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Abstract

The present article considers estimating a parameter θ
in an imprecise probability model (P θ)θ∈Θ which con-
sists of coherent upper previsions P θ . After the defi-
nition of a minimum distance estimator in this setup
and a summarization of its main properties, the fo-
cus lies on applications. It is shown that approximate
minimum distances on the discretized sample space
can be calculated by linear programming. After a dis-
cussion of some computational aspects, the estimator
is applied in a simulation study consisting of two dif-
ferent models. Finally, the estimator is applied on a
real data set in a linear regression model.

Keywords. Imprecise probabilities, coherent lower
previsions, minimum distance estimator, empirical
measure, R Project for Statistical Computing.

1 Introduction

1.1 Motivation

In classical statistics, it is common to assume com-
plete knowledge about a statistical model which con-
sists of a (smooth parametric) family (Pθ)θ∈Θ of (pre-
cise) probability measures. The task is to make asser-
tions about the true parameter θ0 ∈ Θ . Most often,
it is assumed that such assertions can be based on
data x1, . . . , xn from random variables which are
independent identically distributed according to the
true distribution Pθ0

. That is, the data analyst al-
ready knows that the real distribution P0 can only
be a member of a very special family of probability
measures (Pθ)θ∈Θ and the only thing which is not
one hundred percent sure is the correct parameter
θ0 ∈ Θ . Since this assumption is much to strong for
many real applications, generalizations of this prob-
abilistic setup are needed. Suitable generalizations
of the concept of probability have been developed,
among others, by [12] (coherent lower/upper previ-
sion) and [15] (F-probability). Here, the probability

of an event is no longer a number p ∈ [0, 1] but an
interval [p, p] ⊂ [0, 1]. In order to generalize the setup
of classical statistics to a (more realistic) imprecise
probability setup, it is natural to replace the precise
model (Pθ)θ∈Θ by an imprecise model (P θ)θ∈Θ which
consists of such coherent upper previsions P θ .

The classical frequentist theory of statistics is, in
large part, concerned with hypothesis testing (in the
sense of Neyman-Pearson) and estimating a parame-
ter. While Neyman-Pearson testing under imprecise
probabilities has been extensively studied (cf. e.g. [1]
and [2]), estimating a parameter has hardly been con-
sidered explicitly within the theory of coherent lower
previsions so far. There are a few articles which are
concerned with it in Bayesian models (primarily asso-
ciated with Walley’s Imprecise Dirichlet Model), e.g.
[13], [9], [7] and [14]. In addition, there are a few ar-
ticles which address very special applications, e.g. [8]
(climate projections) and [3] (prediction of the next
influenza pandemic). However, general investigations
about frequentist estimation of a parameter using co-
herent lower/upper previsions are still missing. A first
attempt is made in [6] where a minimum distance es-
timator is developed, and its asymptotic properties
are investigated.
The present article focuses on applications of this es-
timator; for the theoretical validation of the estima-
tor, it is referred to [6]. After a recollection of the
definition and the basic properties of the minimum
distance estimator in Section 2, Section 3 investigates
the concrete calculation of the estimator. At first,
the sample space has to be suitable discretized, then
the distances between the empirical measure and the
coherent upper previsions can be approximately cal-
culated by linear programming. An explicit linear
program is developed in Subsection 3.2. The mini-
mum distance estimator is already implemented in the
(open source) statistical programming language R; it
is publicly available as R-package “imprProbEst” [5].
Subsection 3.3 explains some details about this imple-
mentation in R. Next, Section 4 presents a simulation



study where the estimator is applied in two different
models and compared to classical estimators. This
simulation study exemplifies that the proposed esti-
mator can also be calculated for large sample sizes.
This meets objections that, due to high computa-
tional costs, imprecise probabilities could not be used
for practical purposes. Finally, the minimum distance
estimator is applied on a real data set in Section 5.
Section 6 contains some concluding remarks.

1.2 Setup and Notation

Let X be a set with σ-algebra B . Then, L∞(X ,B)
denotes the set of all bounded, B -measurable real
functions f : X → R . The supremum norm on
L∞(X ,B) is denoted by ‖f‖ = supx∈X |f(x)| . The
set of all bounded, finitely additive, signed measures
is denoted by ba(X ,B) and can be identified with the
dual space of L∞(X ,B) ; cf. [4, Theorem IV.5.1]. Fi-
nally, ba+

1 (X ,B) denotes the set of all finitely addi-
tive probability measures. Integrals with respect to
µ ∈ ba(X ,B) are denoted by µ[f ] .
In accordance with [12, § 2.5.1], a coherent upper pre-
vision on (X ,B) is a map

P : L∞(X ,B) → R , f 7→ P [f ]

such that there is a (non-empty) set V ⊂ ba+
1 (X ,B)

and P [f ] = supP∈V P [f ] for every f ∈ L∞(X ,B) ;
cf. also [12, § 3.3.3] and [6, § 2.3]. The non-empty set
M :=

{

P ∈ ba+
1 (X ,B)

∣

∣ P [f ] ≤ P [f ] ∀ f
}

is called

credal set of P then.
A coherent upper prevision P is called finitely gener-
ated if there is a finite set {f1, . . . , fs} ⊂ L∞(X ,B)
such that P is the natural extension of a coherent up-
per prevision on {f1, . . . , fs} ⊂ L∞(X ,B) . That is,
P ∈ ba+

1 (X ,B) is in the credal set of P if and only
if P [fj ] ≤ P [fj ] for every j ∈ {1, . . . , s} . Such co-
herent upper previsions naturally arise in applications
whenever a practitioner is only able to specify upper
(or lower) bounds on the probability or expectation
of a finite number of events or functions respectively.
A finitely generated, coherent upper prevision P is
called regular if, in addition, P [fj ] > P [fj ] ∀ j ∈
{1, . . . , s} where P denotes the coherent lower pre-
vision corresponding to P ; i.e. P [f ] = −P [−f ] =
infP∈M P [f ] for every f ∈ L∞(X ,B) .

2 A minimum distance estimator for

imprecise models

2.1 Assumptions

In order to state the definition of the minimum dis-
tance estimator, the following fixings and assumptions

are made. These are valid throughout the rest of the
article:

(X ,B) is a measurable space and Θ is a finite1 index
set. The data x1, . . . , xn stem from random variables
which are independent identically distributed accord-
ing to a probability measure P0 . For every θ ∈ Θ ,
let P θ be a coherent upper previsions on (X ,B) with
credal set Mθ ; (P θ)θ∈Θ is called imprecise model. It
is only assumed that the true probability measure P0

is contained in Mθ0
where θ0 ∈ Θ is the unknown

true parameter. The task is to estimate θ0 . 2

The following fundamental assumptions on the coher-
ent upper previsions are made:

There is a finite subset K = {f1, . . . , fs} ⊂ L∞(X ,B)
such that

Mθ =
{

Pθ ∈ ba+
1 (X ,B)

∣

∣ Pθ[fj ] ≤ P θ[fj ] ∀ fj ∈ K
}

for every θ ∈ Θ . Furthermore, it is assumed that

P θ[fj ] − P θ[fj] > 0 ∀ fj ∈ K (1)

where P θ is the corresponding lower coherent previ-
sion. In particular, each P θ is a regular, finitely gen-
erated coherent upper previsions. 3

In the following, it is always assumed that each fj ∈ K
is standardized; i.e. inf fj = 0 and sup fj = 1 . Of
course, this is no restriction since every bounded, non-
constant function f ′ can be standardized by

f :=
f ′ − inf f ′

sup f ′ − inf f ′

and, for every Pθ ∈ ba+
1 (X ,B) , we have

Pθ[f ] ≤ P θ[f ] ⇔ Pθ[f
′] ≤ P θ[f

′]

2.2 Definition and asymptotic properties of

the minimum distance estimator

The idea of the minimum distance estimator devel-
oped in [6, § 6] is very simple: The data x1, . . . , xn

are used to build the empirical measure P
(n) . Then,

the minimum distance estimator is that θ̂ ∈ Θ such

1Finiteness of the index set is not crucial for the definition
and basic properties of the estimator (see [6, § 6]) but the algo-
rithm which calculates the estimator is based on this assump-
tion (see § 3).

2This approach corresponds to the use of the type-2 product
of coherent upper previsions [12, § 9.3.5]. The type-2 product of
coherent upper previsions is consistent with a strict sensitivity
analyst’s point of view on imprecise probabilities.

3Though credal sets may also contain elements P which are
not σ-additive, the above assumptions include that P0 is σ-
additive. In case of regular, finitely generated coherent upper
previsions, this assumption is justified by [6, Prop. 6.4] which
states that these previsions can be represented by sets of (σ-
additive) probability measures.



that P
(n) lies next to Mθ̂ . That is, we calculate the

distance between P
(n) and Mθ for every θ ∈ Θ and

pick that θ̂ where the distance is minimal.

The empirical measure P
(n) is defined to be the map

P
(n) : Xn → ba+

1 (X ,B) , x 7→ P
(n)
x =

1

n

n
∑

i=1

δxi

where x = (x1, . . . , xn) and δxi
denotes the Dirac

measure in xi ∈ X . Appropriately to the sensitivity
analyst’s point of view, the distance between a mea-
sure P ′ and a coherent upper prevision P is defined
to be

∥

∥P ′ − P
∥

∥ := inf
P∈M

‖P ′ − P‖ (2)

where M denotes the credal set of P and ‖P ′ − P‖
the operator norm

‖P ′ − P‖ = sup
f∈L∞(X ,B)

∣

∣P ′[f ] − P [f ]
∣

∣

‖f‖

The minimum distance estimator θ̂n is defined to be

θ̂n : x 7→ argmin
θ∈Θ

∥

∥P
(n)
x − P θ

∥

∥

Note that the minimizing θ is not always unique; in
this case, the minimum distance estimator may pick
any minimizing θ .

Now, let us turn over to the asymptotic properties
of the minimum distance estimator according to [6,
§ 6.4]. Firstly, note that the use of the operator norm
together with the empirical measure is not unproblem-
atic in classical statistics: Though several distances d
provide the desirable property that

d
(

P
(n)
x , P0

)

−−−−→
n→∞

0 (3)

almost surely, this is not necessarily true for the op-
erator norm (e.g. in case of the standard normal dis-
tribution). However, this annoying difficulty totally
disappears in our imprecise probability setup (Sub-
sections 1.2 and 2.1). If we replace P0 by a regular,
finitely generated coherent upper prevision P , we get
that

∥

∥P
(n)
x − P

∥

∥ −−−−→
n→∞

0 (4)

almost surely if P0 lies in the credal set M of P ; cf.
[6, Theorem 6.6].

A true parameter θ0 is any θ0 ∈ Θ such that

P0 ∈ Mθ0

Since it is not assumed that the credal sets are dis-
joint, there may be several true parameters.

According to [6, Theorem 6.10], the probability of the
event

{

x ∈ Xn
∣

∣

∣
P0 6∈ Mθ̂n(x)

}

(5)

tends to zero for increasing sample size n if the index
set Θ is finite.

The mathematically rigorous statements about these
asymptotic properties are more involved and have to
be formulated in terms of random variables and image
measures. This is because the expressions in (4) and
(5) will not be measurable in general. For the treat-
ment of unmeasurable maps in asymptotic statistics,
confer e.g. [11, §18].

3 Calculation of the minimum

distance estimator

3.1 Discretization of the sample space

As seen in the previous section, it is not necessary to
discretize the sample space in order to define the min-
imum distance estimator based on the total variation
norm in a sensible way. Since this is not possible for
precise probabilities, going over to imprecise proba-
bilities, in a sense, turns out to be a simplification.
Of course, if we want to calculate the estimator by
use of computers, the sample space has to be dis-
cretized – at least implicitly. However, it is one of the
most striking properties of the above presented mini-
mum distance estimator, that this is only a practical
need which is irrelevant for theoretical investigations.
That is, we can also deal with infinite sample spaces
(X ,B) . In case of precise probabilities, discretization
would even be part of the definition of the minimum
distance estimator.

Recall our assumptions given in Subsection 2.1. In
order to calculate the minimum distance estimator,
we have to calculate

∥

∥P
(n)
x − P θ

∥

∥ = inf
Pθ∈Mθ

sup
f∈L∞(X ,B)

∣

∣ P
(n)
x [f ] − Pθ[f ]

∣

∣

‖f‖

for θ ∈ Θ . Though Mθ is a large subset of ba+
1 (X ,B) ,

these values can nevertheless be calculated with arbi-
trary accuracy as explained in the following:

At first, fix any accuracy ε > 0 . Then, the sample
space (X ,B) may be discretized as follows:

For θ ∈ Θ , let Kθ be the smallest subset of K such
that

Mθ =
{

Pθ ∈ ba+
1 (X ,B)

∣

∣ Pθ[fj ] ≤ P θ[fj ] ∀ fj ∈ Kθ

}



and put Iθ =
{

j ∈ {1, . . . , s}
∣

∣ fj ∈ Kθ

}

. That is,
Kθ = {fj ∈ K|j ∈ Iθ} . Furthermore, put

ε
(j)
θ :=

P θ[fj ] − P θ[fj]

2s
· ε ∀ j ∈ Iθ

and choose simple functions h
(j)
θ such that

fj ≤ h
(j)
θ ≤ fj + ε

(j)
θ ∀ j ∈ Iθ (6)

Then, let Cθ be the smallest σ-algebra on X such

that the simple functions h
(j)
θ , j ∈ Iθ, are Cθ/B -

measurable. Note that Cθ is a finite subset of B . So,

there is a finite partition
{

C
(1)
θ , . . . , C

(r)
θ

}

of X such
that every event C ∈ Cθ is a (finite) union of elements

of the partition
{

C
(1)
θ , . . . , C

(r)
θ

}

.

Now, let Qθ be the coherent upper prevision on
L∞(X , Cθ) which corresponds to the credal set

Nθ =

{

Qθ ∈ ba+
1 (X , Cθ)

∣

∣

∣

∣

Qθ[h
(j)
θ ] ≤ P θ[fj] + ε

(j)
θ

∀ j ∈ Iθ

}

According to [6, Theorem 6.11], we have the following
inequalities for every x ∈ Xn:
∥

∥P
(n)
x − Qθ

∥

∥ ≤
∥

∥P
(n)
x − P θ

∥

∥ ≤
∥

∥P
(n)
x − Qθ

∥

∥ + ε (7)

3.2 Approximate calculation of the distance

by linear programming

According to (7), it is possible to calculate

∥

∥P
(n)
x − Qθ

∥

∥ = inf
Qθ∈Nθ

sup
f∈L(X ,Cθ)

∣

∣P
(n)
x [f ]− Qθ[f ]

∣

∣

‖f‖ (8)

in order to approximately calculate ‖P
(n)
x − P θ‖ ,

where Qθ is a coherent upper prevision on the finite
space (X , Cθ) . So, we have to minimize the convex
function

Nθ → R , Qθ 7→ sup
f∈L(X ,Cθ)

∣

∣P
(n)
x [f ] − Qθ[f ]

∣

∣

‖f‖

Though this is a convex optimization problem, the
optimal solution can be found by solving one single
linear program.

In order to formulate this linear program, choose any

cj ∈ C
(j)
θ for every element C

(j)
θ of the partition

{C(1)
θ , . . . , C

(r)
θ } of X which generates Cθ . Further-

more, put

Nj =
{

i ∈ {1, . . . , n}
∣

∣ xi ∈ C
(j)
θ

}

and let nj be the number of elements in Nj for every
j ∈ {1, . . . , r} . In addition, put

J0 =
{

j ∈ {1, . . . , r}
∣

∣ nj = 0
}

and
J1 =

{

j ∈ {1, . . . , r}
∣

∣ nj > 0
}

Now, consider the following linear program:

∑

j∈J1

qj − γj −→ max! (9)

where

r
∑

j=1

qj = 1 , (10)

r
∑

j=1

qjh
(k)
θ (cj) ≤ P θ[fk] + ε

(k)
θ ∀ k ∈ Iθ (11)

and

qj − γj ≤ nj

n
∀ j ∈ J1 (12)

for the variables

(q1, . . . , qr) ∈ R
r , qj ≥ 0 ∀ j ∈ {1, . . . , r} (13)

and

(γj)j∈J1
⊂ R , γj ≥ 0 ∀ j ∈ J1 (14)

Let βθ be the optimal value of the above linear pro-
gram. Then, Proposition 3.1 below shows that

∥

∥P
(n)
x − Qθ

∥

∥ = 2 ·
(

1 − βθ

)

(15)

Hence, it is, in fact, enough to solve one single linear

program in order to obtain the distance
∥

∥P
(n)
x −Qθ

∥

∥ .
Of course, this was useless in applications if this lin-
ear program would tend to be unsolvable because of
exceedingly high computational costs. So let us take
a closer look on the size of the above linear program:

Since the number of elements in J1 is not larger than
min{r, n} , we have the following upper bounds:

Number of variables: r + min{r, n}
Number of inequalities: 2 + ♯(Kθ) + min{r, n}

Similar to the discretization method presented in [6,
§ 5.4] in data-based decision theory, r can – in general
– exceed beyond all reasonable bounds but will stay
within a reasonable order of magnitude in most ap-
plications. In particular, the latter statement is true
if the functions fj ∈ Kθ are convex, concave or indi-
cator functions of (finite unions of) intervals; confer
[6, Prop. 5.16]. Though the number n of observations
may be very large, it will hardly reach astronomical
orders of magnitude in real applications. The size of



the number of elements in Kθ (i.e. the number of ele-
ments in Iθ) will usually be negligible.

Note that a very large r will usually result from small

values ε
(j)
θ . However, in most real applications, P θ

cannot be specified so accurately that too small values

ε
(j)
θ are meaningful. Furthermore, such small values

ε
(j)
θ indicates that the imprecise model (P θ)θ∈Θ is in

danger of being instable – confer [6, § 5.2]. In this

case it might be justified to replace ε
(j)
θ by a larger

value. In doing so, we end up with a linear program
of a smaller size but, then, it is not guaranteed that

‖P
(n)
x − Qθ‖ still is an approximation of ‖P

(n)
x − P θ‖.

However, replacing ε
(j)
θ by a larger value corresponds

to a more conservative proceeding. If this has a large

effect on ‖P
(n)
x − Qθ‖ , this means that small changes

of P θ[fj ] , j ∈ Iθ , have large effects on P θ[f ] for some
f 6∈ Kθ . In this unstable case, it seems to be a good
idea to be more conservative because this may save
from arbitrary results.4

The following proposition says that ‖P
(n)
x − Qθ‖ can

indeed be calculated by solving the linear program
given by (9) – (14):

Proposition 3.1 Let βθ be the optimal value of the

linear program given by (9) – (14). Then,
∥

∥P
(n)
x −Qθ

∥

∥

is given by (15).

Proof:

STEP 1: Firstly, it is shown that, for every Q ∈ Nθ ,

‖P
(n)
x − Q‖ = 2

∑

j∈J1

(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)+

(16)

To this end, fix any Q ∈ Nθ and note that – due to
finiteness of Cθ – the total variation distance is equal
to

‖P
(n)
x − Q‖ =

r
∑

j=1

∣

∣ P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

∣

∣ (17)

Since {C(1)
θ , . . . , C

(r)
θ } is a partition of X , we have

0 = P
(n)
x (X ) − Q(X ) =

r
∑

j=1

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

=
r

∑

j=1

(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)+

−

−
r

∑

j=1

(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)−

4Confer [6, § 5.2] for more details on the stability of coherent
upper previsions and the potential instability of the natural
extension.

Hence,

‖P
(n)
x − Q‖ (17)

=

r
∑

j=1

∣

∣ P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

∣

∣

= 2 ·
r

∑

j=1

(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)+

Note that P
(n)
x (C

(j)
θ ) = 0 if j 6∈ J1 and, therefore,

(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)+

= 0 ∀ j 6∈ J1

This proves (16).

STEP 2: Secondly, it is shown that, for every Q ∈ Nθ

and every j ∈ J1 ,
(

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ )

)+

=

= inf
γj∈Γj(Q)

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ ) + γj (18)

where

Γj(Q) :=

{

γj ∈ R

∣

∣

∣

∣

γj ≥ 0 ,

Q(C
(j)
θ ) − γj ≤ P

(n)
x (C

(j)
θ )

}

In case of P
(n)
x (C

(j)
θ ) ≥ Q(C

(j)
θ ) , it is easy to see that

the infimum is attained in γ̃j = 0 ∈ Γj(Q) and,
therefore, (18) is fulfilled.

In case of P
(n)
x (C

(j)
θ ) < Q(C

(j)
θ ) , it is easy to see

that the infimum is attained in γ̃j = Q(C
(j)
θ ) −

P
(n)
x (C

(j)
θ ) ∈ Γj(Q) and, therefore, (18) is again ful-

filled.

STEP 3: Finally, put

M =

{

(Q, γ) ∈ Nθ × R
♯(J1)

∣

∣

∣

∣

γ = (γj)j∈J1
,

γj ∈ Γj(Q) ∀ j ∈ J1

}

Then, it follows from STEP 1 and STEP 2 that

inf
Q∈Nθ

‖P
(n)
x − Q‖ = (19)

= 2· inf
(Q,γ)∈M

∑

j∈J1

P
(n)
x (C

(j)
θ ) − Q(C

(j)
θ ) + γj

The definition of J1 implies
∑

j∈J1
P

(n)
x (C

(j)
θ ) = 1 .

Hence,

inf
Q∈Nθ

‖P
(n)
x − Q‖ =

(19)
= 2 ·

(

1 − sup
(Q,γ)∈M

∑

j∈J1

(

Q(C
(j)
θ ) − γj

)

)

For every j ∈ {1, . . . , r} , identify Q(C
(j)
θ ) with the

variable qj in the linear program. Then, it follows
from the definitions of Nθ and M that

sup
(Q,γ)∈M

∑

j∈J1

(

Q(C
(j)
θ ) − γj

)

= βθ

and, therefore, inf
Q∈Nθ

‖P
(n)
x − Q‖ = 2 · (1 − βθ) . 2



3.3 Implementation in the statistical

programming language R

The minimum distance estimator is implemented in
the (open source) statistical programming language
R [10] and is publicly available as R-package “im-
prProbEst” [5]. In order to calculate the estimator,
the program has to do the following steps:

1. for “some” θ ∈ Θ , (approximately) calculate the
distance ‖P

(n) − Qθ‖ , i.e.

• discretize the sample space

• solve the linear program given by (9)- (14)

2. choose that θ̂ which minimizes ‖P
(n) − Qθ‖

The inputs are the observations x = (x1, . . . , xn) and
the imprecise model given by the (standardized) func-
tions fj ∈ Kθ and the previsions P θ[fj ] , fj ∈ Kθ , for
every θ ∈ Θ .

Note that we do not assume any condition of regu-
larity for the map θ 7→ P θ . Therefore, one might
suppose that we have to calculate ‖P

(n) −Qθ‖ for ev-

ery θ ∈ Θ in order to find the minimizing θ̂ . Though
this is possible since Θ is assumed to be finite here,
such a proceeding is very cumbersome because the
calculation of ‖P

(n) − Qθ‖ is computationally costly.
Fortunately, it usually suffices to calculate ‖P

(n)−Qθ‖
only for very few elements of Θ : Put

t(θ) = 2 ·
(

max
j∈Iθ

P
(n)
x [h

(j)
θ ] − P θ[fj] − ε

(j)
θ

)

and Θ = {θ1, . . . , θm} . Then, for every θl ∈ Θ ,

‖P
(n) − Qθl

‖ ≥
(∗)

≥ max
j∈Iθ

P
(n)

[

fj − (1 − fj)
]

− Qθl

[

fj − (1 − fj)
]

= 2 ·
(

max
j∈Iθ

P
(n)[fj ] − Qθl

[fj]
)

(∗∗)

≥ t(θl)

where (∗) is valid since the standardization of fj im-
plies ‖fj − (1 − fj)‖ = 1 , and (∗∗) follows from the
definition of t(θl) and (6). Hence, the algorithm only
has to calculate the subsequent value ‖P

(n) − Qθl
‖ if

t(θl) ≤ min
k∈{1,...,l−1}

‖P
(n) − Qθk

‖ (20)

is fulfilled. If (20) is not fulfilled, we do not have to
calculate ‖P

(n) −Qθl
‖ because, in this case, it follows

from the above calculation that θl is already known to
be not a minimizer. The simulation studies described
in Section 4 showed that, in this way, usually only a
very small number of distances ‖P

(n) −Qθ‖ has to be
calculated.

4 A simulation study

4.1 Model 1: A first example

Model 1 is intended to demonstrate two aspects of the
proposed estimator: Firstly, the estimator can really
be calculated even for large numbers of observations.
In the simulation study, the estimator is applied for
sample sizes n = 30, n = 100, n = 1000, n = 10000 .
For each number of observations, the estimator is eval-
uated 500 times. Secondly, the estimator can provide
good results even though it is developed for the rather
large imprecise models given by finitely generated co-
herent upper previsions. In order to demonstrate
this, the imprecise Model 1 contains a nice precise
parametric model so that the estimator can be com-
pared with a maximum likelihood estimator. While
the maximum likelihood estimator is applied by using
complete knowledge of the precise parametric model,
our minimum distance estimator is only based on the
knowledge of a large imprecise model. Since the sim-
ulated data exactly stem from the ideal parametric
model, this is a rather unequal situation which favors
the maximum likelihood estimator and, therefore, the
maximum likelihood estimator should clearly beat our
estimator. Nevertheless, the performance of our esti-
mator appears to be almost as good as the one of
the maximum likelihood estimator in the simulation
study. In this way, it can be seen that going over to
a large imprecise model does not necessarily mean to
loose a lot of efficiency even if the ideal parametric
model was precisely true.

Here is a detailed description of Model 1: The sample
space is (X ,B) where X is equal to [0, 1] and B is
the Borel-σ-algebra. The precise parametric model
(Pθ)θ∈Θ is given by dPθ = pθ dλ , θ ∈ Θ := [−2, 2]
where the Lebesgue-densities pθ are

pθ(x) = 1+θ
(

x−0.5
)

I[0,0.5](x)+θ
(

0.75−x
)

I(0.5,1](x)

for every x ∈ [0, 1] . Despite of this confusing formula,
the densities pθ are very simple and natural as can be
seen from Figure 1. In order to define the imprecise
model, the parameter set Θ is discretized as follows:

Θ0 :=
{

θ ∈ Θ
∣

∣ θ =−2+0.1k−0.05 , k ∈ {1, . . . , 40}
}

That is, θ0 ∈ Θ0 corresponds to the interval (θ0 −
0.05 , θ0 + 0.05] with center θ0 . The imprecise model
(P θ)θ∈Θ0

is given by credal sets

Mθ =
{

Qθ

∣

∣ Qθ[fj ] ≤ P θ[fj ] ∀ fj ∈ K
}

∀ θ ∈ Θ0

Here, K is the finite set K =
{

f1, . . . , f10

}

which
consists of the (rather arbitrarily chosen) functions
fj : [0, 1] → R , x 7→ fj(x) given by

f1(x) = x , f2(x) = 1 − x , f3(x) = x2 ,
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Figure 1: Graphs of pθ for θ = 0 (the uniform distri-
bution) and θ = 1.5 in Model 1

f4(x) = x3, f5(x) = I[ 1

4
, 3

4 ]
(x), f6(x) = I[0, 1

4 ]
(x),

f7(x) = I[ 3

4
,1](x) , f8(x) =

√
x ,

f9(x) = x + 1
2I[ 1

4
, 1

2 ]
(x) , f10(x) = 4(x − x2)

and the upper previsions on these functions are de-
fined by

P θ0
[fj ] = sup

θ∈[θ0−0.05 , θ0+0.05]

∫ 1

0

fj(x)pθ(x)λ(dx)

for every j ∈ {1, . . . , 10} and θ0 ∈ Θ0 .

In the simulation study, the data x1, . . . , xn stem from
the uniform distribution P0 = Unif

(

[0, 1]
)

. That is,
θ = 0 is the true parameter which has to be estimated.

For the estimation, the proposed minimum distance
estimator and the maximum likelihood estimator

θ̂n,MaxLikelihood(x1, . . . , xn) = arg max
θ∈[−2,2]

n
∏

i=1

pθ(xi)

are applied. Note that – due to the discretization
of Θ – our minimum distance estimator does not
specify a precise value θ as an estimation but an in-
terval [θ0 − 0.05, θ0 + 0.05] . In order to compare
the results between both estimators, these intervals
[θ0 − 0.05, θ0 + 0.05] are recorded by their center θ0 .

Table 1 shows the empirical mean squared error
(MSE)

1

500

500
∑

j=1

(

θ̂(j)
n − 0

)2

of the estimations θ̂
(j)
n calculated over all runs j =

1, . . . , 500 for the proposed minimum distance esti-
mator (MinDistance) and the classical maximum like-
lihood estimator (MaxLikelihood); these values are

MinDistance MaxLikelihood

−
2

−
1
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1

2
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Figure 2: Boxplots of the estimations obtained in 500
runs for each number of observations in Model 1

n MinDistance MaxLikelihood

30 1.29943 1.35598

100 0.59675 0.49674

1000 0.06753 0.04692

10000 0.00711 0.00482

Table 1: Empirical mean squared error calculated over
the estimations obtained in 500 runs for each number of
observations in Model 1

similar for both estimators. Figure 2 shows the box-
plots of the estimations. These results demonstrate
that, in Model 1, the maximum likelihood estimator
is not much better than the minimum distance esti-
mator even though the unequal situation of Model 1
highly privilege the maximum likelihood estimator as
explained above.

4.2 Model 2: Approximate Poisson

distributions

In Model 2, the sample space is (N0, 2
N0) and it is

assumed that the data “approximately” stem from a
Poisson distribution Poi(θ) where the parameter set
is Θ = (0, 50] . The parameter set is again discretized:

Θ0 :=
{

θ ∈ Θ
∣

∣ θ =0.1 + 0.05k , k ∈ {0, . . . , 998}
}

The imprecise model (P θ)θ∈Θ0
is given by credal sets

Mθ =
{

Qθ

∣

∣ Qθ[f
(j)
θ ] ≤ P θ[f

(j)
θ ] ∀ f

(j)
θ ∈ Kθ

}



and Kθ is the finite set Kθ =
{

f
(1)
θ , . . . , f

(56)
θ

}

which
consists of the following functions:

f
(j)
θ = I{4(j−1) ,..., 4j−1} ∀ j ∈ {1, . . . , 25}

f
(25+j)
θ = 1 − f

(j)
θ ∀ j ∈ {1, . . . , 25}

f
(51)
θ (x) =

x

100
I{0,...,100}(x) , f

(52)
θ = 1 − f

(51)
θ

f
(53)
θ (x) =

( x

100

)2

I{0,...,100}(x) , f
(54)
θ = 1 − f

(53)
θ

f
(55)
θ = I(θ−1,θ] , f

(56)
θ = 1 − f

(55)
θ

The upper previsions on these functions are defined
by

P θ0
[f

(j)
θ0

] = (1 − r) sup
θ∈[θ0−0.025 , θ0+0.025]

Pois(θ)[f
(j)
θ0

] + r

for every j ∈ {1, . . . , 56} and θ0 ∈ Θ0 . In the simula-
tion study, we put r = 0.01 . 5

For the estimation, our minimum distance estimator
and the maximum likelihood estimator

(x1, . . . , xn) 7→ argmax
θ∈Θ

n
∏

i=1

Pois(θ)
(

{xi}
)

,

are applied. The simulation study consists of 500 runs
with different sample sizes n = 20, n = 100 and n =
250 . The real distribution which generates the data
is equal to

P0 = (1 − c)Pois(12.5) + c Unif
(

{0, . . . , 100}
)

for c = 0, c = 0.01 and c = 0.1 where c = 0 is
the “ideal situation” and c ∈ {0.01; 0.1} stands for
(very) small deviations of the “ideal situation”. Fig-
ure 3 shows the boxplots for c = 0 and c = 0.01 (only
sample sizes n = 20 and n = 250); Figure 4 shows the
boxplots for c = 0.1. Table 2 gives the empirical mean
squared errors. In the ideal situation, the maximum
likelihood estimator is only slightly better than the
(imprecise probability) minimum distance estimator.
However, very small deviations from the ideal situa-
tion are enough so that the minimum distance esti-
mator beats the maximum likelihood estimator. In
particular, this is true even for c = 0.01 and n = 20
though, in this case, most samples x1, . . . , x20 will not
contain any “wrong” observation – i.e. will be “ideal”.

5Though this looks very similar to contamination neighbor-
hoods (which are quite common in robust statistics), these up-
per previsions lead to much bigger credal sets than contamina-
tion neighborhoods. This is because, here, the definition of the

upper previsions only involves a finite number of functions f
(j)
θ0

,

while the definition of contamination neighborhoods involves all
functions f ∈ L∞(N0, 2N0) .
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Figure 3: boxplots of the estimations obtained in 500
runs for sample size n = 20 and n = 250 in Model 2

n = 20 c=0 c=0.01 c=0.10

MinDistance 1.22 1.15 1.20

MaxLikelihood 0.65 1.88 24.99

n = 100 c=0 c=0.01 c=0.10

MinDistance 0.24 0.29 0.22

MaxLikelihood 0.12 0.52 16.24

n = 250 c=0 c=0.01 c=0.10

MinDistance 0.10 0.10 0.12

MaxLikelihood 0.05 0.29 15.27

Table 2: Empirical mean squared error calculated over
the estimations obtained in 500 runs in Model 2

5 Application on a real data set

Finally, the estimator is applied on a real data set for
linear regression. The data set consists of 200 data

xi = (yi, zi) ∈ [0,∞) × [160,∞) , i ∈ {1, . . . , 200}

from the National Health and Nutrition Examination
Survey (NHANES) from the years 2005–2006 which
records the health and nutritional status of adults and
children in the United States of America. 6 Every ob-
servation xi corresponds to a person where yi specifies
the person’s weight (in kilograms) and zi specifies the
person’s height (in centimeters). 7 The following rela-

6The data are publicly available in the Internet on the
website of the Centers for Disease Control and Prevention:
http://www.cdc.gov/nchs/nhanes.htm

7The original data set contains many additional variables
which have been omitted here. The 200 persons whose data
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Figure 4: Boxplots of the estimations obtained in 500
runs for sample size n = 20 and n = 250 in Model 2

tion is assumed

yi = θ1 + θ2(zi − 160) + εi , i ∈ {1, . . . , 200}

for persons with a height of at least 160 cm. Ac-
cordingly, only persons have been considered who ful-
fill this condition. The set of possible parameters is
bounded and may be given by Θ = [25, 100]×[0.5, 1.5]
In order to apply the minimum distance estimator, Θ
is again discretized:

Θ0 =

{

(θ1, θ2)

∣

∣

∣

∣

θ1 ∈ {25, 26, . . . , 100} ,

θ2 ∈ {0.5, 0.55, 0.6, . . . , 1.45, 1.5}

}

As an imprecise distribution of the i.i.d errors εi, we
take the coherent upper prevision Eσ , which is based
on the normal distribution N (0, σ2) in the following
way: Take h0 = I(−∞,−20] ,

h1 = I(−20,−15], h2 = I(−15,−10], . . . , h12 = I(35 , 40]

h12+j = 1 − hj ∀ j ∈ {1, . . . , 12}
and h25 = I(40,∞) . Put S0 = {1, 2, . . . , 30} . The er-

ror distribution Eσ0
is assumed to be the coherent up-

per prevision whose credal set consists of all probabil-
ity charges E on R such that for every j ∈ {0, . . . , 25}

E[hj ] ≤ (1 − r) sup
σ

N (0, σ2)[hj ] + r sup hjI(0,∞)

where the supremum is over σ ∈ [σ0 − 0.5, σ0 + 0.5] ,
r = 0.05 and σ0 ∈ S . (Roughly speaking, this means
that E is “approximately” a normal distribution but
overweight is more likely than underweight. Then,
the imprecise model is given by

P θ0,σ0
= Sσ0

[f
(j)
θ0

] ∀ j ∈ {0, . . . , 25}
are analyzed here have been randomly picked out of the data
from the National Health and Nutrition Examination Survey.

MinDistance LeastSquares

θ1 59 67.8

θ2 0.95 1.03

σ0 17 —

Table 3: Results of the estimators for the real data set
NHANES; the nuisance parameter σ0 is only estimated by
the minimum distance estimator

where f
(j)
θ0

: (y, z) 7→ hj

(

y − θ1 − θ2(zi − 160)
)

. The
parameter of interest is θ0 = (θ1, θ2) ; σ0 is a nuisance
parameter.

Our minimum distance estimator is compared to the
classical least-squares estimator. The results are given
in Table 3, and Figure 5 illustrates the corresponding
regression lines. By definition, the least-squares esti-
mator fits the data best with respect to the squared
residuals. However, this also leads to the fact that this
estimator is sensitive to outliers. This effect is also
visible in Figure 5: The least-squares estimator seems
to be more influenced by a relatively small number
of considerably overweight persons than the minimal
distance estimator.
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Figure 5: Regression lines for the real data set NHANES
obtained by the minimum distance estimator (solid line)
and by the least-squares estimator (dashed line)

6 Concluding remarks

The present article considers estimating a parameter
in an imprecise probability model – a topic which has
hardly been considered explicitly within the theory of
coherent upper previsions so far. In this setup, a mini-
mum distance estimator is presented and an algorithm
for calculating the estimator is given which is based on



linear programming. The applicability of the estima-
tor is verified by a simulation study and on a real data
set. In particular, the simulation study shows that the
proposed estimator can even be used for large sample
sizes and may, in fact, lead to good results in realis-
tic situations. This meets objections that imprecise
probabilities could not be used for practical purposes.
The estimator has been programmed in R and has al-
ready been made publicly available as (open source)
R package “imprProbEst”; cf. [5]. However, future
research should also develop alternative estimators so
that the proposed minimum distance estimator can be
compared to other estimators under imprecise proba-
bilities.
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