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ABSTRACT 

Neuronal morphology is hugely variable across brain regions and species, and their classifi-cation strategies are a matter of intense 
debate in neuroscience. GABAergic cortical interneu-rons have been a challenge because it is difficult to find a set of morphological 
properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 
cortical GABAergic interneurons according to the main fea-tures of their three-dimensional morphological reconstructions. A 
methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned 
for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a 
Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which 
models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors 
between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal 
types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some 
insights into neuron morphology. © 2013 Elsevier Inc. All rights reserved. 

1. Introduction 

The morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable 
[1–4]. Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information process­
ing and functional identification. Except for some special cases, this variability makes it hard to find a set of features that 
unambiguously define a neuronal type [3]. In addition, there are distinct types of neurons in particular regions of the brain. 
Indeed, neurons in the cerebral cortex can be classified into two main categories based on their morphology: pyramidal 
neurons and interneurons (Fig. 1). In general, pyramidal neurons are excitatory (glutamatergic) cells which display spines in 
their dendrites and have an axon which projects out of the white matter. Their name refers to the pyramidal shape of their 
soma. Interneurons are cells with short axons that do not leave the white matter and their dendrites show few or no spines. 
These interneurons appear to be mostly GABAergic (inhibitory) and constitute 15–30% of the total neuron population, 
but they display chemical, physiological and synaptic heterogeneity [3]. Thus, the identification of classes and subclasses of 
interneurons is clearly critical for gaining a better understanding of how these cell shapes relate to cortical functions in both 
health and disease. This paper focuses on GABAergic interneurons, which also show a remarkable morphological variability 
between species, layers and areas [5]. The Internet has made it possible for researchers to share digital three-dimensional 
reconstructions of neuronal morphology in publicly accessible databases [6,7]. With such amount of available data, a com-
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Fig. 1. Photomicrograph from Cajal’s preparation of the occipital pole of a cat stained with the Golgi method, showing a pyramidal cell (one arrow) and an 
interneuron (neurogliaform cell) (two arrows). From DeFelipe and Jones (Cajal on the Cerebral Cortex, Oxford University Press, New York, 1988). 

mon nomenclature for naming cortical neuronsisacrucial prerequisite for advancinginour knowledgeofneuronal structure 
[3,8]. 

Bayesian networks [9,10] are a kind of probabilistic graphical model that provides a natural way of modeling uncertainty 
in artificial intelligence. Therefore, they have been successfully applied across a large number of problems from very different 
domains [11 ]. Bayesian networks are specially well suited for modeling and incorporating expert’s knowledge, although this 
kind of analysis has not been applied to its full potential for neuron classification. There are two approaches for integrating 
this information into a Bayesian network. First, we can elicit both the structure [12] and the parameters [13] of the Bayesian 
network. Second, we can build a dataset which reflects the behavior of the expert and learn a Bayesian network from the 
data. This paper focuses on the second approach, i.e., a consensus Bayesian network is built based on data which reflects 
expert opinions. 

We present a methodology for building a Bayesian network that models the opinions of a group of experts. First, a Bayesian 
network was learned for each expert, representing his/her behavior in the classification task. Second, a clustering algorithm 
was run on the Bayesian networks to find groups of experts with similar behaviors, and a representative Bayesian network 
was induced for each cluster of experts. Expert behavior when classifying the set of interneurons was extremely variable. 
Therefore, experts with similar behaviors have to first be clustered and then combined. Otherwise, combining all experts 
behaviors into a single consensus model would presumably hide some of these differing behaviors [14,15]. In this way, 
we can explicitly model each group of similar experts as a representative Bayesian network for the cluster. Third, the final 
consensus model wasa Bayesian multinet [16] encoding amixtureof Bayesian networks [17 ,18], where each component was 
the Bayesian network which represented the opinions of a cluster of experts. A similar idea has been proposed for case-based 
Bayesian networks [19 ,20], where the authors cluster the observations before learning a Bayesian network which captures 
the different properties of each cluster. Bayesian multinets are a kind of asymmetric Bayesian network which allows to 
model different statistical (in)dependences between the variables for different values of a distinguished variable. Bayesian 
multinets can capture local differences between variables and model the problem domain more closely, allowing for sparser 
models and more robust parameter estimation. For instance, they have been shown to outperform other Bayesian network 
models in supervised classification problems [21]. 

The model was studied at length to validate the proposed methodology and to gather useful knowledge for neuroscience 
research. The resulting consensus Bayesian multinet can be used to analyze the behavior of a set of experts and to reason 
about the underlying classification task. The representative Bayesian networks for each cluster can be compared to find 
similarities and differences between groups of experts and to identify different behaviors or currents of opinion. Also, we 
can use the consensus model to reason about the task the experts were asked to perform. For instance, we can introduce 
some evidence into the consensus Bayesian multinet and infer “agreed” answers to those queries. These “agreed” answers 
could be compared to those obtained by each representative Bayesian networks to find clusters of experts with outlying 
behaviors against experts with moderate opinions. 



We apply t he proposed methodology to t he problem of t he morphological classification of GABAergic interneurons from 
the cerebral cortex. The research is based on a previous study [22], where we selected and asked a group of 4 8 experts to 
classify a set of 320 interneurons according to their most prominent morphological features. However, the methodology 
presented in this study can be applied to a wide range of scientific fields. For instance, in a medical setting, it may be 
interesting to model and analyze the different opinions of a group of physicians regarding the diagnosis, prognosis or 
t he most appropriate t rea tment for a given disease. Another example can be found in a risk assessment scenario, whe re 
different people could have different opinions on a given mat ter depending on their personal preferences, risk perception, 
etc. The process of obtaining the opinions of different experts on a given task (here, the morphological classification of 
interneurons) is challenging because it can be difficult, costly and t ime-consuming. However, n e w Internet tools and crowd-
sourcing techniques have alleviated some of these problems, and obtaining classification data from different experts is now 
affordable for a lot of problems [23]. 

The paper is organized as follows. Section 2 explains the data acquisition process for gathering the experts’ morphological 
classification of t he set of interneurons. Section 3 details the proposed methodology for building a consensus Bayesian 
mult inet which models experts’ opinions. Section 4 includes the evaluation of the model and the biological interpretation 
of the results. Finally, Section 5 ends wi th conclusions and suggestions for future work. 

2. Interneuron classification by a set of experts 

We selected N = 320 cortical GABAergic interneurons from different species: cat, human, monkey, mouse , rabbit and 
rat used in a previous study [22]. Briefly, three-dimensional reconstructions of 241 of those interneurons were retrieved 
from NeuroMorpho.org [7], whereas the rest were scanned from relatively old papers wi th no data on the three-dimensional 
distribution of their dendri tes and axons. A set of 48 experts were asked to classify each one of the neurons according to 
their most prominent morphological features. A w e b appl ica t ion 1 was built to display the neuronal morphologies for the 
participants and to retrieve their classifications. Two-dimensional projections of all the neurons were available. Additionally, 
a three-dimensional visualization applet based on Cvapp software [24] was provided for the neurons taken from NeuroMor-
pho.org, which experts could use to navigate, rotate and zoom the neuronal morphologies. Fig. 2 shows a screenshot of t he 
web application. Additional data about the location of the neuron, such as the cortical area, the layer and the thickness of 
the layer were included w h e n available. Other w e b application features included a help page wi th instructions and defini­
tions of the neuronal types, and a search engine which showed other neurons previously classified by the expert as a given 
neuronal type. These data were obtained and analyzed in [22]. The goal of this research was to achieve a common nomen­
clature for the cortical GABAergic interneurons wi th a utilitarian purpose. The agreement be tween experts w h e n classifying 
the interneurons was studied at length. We found that agreement was reasonably high for the at tr ibutes describing the 
general neuronal morphology. Looking at the low-level classification into ten different neuronal types, however, we found 
remarkable disagreements be tween the experts for some neuronal types. Here, the goal is to build a consensus Bayesian 
mult inet which models the opinions of all the experts and to use this model to further investigate their agreements and 
disagreements. 

The experts w h o participated in the experiment were asked to classify the neurons according to four at tr ibutes describing 
the main morphological features of t he neurons : 

1. The first at tr ibute described the horizontal distribution of the axon relative to the cortical layer. Here, the experts had 
to separate neurons wi th an axonal arborization in t he s ame layer as t he soma (Intralaminar) from neurons with 
axons distributed in different layers (Translaminar). 

2. The second attr ibute referred to the vertical distribution of the axon relative to a reference cortical column (width = 
300 μm). The experts had to classify each neuron according to whether the axonal arborization is distributed primarily 
in the same cortical column (Intracolumnar) or in different cortical columns (Transcolumnar). 

3 . The third at t r ibute represented t he relative position of t he axon and the dendri tes . Neurons wi th dendrit ic arbors 
placed in t he center of t he axonal arborization were classified as Centered, whereas neurons wi th dendri tes shifted 
wi th respect to t he axon were classified as Displaced. When a neuron was classified as both Translaminar and 
Displaced, t he experts were asked to further characterize t he neurons according to whe the r t he axon was directed 
towards the cortical surface (Ascending), the whi te surface (Descending) or both (Both). 

4 . The fourth at t r ibute included a low-level classification of t he neurons into nine neuronal types which are frequently 
used in t he l i terature [25] : Arcade, Cajal-Retzius, Chandelier, Common basket, Horse-tail, Large basket, 
Martinotti, Neurogliaform and Common type. Additionally, the experts could classify a neuron as Other and 
provide an alternative n a m e for tha t neuron if they felt tha t it did not fit any of t he proposed neuronal types. 

A neuron was classed as Uncharacterized when the reconstructed part of the morphology was not clear enough (due 
to incomplete labeling, reconstruction noise, etc.) for it to be worthwhile having a go at classification. When a neuron was 
classified as Uncharacterized, n o value could b e given for t he other at tr ibutes. 

Available at http://cajalbbp.cesvima.upm.es/gardenerclassification/. Username: ijar. Password: ijar. 
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Fig. 2. Web application showing one of the 320 neurons to be classified by each expert. 

Each expert was administered the form in Fig. 2 for each neuron. When the experiment finished, 42 out of the 48 experts 
had classified all 320 neurons. We only used the information about the 42 experts who completed the experiment. The 
goal in this paper was to build a model which encoded the opinions of the experts when classifying the interneurons in the 
experiment. 

3. A methodology for inducing a consensus Bayesian multinet from a set of expert opinions 

In this section, we detail the process for obtaining a Bayesian multinet representing the consensus among the experts 
who completed the experiment. Fig. 3 visually represents the whole methodology, which can be summarized in three main 
steps: 

1. Learn one Bayesian network for each expert using the classifications provided in the experiment. 
2. Cluster the Bayesian networks into groups and induce a new representative Bayesian network for each cluster, which 

models the opinions of the experts in the cluster. 
3. Combine the representative Bayesian networks of each cluster into one consensus Bayesian multinet. 

The following sections describe each step in the previous methodology. Section 3.1 introduces Bayesian networks theory 
and details how to use the classification provided by each expert to learn a Bayesian network representing his/her behavior in 
the experiment. Section 3.2 explains how to discover groups of similar Bayesian networks by applying clustering algorithms 
and how to induce a representative Bayesian network for each group. In Section 3.3, the final consensus Bayesian multinet 
model is built from the representative Bayesian networks of each cluster. 

3.1. Bayesian network modeling of each expert’s behavior 

Bayesian networks [9,10] are a class of probabilistic graphical models, defined as a pairB = (G(X, A), P), where: 

• G(X, A) is the graphical component of the model, i.e., a directed acyclic graph (DAG) where the nodes (X) represent the 
variablesX = {X1,...,Xn] in the problem domain and the arcs (A) encode the probabilistic conditional (in)dependence 
relationships between the variables. 

• P is the probabilistic component of the model. P includes a conditional probability table P(Xi|Pa(Xi)) for each variable 
Xi, i = 1 , ..., n in the problem, where Pa(Xi) is the set of parents ofXi in G: Pa(Xi) = [Y e X|(Y,Xi) e A}. Therefore, 
P = {P(Xi|Pa(Xi), i = 1 , . . . , n}. 

A Bayesian network encodes a factorization of the joint probability distribution (JPD) over all the variables inX: 

P(X) = P[P(Xi|Pa(Xi)). (1) 
i=1 



Fig. 3. General methodology for building a consensus Bayesian multinet which represents the behavior of a set of experts. 

Bayesian networks are both interpretable and efficient. The graphical component of a Bayesian network is a compact 
representation of the problem domain, while the factorization of the JPD reduces the computational workload of using 
high-dimensional probability distributions. 

Bayesian network learning from data is a two-step procedure [26–28]: structural search and parameter fitting. There are 
two main methods for learning the structure G of aBayesian network: constraint-based methods and score+search methods. 
Constraint-based methods rely on performing statistical tests to find conditional independence relationships between groups 
of variables in the network. Then, an undirected independence graph is built, and edge orientation discovers a Bayesian 
network structure which encodes those conditional independence relationships. Score+search approaches use a heuristic 
search algorithm to explore the space of DAGs, and a score function to evaluate the candidate network structures and direct 
the search procedure. Once the network structure has been found, the parameters in the conditional probability tables (P) 
are estimated from the counts in the dataset. 

We focused on score+search methods and learned the Bayesian network structure using the greedy thick thinning (GTT) 
algorithm [29] implemented in the GeNIe free modeling environment.2 K2 scoring function [30] was used to evaluate each 
candidate structure, by measuring the joint probability of the Bayesian network structure G and a dataset D: 

n <jj 

n (r; — 1)! JL 

_1 j-1 ( Ny + n — 1 )! £ 1 
(2) 

where P(C) is the prior probability of the network structure G, r; is the number of distinct values of X;, <j; is the number of 
possible configurations ofPa ( X;) ,N,j is the number of instances in the dataset D where the set of parents Pa ( X;) takes their 
j-th configuration, and Np is the number of instances where the variable X; takes the fc-th value X& and Pa(X;) takes their 

j-th configuration (Ny = Y?k=1 Np). 
The GTT algorithm implements a two-step procedure for discovering a Bayesian network structure (see Algorithm 1). 

Given an initial (empty) graph G, it iteratively adds the arc which maximizes the increase in the likelihood (thicking step). 
When no further increment is possible by adding arcs, the algorithm iteratively removes arcs until no arc deletion yields a 
positive increase in the likelihood (thinning step). Then, the algorithm stops and the resulting Bayesian network structure is 
returned. The GTT algorithm has a number of advantages, e.g., unlike other methods [30-32] it does not require an ordering 
of the variables. Also, it is simple, computationally efficient and avoids overfitting by removing arcs in the thinning step. 

Developed by the Decision Systems Laboratory of the University of Pittsburgh: http://dsl.sis.pitt.edu. 
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Algorithm 1 (Greedy thick thinning algorithm). 
(, ) 

Given an initial graph G X A and a dataset D 

1. Thicking step: While the K2 score function (2) increases: 
(a) Find the arc ( X;, Xj ) which maximizes (2) when included in G'( X , A') with A' = A U {( X;, Xj )}. 
(b) Set G <r- C'. 

2. Thinning step: While the K2 score function (2) increases: 
(a) Find the arc ( X;, Xj ) which maximizes (2) when deleted in G'( X , A') with A' = A \ {( X;, Xj )}. 
(b) Set G <r- C'. 

3. Return G. 

A Bayesian network was learned for each one of the Ne = 42 experts who completed the experiment. The goal was to build 
a model which captures how each expert understands the values of the morphological attributes and their relationships. The 
graphical representation of the Bayesian networks structures offers a compact and easy way for the experts in the domain to 
interpret their models. The Bayesian networks were learned independently for each expert, so they do not capture whether 
or not the experts classified the same neurons in the same way. However, since the experts classified the same set of 
interneurons, we can use the Bayesian networks to systematically analyze their opinions and behaviors. One would expect 
that if two experts differed in their opinions (as encoded in their Bayesian networks), then they would also classify the 
neurons differently. Also, having an individual Bayesian network for each expert makes it easier to analyze and validate the 
representative Bayesian networks for each cluster and the final consensus Bayesian multinet, because the inputs (Bayesian 
networks) and the output (Bayesian multinet) share the same representation. 

Therefore, one dataset for each expert was generated with the classifications provided in the experiment. The resulting 
datasethadN = 320 observations (the number of interneurons in the experiment) and n = 6 variables, which corresponded 
to the features that the experts were asked to classify. Some restrictions on different combinations of feature values were 
imposed in the experiment design (see Section 2). For instance, selecting Uncharacterized in the first feature disabled all 
the other variables. Therefore, when a neuron was classified as Uncharacterized, the values for the other variables were 
empty. Similarly, the Ascending/Descending/Both feature was only available when Translaminar and Displaced 
were selected for the corresponding features. To build the dataset for each expert, we filled in incomplete observations with 
a new category named Dummy. Therefore, for each expert, we had a dataset with n = 6 categorical variables with values: 

• X1 (j1 = 2) : Characterized, Uncharacterized. 
• X2 (r2 = 3 ) : Intralaminar, Translaminar, Dummy. 
• X3 (r3 = 3 ) : Intracolumnar, Transcolumnar, Dummy. 
• X4 (V4 = 3 ) : Centered, Displaced, Dummy. 
• X5 (r5 = 4) : Ascending, Descending, Both, Dummy. 
• X6 (r6 = 11): Common type, Horse-tail, Chandelier, Martinotti, Common basket, Arcade, Large basket, 
Cajal-Retzius,Neurogliaform, Other, Dummy. 

We used the data provided by each expert in the experiment to learn a Bayesian network which encoded the conditional 
independence relationships between the variables for that expert. The GTT algorithm was used to find the Bayesian network 
structure, and the parameters were fitted using maximum likelihood estimators with Laplace correction. We did not allow 
any variable to be a parent of variable X1, corresponding to the Characterized/Uncharacterized feature. This restriction 
encoded the knowledge that the decision of classifying a neuron as Characterized or Uncharacterized should be taken 
before classifying all the other features (modeled with variablesX2toX6). We limited the complexity of the Bayesian networks 
by imposing a maximum of three parents for each variable. This allowed us to control the size of the conditional probability 
distributions and to compute robust estimators of their parameters. However, this was not a very restrictive constraint since 
only 5 out of 6 x 42 = 252 variables in all the Bayesian networks had three parents. 

In [22], a remarkable variability among experts’ opinions when classifying the interneurons was found. We performed a 
preliminary analysis of the Bayesian networks induced for each expert to check whether or not this variability was reflected 
in the network structures. Fig. 4 shows how many of the 42 Bayesian networks contained each possible edge between every 
pair of variables. Disagreements were highlighted in dark grey, showing relationships that appeared in half of the Bayesian 
networks but omitted in the other half. The Bayesian network structures showed an important variability, e.g., arcs containing 
relationships between X1 — X2 or X1 — X3 were found in approximately half of the Bayesian networks but were absent in 
the rest. Additionally, some relationships appeared in almost all the Bayesian networks (X4 — X5 and X3 — X6), whereas 
other relationships were not found in any network structure (X3 — X4 andX3 — X5). We can conclude that the disagreements 
between experts were also reflected in their induced Bayesian network structures. These disagreements between the experts 
prevented us from building a single Bayesian network which represented them all, because a single common structure could 
obscure the differences in the experts’ behavior [14,15]. Therefore, we first performed a clustering step to find groups of 
Bayesian networks encoding similar expert opinions and built the final consensus Bayesian multinet reflecting all the groups 
of experts. 



Fig. 4. Number of Bayesian networks including the edge for each pair of variables. The matrix is symmetric so only the upper triangle is shown. Light-shaded 
cells show agreements in the experts’ Bayesian network structures, i.e., edges which appear in most or none of the Bayesian networks, whereas dark-shaded cells 
show disagreements in the Bayesian network structures. 

3.2. Clustering of Bayesian networks 

The experiment was designed to find groups of Bayesian networks corresponding to experts with similar behaviors. 
In this section, we detail the process of finding groups of Bayesian networks which define similar JPDs and inducing a 
representative Bayesian network for each cluster. To the best of our knowledge, the problem of clustering Bayesian networks 
had not been studied before. Note that this is not the same problem as using Bayesian networks to cluster data [33,34] or 
clustering variables in Bayesian network learning for high-dimensional problems [35,36]. Bayesian networks have two main 
components (see Section 3.1): the graphical part and the probabilistic part. Therefore, we could consider clustering at the 
two levels: 

• Clustering of Bayesian network structures: The graphical component G(X, A) of a Bayesian network is a DAG which 
encodes the conditional (in)dependence relationships between the variables in the problem domain. Therefore, we 
could use existing approaches for clustering graphs [37,38] and, in particular, clustering DAGs [39] to find groups of 
structurally similar Bayesian networks. Another approach could be to list the conditional independence relationships 
encoded in a Bayesian network and then apply a clustering algorithm to group Bayesian networks which share the 
same set of conditional independences. 

• Clustering of Bayesian network probabilities: The probabilistic component P in a Bayesian network contains the condi­
tional probability distributions of each variable Xi given its parents Pa(Xi). Clustering of probability distributions has 
not received much attention in the statistics and machine learning fields. The approaches in [40,41 ] cannot be directly 
applied to our problem because P includes several (conditional) probability distributions: one probability distribution 
for each variable given its parents’ values. Comparing the conditional probability distributions of the same variable 
in two different Bayesian networks is challenging because each variable can have a different number of parents, and 
the set of parents may be different. Therefore, the conditional probability distributions cannot be directly compared. 
A simple approach, which could also be useful in problem domains with a lot of variables, would be to compute the 
marginal probability distribution for each variable in each Bayesian network and to cluster the Bayesian networks based 
on these marginal distributions. 

Here, we propose clustering the Bayesian networks based on the joint probability distributions that they encode. There­
fore, our approach is included in the second group of techniques. Fig. 5 outlines the proposed methodology, which can be 
summarized in three steps. First, the JPD encoded by each Bayesian network is computed. These JPDs also model the experts’ 
behavior in the experiment. Second, groups of similar experts/Bayesian networks are found by clustering their correspond-
ingJPDs. Third, a representative Bayesian network is induced for each cluster, which represents the common behavior of the 
experts in the cluster. The following sections detail each one of these three steps. 

3.2.1. Computation and preprocessing of the joint probability distributions 
For each expert, we computed the JPD over the six variables encoded by the Bayesian network learned in the previous step. 

Not all the experts selected all the possible values when completing the experiment, e.g., some experts did not classify any 
neuron as Arcade, Cajal-Retzius or Other in variable X6. Therefore, not all the Bayesian networks contained all the values 
for all the variables. However, we wanted all the JPDs to have the same number of values for the purposes of comparison. 
Therefore, we completed the conditional probability tables in the Bayesian networks learned with GeNIe using maximum 
likelihood estimators with Laplace correction, so that all the Bayesian networks had all the values for all the variables. Then, 
the JPD over all the variables encoded by each Bayesian network was computed by multiplying the conditional probability 
distributions in P, as in Eq. (1). The resulting JPD had 2 x 3 x 3 x 3 x 4 x 1 1 = 2376 values. However, most of these 
values corresponded to inadmissible combinations of the values of the variables. For example, when Uncharacterized was 
selected, all the other variables should have the value Dummy and any other combination of values was not valid. Similarly, 
variable X5 could only take a value different from Dummy when X2 = Translaminar and X4 = Displaced. We erased the 
values in the JPDs corresponding to these forbidden combinations. The resulting JPDs had 121 values each. 

3.2.2. Clustering of joint probability distributions 
We approached the problem of finding groups of similar Bayesian networks by clustering the JPDs obtained in the previous 

step (Section 3.2.1). We generated a dataset with Ne = 42 observations and r = 121 variables, where each observation (row) 



Fig. 5. Procedure for clustering Bayesian networks. In step 3, the solid line represents the proposed workflow for inducing a representative Bayesian network for 
each cluster, whereas the dashed lines show alternative ways of achieving this goal. 

was a JPD corresponding to the Bayesian network of each expert and each variable (column) was a value of the JPD. There 
are three main paradigms which can be used for clustering [42]: probabilistic, hierarchical and partitional clustering. 

Hierarchical and partitional paradigms are the classical approaches to clustering. In general, both paradigms rely on the 
definition of a distance or dissimilarity measure between the observations. A classical agglomerative (bottom-up) hierarchical 
clustering algorithm starts with one cluster per observation and iteratively merges the two most similar clusters according 
to some criterion, called linkage function, which depends on the distances of the observations in the clusters. Therefore, 
hierarchical clustering techniques do not generate a single partition but a hierarchy of clusters. On the contrary, partitional 
clustering techniques generate a single partition of the objects into clusters by applying an optimization process which 
maximizes/minimizes an objective function. This objective function usually measures the distances between the objects in 
the same cluster (minimization) and/or the distance between objects in different clusters (maximization). In both hierarchical 
and partitional approaches, the number of clusters to be generated is a free parameter that has to be set by the expert. Also, 
an appropriate distance measure has to be chosen depending on the nature of the data. 

Probabilistic clustering deals with the problem of fitting a finite mixture of distributions [43], where each component is 
the probability distribution which models the observations belonging to the cluster. Probabilistic clustering offers a number 
of advantages. First, it generates a probabilistic model which describes the data. Using that model, one can compute the 
(posterior) probability of a given observation belonging to each cluster. Also, it is able to formally address the problem of 
model selection (finding an appropriate number of clusters). Since each of our observations is aJPD, the Dirichlet distribution 
[44] could be a suitable choice of a probability density function for each component. However, the low number of observations 
(Ne = 42) over the number of variables (r = 121) ruled out the use of this approach, because it is difficult to obtain accurate 
estimators of a finite mixture model with so few data. 

Here, we chose to adapt the classical IC-means algorithm [45] to characterize properties of our data. Algorithm 2 shows a 
general outline of the algorithm. The algorithm alternates two steps. First, the observations are assigned to the cluster with 
the closest center. Second, the cluster centers are recomputed taking into account only the observations in the clusters. 

Algorithm 2 (K-means algorithm). 
Input: the number of clusters K and a dataset of r-dimensional observations P = {o;,..., ojve}. Steps: 

1. Initialize the cluster centers C = {c1,..., c^} to K random observations in P without replacement. 
2. While the cluster centers C change 

(a) For each observation o;, compute the dissimilarity between o; and each cluster center c :̂ d(o;, c&). 
(b) Assign each observation o; to cluster kf e {1 , . . . , K} with the closest center: kf «— argmin/c=1,...,Kd(o;, c&). 
(c) Recompute the cluster centers from the observations in each cluster: c& «— Combine({o; e P\k* = /<}). 

3. Return the cluster centers C. 



The K-means algorithm iteratively minimizes the sum of the distances of each observation to its cluster center:J(P, C) = 
X;=1 d (oj, ck* J. K-means is guaranteed to find a local minimum of/(P, C). Therefore, Algorithm 2 is usually restarted several 
times with different initialization values for step 1. A similar approach was used in [14,15] in the context of decision making 
in influence diagrams. In order to apply the K-means algorithm to the problem of clustering JPDs we have to choose a 
suitable dissimilarity measure d(o;, c&) and a method for computing the cluster centers from the observations in the cluster 
(Combine function in step 2(c) of Algorithm 2). 

Dissimilarity measures for probability distributions. In general, our choice of a dissimilarity measure d(o;, c&) should be, at 
least, symmetric. Therefore, one could consider using the symmetric Kullback-Leibler divergence, 

d/aCp1, p2) = KL(p1||p2) + Kl(p21|p1), 
where KI(p1||p2) is the Kullback-Leibler divergence [46] from an empirical probability distribution p1 to the true 
distribution p2 

r 
Kl( p1 || p2 )= p1jlog—, 

1=1 2 
where r is the number of values of the probability distribution p;, and py is the probability of the jth value in the probability 
distribution p;. One disadvantage of the Kullback-Leibler divergence is that it is not upper bounded. However, other measures 
can be considered, such as the Jensen-Shanon divergence, 

1 1 
drc(p1,p2) = -Kl(p1||m)H—Kl(p2||m), (3) 

2 2 

where m is the mean probability distribution m = 0.5 (p1 + p2). The Jensen-Shanon divergence has a number of interesting 
properties [47]: it is symmetric, its square root is a metric and it is bounded 0 < djs < 1. Therefore, we chose djs as the 
dissimilarity measure for the K-means algorithm. Additionally, the fact that djs is a bounded measure was also useful when 
computing the representative Bayesian network for each cluster (Section 3.2.3). 

Combination of probability distributions. Two main methods can be found in the literature to compute an average prob­
ability distribution p from a set of probability distributions [48]: the linear combination pool (LinOp) and the logarithmic 
combination pool (LogOp). If we have N& probability distributions {p1 , . . . , p^t} in a cluster, the linear combination pool is 
defined as the weighted arithmetic mean 

ptinOp = vp, (4) 
i=1 

where X ; i 1 &>i = 1and&>; > 0 is the weight for the probability distribution p;. The logarithmic combination pool is defined 
as the weighted geometric mean 

uN k rf0' 
PjLogOp = —Hk ^7- (5) 

2-*v=1 H i = 1 Piv 

Genest and Zideck [48] give a number of reasons for choosing LogOp over LinOp, the most compelling being that it is externally 
Bayesian, i.e., it can be derived from joint probabilities [49]. Also, it is known that LinOp does not preserve independences 
[50], i.e., combining probability distributions which share a common independence does not guarantee that the resulting 
distribution will be equally independent. Heskes [51] showed that using LogOp is equivalent to finding the probability 
distribution p which minimizes the weighted sum of the Kullback-Leibler divergences to each probability distribution pj 

piogPp = argmin ^&>;KL ( p || pi ) . 
p i=1 

Therefore, we chose LogOp as a combination method for computing the cluster centers in the K-means algorithm (step 2(c) 
of Algorithm 2). All the experts were considered as equals, so the weights &>; were all set to 1/N& for each cluster. 

3.2.3. Finding a representative Bayesian network for each cluster 
Once the JPDs have been clustered and K cluster centers (JPDs) have been obtained, the next step is to induce a Bayesian 

network which represents the common features of the corresponding Bayesian networks (and experts) in the cluster. Step 
3 in Fig. 5 shows four possible approaches for finding a representative Bayesian network for each cluster. In the follow­
ing, we discuss the four approaches for performing this task, we review the works related to each one and analyze their 
advantages and disadvantages for modeling experts’ opinions on the problem of the morphological classification of GABAer-
gic interneurons. 

The first approach consists of directly combining a set of Bayesian networks into a single representative one (Fig. 5, step 
3.1.1). Learning Bayesian networks from a set of expert opinions has been a recurrent interest in the field. However, [52] 
showed that even when the Bayesian networks share the same structure, there is no way of combining the parameters 



to preserve that structure. They proposed a methodology for combining both the Bayesian network structures and the 
parameters. The algorithm finds a common network structure by transforming the DAGs into moral graphs, performing 
the union of the edges and transforming the resulting moral graph back into a DAG. The conditional probability tables are 
combined by applying the LogOp combination pool of Eq. (5). This approach is expected to yield highly connected Bayesian 
networks because of the union of the edges of the moral graphs. Therefore, the conditional probability distributions will 
have a lot of parameters and their estimates will not very robust when there are few training instances (in our scenario, 
320 neurons). Sagrado and Moral [53] studied the theoretical properties of Bayesian networks obtained by performing 
either the intersection or the union of the arcs of the network structures, and proposed ways for finding the consensus 
Bayesian network structure. However, they left the combination of the conditional probability tables as a matter for future 
research. Zhang et al. [54] built on the work by Sagrado and Moral [53] and proposed a score+search method for fusing the 
Bayesian network structures. However, they applied Bayesian inference not data to combine the parameters of the Bayesian 
networks and to compute the scores of the network structures. Peña [55] derived a correction of the algorithms proposed 
by Matzkevich and Abramson [56,57] for finding the consensus Bayesian network structure with a minimum number of 
parameters. It represents only the common independences appearing in all the Bayesian network structures. He outlined 
some ideas for combining the parameters of the Bayesian networks, but this issue was mainly left for future research. Finally, 
other methods for Bayesian network aggregation have been proposed in the context of model averaging (for a review, see 
Section 4.13 in [28]). These methods combine the probabilities inferred with a set of Bayesian networks but they do not 
obtain a single representative Bayesian network which models the opinions of a set of experts. In the neuron classification 
problem, obtaining the representative Bayesian network explicitly was important because the experts would like to analyze 
and interpret these models and not only their outputs. 

The second approach deals with the problem of learning a consensus Bayesian network from data. Maynard-Reich and 
Chajewska [58] assumed that the differences between experts are the result of observing different subsets of data. This is 
related to the problem of learning Bayesian networks from distributed datasets, see e.g. [59]. In our experiment, however, 
all the experts classified the same 320 interneurons, so this assumption did not apply. Steps 3.2.1 and 3.2.2 show another 
possibility which conformed to our problem: joining the original datasets for each expert in the cluster and learning a 
Bayesian network from this cluster’s dataset. We could consider different degrees of membership of each expert to his 
cluster by only including a subset of interneurons from his dataset in the cluster’s dataset. However, there were some 
neuronal morphologies which did not appear frequently in the data. Therefore, this approach could erase some important 
information about the experts. 

The third approach is based on sampling the JPDs and learning a Bayesian network from the generated data as explained 
in Section 3.1 (Fig. 5, steps 3.3.1 to 3.3.3). First, we compute a representative JPD for each cluster, then we sample the JPD 
to obtain a dataset and, finally, we learn a Bayesian network from that dataset. Again, one could consider using the LinOp 
(Eq. (4)) or the LogOp (Eq. (5)) combination pools for computing the representative JPD and different weights could be 
applied to each expert’s JPD. However, if the cluster center JPD does not accurately represent all the experts in the cluster, 
the resulting representative Bayesian network for the cluster would not model all the experts’ opinions either. 

Here, we implemented another approach based on proportional sampling of the individual JPDs of each expert (Fig. 5, 
steps 3.4.1 and 3.4.2). The goal was to obtain a sample of data for each cluster k, taking into account the dissimilarity between 
each JPD and the cluster center c& to decide the number of samples to draw from each JPD. The fact that dp(pi, c&) (Eq. (3)) 
is upper bounded facilitates the computation of these expert degrees of membership. For a given cluster k, we found the 
JPDs included in the cluster and computed a degree of membership /z; for each one as 

1 — djs(pi, c&) 
IM = K i • 

zlj=1 (1 — djs(pj, cfc)J 

Then, to obtain a sample with size M for cluster k, /x; x M observations were drawn from each JPD p; in cluster k. Finally, 
both the structure and the parameters of the representative Bayesian network were learned (Section 3.1) from that sample 
of size M obtained for each cluster. 

This approach tries to avoid some of the disadvantages of the other three approaches. The learning algorithm allows to 
fully specify the Bayesian networks as opposed to the methods in the first approach (step 3.1.1), which can have problems 
when computing the parameters of the conditional probability distributions. An advantage of this method over the second 
approach (steps 3.2.1 and 3.2.2) is that our approach uses the Bayesian networks themselves (through their JPDs) to compute 
the representative Bayesian network for the cluster. The second approach, on the other hand, assumes that the Bayesian 
networks were learned from data and that experts’ data is still available. This may not be the case in some scenarios where 
Bayesian networks are elicited from experts’ knowledge and not induced from data. Finally, as opposed to the third approach, 
we consider each Bayesian network in the cluster individually through its JPD while taking into account different degrees of 
membership to the cluster. 

3.3. Building the consensus Bayesian network 

The final step in the methodology (see Fig. 3) deals with the problem of building a probabilistic graphical model that 
represents all the experts who participated in the experiment and also takes into account their differing behaviors. We 



Fig. 6. Finite mixture of Bayesian networks represented as a Bayesian multinet with the cluster variable as the distinguished variable. 

modeled the whole problem as a finite mixture of Bayesian networks [17] 
K 

P(X = x) = TtkP{X = x\C = k, Gk, Pk), (6) 
k=1 

where jtk was set to the proportion of experts in the kth cluster (Nk/Ne), and each component P(X = x|C = k, Gk, Pk) was 
the representative Bayesian network for the kth cluster with structural component Gk and probabilistic component Pk. Finite 
mixtures of Bayesian networks form a kind of Bayesian multinet [16] with a distinguished variable C which represents the 
cluster variable. In principle, the cluster variable C is hidden but we found it previously by clustering the Bayesian networks 
(Section 3.2). Fig. 6 is a diagram of the final consensus Bayesian multinet. 

4. Results 

This section includes the results corresponding to one run of the whole process as described in Section 3 (see Fig. 3). 
First, one Bayesian network was learned for each one of the 42 experts who completed the experiment (Section 3.1). Then 
we clustered the Bayesian networks following the procedure described in Section 3.2. We started the process by computing 
theJPD encoded by each Bayesian network and generating a data matrix with dimensions 42 x 121, where each row was a 
JPD corresponding to an expert and each column corresponded to a value of the JPD, i.e., a combination of possible values 
of the variables in the experiment. We used the K-means algorithm with Jensen-Shanon distance (Eq. (3)) and the LogOp 
combination pool (Eq. (5)) to cluster the JPDs. We used K = 6 clusters because we were thus able to find distinguishable 
clusters with characterizing properties. We used proportional sampling to get a dataset for each cluster, and a representative 
Bayesian network was learned from that sample using GeNIe. Finally, a consensus probabilistic graphical model was built 
as a finite mixture of Bayesian networks represented with a Bayesian multinet (Section 3.3). In the consensus Bayesian 
multinet, the cluster variable was the distinguished variable and each component of the mixture was the representative 
Bayesian network for a cluster (see Fig. 6). 

In the following sections, we analyze the results by studying the consensus Bayesian multinet at different levels. Fig. 7 
shows the representative Bayesian networks learned for each cluster of experts. These Bayesian networks can be downloaded 
in GeNIe format from the supplementary material website.3 First, the Bayesian networks for each expert learned with the 
GTT algorithm were compared with other algorithms for learning Bayesian network structures from data (Section 4.1). Then, 
we tried to characterize each one of the clusters by studying the marginal probabilities of their representative Bayesian 
networks (Section 4.2). Also, a structural analysis of the Bayesian networks was performed to validate the results and to 
find agreements and differences between clusters (Section 4.3). We extracted agreed definitions of the different neuronal 
types proposed in the experiment by performing inferences in both the consensus Bayesian multinet and the representative 
Bayesian networks for each cluster (Section 4.4). A principal component analysis was performed to visually inspect a low-
dimensional representation of the clusters (Section 4.5). Finally, we looked for possible currents of opinion by studying 
correlations between the clusters and the geographical location of the experts’ workplace (Section 4.6). 

4.1. Validation of the Bayesian network structure learning algorithm 

We studied the influence of the structure learning algorithm when finding the Bayesian networks for each expert (see 
Section 3.1). We compared the Bayesian networks learned with the greedy thick thinning algorithm (Algorithm 1) with other 
four algorithms for learning Bayesian network structures available in the bnlearn package [60]for Rstatisticalsoftware[61 ]: 
a hill-climbing algorithm (HC), a tabu search algorithm (TA), a max-min algorithm (MM) and the 2-phase restricted search 
max-min algorithm (RS). HC and TA are score+search algorithms, whereas MM and RS are hybrid algorithms combining 
score+search with constraint-based approaches. 100 restarts were computed for the hill-climbing algorithm and the best 

Available at http://cig.fi.upm.es/index.php/members/138-supplementary-material. 
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Fig. 7. Network structures and marginal probabilities of the representative Bayesian networks for each cluster. Each one of the Bayesian networks corresponds to 
a component in the finite mixture of Bayesian networks that builds up the consensus Bayesian multinet. 

scoring network structure was returned. Additionally, we considered two scoring functions: K2 [30] and BIC [62]. Thus, 
for each expert, we learned eight Bayesian network structures using the four algorithms and the two scoring functions. 
Maximum likelihood estimators of the parameters with Laplace correction were computed for filling in the conditional 
probability tables. The JPD encoded by each Bayesian network was computed and simplified to a 121-dimensional JPD as 
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Fig. 8. Comparison between the greedy thick thinning (GTT) algorithm and eight algorithms for learning the Bayesian network structures: (1) HC-K2, (2) TA-K2, 
(3) MM-K2, (4) RS-K2, (5) HC-BIC, (6) TA-BIC, (7) MM-BIC and (8) RS-BIC. Each boxplot summarizes the 41 Jensen–Shanon divergence values (42 experts minus 
expert #33) between the JPDs of the Bayesian networks obtained with the GTT algorithm and the JPDs obtained with each one of the eight alternative methods. 

explained in Section 3.2.1. The Jensen–Shanon divergence (Eq. (3)) be tween the JPD corresponding to the Bayesian network 
learned wi th t he GTT algorithm and the eight alternative s tructure learning me thods was computed. The structure learning 
algorithms could not be applied for expert # 3 3 because he/she classified all the neurons as X2 = Intralaminar and the 
algorithms could not handle variables wi th only one value. 

Fig. 8 shows boxplots of the Jensen–Shanon divergence values (Y axis) be tween the GTT algorithm and the other eight 
algorithms (X axis) obtained for the 41 experts (42 minus expert #33) . Note that the JS divergence is both lower and upper 
bounded : 0 ≤ dJS ≤ 1. We can see that the JS divergence yielded very low values, being almost all of t hem below 0.2. 
On the one hand, the TA-K2 algorithm (second boxplot in Fig. 8) yielded the lowest JS divergence values. On the other 
hand, the RS algorithm (fourth and eighth boxplots in Fig. 8) learned Bayesian networks which yielded JPDs differing the 
most compared to those obtained wi th the GTT algorithm. As expected, we can see that algorithms using K2 scoring function 
yieldedlowerJSdivergences than thoseusing BIC,because theGTTalgor i thmalsousedtheK2scor ingfunct ion.Weconcluded 
that the algorithm used for learning the Bayesian network structures did not have an important influence in the proposed 
methodology because we used the JPDs for clustering the Bayesian networks and they were similar regardless of the applied 
algorithm. 

4.2. Cluster labeling and analysis of the probability distributions 

We identified differences be tween the groups of experts by studying the marginal (or prior) probabilities in t he repre­
sentative Bayesian networks for each cluster (see Fig. 7) . We used these marginal probabilities to characterize each group of 
experts and we interpreted these differences as different approaches w h e n classifying the neurons : 

• Cluster 1 (including three experts) represented experts w h o considered that half of the neurons in the experiment did 
not have enough reconstructed axonal processes for it to be feasible to actually try to classify them. Thus, they assigned 
the neurons to the Uncharacterized category in X1 (probability 0 .51). The probability of Uncharacterized was 
much lower in all the other Bayesian networks (≤0 .07) . In fact, the combination of values of the variables wi th higher 
probability (mode) corresponded to X1 = Uncharacterized, X2 = Dummy, X3 = Dummy, X4 = Dummy, X5 = Dummy and X6 

= Dummy. 
• Cluster 2 included 15 experts wi th a coarse classification scheme. In this Bayesian network, most of the neurons were 

classified as Common basket (0.30). The mode of the JPD encoded in the representative Bayesian network was X1 = 
Characterized, X2 = Intralaminar, X3 = Intracolumnar, X4 = Centered, X5 = Common basket and X6 = Dummy. 

• Cluster 3 (including four experts) represented experts w h o stuck to the fine-grained classification scheme proposed 
in t he exper iment and tried to distinguish be tween the different neuronal types, including the difficult ones such as 
Common basket, Common type, Large basket and Arcade cells. Experts in this cluster found more Arcade cells 
(0 .07) than the experts in the other clusters. In this cluster, Common type (0.17), Common basket (0.14) and Large 
basket (0.20) cells had similar probabilities. The mode of the JPD encoded by the representative Bayesian network 
was t he same as in cluster 2 . 

• Similarly to cluster 2, experts in cluster 4 (including 12 experts) showed a less detailed classification scheme than those 
in clusters 3 or 5. However, experts in cluster 4 assigned a high probability to the Common type class (0 .40), whereas 
t he mos t likely neuronal type in cluster 2 was Common basket. Accordingly, the m o d e of the JPD of the representative 



Bayesian network wasX1 = Characterized,X2 = Translaminar,X3 = Intracolumnar,X4 = Centered,X5 = Common 
type and X6 = Dummy. 
Cluster 5 represented a group of seven experts with a detailed classification scheme, since they distinguished between 
Common type, Common basket and Large basket cells. However, the experts did not seem to agree with the nomen­
clature included in the experiment or found it incomplete. This was observed in the high probability of the category 
Other (0.22) inX6, where they could propose an alternative name for that class of neurons. Interestingly, the mode of 
theJPD of the representative Bayesian network for this cluster was X1 = Uncharacterized,X2 = Dummy, X3 = Dummy, 
X4 = Dummy, X5 = Dummy and X6 = Dummy. In fact, we can see that this cluster assigned the second highest probability to 
Uncharacterized in all the clusters. 
Cluster 6 included only one expert with a remarkably different behavior than the other experts. This expert did not 
classify any neuron as Translaminar inX2, so the probability of that value in the representative Bayesian network is 
almost 0. Also, this expert assigned a very high probability to Centered inX4 (0.96). Therefore, X5 was disabled for all 
the neurons (recall thatX5 was only available when Translaminar and Displaced were set as values inX2 andX4, 
respectively). Therefore, X5 had a constant Dummy value in Fig. 7(f). The conclusions of the analysis of the mode of the 
JPD were the same, as the combination of values of the variables with highest probability was X1 = Characterized, 
X2 = Intralaminar,X3 = Transcolumnar,X4 = Centered,X5 = Large basket andX6 = Dummy. 

4.3. Analysis of the Bayesian network structures 

Similarities in the behaviors of all the group of experts were identified by analyzing the representative Bayesian network 
structures. Variables X3 and X6 were the only two variables which were directly related in all the Bayesian networks. 
Variable X3 describes the neuronal morphology in the horizontal dimension. This feature encodes whether or not the axonal 
arborization of the neuron extends more than 300 μm from the soma. This means that the interneuron contacts with neurons 
inside and outside its cortical column, so we could conclude that some neuronal types mainly connect with other neurons 
from the same cortical column, whereas other neuronal types connect additionally with neurons from different cortical 
columns. 

Additionally, variablesX2,X4 andX5 were related in all but one Bayesian network, the one corresponding to cluster 6. Also, 
there was an edge between X5 and X6 in all the Bayesian networks but the one for cluster 6. Note that cluster 6 contained 
only the outlying expert 33. Variables X2, X4 and X5 are mainly related to the neuronal morphology in the vertical dimension. 
These relationships could determine whether a given neuronal type sends the information to other neurons in the same 
cortical layer or in different (either upper or lower) layers. We also analyzed the Markov properties of the representative 
Bayesian network structures to identify conditional independence relationships between the variables.X3 was conditionally 
independent of variables (X2, X4, X5) given the value of X6 and X1. Therefore, the morphological properties of GABAergic 
interneurons in the horizontal and vertical dimensions seemed to be independent given the neuronal type. 

4.4. Finding agreed definitions for neuronal types using inference in Bayesian networks 

The representative Bayesian networks were used to infer the main propert ies of the different neuronal types in X6 by 
sett ing evidence in some variables and updat ing t he probabilities in t he unobserved variables. We studied t he propagated 
probabilities and identified differences and similarities be tween clusters. Cluster 6 corresponded to an outlier expert which 
has already been analyzed, so w e focused on the other five clusters. First, t he main morphological propert ies of t he neuronal 
types were found by sett ing every value in X6 as evidence and propagating the probabilities using the clustering algorithm 
[63,64] in GeNIe: 

• Martinotti cells were defined as Translaminar (≥0.94), Displaced (≥0.83) and Ascending (≥0.57) cells. Experts 
in cluster 5 classified these neurons as mostly Transcolumnar (0.73), whereas they were classified in clusters 1, 2, 3 
and 4 as either Intracolumnar or Transcolumnar wi th similar probabilities. 

• Horse-tail cells seem to have a common and easily recognizable morphology, since the most likely values achieved 
high probabilities in all the clusters: Translaminar (≥0.92), Intracolumnar (≥0.80), Displaced (≥0.88) and 
Descending (≥0.50). 

• Chandelier cells seemed to be mainly Intracolumnar (≥0.72). However, they were classified as ei ther 
Intralaminar or Translaminar and Centered or Displaced in different clusters. Clusters 2 and 4 assigned a 
higher probability to Translaminar, cluster 3 assigned a higher probability to Intralaminar and the probabilities 
were almost uniform in the X3 variable in clusters 1 and 5. Centered received a higher probability in cluster 3, whereas 
the probabilities were more uniform in the other clusters. 

• Neurogliaform cells were defined as mainly Intracolumnar (≥0.83). Experts in clusters 3, 4 and 5 classified t hem 
as Intralaminar (≥0.76), whereas experts in clusters 1 and 2 assigned more uniform probabilities in variable X2. For 
experts in cluster 5, Neurogliaform cells could be either Centered or Displaced, whereas Centered was more 
likely in all the other clusters (≥0.75). 



• Common type cells were characterized as Translaminar (≥0.62) cells. Experts in clusters 4 and 5 classified t hem as 
either Intracolumnar or Transcolumnar, whereas experts in clusters 1, 2 and 3 selected Intracolumnar as the 
most likely value (≥0.66). 

• The propert ies for Common basket cells could not be easily identified. Experts in cluster 2 and 4 classified most of 
t hem as Translaminar (≥0.63), cluster 3 assigned the highest probability to Intralaminar (0.82), whereas in the 
other clusters they were classified as either Translaminar or Intralaminar. Intracolumnar was always more 
likely than Transcolumnar, al though the differences in the probability values greatly varied in the clusters. We also 
found major disagreements in X4: Clusters 1 and 3 assigned Centered wi th a high probability (≥0.86), whereas the 
probabilities of Centered and Displaced were similar in t he other clusters. 

• Large basket cells were characterized as Translaminar (≥0.58) and Transcolumnar (≥0.63) cells. Clusters 1 and 
3 defined t hem as mainly Centered (≥0.74), cluster 5 assigned a higher probability to Displaced (0.6), whereas in 
the other clusters Centered and Displaced had more uniform probabilities. 

• Arcade cells were frequently classified as Translaminar (≥0.65), Intracolumnar (≥0.55) and, w h e n 
Translaminar and Displaced were selected, as Descending cells. 

• Most of t he neurons classified as Other were characterized as Translaminar (≥0.62). Intracolumnar was more 
likely than Transcolumnar in all t he clusters. Also, Displaced had a higher probability than Centered in all the 
clusters, except for cluster 6. However, the differences be tween the probabilities of these values greatly varied from 
cluster to cluster. Cluster 3 yielded a high probability for Both category in X5 (0.50), whereas cluster 1 assigned a greater 
probability to Descending (0.38). The probabilities in X5 were more uniform in the other clusters. 

Setting evidence in the other variables also highlighted some differences be tween groups of experts. For example, set­
ting Intralaminar as evidence in X2 yielded Common basket as the most likely value for X6 in all the Bayesian ne t ­
works, except for the one corresponding to cluster 4, where Common type and Neurogliaform got higher probabilities. 
Setting Translaminar as evidence in X2 yielded very different propagated probabilities in the clusters. When setting 
Intracolumnar as evidence in X3, the most likely values in X6 were Common basket (clusters 1 and 2), Common type 
(clusters 3 and 4) and Other (cluster 5). 

The consensus Bayesian mult inet was used to perform inferences taking into account all the representative Bayesian 
networks at t he s ame t ime. The probability of a given query was computed using the finite mixture of Bayesian ne tworks 
expression (Eq. (6)). Table 1 shows the conditional probabilities of each variable given the neuronal type in X6. We used 
these conditional probabilities to infer a set of agreed definitions for some neuronal types : 

• Martinotti cells were usually classified as Translaminar, Displaced and Ascending. 
• Horse-tail cells were commonly defined as Translaminar, Intracolumnar, Displaced and Descending neu ­

rons. 
• A common feature of Chandelier neurons was that they were Intracolumnar. 
• Neurogliaform cells were mainly Intralaminar, Intracolumnar and Centered cells. 
• Common type cells were primarily Translaminar. 
• Large basket neurons were characterized as Translaminar and Transcolumnar. 
• Arcade neurons were usually classified as Translaminar. 
• Neurons classified as Other were commonly classified as Translaminar and Intracolumnar cells. 

4.5. Clustering visualization with PCA 

The clusters obtained wi th K-means were visually inspected using a representation in a lower dimensional space. The 
goal was to obtain a three-dimensional representation that approximates the 121-dimensional JPDs and check whether or 
not the clusters were visually distinguishable. A principal component analysis (PCA) was performed, and the three pr in­
cipal components which account for the highest proportion of variance (67.14%) were studied [65]. Fig. 9 plots the values 
of t he JPDs for each expert in t he transformed three-dimensional space. Different symbols and colors were used to show 
the cluster assigned by the K-means algorithm to each expert. Two-dimensional projections were also included for ease of 
interpretation. Also, we studied the weights associated with each JPD value in each one of the principal components (PCs): 

• The first PC, which accounted for 47.32% of the variance, distinguished the experts in cluster 1 from the other clusters. 
In this PC, the value of the JPD with highest (absolute) weight was X1 = Uncharacterized, X2 = Dummy, X3 = Dummy, 
X4 = Dummy, X5 = Dummy, X6 = Dummy (weight = 0.9828). The second weight wi th the largest absolute value had a 
value equal to -0.06119. This PC primarily separated experts wi th different behaviors w h e n classifying the neurons as 
either Characterized or Uncharacterized in variable X1. Therefore, the three experts in cluster 1 (Fig. 7(a)), which 
classified a lot of neurons as Uncharacterized, were easily distinguished using this PC. 

• The second PC distinguished the outlying expert in cluster 6 and accounted for 10.74% of the variance. This PC yielded the 
largest weight (in absolute terms) for the value of the JPD corresponding to X1 = Characterized, X2 = Intralaminar, 



Table 1 
Conditional probabilities of each variable given the neuronal type (X6), computed with the consensus Bayesian multinet. The largest value for each conditional 
probability distribution is highlighted in boldface. 

Common 
type 

Conditional probabilities P(X1|X6) 

Characterized 0 .9989 

Uncharacterized 0.0011 

Conditional probabilities P(X2|X6) 

Intralaminar 0.2847 

Translaminar 0.7136 

Dummy 0.0017 

Conditional probabilities P(X3|X6) 

Intracolumnar 0.6190 

Transcolumnar 0.3802 

Dummy 0 .0008 

Conditional probabilities P(X4|X6) 

Centered 0 .4293 

Displaced 0 .5696 

Dummy 0.0011 

Conditional probabilities P(X5|X6) 

Ascending 0.1623 

Descending 0.2169 

Both 0.1296 

Dummy 0.4912 

Horse-
tail 

0.9981 

0.0019 

0.0720 

0.9254 

0.0026 

0.8639 

0.1346 

0.0015 

0.1088 

0.8893 

0.0019 

0.1244 

0.6439 

0.1119 

0.1198 

Chandelier 

0.9962 

0.0038 

0.4270 

0.5671 

0.0059 

0.7903 

0.2065 

0.0032 

0.5292 

0.4668 

0.0040 

0.0950 

0.1961 

0.0754 

0.6335 

Martinotti 

0.9988 

0.0012 

0.0632 

0.9350 

0.0018 

0.4001 

0.5990 

0.0009 

0.1151 

0.8837 

0.0012 

0.6479 

0.1103 

0.1187 

0.1231 

Common 
basket 

0.9992 

0.0008 

0.4477 

0.5511 

0.0012 

0.6862 

0.3132 

0.0006 

0.6075 

0.3917 

0.0008 

0.1008 

0.1270 

0.0790 

0.6932 

Arcade 

0.9937 

0.0063 

0.2863 

0.7057 

0.0080 

0.6365 

0.3579 

0.0056 

0.4078 

0.5856 

0.0066 

0.1290 

0.2606 

0.1311 

0.4793 
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X3 = Transcolumnar, X4 = Centered, X5 = Large basket, X6 = Dummy (weight = -0.7385). Fig. 7(f) shows that the 
representative Bayesian network of the outlying expert in cluster 6 had a very high probability (0.46) for Large Basket 
cells. Therefore, this PC separated the expert in cluster 6 from the rest of the clusters. 

• The third PC accounted for 9.08% of the variance and could not easily separate the rest of the clusters. However, this PC 
seemed to be able to distinguish be tween experts in cluster 2 and experts in cluster 4. These two clusters contained 
experts wi th two different behaviors. Fig. 7(d) shows that the experts in cluster 4 classified most of the neurons as 
Common type (0.40), whereas the experts in cluster 2 (Fig. 7(b)) classified mos t of the neurons as Common basket 
(0.30). Clusters 3 and 5 were less distinguishable because the probability was more uniformly distributed across the 
values in X6 (Fig. 7(c) and (e)). The weights in the third PC were also harder to interpret. However, cluster 4 and cluster 2 
could be distinguished. All the values of the JPD with X6 = Common type had weights smaller or equal than - 0 . 0 2 8 5 9 , 
whereas all the values with X6 = Common basket had weights greater or equal than - 0 . 0 1 0 2 (see Fig. 10). Therefore, 
t he set of values wi th X6 = Common type (cluster 4) and X6 = Common basket (cluster 2) were disjoint according to 
the third PC. 

We concluded that the behavior of experts in clusters 1 and 6 was remarkably different from the behavior of the rest of 
t he experts . The K-means algorithm was able to identify those characterizing behaviors and generated two different clusters 
for them. Additionally, differences be tween the experts in clusters 2 and 4 were also correctly identified. The differences 
be tween clusters 3 and 5 were more subtle and it was difficult to find a three-dimensional representat ion of the JPDs which 
separated these experts. 

4.6. Geographical identification of the clusters 

We studied possible correlations be tween the experts’ workplace and the cluster they were assigned to. The goal was to 
try to identify different approaches or currents of opinion regarding interneuron classification in different regions, cities or 
laboratories in the world. We studied the statistical significance of some of the groups of experts according to the country or 
thec i tywhere theyworked .Aboo t s t r app ingapproachwasused ,whereasampleofexper t swasse lec tedwi thou t rep lacement 
and we est imated the probability of some of t hem belonging to the same clusters. The sampling procedure was repeated 
100,000 t imes for different sample sizes. We could not find any statistically significant result using a significance level of 
α= 0 .05. Therefore, we concluded that there is no geographical correlation be tween the experts and the cluster they were 
assigned to. 
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three-dimensional coordinates of the experts correspond to the values of the three principal components with highest proportion of variance. 
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5. Conclusions 

Bayesian networks have been successfully applied to a wide range of problems in very different domains. In this paper, we 
have presented a methodology for building a consensus Bayesian multinet that represents the opinions of a set of experts. 
The methodology canbesummarizedinthreesteps. First,aBayesian networkislearned for each expert. Second, the Bayesian 
networks corresponding to experts with similar behaviors are clustered. Third, a consensus Bayesian multinet is built which 

0 



models the behavior of all experts. To the best of our knowledge, the problem of clustering Bayesian networks had not been 
studied in the literature before. Therefore, this work also addresses an interesting problem in Bayesian network research. Our 
proposal consists of computing the JPD encoded by each Bayesian network and applying a partitional clustering approach to 
find groups of similar JPDs. The K-means algorithm with logarithmic combination pool and Jensen–Shanon divergence was 
used to cluster the JPDs. Then, a representative Bayesian network was induced for each cluster by proportional sampling 
of the JPDs in the cluster and applying a Bayesian network learning algorithm on the generated dataset. The final model 
is a consensus Bayesian multinet which encodes a finite mixture of Bayesian networks, where each component is the 
representative Bayesian network for a cluster of experts. 

We applied the proposed methodology to a problem of modeling experts’ opinions when classifying a set of cortical 
GABAergic interneurons based on the morphological features of their reconstructions [22]. This is a difficult task because 
neuroscientists do not have a set of commonly agreed definitions which clearly distinguish the different neuronal types 
[3]. The consensus Bayesian multinet built in this work was analyzed to gain some insights into the problem of classifying 
GABAergic interneurons. We managed to find some easily distinguishable clusters of experts, which behaved differently 
from the rest of the clusters. By studying the marginal probabilities in the representative Bayesian networks, we were able 
to identify different approaches to neuron classification. This highlighted the importance of clustering the experts before 
building the consensus model. Directly combining experts with such differing behaviors would presumably hide some of 
these opinions, and the final model would not represent all the experts thoughts. Additionally, we performed inference with 
the model to provide agreed definitions of the neuronal types. We analyzed the representative Bayesian network structures 
to identify common conditional independence relationships between the groups of experts, which had a direct biological 
interpretation. 

We discussed the different approaches that could be considered for performing each one of the tasks and motivated our 
decisions in each step. One advantage of the proposed methodology is that it is data independent, i.e., we only used experts’ 
data for learning the initial Bayesian networks, and the clustering algorithm and the construction of the consensus Bayesian 
multinet are only based on these Bayesian networks. Therefore, the methodology can still be applied when experts’ data is 
not available, e.g., when Bayesian networks are elicited from experts’ knowledge. 

Future work includes the application of different techniques for clustering JPDs. In particular, model-based clustering 
using finite mixtures of distributions was discarded because of the low number of observations (42 experts) and the high 
dimensionality of the JPDs (121 values). We discussed the possible use of finite mixtures of Dirichlet distributions [44] 
as the most straightforward model for clustering probability distributions. However, the Dirichlet distribution has some 
constraints, e.g., its covariance matrix is strictly negative so it cannot model positive correlations between variables. Finite 
mixtures of generalized Dirichlet distributions [66] overcome some of these constraints. However, the generalized Dirichlet 
distribution has more parameters than the Dirichlet distribution, so the problem of high-dimensionality combined with few 
data is even more challenging. L1-regularization approaches in finite mixture modeling [67,68] could be used to perform 
feature subset selection and reduce data dimensionality. Another point for future research is the use of different techniques 
for finding a representative Bayesian network for each cluster. Some of the possibilities for achieving this goal were discussed 
in Section 3.2.3. Finding a consensus Bayesian network from a set of Bayesian networks which represent different experts’ 
opinions has been a recurring interest in the field [52–56]. Combining these methods with the proposed clustering approach 
and studying the differences and similarities in the representative Bayesian networks obtained for each cluster in a real 
problem could give some insights into the relative merits of each technique. 

This paper serves as an example of the kind of synergies stemming from multidisciplinary research when real problems 
drive research in artificial intelligence. The strategy developed in this study could be useful for identifying and correlating 
morphological parameters that are difficult, if not impossible, to obtain by visual inspection alone. Furthermore, including 
other neuronal features, such as their molecular and physiological features, would result in a powerful tool for classifying 
neurons with a more functional significance. Indeed, we expect these models to play a major role in solving some of the most 
challenging problems in biology and medicine, such as the study of low-level interactions between neurons in the brain and 
their relationships to perception, learning or brain diseases. 
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