is obtained from
DMy, by ignoring the spatial distribution, and the DBN is used to simulate
the dynamic domain. Hence, the simulated domain is directly expressible by a
parametric time-variant DMSBN. From the domain, a group G4 of 30 scenarios
are simulated with the strength parameter t = 0.93.

We created three multiagent teams each associated with a different DMSBN.
In addition to DMy, , two alternative DMSBNs are created. One of them, DM;,,
is a time-invariant DMSBN that does not model the parametric time variability
of the domain. In particular, for each time-variant variable, a permanent CPT
(identical to one of the versions used in DMjy,) is used in DM;,,. Hence, agents
associated with DM;, ignore the parametric time variability of the domain
completely. In the third DMSBN, DMjp,,, half of the time-variant variables are
modeled as in DMy, and the other half as in DM;,. Hence, agents associated
with DMy, partially ignore the parametric time variability of the domain.

For each scenario in G4, three sessions Sg, S7 and Ss are run by multiagent
teams associated with DM;,, DMy, and DMy, respectively. The forecasting
accuracy for this batch of experiments is summarized in Figure 10. The DMy,
team outperformed the other two teams, and the DMpy, team outperformed the
DM, team. This demonstrates the effectiveness of encoding parametrical time
variability using the technique in Section 8.

Table 3: Summary of p-values for t-test wrt parametric time-variant domains.

Sessions | Alt. hyp. p-value
Se vs S7 | w7 > pe | 0.000000543
S7 vs S | pg > pr | 0.000000001

The statistical significance of the outcome is evaluated using the student’s
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Figure 10: Forecast accuracy for parametrically time-variant domain. Mean accuracies for Sg
through Sg are as follows: pug = 0.58,u7 = 0.69,ugs = 0.81. Their standard deviations are
about 0.13.

t-test, with the result summarized in Table 3. In both tests, the alternative
hypothesis is accepted with a significance level greater than 99.99%.

10. Conclusion

Forecasting in stochastic, dynamic domains based on multivariate time series
has a wide range of applications and can be performed based on DBNs. A
main obstacle in exact forecasting using DBNs is the temporal disintegration
of factorization. In [10], a concise closing comment (p564) was made on this
difficulty after presenting exact inference in DBNs:

“The DBN model itself, which represents the prior joint distribution
over all the variables, is factorable into its constituent CPTs, but the
posterior joint distribution conditioned on an observation sequence -
that is, the forward message - is generally not factorable. So far, no
one has found a way around this problem, despite the fact that many
important areas of science and engineering would benefit enormously
from its solution. Thus, we must fall back on approximate methods.”

In this contribution, we present a solution to this problem, focusing on a sub-
class of inference tasks, exact forecasting. We present the multiagent DMSBN
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framework, whose key components are a distributed, temporal graphical model,
a cooperative multiagent organization, the structural time invariability and in-
terface observability assumptions, a compiled runtime representation and a dis-
tributed forecasting algorithm suite. The framework employs the runtime LJF
which keeps the “forward message” factorized and hence neither the space nor
the time complexity increases with time. The key enabling factor is the interface
observability. We have shown that, as the result, the time complexity of exact
forecasting is reduced exponentially compared with that based on DBNs. This
makes exact forecasting feasible in large dynamic domains that are out of reach
if restricted to DBN modeling.

Constrained by the temporal disintegration of factorization of DBNs, one
could manage the computational cost by splitting a large dynamic domain into
several smaller ones and performing exact forecasting in each based on an in-
dependent DBN. Similarly with this approach, the DMSBN framework splits
the domain spatially into subdomains and encodes each by a DBN (Proposi-
tion 1). Contrary to the above approach, the DBNs in the DMSBN framework
are tightly coupled and cooperative. As the result, the DMSBN approach pro-
duces more accurate forecasting than that based on independent DBNs,; as we
have demonstrated in experiments. A decision-theoretic comparison of tightly
coupled multiagent frameworks versus loosely coupled alternatives, e.g., [17, 18],
can be found in [19].

We also presented a simple technique to transform parametric time-variant
DMSNs into time-invariant DMSBNs. This allows the computational framework
mentioned above to be applicable to any structural time-invariant DMSBNs.

This contribution opens the gate for a number of extensions. Although our
focus is on forecasting, the DMSBN framework is applicable to the inference
task of monitoring/filtering. Its extension to smoothing is perceivable and needs
further investigation.

Although the DMSBN framework is presented under the multiagent paradigm,
it can be adapted to single-agent, parallel computation. The representational
constraints of DMSBNs will provide guidelines on how to decompose the parallel
components effectively.

We have chosen the supply chain domain as the experimental testbed. The
advantages are that it is small, intuitive, and comprehensible, which are essen-
tial for the first of such experiments. Using this testbed, our experiments have
focused on demonstrating the exactness, the effectiveness of stable LJF runtime
representation, and improvement on forecasting accuracy by the proposed mul-
tiagent framework. Future experiments in much larger domains are needed to
demonstrate empirically the computational savings of the framework, and to
explore additional efficiency gains that are sanctioned by the general DMSBN
framework.
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