
Credal Model Averaging for classification: representing prior ignorance and
expert opinions.

Giorgio Corania,∗, Andrea Mignattib

aIstituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
Galleria 2, 6928 Manno (Lugano), Switzerland

bDipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Italy

Abstract

Bayesian model averaging (BMA) is the state of the art approach for overcoming model uncertainty. Yet, especially
on small data sets, the results yielded by BMA might be sensitive to the prior over the models. Credal Model
Averaging (CMA) addresses this problem by substituting the single prior over the models by a set of priors (credal
set). Such approach solves the problem of how to choose the prior over the models and automates sensitivity analysis.
We discuss various CMA algorithms for building an ensemble of logistic regressors characterized by different sets
of covariates. We show how CMA can be appropriately tuned to the case in which one is prior-ignorant and to the
case in which instead domain knowledge is available. CMA detects prior-dependent instances, namely instances in
which a different class is more probable depending on the prior over the models. On such instances CMA suspends
the judgment, returning multiple classes. We thoroughly compare different BMA and CMA variants on a real case
study, predicting presence of Alpine marmot burrows in an Alpine valley. We find that BMA is almost a random
guesser on the instances recognized as prior-dependent by CMA.

1. Introduction

Classification is the problem of predicting the outcome of a categorical variable on the basis of several variables
(called features or covariates). However, there is often considerable uncertainty about which covariates should
be included in the classifier. Typically different sets of covariates are plausible given the available data. In this
case drawing conclusions on the basis of the supposedly best single model can lead to overconfident conclusions,
overlooking the uncertainty of model selection (model uncertainty).

Bayesian model averaging (BMA) [9] is a principled solution to model uncertainty. BMA combines the inferences
of multiple models; the weights of the combination are the models’ posterior probabilities. However the results of
BMA can be sensitive on the prior probability assigned to the different models. A common approach is to assign
equal prior probability to all models (uniform prior). A more sophisticated solution is to adopt a hierarchical prior
over the models, which yields inferences less sensitive of the choice of the prior parameters [4, 11].

However the specification of any prior implies some arbitrariness, which can lead to risky conclusions; such risk
is especially present on small data sets. Often BMA studies [20, 12] report a sensitivity analysis, presenting the
results obtained considering different priors over the models.

To robustly deal with the specification of the prior over the models, we adopt a set of priors (credal set) over the
models. We thus adopt the paradigm of credal classifiers [21] which extend traditional classifiers by considering sets
of probability distributions. The main characteristic of credal classifiers is that they allow for set-valued predictions
of classes, when returning a single class is not deemed safe. Credal classifiers have been developed in the area of
imprecise probability [19].

Credal model averaging (CMA) [6] generalizes BMA by substituting the prior over the models by a credal set.
CMA thus combines a set of traditional classifiers using imprecise probability. CMA was firstly introduced [6] to
create an imprecise ensemble of naive Bayes classifiers. CMA adopts the credal set to express weak beliefs about
the model prior probabilities: by doing so, it does not commit to a single prior over the models. As it is typical of
credal classifiers, CMA compute inferences which return interval probabilities rather than single probabilities. For
example, when classifying an instance CMA computes the upper and the lower posterior probability of each class.
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The length of the interval shows the sensitivity of the posterior on the prior over the models, automating sensitivity
analysis. CMA identifies prior-dependent instances, namely instances in which a different class is more probable
depending on the prior over the models.

In Corani and Mignatti [5] we studied the problem of robustly predicting the presence of Alpine marmot (Mar-
mota marmota) on the basis of several environmental covariates (slope, altitude, etc.). Bayesian model averaging
of logistic regressors is the state of the art approach for analyzing presence/absence data [20, 12, 17]. We thus
devised [5] CMA for logistic regression considering a constrained class of priors over the models which allowed for
an analytical solution of the optimization problems. The credal set of CMA modeled a condition close to prior near-
ignorance. Moreover we presented some preliminary results on the data set of presence of Alpine marmot collected
by AM. In particular we compared CMA against the BMA induced using the uniform prior over the models.

In this paper we extend in several respects our previous work. From the algorithmic viewpoint we consider a
more general class of distributions for the prior probability of the models. The new class of priors is a straightforward
generalization of the previous one; yet it allows representing prior knowledge in a much more flexible way. As a
side-effect, the new class of priors requires a numerical solution of the optimization problems.

We discuss three different CMA variants. The first is our previous algorithm [5]. The new algorithm based on
the more general class of priors yields two variants: one referring to prior ignorance and one referring to partial prior
knowledge. To elicit prior knowledge we interviewed three experts: two scientists who published several papers on
the species and a master student who participated in the collection of marmot data without analyzing them.

We present also a much extended empirical analysis of the Alpine marmot. We consider the three mentioned
CMA variants and three BMA variants, which differ in the prior over the models. Two priors are non-informative
(uniform and hierarchical); the third prior is instead based on the expert statements and is thus informative.

We assess not only the classification performance but also another important inference, namely the posterior
probability of inclusion of the covariates.

The paper is organized as follows: Section 2 and 3 present the BMA and CMA algorithms; Section 4 describes
the case study of Alpine marmot and the interview of the experts; Section 5 presents the empirical results.

2. Logistic regression and Bayesian model averaging

The goal is to predict the outcome of the binary class variable C which can assume values c0 or c1. There are
k covariates {X1, X2, . . . Xk}; an observation of the set of covariates is x = {x1, . . . , xk}. Given k covariates, 2k

different subsets of covariates can be defined; each subset of covariates yields a model structure (or, more concisely,
a structure). We denote by mi the i-th model structure, by Xi its set of covariates and by P (mi|D) its posterior
probability. A training set of size D is available for learning the models. The data set has size n, namely it contains
n joint observations of the covariates and the class. We denote as P (c1|D,x,mi) the posterior probability of c1
given the covariate values x and the model mi which has been trained on data set D. The logistic regression model
is:

ηD,x,mi = log

(
P (c1|D,x,mi)

1− P (c1|D,x,mi)

)
= β0 +

∑
Xl∈Xi

βlxl (1)

where ηD,x,mi denotes the logit of the posterior probability of presence, xl the observation of l-th covariate which
has been included in model mi and βl its coefficient.

BMA addresses model uncertainty by combining the inferences of multiple models, and weighting them by the
models’ posterior probability. The posterior probability of presence is thus obtained by marginalizing out the model
variable [9]:

P (c1|D,x) =
∑

mi∈M
P (c1|D,x,mi)P (mi|D) (2)

where M denotes the model space, which contains the 2k logistic regressors obtained considering all the possible
subsets of features. The posterior probability of mi given the data is computed as follows:

P (mi|D) =
P (mi)P (D|mi)∑

mi∈M P (mi)P (D|mi)
(3)

where P (mi) and P (D|mi) are respectively the prior probability and the marginal likelihood of model mi. The
marginal likelihood integrates the likelihood with respect to the model parameters:

P (D|mi) =

ˆ
P (D|mi,βi)P (βi|mi)dβi

2



where βi denotes the set of parameters of model mi.
A convenient approximation for computing the models’ marginal likelihood is based on the BIC [15]. The BIC

of model mi is
BICi = −2LLi + |βi| log(n) (4)

where LLi denotes the log-likelihood of mi, |βi| the number of its parameters and n the number of data points on
the data set.

The marginal likelihood of model mi can be approximated as:

P (D|mi) ≈
exp(−BICi/2)∑

mi∈M exp(−BICi/2)
. (5)

This approximation is convenient from a computational viewpoint and generally accurate; therefore, it is often
adopted to compute BMA [15, 20, 12]. Using the BIC approximation it is no longer necessary specifying the prior
probability P (βi|mi) of the model parameters.

The posterior probability of model mi is then approximated as:

P (mi|D) ≈ exp(−BICi/2)P (mi)∑
mi∈M exp(−BICi/2)P (mi)

. (6)

A large number of covariates implies a huge model space, making it necessary to approximate the summation of
Eqn. (2); computational strategies to this end are discussed for instance by [4]. However our experiments involve a
limited number of covariates and thus we exhaustively sample the model space.

Often one is interested in the posterior probability of inclusion of feature Xj . This is the sum the posterior
probabilities of the model structures which do include Xj :

P (βj 6= 0) =
∑

mi∈M
ρijP (mi|D) (7)

where the binary variable ρij is 1 if model mi includes covariate Xj and otherwise.

2.1. Non-informative prior over the models
A simple approach to set the prior probability of the models is the independent Bernoulli prior (IB prior).

The IB prior assumes that each covariate is independently included in the model with identical probability θ [4].
Denoting by ki the number of covariates included by model mi and by k the total number of covariates, the prior
probability of model mi is :

P (mi) = θki(1− θ)k−ki (8)

which depends on the single parameter θ. By setting θ=1/2 one obtains the uniform prior over the models, which
assigns to each model equal probability 1/2k.

However the uniform prior is quite informative if analyzed from the viewpoint of the model size, namely the
number of covariates included in the model. We denote the model size by W . The IB prior implies W to be
binomially distributed: W ∼ Bin(θ, k) [11]. As well-known, the binomial distribution is far from flat.

A flat prior distribution over the model size can be obtained by adopting the Beta-Binomial (BB) prior [11, 4].
Compared to the IB prior, the BB prior yields posterior inferences which are less sensitive on the value of θ. The
BB has been recently recommended also for handling the problem of multiple hypothesis testing [16, 3].

The BB prior treats the parameter θ as a random variable with Beta prior distribution: θ ∼ Beta(α, β). It is
common to set α = β = 1; under this choice, the Beta distribution is uniform. The resulting probability of model
mi which contains ki covariates is [11]:

P (mi) =
ki!(k − ki)!
k + 1!

(9)

The resulting probability of the model size W to be equal to ki is:

P (W = ki) =
1

k + 1
∀ mi (10)

The model size is thus uniformly distributed, as a result of having set a uniform prior on θ. In the Appendix we
show the analytical derivation of formulas (9)–(10).

Summing up, the IB prior under the choice θ = 1/2 implies all models to be equally probable and the model size
to be binomially distributed. Instead the BB prior under the choice α = β = 1 implies the probability of each model
to depend on the number of covariates according to Eqn.(9) and the model size W to be uniformly distributed.

In Fig.1 we compare the prior distribution on the model size W obtained using the IB and the BB prior for
k=6; this is the number of covariates of our case study.
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Figure 1: Prior distribution on the model size, under the independent Bernoulli and the beta-binomial prior for k=6.

2.2. Informative prior

One can express domain knowledge by differently specifying the prior probability of inclusion of each covariate.
This requires generalizing the IB prior so that each covariate has its own prior probability of inclusion. We denote
by θ the [k×1] vector including the prior probability of inclusion of covariates X1, . . . , Xk and by θj the probability
of inclusion of the single covariate Xj . The prior probability of model mi is thus:

P (mi) =
∏

Xj∈Xi

θj
∏

Xj 6∈Xi

(1− θj) (11)

where we recall that Xi is the set of covariates included in model mi. We call this prior NB, which stands for Non-
identical Bernoulli. The NB prior generalizes the IB prior, retaining its independence assumption but removing the
constraint of the prior probability of inclusion being equal for all covariates.

3. Credal Model Averaging (CMA)

CMA generalizes BMA by substituting the prior over the models by a set of priors over the models. The set of
priors is called credal set [21]. We discuss two different versions of CMA: CMAib and CMAnb. CMAib [5] generalizes
BMA induced under the IB prior; CMAnb generalizes BMA induced under the NB prior.

3.1. CMAib

We start by presenting CMAib. The BMA induced under the IB prior requires specifying a single value of θ;
instead CMAib allows θ to vary within the interval [θ, θ].

The constraints θ >0 and θ <1 apply to the credal set of CMAib. For instance, the IB prior with θ=0 assigns
zero prior probability to each model apart from the null model which includes no covariates. The problem is that
such sharp zero probabilities do not change after having seen the data: prior and posterior probabilities of the
models remain identical. In other words, such prior prevents learning from data. In the same way the IB prior with
θ = 1 prevents learning from data. The IB priors with θ = 0 and θ = 1 are thus excluded from the credal set.

CMAib represents a condition close to Walley’s prior near-ignorance [19, Chap.5.3.2] if one sets θ = ε and
θ = 1− ε. This is the approach followed in [5].

The inferences of CMAib return intervals of probability rather than a single probability. For instance CMAib

computes an interval for the posterior probability of each class. The interval shows the sensitivity of the posterior
probability on the prior over the models. Thus, CMAib automates sensitivity analysis.

The lower posterior probability of class c1 is computed as follows:

P (c1|D,x) = min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)P (mi|D) =

min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)
P (D|mi)P (mi)∑

mj∈M P (D|mj)P (mj)
=

min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)
P (D|mi)θ

ki(1− θ)k−ki∑
mj∈M P (D|mj)θkj (1− θ)k−kj

(12)
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where the marginal likelihoods P (D|mi) are computed using the BIC approximation of Eqn.(5). The upper proba-
bility of c1 is obtained by maximizing rather than minimizing expression (12).

Since our problem has only two classes, the upper and lower posterior probability of c0 are readily obtained as:

P (c0|D,x) = 1− P (c1|D,x)

P (c0|D,x) = 1− P (c1|D,x)

Another relevant inference is the posterior probability of inclusion of a covariate. For instance, the lower
probability of inclusion of covariate Xj is:

P (βj 6= 0) = min
θ∈[θ,θ]

∑
mi∈M

ρijP (mi|D) =

min
θ∈[θ,θ]

∑
mi∈M

ρij
P (D|mi)P (mi)∑

mj∈M P (D|mj)P (mj)
=

min
θ∈[θ,θ]

∑
mi∈M

ρij
P (D|mi)θ

ki(1− θ)k−ki∑
mj∈M P (D|mj)θkj (1− θ)k−kj

(13)

where the binary variable ρij is 1 if model mi includes covariate Xj and 0 otherwise.
All such optimization problems are solved by the analytical procedures reported in the Appendix.

3.2. CMAnb

CMAnb generalizes BMA induced under the NB prior. As described in Sec. 2.2, the NB prior allows specifying
a different prior probability for each covariate. CMAnb permits also to specify a different upper and lower prior
probability of inclusion for each covariate. We denote by θj and θj the upper and lower prior probability of Xj .

Moreover, we denote by θ and θ the vectors collecting the upper and lower probabilities of all covariates. As in the
case of CMAib, the probability of inclusion cannot be exactly zero or one. A condition close to prior ignorance can
be modeled by setting for all covariates θj = ε and θj = 1− ε.

Let us denote by K(θ) the credal set which contains the admissible values for θ. The credal set K(θ) is largely
different between CMAnb and CMAib. Consider a case with three covariates, in which we want to model a condition
of ignorance. Using ε = 0.05, under CMAib we would set θ=0.05 and θ=0.95. The credal set K(θ) of CMAib

would have two extreme points: {0.05; 0.05; 0.05}; {0.95; 0.95; 0.95}. The credal set K(θ) of CMAnb would have
23=8 extreme points: the two extreme points of CMAib and 6 further ones, such as for instance {0.05; 0.95; 0.05},
{0.95; 0.95; 0.05} and so on.

The choice ε = 0.05 is a compromise between the objective of representing prior ignorance while not getting too
close to 0 and 1. The function f(θ) which represents how the posterior probability of inclusion varies as a function
of θ is continuous. It takes value 0 for θ=0 and value 1 for θ=1. Thus, it usually has large curvature near θ=0 and
θ=1. Very small values of epsilon would return large CMA intervals, even if the posterior varies narrowly in most
of the interval.

The upper and lower probabilities are computed by solving an optimization in a k -dimensional space. The lower
posterior probability of c1 is:

P (c1|D,x) = min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)P (mi|D) =

min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)
P (D|mi)P (mi)∑

mj∈M P (D|mj)P (mj)
=

min
θ∈[θ,θ]

∑
mi∈M

P (c1|D,x,mi)
P (D|mi)

∏
Xj∈Xi

θj
∏
Xj 6∈Xi

(1− θj)∑
mj∈M P (D|mj)

∏
Xj∈Xi

θj
∏
Xj 6∈Xi

(1− θj)
(14)

Also for CMAnb the upper and lower probability of c0 are the complement to 1 of the lower and upper probability
of c1.
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The lower posterior probability of inclusion of covariate Xj is:

P (βj 6= 0) = min
θ∈[θ,θ]

∑
mi∈M

ρijP (mi|D) =

min
θ∈[θ,θ]

∑
mi∈M

ρij
P (D|mi)P (mi)∑

mj∈M P (D|mj)P (mj)
=

min
θ∈[θ,θ]

∑
mi∈M

ρij
P (D|mi)

∏
Xj∈Xi

θj
∏
Xj 6∈Xi

(1− θj)∑
mj∈M P (D|mj)

∏
j∈Xi

θj
∏
Xj 6∈Xi

(1− θj)
(15)

where ρij is set to 1 if the covariate Xj is included in the model mi and to 0 otherwise.
The optimization problems of CMAnb cannot be solved analytically; we thus rely on numerical optimization.

In particular we adopt a local solver provided by the NLopt software (http://ab-initio.mit.edu/nlopt). We
use the nloptr package1 as interface between R and NLopt. We compute the gradient of the objective function
through the symbolic solver of R and then we provide it to the solver.

3.3. Sampling the model space

CMA has been described so far assuming to exhaustively explore the model space. However, data sets with
large number of covariates prevent this approach. In this case it is necessary to sample the model space. Strategies
suitable to sample the model space are discussed for instance in [4, 2]. The CMA algorithms can easily accommodate
a set of sampled models. Denote the set of sampled models byM′. The CMA inferences could be performed using
the formulas given in Sections 3.1 and 3.2, provided that the whole model space M is substituted by the sampled
model space M′ when summing over the models.

3.4. Taking decisions

Two criteria are commonly used for classification under imprecise probability: interval-dominance and maxi-
mality [18].

According to interval-dominance, class c1 dominates c2 (given covariates x) if:

P (c1|D,x, θ) > P (c2|D,x, θ) (16)

According to maximality, class c1 dominates c2 iff:

P (c1|D,x, θ) > P (c2|D,x, θ) ∀ θ ∈ [θ, θ] (17)

If a class is interval-dominant it also maximal [18], but not vice versa. Thus interval-dominance generally return
more cautious classifications (more output classes) than maximality. Yet, if the class variable is binary the two
criteria are equivalent. This is proven by the following lemma.

Lemma 3.1. If the class variable is binary, maximality implies interval-dominance.

Proof For a binary class variable:
P (c1|D,x, θ) = 1− P (c0|D,x, θ)

Plugging this expression in Eqn.(17), we get:

P (c1|D,x, θ) > 1/2 ∀ θ ∈ [θ, θ]

which implies:
P (c0|D,x, θ) < 1/2 ∀ θ ∈ [θ, θ]

Thus,

P (c1|D,x, θ) > 1/2 (18)

P (c0|D,x, θ) < 1/2 (19)

so that P (c1|D,x, θ) > P (c0|D,x, θ). �

1http://cran.r-project.org/web/packages/nloptr/index.html
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Thus when dealing with a binary class (like in our case study), maximality and interval-dominance are equivalent.
For instance, CMA returns c1 as a prediction if both its upper and lower posterior probability are greater than 1/2.
In this case the instance is safe: the most probable class does not vary with the prior over the models.

Instead, CMA returns the set of classes {c0, c1} if the posterior probability intervals of the two classes overlap.
This happens if both classes have upper probability greater than 1/2 and lower probability smaller than 1/2. In
this case the instance is prior-dependent : one class or the other is more probable depending on the prior over the
models.

A final consideration regards the case in which the prior used to induce BMA is included in the credal set of
CMA. In this case the posterior probability computed by BMA is included within the posterior interval computed
by CMA. When CMA returns a single class, BMA and CMA predictions match.

4. Case study

Data regarding the distribution of Alpine marmot (marmota marmota) burrows were collected by AM and
other collaborators in the summer of 2010 and 2011, in an Alpine valley in Northern Italy. To develop the species
distribution model we divide the explored area into cells of 10 x 10m, obtaining a data set of 9429 cells. The fraction
of presence (prevalence) is 436/9429= 0.046.

Considering that the Alpine marmot prefers south-facing slopes ranging between 1600 and 3000 m a.s.l. [13],
we introduce altitude and slope as covariates. A third relevant piece of information is the aspect, namely the angle
between the maximum gradient of the terrain and the North. We represent the aspect by introducing two covariates
(northitude and eastitude), corresponding respectively to the cosine and the sine of the aspect. Northitude and the
eastitude are proxies for the amount and the temporal distribution of sunlight received during the day. The fifth
covariate is the curvature, which measures the upward convexity (or concavity) of the terrain. The sixth and last
covariate is the soil cover, namely the proportion of terrain not covered by vegetation. We obtain the soil cover
from a digital map of the land use2.

The Alpine marmot is a mobile species, which uses a huge territory for its activities. Therefore the decision of
establishing a burrow depends also on the conditions of the surrounding cells. For this reason we average the value
of each covariate over a circular buffer area of 2 ha around the cell being analyzed.

4.1. Interviewing experts

We asked three experts for the prior probability of inclusion of each covariate; the results are reported in Table
1. The pool of experts is composed by two scientists who published several papers on the species (Dr. Bernat
Claramunt López and Prof. Walter Arnold) and a master student (Mrs. Viviana Brambilla) who participated to
the collection of marmot data without analyzing them. The prior beliefs of the experts are shown in Table 1. The
labels of first, second and third expert are randomly assigned to hide whose are the prior beliefs.

The first expert provided us with a single probability value for each covariate, while the two other experts
provided us with interval probabilities. The third expert provides intervals strongly skewed either towards inclusion
or exclusion.

Experts Priors
First Expert Second Expert Third Expert CMA BMA

(convex hull) (central point)

altitude 0.95 [0.80-0.95] [0.90-0.95] [0.80-0.95] 0.87
slope 0.50 [0.70-0.95] [0.05-0.10] [0.05-0.95] 0.50

curvature 0.40 [0.40-0.60] [0.05-0.10] [0.05-0.60] 0.27
northitude 0.60 [0.60-0.80] [0.90-0.95] [0.60-0.95] 0.77
eastitude 0.60 [0.60-0.90] [0.05-0.10] [0.05-0.90] 0.50
soil cover 0.95 [0.70-0.95] [0.90-0.95] [0.70-0.95] 0.82

Table 1: Probability of inclusion according to the three experts; imprecise model of prior knowledge (convex hull); precise model of
prior knowledge (central point of the convex hull).

We aggregate in two different ways the expert beliefs. Firstly we take their convex hull in the spirit of imprecise
probability. We will later use such convex hulls to represent (imprecise) prior knowledge within CMAnb, which

2The database, known as DUSAF2.0, was retrieved at: http://www.cartografia.regione.lombardia.it/geoportale.
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allows for different specification of the lower and upper prior probability of inclusion of each covariate. Secondly we
take the central point of the convex hull in the more traditional spirit of representing prior knowledge by a single
prior distribution. We will later use such information to design a NB prior for BMA.

The difference among such two approaches can be readily appreciated. Consider slope, for which the experts have
strongly different opinions. The convex hull of its prior probability of inclusion is a wide interval (0.05–0.95), which
appropriately represents a condition of substantial ignorance. The central point approach yields prior probability
of inclusion 0.5, which represents prior indifference about the inclusion/exclusion of the covariate. As pointed out
by [19, Chap.5.5], a model of prior indifference is inappropriate to model the substantial uncertainty which instead
characterizes a state of ignorance.

5. Results

We induce BMA under three priors: IB (θ=0.5, non-informative); BB (α = β = 1, non-informative); NB
(informative). We call these three models BMAib, BMAbb and BMAnb. For BMAnb we set the prior probability of
inclusion of each covariate equal to the central point of the convex hull of the expert beliefs reported in Table 1.
Thus BMAnb embodies domain knowledge.

We also consider three variants of CMA. The first is CMAib with θ = 0.95 and θ = 0.05. This is the model
originally proposed in Corani and Mignatti [5] and represents a condition close to prior-ignorance, though under
the restrictive assumption of the prior probability of all covariates being equal. The second is CMAnb with the
prior-ignorant configuration θj = 0.05 and θj = 0.95 for each covariate. As already discussed, the credal set of
CMAnb contains a much wider variety of priors compared to CMAib; thus we expect CMAnb to be much more
imprecise than CMAib.

The third model is CMAexp. This is a variant of CMAnb which embodies partial prior knowledge: upper and
lower probability of inclusion of each covariate correspond to the upper and lower bound of the convex hull of the
expert beliefs (Table 1). CMAexp consider narrower prior interval of inclusion for the covariates than CMAnb and
thus it should be more determinate than CMAnb. This application shows how CMA can be easily tuned to represent
prior ignorance or prior knowledge.

5.1. Posterior probability of inclusion of covariates

We induce the three BMAs and CMAs using the whole data set (9429 instances). Table 2 reports the posterior
probability of inclusion of each covariate under the different models. Such posterior is a point estimate for the
BMAs and an interval estimate for the CMAs. We recall that the beta-binomial prior is not included in the credal
set of the CMAs: for this reason its estimate can lie outside of the CMA intervals.

Covariate BMA CMA
BMAib BMAnb BMAbb CMAib CMAnb CMAexp

altitude 1.00 1.00 1.00 [1.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00]
slope 1.00 1.00 1.00 [1.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00]

curvature 0.02 0.02 0.01 [0.00 - 0.27] [0.00 - 0.39] [0.00 - 0.03]
northitude 1.00 1.00 1.00 [1.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00]
eastitude 1.00 1.00 1.00 [1.00 - 1.00] [1.00 - 1.00] [1.00 - 1.00]
soil cover 0.97 0.99 0.94 [0.66 - 1.00] [0.55 - 1.00] [0.99 - 1.00]

Table 2: Posterior probability of inclusion of each covariates estimated by different models.

The most important variables are altitude, slope, eastitude and northitude, whose posterior probability of
inclusion is estimated as 1 by all the considered model. In particular the posterior probability of inclusion of such
covariates is not sensitive on the prior over the models, also thanks to the huge data set. Remarkably in this case
the posterior intervals of CMA collapse into a single point, lower and upper posterior probability of such covariates
being both one.

The results for curvature are less unanimous. The BMAs recognize it as irrelevant, estimating a posterior
probability not larger than 0.02. Yet, the two CMAs induced under prior-ignorance (CMAib and CMAnb) achieve
a much less certain conclusions, estimating the upper posterior probability of inclusion as 0.3 or 0.4. This hardly
allows to safely discard such covariate. Interestingly, CMAexp achieves a much sharper conclusion, assigning to the
curvature an upper posterior probability of inclusion of only 0.03, in line with the Bayesian models. Thus CMAexp
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achieves (on this large data set) conclusions which are as sharp as those of the Bayesian models, but much safer as
it does not commit to a single prior.

The soil cover is recognized as relevant by the BMAs, its posterior probability of inclusion ranging between
0.94 and 0.99 depending on the prior over the models. Yet, according to CMAib and CMAnb its lower posterior
probability of inclusion does not exceed 0.7. Also in this case CMAexp achieves a much sharper conclusion, assigning
to soil cover a posterior probability comprised between 0.99 and 1, further showing the beneficial effect of prior
knowledge.

The results presented so far are obtained using the entire dataset for training the models. It is however interesting
repeating the analysis with smaller training sets, in which the choice of the prior over the models is likely to have a
greater effect. We thus down-sampled the data set, creating data sets of size comprised between n=30 and n=6000.
The training sets are stratified : they contain the same proportion of presence of the original data set.
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(a) Posterior intervals: CMAexp vs CMAnb.
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(b) Posterior intervals: CMAexp vs CMAib.

Figure 2: Upper and lower posterior probability of inclusion of altitude for different CMA and BMA models.

In Fig.2(a) and 2(b) we show as an example how the upper and lower posterior probability of inclusion of the
altitude covariate varies with n. We show the upper and lower probability of inclusion computed by different CMAs.
The gap between upper and lower probability of inclusion narrows down as the sample size increases, eventually
converging towards a punctual probability. The gap between upper and lower probability computed by CMAexp

is generally narrower than those of CMAnb and CMAib. This is the beneficial effect of expert knowledge. The
curve are non-monotonic, probably because we performed just once the whole procedure. Averaging over many
repetitions would yield smoother curves.

5.2. Comparing CMA and BMA predictions

We consider training sets with dimension comprised between 30 and 1500. Beyond this size no significant changes
are detected.

For each sample size we repeat 30 times the procedure of i) building a training set by randomly down-sampling
the original data set; ii) training the different BMAs and CMAs; iii) assessing the model predictions on the test set,
constituted by 1000 instances not included in the training set. Training and test sets are stratified : they have the
same prevalence (fraction of presence data) of the original data set.

The most common indicator of performance for classifiers is the accuracy, namely the proportion of instances
correctly classified using 0.5 as probability threshold. Accuracy ranges between 0.93 and 0.97 depending on the
sample size. The accuracies of the different BMAs are pretty close. However, a skewed distribution of the classes
can misleadingly inflate the value of accuracy. If for instance a species is absent from 90% of the sites, a trivial
classifier which always returning absence would achieve 90% accuracy without providing any information. The AUC
(area under the receiver-operating curve) [8] is more robust than accuracy, being insensitive to class unbalance. The
AUC of a random guesser is 0.5; the AUC of a perfect predictor is 1.

Figure 3 shows the AUC of BMA using different priors over the models. The plots are truncated at n=600,
since no further significant changes are observed going beyond this amount of data. Larger training sets allow to
better learn the model and result in larger AUC values. The impact of the prior on AUC is quite thin. Overall,
BMA performs well, its AUC being generally superior to 0.8.

In this case study, the probability of presence is much lower than the probability of absence. Another meaningful
indicator of performance is thus the recall (percentage of existing burrows whose presence is correctly predicted).
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Figure 3: AUC and recall of BMA under different priors. The plots are truncated at n=600 since after this value no further change is
observed. Each point represents the average over 30 experiments.

The recall of BMAnb is consistently higher than that of the other BMAs (Figure 3b), thus benefiting from expert
knowledge. Indicators such as precision and recall are used when the problem is cost-sensitive.
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Figure 4: Fraction of prior-dependent instances for the different CMA variants. For each CMA variant and each training set dimension,
a box and whisker plot is reported. The limit of the box represent the interquartile range, while the thick line inside the box is the
median. The limits of the whisker extend out of the box to the most extreme data point which is no more than 1.5 times the interquartile
range from the box. Points that lay out of the whiskers are shown as circles.

We now analyze the CMA results. We call indeterminate classifications the cases in which CMA suspends the
judgment returning both classes. The percentage of indeterminate classifications (indeterminacy) of the different
CMAs is shown in Fig.4. The indeterminacy consistently decreases with the sample size. This is the well-known
behavior of credal classifiers, which become more determinate as more data are available. CMAnb is the most
indeterminate algorithm; CMAib is the least indeterminate algorithm. The reason of this behavior lies in the
different definition of the credal sets: while both algorithms aim at representing a condition close to prior-ignorance,
the credal set of CMAnb contains a much wider set of priors and results in higher imprecision. Interestingly, CMAexp

is much less indeterminate than CMAnb thanks to prior knowledge.
We recall that any CMA algorithm divides the instances into two groups: the safe and the prior-dependent

ones. CMA returns a single class on the safe instances and both classes on the prior-dependent ones. We therefore
separately assess the accuracy of BMA on the safe and on the prior-dependent instances. This analysis is more
meaningful when the prior used to induce BMA is included in the credal set of CMA. We thus consider the following
pairs: BMAib vs CMAib; BMAib vs CMAnb; BMAib vs CMAexp.

Figure 5 (a) compares the accuracy of BMAib on the instances recognized as safe and prior-dependent by CMAib.
On the prior-dependent instances the accuracy of BMAib severely drops, getting almost close to random guessing.
On a data set with two classes, a random guesser achieves accuracy 0.5; the average accuracy of BMAib on the
prior-dependent instances is 0.6. On the safe instances, the accuracy of BMA is above 90%. CMAib thus uncovers
a small yet non-negligible set of instances (between 2% and 8%) over which BMAib performs poorly because of
prior-dependence. The phenomenon is already known in the literature of the credal classification [7, 6]. It has
been moreover observed [6, 5] that such doubtful instances are hardly identifiable by looking at the BMA posterior
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(a) BMAib vs CMAib.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

training set dimension

B
M

A
:a

cc
ur

ac
y

30 60 90 150 210 300 600 1200

safe
prior dependent

(b) BMAnb vs CMAnb.
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Figure 5: The accuracy of BMA sharply drops on the prior-dependent instances recognized by CMA. Each boxplot refers to 30
experiments. The boxplots are computed as described in the caption of Figure 4. The corresponding fraction of indeterminate predictions
is shown in Figure 4.

probabilities. Detecting prior-dependence using BMA would require cross-checking the predictions of many BMAs,
each induced with a different prior over the models. This is quite unpractical and is not usually done.

In Figure 5(b) we compare the accuracy of BMAnb on the instances recognized as safe and as prior-dependent
by CMAnb. The prior of BMAib is contained in the credal set of CMAnb. The results is qualitatively similar to the
previous one, with a sharp drop of accuracy of BMAib on the instances recognized as prior-dependent by CMAib.
Yet, the accuracy of BMA on the prior-independent instances is higher (about 70%) compared to the previous case,
since CMAnb is much more indeterminate than CMAib.

Eventually, we compare the accuracy of BMAnb on the instances recognized as safe and as prior-dependent by
CMAexp. Note that the prior of BMAnb is included in the credal set of CMAexp. On average, the accuracy of
BMAnb on the prior-dependent instances is about 60%. The situation is quite similar to the comparison of BMAib

and CMAib.

5.3. Utility measures

To further compare the classifiers we adopt the utility measures introduced in [22], which we briefly describe
in the following. The starting point is the discounted accuracy, which rewards a prediction containing m classes
with 1/m if it contains the true class and with 0 otherwise. Within a betting framework based on fairly general
assumptions, discounted-accuracy is the only score which satisfies some fundamental properties for assessing both
determinate and indeterminate classifications. In fact, for a determinate classification (a single class is returned)
discounted-accuracy corresponds to the traditional classification accuracy. Yet discounted-accuracy has severe
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Figure 6: Accuracies of BMAib versus utility of CMAib. The plot is truncated at n=600 since after this value no further change of
accuracies is observed.

shortcomings. Consider two medical doctors, doctor random and doctor vacuous, who should diagnose whether a
patient is healthy or diseased. Doctor random issues uniformly random diagnosis; doctor vacuous instead always
returns both categories, thus admitting to be ignorant. Let us assume that the hospital profits a quantity of money
proportional to the discounted-accuracy achieved by its doctors at each visit. Both doctors have the same expected
discounted-accuracy for each visit, namely 1/2. For the hospital, both doctors provide the same expected profit from
each visit, but with a substantial difference: the profit of doctor vacuous has no variance. Any risk-averse hospital
manager should thus prefer doctor vacuous over doctor random: under risk-aversion, the expected utility increases
with expectation of the rewards and decreases with their variance [10]. To model this fact, it is necessary to apply
a utility function to the discounted-accuracy score assigned to each instance. We designed the utility function
according to [22]: the utility of a correct and determinate classification (discounted-accuracy 1) is 1; the utility
of a wrong classification (discounted-accuracy 0) is 0; the utility of an accurate but indeterminate classification
consisting of two classes (discounted-accuracy 0.5) is assumed to lie between 0.65 and 0.8. Notice that, following
the first two rules, the utility of a traditional classifier corresponds to its accuracy. Two quadratic utility functions
are derived, passing respectively through {u(0) = 0, u(0.5) = 0.65, u(1) = 1} and {u(0) = 0, u(0.5) = 0.8, u(1) = 1},
denoted as u65 and u80 respectively. Utility of credal classifiers and accuracy of determinate classifiers can be
directly compared.

Figure 6(a) compares the accuracy of BMAib with the utility of CMAib, considering both u65 and u80 as utility
functions. In both cases the utility of CMAib is higher than the accuracy of BMAib; the extension to imprecise
probability proves valuable. The gap is narrower under u65 and larger under u80, as the latter function assigns
higher value to the indeterminate classifications. Moreover, the gap gets thinner as the sample size increases: as
the data set grows large, CMAib becomes less indeterminate and thus closer to BMAib.

In Figure 6(b) and 6(c) we compare the different CMAs using u65 and u80. According to u65, the best performing
model is CMAib, followed by CMAexp and by CMAnb. The function u65 assign a limited value to the indeterminate
classifications. Thus under this utility the most determinate algorithm (CMAib) achieves the highest score; the
least determinate (CMAnb) achieves the lowest score.

The same situation is found under u80, but only for small sample sizes (n <60). For larger n, CMAnb becomes
the highest scoring CMA. The point is that CMAnb is the most imprecise model, and under u80 the imprecision is
highly rewarded. Depending thus on the considered utility function, a different variant of CMA achieves the best
performance.

These results are fully reasonable: each CMA provides a different trade-off between informativeness and robust-
ness. Moreover, the two utility function represents two quite different types of risk aversion. It can be expected
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that the they differently rank the various CMAs. Yet, it is somehow puzzling that CMAexp is never ranked as the
top CMA, despite being the only algorithm which provides both a flexible model of prior and a robust elicitation
of prior knowledge.

A partial explanation is that the utility measures are derived assuming all the errors to be equally costly. In a
problem like ours missing a presence is likely to be much costlier than missing an absence. Yet, there is currently
no way to assess credal classifiers assuming unequal misclassification costs.

6. Conclusions

BMA is the state of the art approach to deal with model uncertainty. Yet, the results of the BMA analysis can
well depend on the prior which has been set over the models, especially on small data sets.

To robustly deal with this problem, CMA adopts a set of priors over the models rather than a single prior. CMA
automates sensitivity analysis and detects prior-dependent instances, on which BMA is almost random guessing.
To identify the prior-dependent instances without using CMA, one would need to cross-check the predictions of
many BMAs, each induced with a different prior over the models. This would be very unpractical.

We have presented three different versions of CMA. They represent different types of ignorance or partial
knowledge a priori. Experiments show that extending BMA to imprecise probability is indeed valuable.

However, deciding which variant of CMA performs better is not easy, partially because the trade-off between
robustness and informativeness is a subjective matter and partially because there are currently no score for assessing
credal classifiers when the cost of the misclassification errors are unequal.

An interesting avenue for future works is to develop CMA algorithms for the analysis of prior-data conflict.
This approach would allow for detecting major discrepancies between prior distribution and data, thus checking
automatically the soundness of the opinion of the experts. A recent proposal for prior-data conflict in the context
of credal classification is discussed by [14].
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Appendix A: solution of the CMA optimization problems.

We show in the following how to solve the optimization problems (minimization and maximization) for IB-CMA.
Let us define the k setsM1 . . .Mk which include all the models containing respectively {1, 2, . . . , k} covariates.

For instance, M2 contains all the models which include two covariates. The models included in the same set have
the same prior probability; for instance the prior probability of a model belonging to the set Mj is θj(1 − θ)k−j .
We denote Lj =

∑
mi∈Mj

P (D|mi).
The definition of variable Zj depends instead on the problem being addressed, as detailed in the following table:

Problem Equation number Definition of Zj

Lower/Upper prob. of presence (12)
∑
mi∈Mj

P (c1|D,x)P (D|mi)

Lower/Upper prob. of inclusion of covariate Xj (13)
∑
mi∈Mj

ρijP (D|mi)

where the binary variable ρij is 1 if model mi includes the covariate Xj and 0 otherwise.
The function to be optimized (minimized or maximized) can be written as:

h(θ) :=

∑k
j=0 θ

j(1− θ)k−jZj∑k
j=0 θ

j(1− θ)k−jLj
(.1)
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In the interval [θ, θ], the maximum and minimum of h(θ) should lie either in the boundary points θ = θ
and θ = θ, or in an internal point of the interval in which the first derivative of h(θ) is 0. Let us introduce

f(θ) =
∑k
j=0 θ

j(1− θ)k−jZj and g(θ) =
∑k
j=0 θ

j(1− θ)k−jLj . The first derivative h′(θ) is:

h′(θ) =
f ′(θ)g(θ)− f(θ)g′(θ)

g(θ)2
, (.2)

where g(θ) is strictly positive because Lj is a sum of marginal likelihoods. We can therefore search the solutions
looking only at the numerator f ′(θ)g(θ)− f(θ)g′(θ), which is a polynomial of degree k(k− 1) and thus has k(k− 1)
solutions in the complex plain. We are interested only in the real solutions that lie in the interval (θ, θ). Such
solutions, together with the boundary solutions θ = θ and θ = θ, constitute the set of candidate solutions. To find
the minimum and the maximum h(θ), we evaluate h(θ) in each candidate solution point, and eventually we retain
the minimum or the maximum among such values.

Appendix B: the beta-binomial prior for Bayesian model averaging.

The Beta-binomial (BB) prior is discussed for instance by [1, Chap.3.2]. It treats parameter θ as a random
variable with Beta prior distribution: θ ∼ Beta(α, β). The prior probability of model mi which includes ki
covariates is obtained by marginalizing out the Beta distribution:

P (mi) =

ˆ 1

0

θki(1− θ)k−kip(θ)dθ =

ˆ 1

0

θki(1− θ)k−ki θ
α−1(1− θ)β−1

B(α, β)
dθ =

Γ(α+ β)

Γ(α)Γ(β)

ˆ 1

0

θα+ki−1(1− θ)β+k−ki−1dθ =

Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ ki)Γ(β − ki + k)

Γ(α+ β + k)

where the last passage leading to Eqn..3 is explained considering that the Beta distribution integrates to 1:

Γ(α+ β + k)

Γ(α+ ki)Γ(β − ki + k)

ˆ 1

0

θα+ki−1(1− θ)β+k−ki−1dθ = 1 =⇒
ˆ 1

0

θα+ki−1(1− θ)β+k−ki−1dθ =
Γ(α+ ki)Γ(β − ki + k)

Γ(α+ β + k)

Under the choice α = β = 1, the Beta distribution becomes uniform and the probability of model mi which contains
ki covariates becomes:

P (mi) =
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ ki)Γ(β − ki + k)

Γ(α+ β + k)
=

Γ(2)

Γ(1)Γ(1)

Γ(1 + ki)Γ(1− ki + k)

Γ(2 + k)
=
ki!k − ki!
k + 1!

This gives the prior probability of a model with ki covariates. The probability of the model size W to be equal to ki
is obtained by combining Eqn.(9) with the observation that that there are

(
k
ki

)
models which contain ki covariates:

P (W = ki) = P (mi) ·
(
k

ki

)
=
ki!k − ki!
k + 1!

k!

k − ki!ki!
=

1

k + 1
∀mi

The model size is thus uniformly distributed, as a result of having set a uniform prior on θ.
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