
A Weighted Causal Theory for Acquiring and Utilizing

Open Knowledge

Jianmin Ji and Xiaoping Chen

University of Science and Technology of China
Hefei, China

{jianmin,xpchen}@ustc.edu.cn

Abstract

Motivated by enabling intelligent robots/agents to make use of open-source
knowledge resources to solve open-ended tasks, a weighted causal theory is
introduced as the formal basis for the development of these robots/agents.
The action model of a robot/agent is specified as a causal theory following
McCain and Turner’s nonmonotonic causal theories. New knowledge is need-
ed when the robot/agent is given a user task that cannot be accomplished
only with the action model. This problem is cast as a variant of abduction,
that is, to find the most suitable set of causal rules from open-source knowl-
edge resources, so that a plan for accomplishing the task can be computed
using the action model together with the acquired knowledge. The core part
of our theory is constructed based on credulous reasoning and the complex-
ity of corresponding abductive reasoning is analyzed. The entire theory is
established by adding weights to hypothetical causal rules and using them
to compare competing explanations which induce causal models satisfying
the task. Moreover, we sketch a model theoretic semantics for the weighted
causal theory and present an algorithm for computing a weighted-abductive
explanation. An application of the techniques proposed in this paper is illus-
trated in an example on our service robot, KeJia, in which the robot tries to
acquire proper knowledge from OMICS, a large-scale open-source knowledge
resource, and solve new tasks with the knowledge.

Keywords: nonmonotonic causal theories, service robots, abductive
reasoning
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1. Introduction

McCain and Turner’s causal theories [1] are devoted to be a nonmonotonic
formalism for representing causal knowledge, which can be used to formalize
knowledge of actions in order to enable a robot/agent to reason about changes
of the environment [2]. The language of causal theories has been extended to
handle multi-valued constraints [3] and enable nested expressions of causal
relations [4].

Generally, one can use a causal theory to represent an action domain and
specify wanted goals, where a causal model of the causal theory corresponds
to a solution to achieving these goals. One problem with the approach is
that frequently there exist no solutions because the action domain does not
contain enough knowledge to derive these goals. To remedy this, we propose
the extended causal theories to support the augmentation of a causal theory
by gaining additional causal knowledge from open-source knowledge bases.
An extended causal theory is intended to find out a subset for causal laws
from open-source knowledge bases, called knowledge gap, to make the causal
theory have a causal model and the subset be minimal (in the sense of set
inclusion) w.r.t. all possible such sets of causal laws. Intuitively, one wants
to add new causal knowledge as little as possible, because adding more would
lead to an additional cost of efficiency and a higher risk of introducing irrele-
vant knowledge. For example, suppose a robot is required to “get food from
refrigerator” and is not equipped with the knowledge of how to accomplish
the task. In that case, the robot can find a suggestion from the Open Mind
Indoor Common Sense (OMICS) databases [5] that “first open the refrigera-
tor door, then take the food”. After adding the corresponding knowledge to
the local knowledge base of the robot, the robot would compute a solution
to accomplishing the task. It is better not to add other suggestions to the
local knowledge base, like “find an object by first thinking where the object
is likely to be” and “offering drink when one feels thirsty”.

We further develop the formalization, called weighted causal theory, by
assigning each causal law from open-source knowledge bases a (nonnegative)
weight, which specifies how “special” the piece of knowledge is. For instance,
an instruction for a new task only involving primitive actions of the robot is
more special than an instruction for the same task involving other unprimitive
tasks. The main task of a weighted causal theory is to find out a knowledge
gap, called weighted knowledge gap, such that the knowledge gap has the
minimal accumulated weight w.r.t. all other knowledge gaps. We show that
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the computational complexities of the most problems related to this task are
hard for the second level of the polynomial hierarchy, i.e. ΣP

2 -hard. Therefore,
motivated from the application of service robots in domestic environments,
we identify a special sort of weighted causal theories and provide an algorithm
for computing weighted knowledge gaps in polynomial time w.r.t. the size of
such weighted causal theory. Later, we illustrate the proposed approach in
an example on our service robot, KeJia, in which the robot tries to acquire
proper knowledge from OMICS and solve new tasks with the knowledge.

Given a causal theory A and a candidate set T of causal laws, the paper
considers the problem of finding a proper set E ⊆ T such that A ∪ E has a
causal model. It is similar to the problem of finding an explanation for an
observation in abductive reasoning. Eiter et al. [6] provided a formalization
of abductive reasoning based on default logic and analyzed the complexity
of the main abductive reasoning tasks. Due to the requirements of the moti-
vating application, our formalization is based on causal theories and weights
w.r.t. candidate causal laws which need to be considered further during the
reasoning. Hobbs et al. [7] proposed a formalization called “weighted abduc-
tion”, which assigns a cost to each of the atoms by assigning a weight to each
atom in the body of a Horn clause. Then it computes an explanation with
the lowest accumulated cost for each atom in the explanation that is calcu-
lated. In weighted causal theories, weights are directly assigned to candidate
causal laws. There have been many efforts that share common concerns with
open knowledge [8, 9, 10, 11, 12]. However, to authors’ knowledge, this paper
is the first work on formalizing the problem based on causal theories with
weights.

Section 2 reviews causal theories. Section 3 presents the formalization of
extended causal theories and knowledge gaps/rehabilitatations, complexity
results, and a polynomial time algorithm for a special sort of extended causal
theories. Section 4 extends the work by assigning weights to corresponding
causal laws and also provides a polynomial time algorithm for a special sort
of new causal theories. Section 5 introduces the problem of using open knowl-
edge for service robots in the domestic environment and shows how weighted
causal theories can be conveniently used to formalize the problem. Section 6
draws conclusion.
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2. Causal Theories

The language of causal theories [1] is based on a propositional language
with two zero-place logical connectives > for tautology and ⊥ for contra-
diction. We denote by Atom the set of atoms, and Lit the set of literals:
Lit = Atom ∪ {¬a | a ∈ Atom}. Given a literal l, the complement of l,
denoted by l̄, is ¬a if l is a and a if l is ¬a, where a is an atom. A set I of
literals is called complete if for each atom a, exactly one of {a,¬a} is in I. In
this paper we identify an interpretation with a complete set of literals. Let
I be an interpretation and F a propositional formula, I satisfies F , denoted
I |= F , is defined s usual.

A causal theory is a finite set of causal laws of the form:

φ⇒ ψ, (1)

where φ and ψ are propositional formulas. Intuitively, the causal law reads
as “ψ is caused if φ is true”. A causal law of the form (1) is definite if ψ is
a literal and φ is a conjunction of literals. A causal theory is definite if all
causal laws in it are definite. As a syntax sugar, a causal law with variables
is viewed as the shorthand of the set of its ground instances, that is, for the
result of substituting corresponding variable-free terms for variables in all
possible ways.

Let T be a causal theory and I an interpretation. The reduct T I of T
w.r.t. I is defined as T I = {ψ | for some φ, φ⇒ ψ ∈ T and I |= φ }. T I is a
propositional theory. We say that I is a causal model of T if I is the unique
model of T I . A causal theory T is consistent if it has a causal model.

For example, let T1 be the causal theory whose signature is {p, q}: {p⇒
p, q ⇒ q, ¬q ⇒ ¬q}. Let I1 = {p, q}, T I1

1 = {p, q} and I1 is the unique
model of T I1

1 , then I1 is a causal model of T1. Let I2 = {¬p, q}, T I2
1 = {q},

both I1 and I2 are models of T I2
1 , then I2 is not a causal model of T1. We

can see that T1 has two causal models {p, q} and {p,¬q}.
For any causal theory T and a propositional formula F , we say that T

credulously entails F, denote T `c F , if there exists a causal model I of T
such that I |= F .

The credulous entailment is nonmonotonic in the sense that, after adding
other causal laws a propositional formula may no longer be entailed. For
example, a causal theory T = {p ⇒ p}, its only causal model is {p} then
T `c p. Let T ′ = {p ⇒ p,> ⇒ ¬p}, its only causal model is {¬p}, then
T ′ `c ¬p and T ′ 6`c p.
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Compared with Situation Calculus [13] and other formalisms for reason-
ing about action based on classical logic [2], causal theories allow for conve-
nient formalization of many challenging phenomena such as the frame prob-
lem, indirect effects of actions (ramifications), implied action preconditions,
concurrent interacting effects of actions, and things that change by them-
selves [2]. These features make the causal-theoretical language suitable for
service robots. [8] described an example in a search and rescue scenario in
which a robot is searching a building that is unsafe for human exploration.
At the beginning of the exploration task, the robot’s knowledge specifies that
the robot should enter any room it encounters through an open door. Dur-
ing the search operation, however, the robot gains a new piece of knowledge
that the building’s doors are all designed to unlatch when the fire alarm is
triggered. In that case, the robot should push the doors open and search
rooms behind them. Using the causal-theoretical language, the robot’s local
knowledge base can be updated very easily: Simply adding new rules for the
newly known context into the robot’s local knowledge base, while keeping
all old rules unchanged since they are still valid for the previously known
contexts.

In this paper, we consider causal theories as the formalism for action
domains of robots. Then open knowledge sources are viewed as sets of causal
laws whose elements could be added to the action domain of the robot. We
will discuss how to add these causal laws properly in the next section.

3. Extended Causal Theories

In this section, we describe the formalization of extended causal theories,
which focuses on find a set of causal laws from open-source knowledge re-
sources, so that a plan to accomplishing the required tasks can be computed
using the enlarged knowledge base. Then we propose the complexity results
of typical reasoning tasks related to the formalization. Later, we identify a
special sort of extended causal theories and provide an algorithm of these
extended causal theories for computing knowledge gaps in polynomial time.

Definition 1. An extended causal theory (ECT) is a pair 〈A, T 〉 where A
and T are causal theories. It is definite if A and T are definite causal theories.

Intuitively, A specifies the local knowledge base of a robot and the tasks that
need to be accomplished, and T is an open-knowledge base (assumed as a
set of causal laws).
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Definition 2. Let P = 〈A, T 〉 be an ECT and E ⊆ T . E is a credulous
rehabilitation for P if there exists a causal model I of A ∪ E.

Intuitively, a credulous rehabilitation serves as the missing knowledge from
open knowledge bases.

Definition 3. Let P = 〈A, T 〉 be an ECT and E ⊆ T . E is a knowledge
gap for P , if E is a credulous rehabilitation for P and any proper subset of
E is not a credulous rehabilitation for P .

As discussed in Introduction, one wants to add new causal knowledge as
little as possible. Then knowledge gaps are preferred among all credulous
rehabilitations.

Definition 4. Let P = 〈A, T 〉 be an ECT and a causal law r ∈ T . P
is credulously consistent if there exists a credulous rehabilitation for P . r is
credulously relevant for P if r ∈ E for some credulous rehabilitation E for P .
r is credulously necessary for P if r ∈ E for every credulous rehabilitation E
for P .

Definition 5. Let P = 〈A, T 〉 be an ECT and a causal law r ∈ T . P is
consistent if there exists a knowledge gap for P . r is relevant for P if r ∈ E
for some knowledge gap E for P . r is necessary for P if r ∈ E for every
knowledge gap E for P .

The computational results are summarized in Table 1. Each entry C
represents completeness for the class C. The entries in the column under
“Arbitrary” are complexity results of arbitrary extended causal theories and
the entries under “Definite” are complexity results of definite causal theories.
The entries in the row of “Recognition” are complexity results for the problem
of determining whether a set E ⊆ T is in the corresponding class.

From Proposition 3 and Proposition 6 in [3], determining whether a causal
theory T has a causal model is ΣP

2 -complete, and if T is definite then it is
NP-complete. Then we have the following theorem.

Theorem 1. Let P = 〈A, T 〉 be an ECT and E ⊆ T . Determining whether
E is a credulous rehabilitation for P is ΣP

2 -complete. If P is definite, the
problem is NP-complete.
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Table 1: Complexity of credulous rehabilitation and knowledge gap

ECT P = 〈A, T 〉 Credulous Rehabilitation Knowledge Gap
Problem: Arbitrary Definite Arbitrary Definite

Recognition ΣP
2 NP ΠP

2 coNP
Consistency ΣP

2 NP ΣP
2 NP

Relevance ΣP
2 NP ΣP

3 ΣP
2

Necessity ΠP
2 coNP ΠP

2 coNP

Given an ECT P = 〈A, T 〉, we can construct a causal theory TP which
contains:

• A,

• ar ∧ φ⇒ ψ for each causal law r ∈ T of the form (1),

• ar ⇒ ar and ¬ar ⇒ ¬ar for each r ∈ T ,

where ar is a new atom for each causal law r ∈ T . Note that, if P is definite,
then TP is also definite.

Proposition 1. Let P = 〈A, T 〉 be an ECT and E ⊆ T . E is a credulous
rehabilitation for P iff there exists a causal model I of TP such that E =
{r ∈ T | ar ∈ I}.

Theorem 2. Let P be an ECT and r a causal law. Determining whether

• P is credulously consistent is ΣP
2 -complete,

• r is credulously relevant for P is ΣP
2 -complete,

• r is credulously necessary for P is ΠP
2 -complete.

Proof: From Proposition 1, the ECT P is credulously consistent iff the
causal theory TP has a causal model. From Proposition 3 in [3], it is ΣP

2 -
complete.

A causal law r is credulously relevant for P iff TP ∪{> ⇒ ar} has a causal
model. Then the complexity is ΣP

2 -complete.
r is credulously necessary for P iff TP ∪{> ⇒ ¬ar} does not have a causal

model. Then the complexity is ΠP
2 -complete.
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Theorem 3. Let P be a definite ECT and r a causal law. Determining
whether

• P is credulously consistent is NP-complete,

• r is credulously relevant for P is NP-complete,

• r is credulously necessary for P is coNP-complete.

Proof: If P is definite, then TP is definite. From Proposition 6 in [3], deter-
mining whether a definite causal theory has a causal model is NP-complete.
Then the theorem is proved.

Theorem 4. Let P = 〈A, T 〉 be an ECT and E ⊆ T . Determining whether
E is a knowledge gap for P is ΠP

2 -complete. If P is definite, then the problem
is coNP-complete.

Proof: E is a knowledge gap for P iff the ECT 〈A,E\{r}〉 is not credulously
consistent, for each r ∈ T . We can use a set of new atoms w.r.t. r to rename
all atoms occurred in P . Correspondingly, we use Ar to denote the set of
causal laws obtained from A by replacing each atom a by a new atom ar,
and Er the set of causal laws obtained from E \ {r}. We can create an ECT

P ∗ = 〈
⋃
r∈E

Ar,
⋃
r∈E

Er〉.

Clearly, E is a knowledge gap for P iff the ECT P ∗ is not credulously con-
sistent. Form Theorem 2, the computational complexity is ΠP

2 -complete.
When P is definite, P ∗ is also definite. Then the computational complex-

ity is coNP-complete.

Theorem 5. Let P be an ECT and r a causal law. Determining whether

• P is consistent is ΣP
2 -complete,

• r is relevant for P is ΣP
3 -complete,

• r is necessary for P is ΠP
2 -complete.
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Proof: Note that P is consistent iff P is credulously consistent, from Theo-
rem 2, then the computational complexity is ΣP

2 -complete.
Determining whether r is relevant for P , we can guess E for a knowledge

gap for P such that r ∈ E. From Theorem 4, determining whether E is a
knowledge gap for P is ΠP

2 -complete, then the problem is a ΣP
3 problem.

We prove the hardness by converting the problem of verifying a QBF
Φ = ∃X∀Y ∃Z.F to the problem. In particular, we can create an ECT
P = 〈A, T 〉 such that

• A contains the following causal laws:

– ¬s⇒ ¬s,
– s ∧

∧
y∈Y y ⇒ e,

– ¬s ∧ ¬F ⇒ e,

– ¬y ⇒ ¬y for each y ∈ Y ,

– > ⇒ z ∨ z′, z ⇒ w ⊃ z, z′ ⇒ w ⊃ z′, and > ⇒ (z ∧ z′) ⊃ w for
each z ∈ Z and z′ is a new atom w.r.t. z,

– F ′Z ⇒ F ′Z ⊃ w where F ′Z is obtained from the negation normal
form of ¬F by replacing each literal ¬z where z ∈ Z to z′,

– s⇒ w

– s ∧ ¬z ⇒ ¬z and s ∧ ¬z′ ⇒ ¬z′ for each z ∈ Z.

• T contains the following causal laws:

– > ⇒ x and > ⇒ ¬x for each x ∈ X,

– > ⇒ y for each y ∈ Y ,

– > ⇒ s.

Where s and e are new atoms.
If > ⇒ s is belonged to a knowledge gap E for P , then there exists a set

S ⊆ X, such that {> ⇒ x | x ∈ S} ∪ {> ⇒ ¬x | x ∈ X \ S} ∪ {> ⇒ y | y ∈
Y } ∪ {> ⇒ s} = E. Assume that the QBF Φ is not valid under X, there
exists a set J ⊆ Y s.t. for any U ⊆ Z, S ∪ {¬x | x ∈ X \ S} ∪ J ∪ {¬y |
y ∈ Y \ J} ∪ U ∪ {¬z | z ∈ Z \ U} |= ¬F , then we would get a set
E∗ = {> ⇒ x | x ∈ S} ∪ {> ⇒ ¬x | x ∈ X \ S} ∪ {> ⇒ y | y ∈ J}. Note
that, under S and J , for any U ⊆ Z, U ∪ {¬z | z ∈ Z \ U} |= ¬F , then
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I = {x | x ∈ S} ∪ {¬x | x /∈ X \ S} ∪ {y | y ∈ J} ∪ {¬y | y /∈ Y \ J} ∪ {z |
z ∈ Z} ∪ {z′ | z ∈ Z} ∪ {w,¬s, e} is the unique model of (A∪E∗)I , thus E∗

is a credulous rehabilitation for P . Additionally, E∗ ⊂ E, which conflicts to
the condition that E is a knowledge gap for P . So the Φ is valid.

If ∀Y ∃Z.F ∧ S is valid under some S ⊆ X, then the set E = {> ⇒ x |
x ∈ S}∪{> ⇒ ¬x | x ∈ X \S}∪{> ⇒ y | y ∈ Y }∪{> ⇒ s} is a credulous
rehabilitation for P . If there exists another credulous rehabilitation E ′ such
that E ′ ⊂ E, then > ⇒ s /∈ E ′, thus there exists J ⊆ Y s.t. for any U ⊆ Z,
U ∪{¬z | z ∈ Z \U} implies ¬F under S and J . It conflicts to the condition
that Φ is valid under X. So E is a knowledge gap for P ′.

So the QBF Φ is valid iff > ⇒ s is relevant for P . Then the computational
complexity is ΣP

3 -complete.
r is necessary for P iff r is credulously necessary for P , then the compu-

tational complexity is ΠP
2 -complete.

Theorem 6. Let P be a definite ECT and r a causal law. Determining
whether

• P is consistent is NP-complete,

• r is relevant for P is ΣP
2 -complete,

• r is necessary for P is coNP-complete.

Proof: The definite P is consistent iff P is credulously consistent, from
Theorem 3, then the computational complexity is NP-complete.

Determining whether r is relevant for the definite P is a ΣP
2 problem.

We prove the hardness by converting the problem of verifying a QBF
Φ = ∃X∀Y.F to be the problem. In particular, we can create an ECT
P = 〈A, T 〉 such that

• A contains the following causal laws:

– ¬s⇒ ¬s,
– F ⇒ f and ¬f ⇒ ¬f ,

– s ∧
∧

y∈Y y ⇒ e,

– ¬s ∧ ¬f ⇒ e,

– ¬y ⇒ ¬y for each y ∈ Y .
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• T contains the following causal laws:

– > ⇒ x and > ⇒ ¬x for each x ∈ X,

– > ⇒ y for each y ∈ Y ,

– > ⇒ s.

Where s, f and e are new atoms. Note that, without lose of generality,
assume that F is in conjunctive normal form, then F ⇒ f can be replaced
by a set of definite causal laws, thus P can be equivalently converted to a
definite ECT P ′.

If > ⇒ s is belonged to a knowledge gap E for P ′, then there exists a
set S ⊆ X s.t. {> ⇒ x | x ∈ S} ∪ {> ⇒ ¬x | x ∈ X \ S} ∪ {> ⇒ y | y ∈
Y } ∪ {> ⇒ s} = E. E is a knowledge gap for P ′, then there does not exists
another credulous rehabilitation E ′ for P ′ s.t. E ′ ⊂ E. Assume that, there
exists a set J ⊆ Y s.t. S∪{¬x | x ∈ X \S}∪J∪{¬y | y ∈ Y \J} |= ¬F , then
we would get a set E∗ = {> ⇒ x | x ∈ S} ∪ {> ⇒ ¬x | x ∈ X \ S} ∪ {> ⇒
y | y ∈ J}. Clearly, E∗ ⊂ E and E∗ is a credulous rehabilitation for P ′, then
there is a conflict with E is a knowledge gap for P ′. So Φ is satisfied.

If ∀Y.F is valid under some S ⊂ X, then the set E = {> ⇒ x | x ∈
S} ∪ {> ⇒ ¬x | x ∈ X \ S} ∪ {> ⇒ y | y ∈ Y } ∪ {> ⇒ s} is a credulous
rehabilitation for P ′. If there exists another credulous rehabilitation E ′ such
that E ′ ⊂ E, then > ⇒ s /∈ E ′, thus there exists J ⊆ Y such that S ∪ {¬x |
x ∈ X \ S} ∪ J ∪ {¬y | y ∈ Y \ J} implies ¬F , which conflicts to the
precondition. So E is a knowledge gap for P ′.

So the QBF Φ is valid iff> ⇒ s is relevant for P ′. Then the computational
complexity is ΣP

2 -complete.
r is necessary for the definite P iff r is credulously necessary for P , form

Theorem 3, then the computational complexity is coNP-complete.

Note that, it is hard to compute a credulous rehabilitation or a knowledge
gap for a (definite) ECT. Here we identify a special sort of ECTs such that
a credulous rehabilitation can be computed in polynomial time.

Definition 6. An ECT P = 〈A, T 〉 is regular if there exists sets O, S and
J of atoms such that:

• O ⊆ S, {¬a ⇒ ⊥ | a ∈ O} ⊆ A, and for each atom a ∈ S, a does not
occur in the remain causal laws of A;
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• each causal law in T is in the form

a1 ∧ · · · ∧ an ⇒ a, (2)

where a ∈ S and a1, . . . , an are belonged to S ∪ J ;

• for any subset J ′ ⊆ J , there exists a causal model for the causal theory
(A \ {¬a⇒ ⊥ | a ∈ O}) ∪ {¬a⇒ ⊥ | a ∈ J ′}.

In the following, we use PO, PS and PJ to denote the corresponding sets O,
S and J w.r.t. P .

Algorithm 1 specifies a procedure for computing a credulous rehabilitation
for a regular ECT P .

Algorithm 1 CR(P ): returns a credulous rehabilitation for a regular ECT P

1: set U := PJ , U ′ := U , and support(a) := ∅ for each atom a ∈ Pj;
2: for each r ∈ T of the form (2)
3: if a /∈ U and {a1, . . . , an} ⊆ U
4: then U := U ∪ {a} and support(a) := {r} ∪

⋃
1≤i≤n support(ai);

5: if PO ⊆ U then return
⋃

a∈PO
support(a);

6: if U ′ 6= U then U ′ := U , goto 2;
7: else return P is not credulously consistent.

Proposition 2. Let P = 〈A, T 〉 be a regular ECT. If P is credulously con-
sistent, then CR(P ) returns a credulous rehabilitation for P in O(n2) time,
where n is the number of clausal laws in T .

Proof: Let A′ = A \ {¬a ⇒ ⊥ | a ∈ PO}, clearly, for each atom b ∈ S, b
does not occur in A′.

It can be proved inductively that, if an atom a ∈ U then A′ ∪ {¬a ⇒
⊥} ∪ support(a) is consistent. So CR(P ) returns a credulous rehabilitation
for P .

In the worst case, the iteration would run n times, then CR(P ) terminates
in O(n2) time.

Algorithm 2 specifies a procedure for computing a knowledge gap for a
regular ECT P .
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Algorithm 2 KG(P ): returns a knowledge gap for a regular ECT P

1: set U := PJ , C := 0, and support(a) := ∅ for each atom a ∈ PJ ;
2: for each r ∈ T of the form (2)
3: if {a1, . . . , an} ⊆ U and {r} ∪

⋃
1≤i≤n support(ai) ⊂ support(a)

4: then U := U ∪ {a}, C := 1, support(a) := {r} ∪
⋃

1≤i≤n support(ai);
5: if C = 1 then C := 0, goto 2;
6: else if PO ⊆ U then return

⋃
a∈PO

support(a);
7: else return P is not consistent.

Proposition 3. Let P = 〈A, T 〉 be a regular ECT. If P is consistent, then
KG(P ) returns a knowledge gap for P in O(n3) time, where n is the number
of clausal laws in T .

Proof: Following the notions used in the proof for Proposition 2, at the
end of the procedure, one can get that support(a) ∪ A′ ∪ {¬a ⇒ ⊥} is
consistent and there does not exists another set E ′ ⊂ support(a) such that
E ′ ∪A′ ∪{¬a⇒ ⊥} is consistent. So KG(P ) returns a knowledge gap for P .

In the worst case, the iteration runs n times to compute a minimal
support(a) for an a ∈ PS, and there are at most n number of atoms in
PS. So KG(P ) terminates in O(n3) time.

4. Weighted Causal Theory

In practice, causal laws extracted from open-source knowledge bases would
not be treated equivalently. For example, an instruction involving fewer tasks
is preferred than others. In this paper, we use a nonnegative integer, called
weight, to specify the degree of specialization of a causal law.

In this section, we generalize extended causal theories to weighted causal
theories by assigning a weight to each causal law from the open-knowledge
base. Then we provide the complexity results of typical reasoning tasks
related to the new formalization. Later, motivated from the application of
domestic service robots, we identify a special sort of weighted causal theories
and provide an algorithm of these weighted causal theories for computing
weighted knowledge gaps in polynomial time.

Definition 7. A weighted causal theory (WCT) is a triple 〈A, T, ω〉, where
A and T are causal theories, and ω : T → N is a function that maps each
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Table 2: Complexity of weighted knowledge gap

WCT P = 〈A, T, ω〉 Weighted Knowledge Gap
Problem: Arbitrary Definite

Recognition ΠP
3 -complete ΠP

2 -complete
Consistency ΣP

2 -complete NP-complete
Existence w(E) ≤ n ΣP

3 -complete ΣP
2 -complete

Relevance ΣP
4 ,ΣP

3 -hard ΣP
3 , ΣP

2 -hard
Necessity ΠP

4 , ΠP
2 -hard ΠP

3 , coNP-hard

causal law in T to a non-negative integer. It is definite, if both A and T are
definite.

Given a WCT P = 〈A, T, ω〉 and a set E ⊆ T , we define the weight of E
w.r.t. P is w(E) = Σr∈Eω(r).

Definition 8. Let P = 〈A, T, ω〉 be a WCT and E ⊆ T . E is a weighted
knowledge gap for P , if E is a knowledge gap for the ECT 〈A, T 〉 and there
does not exist another knowledge gap E ′ such that w(E ′) < w(E).

Definition 9. Let P = 〈A, T, ω〉 be a WCT and a causal law r ∈ T . P
is weighted consistent if there exists a weighted knowledge gap for P . r is
weighted relevant for P if r ∈ E for some weighted knowledge gap E for P .
r is weighted necessary for P if r ∈ E for every weighted knowledge E for P .

The computational results are summarized in Table 2. Each entry C
represents the complexity result for the class C. Given a WCT P = 〈A, T, ω〉,
clearly, P is weighted consistent iff the ECT 〈A, T 〉 is consistent.

Theorem 7. Let P = 〈A, T, ω〉 be a WCT and E ⊆ T . Determining whether
E is a weighted knowledge gap for P is ΠP

3 -complete. If P is definite, then
the problem is ΠP

2 -complete.

Proof: E is a weighted knowledge gap for P means we could not find another
knowledge gap E ′ for P such that w(E ′) < w(E). From Theorem 4, the
problem is a ΠP

3 problem.
We prove the harness by converting the problem of determining whether

a causal law is relevant for an ECT to the negation of the problem. In
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particular, given an ECT P ′ = 〈A, T 〉 and a causal law r ∈ T , we can create
a WCT P ′′ = 〈A′, T ′, ω〉 such that

• A′ is the set A combined with the following causal laws:

– ar′ ⇒ ar′ and ¬ar′ ⇒ ¬ar′ for each r′ ∈ T \ {r},
– ar′ ∧ φ⇒ ψ for each causal law r′ ∈ T of the form (1).

• T ′ = {ar ⇒ ar,¬ar ⇒ ¬ar}.

• ω(ar ⇒ ar) = 0 and ω(¬ar ⇒ ¬ar) = 1.

Clearly, r is relevant for P ′ if and only if {¬ar ⇒ ¬ar} is not a weighted
knowledge gap for P . From Theorem 5, determining whether E is a weighted
knowledge gap for P is ΠP

3 -complete.
From Theorem 4, determining whether E is a weighted knowledge gap

for a definite WCT P is a ΠP
2 problem. Similarly, we can also convert the

problem of determining whether a causal law is relevant for a definite ECT to
the negation of the problem. From Theorem 6, the problem is ΠP

2 -complete.

Theorem 8. Let P be a WCT and n a non-negative integer. Determining
whether there exists a knowledge gap E for P such that w(E) ≤ n is ΣP

3 -
complete. If P is definite, the problem is ΣP

2 -complete.

Proof: We could guess a knowledge gap E for P to check whether w(E) ≤ n.
From Theorem 4, the problem is a ΣP

3 problem.
Following the notion used in the proof for Theorem 7, we could convert

the problem of determining whether r is relevant for P ′ to the problem of
determining whether there exists a knowledge gap E for P ′′ such that w(E) ≤
0. So the problem is ΣP

3 -complete.
When P is definite, determining whether r is relevant for P ′ is ΣP

2 -
complete, then determining whether there exists a knowledge gap E for a
definite WCT P such that w(E) ≤ n is ΣP

2 -complete.

Theorem 9. Let P be a WCT and r a causal law. Determining whether

• r is weighted relevant for P is a ΣP
4 problem and ΣP

3 -hard.

• r is weighted necessary for P is a ΠP
4 problem and ΠP

2 -hard.
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Proof: We could guess a weighted knowledge gap E for P such that r ∈ E
to determine whether r is relevant for P . From Theorem 7, the problem is a
ΣP

4 problem. Note that, r is relevant for an ECT P ′ = 〈A, T 〉 iff r is weighted
relevant for a WCT P ′′ = 〈A, T, ω〉 such that the ω(r) = 0 for each r ∈ T ,
then the problem is ΣP

3 -hard.
We could not find a weighted knowledge gap E for P such that r /∈ E,

then determining whether r is weighted necessary for P is a ΠP
4 problem. r

is necessary for an ECT P ′ = 〈A, T 〉 iff r is weighted necessary for a WCT
P ′′ = 〈A, T, ω〉 such that the ω(r) = 0 for each r ∈ T , then the problem is
ΠP

2 -hard.

Theorem 10. Let P be a definite WCT and r a causal law. Determining
whether

• r is weighted relevant for P is a ΣP
3 problem and ΣP

2 -hard.

• r is weighted necessary for P is a ΠP
3 problem and coNP-hard.

Proof: We could guess a weighted knowledge gap E for a definite WCT
P such that r ∈ E. From Theorem 7, determining whether r is weighted
relevant for P is a ΣP

3 problem. Similar to the proof for Theorem 9, from
Theorem 6, the problem is ΣP

2 -hard.
We could not find a weighted knowledge gap E for the definite WCT P

such that r /∈ E, then determining whether r is weighted necessary for P
is a ΠP

3 problem. Similar to the proof for Theorem 9, from Theorem 6, the
problem is coNP-hard.

Similarly, we can define the notion of regular WCTs and provide a poly-
nomial algorithm for computing weighted knowledge gap for these WCTs.

Definition 10. A WCT P = 〈A, T, ω〉 is regular, if 〈A, T 〉 is a regular ECT.

Algorithm 3 specifies a procedure for computing a weighted knowledge
gap for a regular WCT P .

Proposition 4. Let P be a regular WCT. If P is weighted consistent, then
WKG(P ) returns a weighted knowledge gap for P in O(n3) time, where n is
the number of clausal laws in T .
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Algorithm 3 WKG(P ): returns a weighted knowledge gap for a regular WCT P

1: set U := PJ , C := 0, and support(a) := ∅ for each atom a ∈ PJ ;
2: for each r ∈ T of the form (2)
3: if {a1, . . . , an} ⊆ U and w({r}∪

⋃
1≤i≤n support(ai)) < w(support(a))

4: then U := U ∪ {a}, C := 1, support(a) := {r} ∪
⋃

1≤i≤n support(ai);
5: if C = 1 then C := 0, goto 2;
6: else if PO ⊆ U then return

⋃
a∈PO

support(a);
7: else return P is not consistent.

Proof: Following the notions used in the proof for Proposition 2, at the end
of the procedure, one can get that support(a)∪A′ ∪ {¬a⇒ ⊥} is consistent
and there does not exists another set E ′ such that w(E ′) < w(support(a))
and E ′ ∪ A′ ∪ {¬a ⇒ ⊥} is consistent. So WKG(P ) returns a weighted
knowledge gap for P .

In the worst case, the iteration runs n times to compute a minimal
w(support(a)) for an a ∈ PT , and there are at most n number of atoms
in PT . So WKG(P ) terminates in O(n3) time.

5. Handling Open Knowledge for Service Robots

Normally, it is hard to develop a knowledge base for a large domain
in real-world applications which provides sufficient knowledge. Therefore,
it is desirable to develop robots (and agents) that can utilize open-source
knowledge resources to advance their capabilities. This section shows how
the theory proposed above can be used for this purpose.

We assume that a service robot is equipped with a set of primitive actions
and each of them can be executed by the robot through running of a corre-
sponding low-level routine. As a part of the robot’s local knowledge, each
primitive action a is described by a set of causal laws as proposed in [1]. In
addition, the robot’s local knowledge may include other background knowl-
edge. To concentrate on our main goals, here we only consider the situations
where a robot can accomplish a user task if only it gains more knowledge.
The basic problem in this effort is “knowledge gaps”, which is described
below:

Given a user task t to the robot with local knowledge LK, there
may exist knowledge gaps between t and LK, causing t cannot be
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accomplished by the robot with LK.

In the following, we illustrate a general approach to formalizing action
domains in causal theories and provide an open-knowledge base whose knowl-
edge is extracted from OMICS. Then, based on these formalizations, we con-
straint a WCT and show how a weighted knowledge gap is computed to
accomplish the required task.

The idea of the planning approach based on causal theories [1] is to specify
the action domain and the planning problem in causal theories such that a
causal model corresponds to a planning solution, then use sophisticated AI
tools or solvers to compute robot plans for tasks.

Firstly, the underlying propositional signature is consisted with three
pairwise-disjoint sets: a set of action names, a nonempty set of fluent names,
and a nonempty set of time names. The action-atoms are expressions of the
form at and the fluent-atoms are expressions of the form ft, where a, f , and
t are action, fluent, and time names, respectively. Atoms of the language
are either action-atoms or fluent-atoms. Specially, ⊥ denotes contradiction.
Intuitively, at is true iff the action a occurs at time t, and ft is true iff the
fluent f holds at time t. For example, grasp(bottle)1 is an action-atom s-
tands that the action “grasp bottle” occurs at time 1 and holding(bottle)2
is a fluent-atom stands that the fluent “holding bottle” is true at time 2.
A literal is either an atom a or the negation ¬a. Formulas are formed from
atoms using propositional connectives, while fluent-formulas are formed from
fluent-atoms.

An action domain contains the knowledge of actions of the robot and
changes of the environment, which is an essential part of robots’ built-in
knowledge. A causal theory for an action domain will typically contain rules
specifying the initial state and how fluents are changed as the result of per-
forming an action. We take the action grasp and corresponding fluents for
instance.

• grasp(X): the action of griping the object X and picking it up.

• holding(X): the fluent that the object X is held in the grip of the robot.

• on(X, Y ): the fluent that the object X is on the object Y .

In addition, σ is a meta-variable ranging over

{on(X, Y ), ¬on(X, Y ), holding(X), ¬holding(X)}.
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The effect of executing the action grasp(X) is described as follows:

grasp(X)t ⇒ holding(X)t+1 (3)

grasp(X)t ∧ on(X, Y )t ⇒ ¬on(X, Y )t+1 (4)

The precondition of grasping requires the grip holds nothing:

grasp(X)t ∧ holding(Y )t ⇒ ⊥ (5)

The occurrence of the action is exogenous to the causal theory:

grasp(X)t ⇒ grasp(X)t (6)

¬grasp(X)t ⇒ ¬grasp(X)t (7)

The initial state (at time 0) can be arbitrary:

σ0 ⇒ σ0 (8)

The frame problem is overcome by the following “inertia” rules:

σt ∧ σt+1 ⇒ σt+1 (9)

The causal theory formed from laws by (3)–(9) represents the part of the
action domain for the robot’s ability of ‘grasp’.

We define a state s for time t as a set of fluent-atoms with the time
name t. Intuitively, s denotes a world specified by the fluents that are true
at a time step. Given a causal theory with time names {0, 1, . . . , n}, we can
define a trajectory as a sequence 〈s0, α0, s1, . . . , αn−1, sn〉, where si is a state
for time i (0 ≤ i ≤ n), and αj is an action-atom (0 ≤ j < n). Note that,
a causal model of such a causal theory contains exactly a trajectory of the
above form, i.e., s0 ∪ {α0} ∪ · · · ∪ {αn−1} ∪ sn is a causal model of such a
causal theory. We also call it a trajectory of the causal theory.

Given a description of the goals to be completed, we could use a fluent-
formula ϕn formed by fluent-atoms with the last time name n to specify the
requirements of the goal states. Then the task planning problem is reduced to
the causal theory for the action domain by adding the causal rule ¬ϕn ⇒ ⊥.
Clearly, a causal model or a trajectory of the causal theory corresponds to a
solution of the planning problem.

A task planning system based on causal theories has been implemented
on our service robot [14, 11]. A logic programming language named Answer
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Set Programming (ASP) [15] is chosen for the calculation of causal theories
and an efficient ASP solver iclingo [16] is used for computing task plans.
More details can be found in our robot’s description paper1.

Now we introduce the OMICS project and illustrate how to form an open-
knowledge base based on it. A complete specification on our service robot,
KeJia [17, 18] , to extract proper knowledge from OMICS, was provided in
our previous work [11, 12, 19, 20].

In the OMICS project [5], an extensive collection of common sense knowl-
edge for indoor environments was collected from non-experts over Internet
in order to enhance the capabilities of indoor robots for autonomously ac-
complishing tasks. At this point, there are 48 tables in OMICS representing
different types of common sense knowledge. For examples, the Help table
maps a user desire to a concrete task that meets it; the Tasks table contains
the most possible tasks in indoor environments; and the Steps table decom-
poses a task to its steps. As an instance, a rule for the task get food from
refrigerator in OMICS is shown in Table 3. Note that, knowledge in OMICS
are provided by semi-structured natural language sentences. We have pro-
vided an approach to converting elements in the Tasks/Steps table of OMICS
to corresponding causal laws [11, 12, 19, 20].

Table 3: An element in the Tasks/Steps table of OMICS

task stepnum step
get food from refrigerator 0 open the refrigerator door
get food from refrigerator 1 take the food

Note that, elements in the Tasks/Steps table of OMICS can be used
to form an open-knowledge base. In addition to action, fluent, and time
names, we introduce a new set of symbols for task names to the underlying
propositional signature. Correspondingly, the task-atoms are expressions of
the form τt where τ and t are task and time names, respectively. For each
element e in the Tasks/Steps table of OMICS, we can convert e to a causal
law tr(e):

τ 1t1 ∧ · · · ∧ τ
m
tm ⇒ τt, (10)

1http://ai.ustc.edu.cn/en/robocup/atHome/files/WEHome2013TDP.pdf
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where τt means a task named τ is accomplished at time t, τ iti means a task
or an action named τ i is accomplished or executed at time ti (1 ≤ i ≤ m),
and t1 ≤ · · · ≤ tm ≤ t. For instance, the element in Table 3 is converted to
the following causal law:

open(refrigerator)t1 ∧ take(food)t2 ⇒ get(food, refrigerator)t3 ,

which means if the action open(refrigerator) is executed at time t1 and the
sub-task take(food) is accomplished at time t2, then the task get(food, refrigerator)
would be accomplished at time t3 (t1 ≤ t2 ≤ t3).

Now we show that the “knowledge gaps” problem w.r.t. OMICS can be
specified as a regular weighted causal theory.

Firstly, based on action-atoms and fluent-atoms, we can form a causal
theory A to formalize the action domain of a robot. Then, we use T to
denote the set of causal laws tr(e) for each element e in the Tasks/Steps
table and O to denote the set of task-atoms τt for each task τ which needs
to be accomplished at time t. We can define a function ω such that for each
causal law tr(e) of the form (10), ω returns n + 1 where n is the number of
task-atoms in {τ 1t1 , . . . , τ

m
tm}. Intuitively, ω indicates the cost of grounding

the task to a sequence of primitive actions.
Now, we can construct a WCT P = 〈A∗, T, ω〉 where A∗ = A ∪ {¬τt ⇒

⊥ | τt ∈ O}, such that for each credulous rehabilitation E for P , A∗ ∪ E
has a model I which contains a sequence of actions to accomplish all task
in O. Furthermore, if E is a weighted knowledge gap for P , then there does
not exist another credulous rehabilitation E ′ for P such that ω(E ′) < ω(E),
thus E indicates a knowledge gap with the “lowest cost” of grounding tasks
in O to sequences of primitive action. Notice that, in the action domain of
KeJia, the robot could execute any action at any time, then for any set J of
action-atoms, there exists a causal model for the causal theory A ∪ {¬at ⇒
⊥ | at ∈ J}. From Definition 6, P is a regular WCT. Then, based on
Proposition 4, we can use Algorithm 3 to compute a weighted knowledge
gap for P in polynomial time. For instance, if O = {get(food, refrigerator)t},
then we could compute a weighted knowledge gap for P as the set of following
causal laws:

open(refrigerator)t1 ∧ take(food)t3 ⇒ get(food, refrigerator)t,

grasp(food)t2 ⇒ take(food)t3 ,

where t1 ≤ t3 ≤ t and t2 ≤ t3.
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6. Conclusion

We present an extension of McCain and Turner’s causal theories, called
extended causal theories, which allow a causal theory to be expanded by
gaining additional causal laws from an open knowledge base to ensure the
enlarged causal theory to be consistent and sufficient for the problem at
hand. We further develop the formalization, called weighted causal theory, by
assigning a weight to each causal law from the open knowledge base. Then the
main task of a weighted causal theory is the problem of abducting from the
open knowledge base a set of causal laws, called weighted knowledge gap, such
that the enlarged causal theory has a solution and the set is most preferred
w.r.t. the weights of causal laws. We give the complexity results of typical
reasoning tasks related to these formalizations. We also identify a special
sort of weighted causal theories and provide an algorithm for computing
weighted knowledge gaps for these weighted causal theories in polynomial
time. We illustrate that how weighted causal theories can be conveniently
used to formalize the problem of using open-source knowledge bases for a
service robot.
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