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Abstract

When we look for abductive explanations of a given set of man-
ifestations, an ordering between possible solutions is often assumed.
While the complexity of optimal solutions is already known, in this
paper we consider second-best solutions with respect to different or-
derings, and different definitions of what a second-best solution is.
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1 Introduction

The three basic reasoning mechanisms used in computational logic are de-
duction, induction, and abduction [25]. Deduction is the process of drawing
conclusions from information and assumptions representing our knowledge of
the world, so that the fact “battery is down” together with the rule “if the
battery is down, the car will not start” allows concluding “car will not start”.
Induction, on the other hand, derives rules from the facts: from the fact that
the battery is down and that the car is not starting up, we may conclude the
rule relating these two facts. Abduction is the inverse of deduction (to some

*DIAG - Sapienza University of Rome, Via Ariosto 25, 00185 Rome, email:
liberato@dis.uniromal.it, phone: +39 347 6906915, corresponding author.

TDIAG - Sapienza University of Rome, Via Ariosto 25, 00185 Rome, email:
marco.schaerf@uniromal.it


http://arxiv.org/abs/1204.5859v3

extent [7]): from the fact that the car is not starting up, we conclude that
the battery is down. In a more complete formalization of this environment
there are many explanations for a car not starting up. This is an important
difference between abduction and deduction, making the former, in general,
more computationally complex.

A given problem of abduction may have one, none, or even many possible
solutions (explanations). Moreover, we need to perform both a consistency
check and an inference just to verify an explanation. These facts intuitively
explain why abduction is to be expected to be computationally harder than
deduction. This observation has indeed been confirmed by theoretical results.
Selman and Levesque [28, 27] and Bylander et al. [3, 4] proved the first results
about fragments of abductive reasoning, Eiter and Gottlob [14] presented
an extensive analysis, Creignou and Zanuttini [9] and Creignou, Schmidt,
and Thomas [§] classified the complexity under two kinds of restrictions,
Nordh and Zanuttini [24] located the tractability /intractability frontier, Eiter
and Makino [I7, [I8] [19] studied the complexity of computing all abductive
explanations, Hermann and Pichler [2I] proved the complexity of counting
the number of solutions, Fellow et al. [20] analyzed the problem from the point
of view of parametrized complexity. All these results proved that abduction
is, in general, harder than deduction. The analysis has also shown that
several problems are of interest in abduction. Not only the problem of finding
an explanation is relevant, but also the problems of checking an explanation,
or whether a hypothesis is in some, or all, of the explanations (relevance).
Some work on the complexity of abduction from non-classical theories has
also been done [16], 15, [6].

Abduction is also related to the ATMS [10, 26] and to the set of prime
implicates of a propositional formula. Indeed, Levesque [22] has proved that
ATMS and prime implicates can be used to find the abductive explanations
of a literal from a Horn theory. As a result, ATMS and algorithms for
finding prime implicants of a formula can be seen as algorithms that solve
the problem of abduction; moreover, finding the prime implicates can be
seen as a preprocessing phase. Kernel resolution [11] exploits the particular
literals of the observation to drive the clause generation process. Using this
algorithm, Del Val has been able to derive upper bounds on the number
of generated clauses, and to prove that some restricted classes of abduction
problems are polynomial [13, [12].

Contrarily to deduction, abduction is driven by heuristic principles to
best explain the given observations. This means that even if the best possible



solution to a given problem is found, there is no warranty that it represents
the actual state. As an example, a light bulb may not turn on because it
is broken, but also because a complex set of circumstances caused a black
out in the whole town; while the first explanation is more likely and should
therefore be the preferred solution to the corresponding abduction problem,
it may still be wrong. Therefore, it may make sense not to stop at the first
explanation, or even at the set of all possible best explanations, but continue
the search for other, less likely solutions.

Other works studied the complexity of finding a solution for a problem of
abduction [28| 27, 3], [, 14} @, 8, 24]; this one considers the problem of finding
another solution once some other ones have been found. The difference is
that:

e in previous works, a problem of abduction is given and the task is to
find a solution;

e in this article, a problem of abduction and a set of its solutions are
given, and the aim is to find another solution.

The difference is that the solution to be found has to be different from the
previous ones. Whenever an ordering of likeliness of explanations is given,
these solutions are assumed to be among the best ones, and the task is to find
another best explanation. The meaning of “another best” in this definition
may take two meaning: in the first one, we exclude the given solutions and
search for a best one among the remaining ones; in the second, we search
for another best solution of the original (unrestricted) problem. A third
question arises from the assumption that the search for the known solutions
has produced some additional data that can be used while looking for another
one. The complexity under such an assumption can be established using
compilability classes [5] and monotonic reductions [23]. These classification
frameworks concern decision problems, which have yes/no solutions. The
specific problems considered in this article are: check if a set of hypothesis
is a solution, and check if a specific hypothesis is in some solution.

2 Definitions

The process of abduction starts from three elements: a propositional formula
T formalizing the domain of interest, a set of variables M representing the



current manifestations, and another set of variables H representing their
possible explanations. In this article, abduction is formally defined as follows.

Definition 1 A problem of abduction is a triple (H, M,T), where T is a
propositional formula, M is a set of propositional variables called mani-

festations and H is a set of propositional variables called hypotheses, with
HNM=0.

Intuitively, T" describes how the assumptions and manifestations are re-
lated. We know that the manifestations M occur, and we want their most
likely explanation, where an explanation is a set of assumptions A C H that
implies M and is consistent with 7'.

Definition 2 The set of solutions or explanations of a problem of abduction
(H,M,T) is the set of all sets of assumptions A C H such that AU {T} is
consistent and AU{T} = M:

SOL((H,M,T))={ACH | AU{T} is consistent and AU{T} = M}

It is easy to show instances having exponentially many solutions. Ideally,
each instance should have a single solution, the assumptions that have — in
the real world — caused the manifestations. At least, there should be a way
for eliminating solutions that are known to be less likely than other ones.

This is achieved by employing a preorder < over the subsets of H. Given
two subsets A, A’ C H, they are related by A < A’ if A is considered more
likely than A’. The three preorders considered in this article are:

e the cardinality-based preorder: A < A’ if and only if |A| < |A'|, where
|.| denotes the cardinality of a set; in other words, A is preferred if it
contains fewer assumptions than A’;

e the subset-based preorder: A C A’; a set of assumptions contained in
another one is more likely than it;

e the void preorder: A <1 A’ for no pair A, A’ C H; it captures the case of
no assumption about the relative likeliness of the candidate solutions.

Instead of considering all solutions to a problem of abduction, one may
restrict attention to the most likely ones. Since likeliness is formalized by =<,
this amounts to consider only the minimal solutions.
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Definition 3 The set of minimal solutions of a problem of abduction
(H, M, T) with respect to the preorder =< is:

SOL<((H,M,T)) =min(SOL((H, M, T)), =)

In this definition, min(R, <) is the set of elements of R that are minimal
with respect to =<, that is, the elements » € R such that no r’ exists with
r' <randr Ar.

The void preorder makes all solutions minimal: SOL4((H,M,T)) =
SOL({(H,M,T)). This allows for the notational simplification of considering
only minimal solutions, where the preorder may be <, < or C.

2.1 Second-Best Solution

In the conditions of perfect knowledge, the set of minimal solutions of a prob-
lem of abduction would always contain a single element: the hypotheses that
actually caused the manifestations to happen. Unfortunately, such complete
information may not be available, leading to more than one minimal solution.
Once one is found, it makes sense to continue the search for other ones. This
process is formalized as follows.

Definition 4 Given a nonempty set of minimal solutions {Ai,..., A} C
SOL<((H,M,T)) of a problem of abduction, the set of second-best solutions
18!

NEXT_SOL<((H,M,T),{A1,...,An})
= min(SOL((H, M, T)\{A4,...,An}),X)

The case of empty set of given minimal solutions { A, ..., A,,} is excluded
from consideration because it makes second-best solutions the same as the
minimal solutions.

2.2 Other Best Solutions

A second-best solution may not be a minimal solution of the original prob-
lem. For example, if {A, ..., A,,} includes all minimal solutions, all second-
best solutions are not minimal. This is because the definition first excludes



{Ay,..., A, } from the set of solutions, and then takes the minimal ones
among the remaining ones. If only minimal solutions are of interest, a dif-
ferent definition is more appropriate: given a set of minimal solution, an
other-best solution is a minimal solution not in the set of the given ones.

Definition 5 Given a nonempty set of minimal solutions {Ai,..., A} C
SOL<((H,M,T)) of a problem of abduction, the set of other-best solutions
18:

MIN_SOL(P,{A,...,An}) = SOL.(P)\{A,,..., A}

2.3 Use of Additional Information

In the formulation of the two problems of second-best solutions and other-
best solutions, we assumed that some solutions are already known. Of the
computation done to find them, what is assumed known is only the final
result, that is, the solutions. This is like discarding every intermediate data,
even if it could have been useful in the subsequent search for other solutions.
For instance, if we were able to prove (during the search for the first solutions)
that an assumption h is in all solutions of the problem, then the problem of
checking other solutions is simplified (i.e., if a candidate solution does not
contain h, it is not a solution).

In general, we may assume that the result of the initial search is composed
not only of the first solutions, but also of some polynomially sized data
structure. This is formalized as follows: given a problem of abduction P =
(H, M, T) and a set of previous solutions { Ay, ..., A, }, is there a polynomial-
sized data structure D, depending only on P and the known solutions, such
that verifying whether A is a second-best or other best solution is easier than
the same check in which D is not known?

This problem cannot be solved using the standard complexity classes,
because it involves a generic polynomially sized data structure D. The com-
pilability classes [5, 23] characterize this kind of problems. These are sum-
marized in Section

2.4 Computational Problems of Abduction

There are several computational problems that are relevant for abduction,
here we list the ones considered in this article.



e Existence: Decide whether a problem of abduction P = (H, M, T)
admits a (minimal) solution, that is, SOL({H, M, T")) is non-empty;

e Checking: Decide whether a set of hypotheses A is a minimal explana-
tion, that is, whether A € SOL<((H, M, T));

e Relevance: Decide whether a hypothesis h belongs to at least a min-
imal solution of a problem of abduction P = (H,M,T), that is,
JA € SOL<((H, M, T)) such that h € A;

Finding a solution can be iteratively solved using the Relevance problem:
for every h € H, if it is relevant then add it to 7', and remove it from
H regardless of its relevance. The set of the relevant hypotheses iteratively
found in this manner is a solution for the abduction problem. This is therefore
a Turing reduction from solution finding to relevance checking, and gives an
upper bound to the former problem.

2.5 Computational complexity

The complexity analysis of the problems of second-best explanation is done
in the framework of the polynomial hierarchy and many-one polynomial re-
ductions. A number of books on the topic exist [2, 29, [1]. Decision problems
(problems having a yes/no answer) are partitioned in classes of increasing
complexity. In summary, the class P contains all problems having solving al-
gorithm that run in time polynomial in the size of their inputs. The class NP
is defined in a similar way with the algorithm running on a nondeterministic
Turing machine. The class coNP contains all problems whose complement
(the problem with reverse yes/no answer of the original problem) is in NP.
The class DP contains all problems that can be split into a subproblem in
NP and one in coNP, so that the answer is yes if and only if the answers of
the two subproblems are yes. The other classes of the polynomial hierarchy
considered in this article are defined in terms of oracles, which are subrou-
tines whose running time is neglected. In particular, the class X} contains
all problems that are in NP assuming the availability of an oracle solving a
subproblem in NP. The class containing all complementary problems is IT5.
The class of problems solvable in polynomial time with a logarithmic number
of calls to an oracle for 3 is Af[logn].

While membership to a complexity class is established by showing an ap-
propriate algorithm (running on deterministic or nondeterministic machines,
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using oracles or not), proving non-membership a more difficult task. Cur-
rently, even the existence of problems in NP that are not in P has never been
unconditionally proved, but only under the assumption P£NP. In particular,
that assumption implies that a problem is not in P if every other problem
in NP can be reduced to it via a polynomial-time reduction. Such prob-
lems are called NP-hard. If they also belong to NP, they are NP complete.
The same definitions apply to DP and II5. More details about complexity
classes and reductions can be found in the cited books on computational
complexity [2, 29, [1].

Most hardness results in this article are proved by translating a problem
of abduction to another: for example, the problem of checking a solution to
that of checking a second-best solution. The reduction involves proving that
certain solutions of the first are turned into solutions of the second. Since
being a solution is defined in terms of satisfiability and unsatisfiability, the
proofs employ modifications that do not affect these conditions:

1. if a set implies a formula, the formula can be added to the set;
2. a formula entailed by the rest of a set can be removed from the set;

3. if a set contains a literal [ and a clause containing [, the latter can
be removed; clauses containing the negation of [ can be removed this
literal; when considering the sign of a literal, a clause written [ — s is
actually =l V s; therefore, [ is negated in it;

4. if a variable b only occurs in formulae that are clauses, and is negated in
all of them, these can be removed; the same if b only occurs unnegated;

5. in particular, if a variable only occurs in a single clause, that clause
can be removed;

6. if a set can be partitioned in subsets not sharing variables, it is satisfi-
able if and only if each of the subsets is;

7. renaming variables does not affect satisfiability: if X and X’ are two
sets of variables in bijective correspondence and T a formula, the for-
mula 7T[X’/X] obtained from T by replacing each variable in X with
its corresponding variable in X' is satisfiable if and only if T is.



Compilability classes characterize the complexity when preprocessing part
of the data is possible [5, 23]. In fact, many computationally hard problems,
such as abduction in logical knowledge bases, are such that part of an in-
stance is known well before the rest of it, and remains the same for several
subsequent instances of the problem. In these cases, it might be useful to
preprocess off-line (compile) this known part so as to simplify the remaining
on-line problem. Compilability classes aim at characterizing the complexity
of problems when preprocessing is allowed for free (it does not contribute
to the complexity). For example, since P is the class of problem solved in
polynomial time, the class [P contains all problems that can be solved
in polynomial time after preprocessing part of the data. Hardness of these
classes are defined in a different way than for the usual complexity classes.
However, in many cases hardness can be established as follows: to prove that
a problem B, composed of a fixed part and a varying part, is hard for some
class of compilability, exhibit a problem A that is hard for the corresponding
class of complexity (for example, NP for [~NP), such that:

1. there exists three polynomial-time functions Class : S — N, Repr :
N — S and Exte : S x N — S, where N is the set of natural numbers
and S the set of valid inputs to A, such that Class(s) is between 0 and
the size of s € S, Class(Repr(n)) = n for every n € N, the answer of
A on Exte(s,n) is yes if and only if this is the case for s;

2. there exists a polynomial-time reduction from A to B such that, the
fixed part f of B can be replaced by Repr(Class(f)) without altering
the solutions of B.

The three functions are called classification, representative and extension
functions. The second condition is called representative equivalence. As an
example, let B be the problem of deciding whether a clause ¢ is a conse-
quence of a propositional formula F' (F | ¢), where F' is the fixed part
(the part that is known in advance and can be preprocessed) and c is the
varying part (only known online), and A the problem of deciding whether a
3CNF formula T is satisfiable. In this case, we can define the classification
function Class(T') as the function that returns the number of propositional
variables in T', Repr(n) is the function that computes the formula containing
all possible distinct 3-clauses over n propositional variables. By construction,
Class(Repr(n)) = n for every n € N. We can define Exte(T,n) as follows:
let m < n be the number of variables of T', we introduce k = n — m new



variables and add to T the clause v V —w for each of them. The existence of
classification, representative and extension functions together with the repre-
sentative equivalence property guarantee that it is possible to transform any
instance (f, v) of the problem B into one (Repr(Class(f)),v) where the fixed
part only depends on the size of f but is otherwise constant. This property
allows us to show that, if the problem B is compilable than the problem A
would become polynomial. More details would make this introduction longer
than the original content of this article. The reader is therefore referred to
other articles on compilability classes [5l 23] for more explanations and for
examples.

For both complexity and compilability, the analysis is performed by turn-
ing search problems into decision problems: from finding a solution to veri-
fying it. In the case of abduction, a decision problem is to check whether a
subset of H is a minimal solution; finding a solution may instead be solved
by repeated solving the problem of relevance: checking the existence of a
minimal solution containing a given h € H. This and the corresponding
problem of dispensability (no minimal solution contains h) have been ana-
lyzed by Eiter and Gottlob [14]. In this article, the problem of relevance is
considered with the additional assumption that some solutions are already
known, possibly with additional information attached.

3 Second-Best Solution

In this section we consider the problem of the second-best solutions, as for-
malized by Definition 4t given a set of minimal solutions, find one that is
minimal among the other ones. As common in computational complexity
studies, this search problem is turned into a verification problem in order to
evaluate its complexity: given an instance of abduction, a set of solutions
and a candidate solution, check whether the latter is a second-best solution.
A solution can be found by repeatedly solving problems of relevance, which
are also analyzed.

The technical means to prove the hardness of these problems is the follow-
ing lemma, showing how to introduce a new minimal solution to a problem
of abduction.

Lemma 1 For every problem of abduction P not containing variables s and
r, a different problem P’ can be built in polynomial time such that:
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SOL(P') = {sYU{AU {r} | A€ SOL(P)}

Proof. Let P = (H, M, T) be the original problem of abduction not con-
taining the variables s and r. The problem P' = (H', M',T") is defined
as follows, where ¢ is a fresh variable and H” is a set of fresh variables in
bijective correspondence to H:

H = HU{r s}

M= {t}

T = (TH"/H]V )N N{h =B | he HYA((r A [\ M) —t) A
(ms V) A(msV-r) A N\{=sV-h|heH}

The claim is proved in three steps: first, s is a solution of P’; second,
every solution of P is also a solution of P’ with the addition of r; third,
every solution of P’ is either s or a solution of P with r added to it.

Since 7" contains —s V ¢t and —s V —r, the union {s} U {7"} implies ¢
and —r, and can therefore be by removing all clauses containing one of these
literals, resulting in a satisfiable set:

{s}u{T} = sAN\{h—=1"|heH}AtA-rAN{=h|heH}

= s/\t/\—w"/\/\{—'h | he H}
The second part of the proof shows that if A € SOL(P) then AU {r} €
SOL(P'). Since T" contains —s V —r, the union {r} U {T"} implies —s. All

clauses containing —s can therefore be removed, as well as —r from the clauses
containing it:

AU{ry T} = N\ AnenT[H" JHIA \{h — B | h € HYA=sA((\ M) — 1)
Since A is a solution of P, then AU {T'} has a model. This model can

be extended to satisfy A U {r,T'} by setting each r to true, s to false and
h" € H"” to the same value of the corresponding h € H.
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Since AU{T'} = M and AU{r, T"} imply h — h”, T[H"/H] and (\ M) —
t, it follows that AU {r, 7"} |= t. This proves that A U {r} is a solution of
P

The final part of the proof is to show that P’ has no other solution beside
{s} and AU {r} where A is a solution of P. Since 7" includes —s V —r and
s V —h for every h € H, it follows that {s} U {7"} entails the negation of
every variable in H' but s; therefore, no solution contains s except {s}.

Regarding the other solutions, it is now proved that a subset A’ C H’' that
is satisfiable with 7" but contains neither s nor r is not a solution. Indeed, if
s, ¢ A’ then these two variables only occur negated in A’U{7"}, and all the
clauses containing them can therefore be removed, leading to the following
formula:

NAANN— W | heH}

This formula does not contain ¢, therefore it does not imply it. This
proves that every solutions contain either s or r. Since no solution contain
both variables thanks to —s V —r, a solution not containing s is in the form
AU{r} with A C H. Remains to be proved that A is a solution of P, in this
case.

Since T" contains —sV —r, it follows that AU{r, 7"} implies =s. Therefore,
all clauses containing —s can be removed:

{(AAU{r, T} =
= NAArA(TH'/HIV =r) A N\{h—= 1" | he HYA((r A \ M) —t)
= NAArATH'/HIA N{h— 1 | he HY A(\M) > 1)
= NAArATH"/HI A \{B| h e A} A

N{h =" | he HNA}A(\M) = t) (1)

Since renaming does not affect satisfiability, variables H and H” can be
swapped, making {h” | h € A} become A and T'[H"/H] become T'. What
results is a set containing AU {T'}, which is therefore satisfiable. This is the
first condition for A being a solution of P.

The second part is AU{T} = M. Since AU {r,T"} = t, the set AU
{r,T",—t} is inconsistent. Thanks to Equivalence (dI), it can be rewritten:
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AU{r, T -t} =

= N\AArATH'/HI A N{B | he A} A
N{h = 1| he H\NA} A ((\ M) = t) At
NANT ATIH"JHI A NER" | b€ A} A
N{h— 1" | he H\A} A ~(\ M) At

Formulae A\ A, r, —s, =t and h — h” with h ¢ A contain variables
occurring only once in the set. Removing them results in T[H”/H] A= \ M A
N{r" | h € A}. By renaming H” to H, thisis AAANT A=~ AM. Its
unsatisfiability implies AU {T'} = M. O

This lemma shows how to add the new solution {s} to a given problem of
abduction. This addition makes the problem of finding a solution in the old
instance equivalent to finding a solution different from {s} in the new one.
The solution {s} is minimal with respect to the three considered orderings,
since no solution of the form {r} U A is contained or has less literals than
it. Since the problem modification can be performed in polynomial time, it
shows that if the problem of checking a minimal solution is hard for some
complexity class, then the corresponding problem of second-best solution
checking is hard for the same class. As a result, in the following complexity
characterizations of the second-best solution problems the hardness parts are
all proved by a simple reference to this lemma.

This lemma provides a reduction from the problem of checking
whether H € SOL4((H,M,T)) to that of checking whether H €
NEXT SOL4((H,M,T),{As,...,An}), therefore proving the hardness of
the second problem from the hardness of the first. Verifying a solution with
the empty preorder is mentioned to be DP-hard by Eiter and Gottlob [14],
but as far it was possible to verify no formal proof was published to date. The
claim is proved for the particular candidate solution (J; since this is minimal
if it is a solution, hardness holds for all considered orderings.

Lemma 2 Checking whether ) € SOL((H, M, T)) is DP-hard.

Proof. This property is stated by Eiter and Gottlob [14] for an arbitrary
candidate solution as an easy corollary of their results, but as far as we know,

13



no proof has been published, possibly because of its extreme simplicity: by
translating formulae /' and G over variables X into the problem of abduction
(0,{m},T), where T = F A (-G[X'/X] — m), X' is a set of fresh variables
in one-to-one correspondence with X and m a fresh variable. This is a
reduction from the sat-unsat problem of checking whether F' is satisfiable
and G is unsatisfiable to the problem of checking whether () is a solution of
(0,{m},T). Indeed, ) U {T} is equivalent to F A (-G[X'/X] — m). This
formula is satisfiable if and only if F' is satisfiable, since the rest is satisfied
by the model where m is true. This means that () is a solution if and only
if F is satisfiable and ) U {T'} = m. The latter condition is equivalent to
the unsatisfiability of F' A (-G[X'/X] — m) A —m, which is equivalent to
F ANG[X'/X] AN —m. Since F is satisfiable and does not share variables with
the rest of the formula, and the same for —m, the formula is unsatisfiable
if and only if G[X'/X] is unsatisfiable. Since satisfiability is unaffected by
variable name change, this proves that () is a solution of (@, {m},T) if and
only if F' is satisfiable and G is unsatisfiable. This reduction proves that the
problem is DP-hard. O

The complexity of checking whether a set of hypotheses is a solution is
an easy consequence of this lemma.

Theorem 1 Checking whether A € SOL((H, M, T)) is DP-complete.

Proof. Membership follows from the problem being defined as the satisfiabil-
ity of AU{T'} and the unsatisfiability of AU {7, -~ A M}. Lemma [ proves
that the problem is hard even in the particular case A = (). O

Together with Lemma [l this result proves that the second-best solution
problem is DP-hard for <. It is also a member of this class, as the following
theorem proves.

Theorem 2 Deciding whether A € NEXT_SOL4((H,M,T),{A1,...,An})
18 DP-complete.

Proof. By definition, < is the empty preorder: A < A’ never holds. All solu-
tions are minimal according to this preorder. Reworded: the set of minimal
solutions coincides with the set of all solutions.

The problem is in DP because it can be solved by first checking whether
AU{T} E M and then whether AU{T'} is consistent and A is different from
each element of {Ay,..., A, }. The subproblem AU{T} = M is in coNP.
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The rest of the problem can be solved by nondeterministically generating
every possible propositional model over the considered variables and checking
whether it satisfies AU {7} and whether A is different from each element of
{Ay, ..., A,}; both steps can be done in polynomial time; as a result, the
problem is in DP.

Hardness is a consequence of Lemma [2 since () is minimal with respect
to set cardinality. As a result, () is a solution if and only if it is a <-minimal
solution. O

Relevance is harder than verification. Intuitively, the complexity increase
is due to the necessity of searching for a solution, among the possibly many
ones, that contains the hypothesis h to be checked for relevance.

Theorem 3 Given (H, M,T) and h € H, deciding the existence of A such
thath € Aand A € NEXT_SOL4((H,M,T),{As,...,An}) is X5-complete.

Proof. The problem can be solved by a nondeterministic algorithm employing
an oracle for the propositional satisfiability problem. The algorithm nonde-
terministically generates each possible A C H and calls the oracle for the
satisfiability of AU {T'} and of AU {T,—~ A\ M}. If the first is satisfiable,
the second is unsatisfiable, h € A and A is different than each element of
{Ay,..., A}, the algorithm returns yes: h is relevant. Since the nondeter-
ministic machine returns yes if some of its nondeterministic runs return yes,
this algorithm establishes the existence of a solution containing h.

Hardness is a consequence of a result by Eiter and Gottlob [14, Theo-
rem 4.1.1] and Lemma[ll Indeed, the lemma shows how a problem of abduc-
tion P can be used to build another one P’ that has the same solutions of
P with {r} added to each, plus the single new solution {s}. This provides a
reduction: A is in some solutions of P if and only if A is in some solutions of
P’ different from {s}. Since the first problem is ¥5-hard [14, Theorem 4.1.1],
the latter is X5-hard as well. O

The containment preorder C limits the solutions to those that do not
include any hypothesis that could be removed, that is, the unnecessary ones.
This for example rules out {hy, ho} if {h1} is a solution. The additional
requirement of minimality does not increase the cost of verifying a solution,
which remains DP-complete as for the case of the empty preorder.

Theorem 4 Checking whether A € SOLc((H, M, T)) is DP-complete.
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Proof. The problem is in DP because it can be solved by a number of
parallel satisfiability and unsatisfiability checks. Indeed, that A is a solution
is equivalent to the satisfiability of AU {T'} and the unsatisfiability of A U
{T,—~ \ M}. The first condition implies the satisfiability of A'U{T'} for every
A’ C A. As a result, A is not a minimal solution only if there exists A’ C A
such that A’U{T'} = M. This implies A\{h}U{T'} = M for every h € A\ A’
by monotonicity of =. The converse also holds: A is not minimal if such h
exists, since A\{h} C A for every h € A. As aresult, A is a minimal solution
if and only if:

e AU{TY} is consistent;
o A\{h} U{T,—~ A\ M} is consistent for every h € A;
o AU{T,—~ \ M} is inconsistent.

These tests are in polynomial number and can be done in parallel by
renaming the variables. As a result, the whole problem amounts to checking
whether a formula is satisfiable and another is not.

Hardness is a direct consequence of Lemma 2] which proves that estab-
lishing whether () € SOL({(H, M,T)) is DP-hard. Since () is contained in
every other subset of H, if any, it is a minimal solution if and only if it is a
solution. As a result, ) € SOLc((H, M,T)) is DP-hard. O

Given this result, the problem of checking a second-best solution can be
proved to be complete for the same class.

Theorem 5 Deciding whether A€ NEXT_SOLc((H,M,T),{A1,...,An}))
1s DP-complete.

Proof. Membership is proved as in the previous theorem, with two variants.
First, A is not a second-best solution if is in { A4, ..., A, }. Second, the check
for consistency of A\{h}U{T,— A\ M} is skipped if A\{h}isin {A;,..., An}.

Hardness is proved by Lemma [I] and the previous theorem, showing the
problem with no given solution DP-hard. The lemma proves that A’ is in
SOL((H',M', T")) if and only if either A" = {s} or A’ = AU {r} with
A € SOL((H,M,T)), which means that the solution {s} is minimal. As a
result, in NEXT SOLc((H', M',T"), {{s}}) the second argument {{s}} is a
set of minimal solutions of the first, (H’, M',T"). The solutions of (H', M', T")
not in {{s}} are those AU {r} with A € SOL((H, M, T)). Since s is not
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in (H, M,T), a solution AU {r} does not contain s, which means that it
is minimal if and only if A is minimal. This is therefore a reduction from
checking a minimal solution of (H, M, T to that of checking a second-best
solution in NEXT_SOLc((H',M',T"),{{s}}). Since the former proved is
DP-hard by the previous theorem, the latter is hard for the same class. O

This result establishes the complexity of verifying a solution of an abduc-
tion problem in presence of other minimal solutions. Searching for a solution
can be turned into the decision problem of relevance (checking the existence
of solutions with a given h € H) as already explained. Relevance for the
subset preorder is Xb-complete [14, Theorem 4.2.1]. Lemma [ shows how
to carry the hardness part of this result to the case where other minimal
solutions are known.

Theorem 6 FEzistence of a solution in NEXT_SOLc((H, M, T),{A,...,An})
containing a given h € H is 3X5-complete.

Proof. Membership can be proved by nondeterministically generating all
possible subsets A of H and then checking (possibly using the oracle) whether
h € A, whether A &€ {A;,..., A,,}, whether AU {T} is consistent, whether
AU{T} = M and whether A\{h'}U{T'} = M for all A\{R'} & {A1,..., An}
with b’ € A.

Hardness is a consequence of the hardness result without the given so-
lutions {A;, ..., A,,}, since Lemma [Il implies that A € SOLc((H, M, T)) if
and only if AU{r} € NEXT_SOLc((H',M',T"),{{s}}). As a result, h
is in some element of SOLc((H, M,T)) if and only if it is in some element
of NEXT_SOLc((H',M',T"),{{s}}). This is a reduction from relevance
without given solutions to relevance for second-best solutions, proving the
Y:2-hardness of the latter. O

Let < be the preorder of solution defined by cardinality. As for < and
C, the hardness of the problems of verification and relevance is proved by
reducing to the them the corresponding problems without the given solutions.
The following theorem shows the complexity of the verification problem.

Theorem 7 Checking whether A € SOL<((H, M, T)) is I15-complete.

Proof. Non-membership can be verified with a nondeterministic algorithm
employing an oracle for solving the satisfiability problem. Given an abduction
problem and a subset A C H, the algorithm nondeterministically generates
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each possible A’ C H. After this A’ is produced, the following checks are
done, with the help of the oracle: that either A U {7} is unsatisfiable, or
AU{T,— \ M} is satisfiable, or the following three conditions hold: |A’| <
|A|l, AU {T} is consistent and A" U {T,—~ /\ M} is inconsistent. If all these
hold, then either A is not a solution or smaller solution A’ exists.

Hardness is proved by reduction from the problem of non-relevance, which
Eiter and Gottlob [14, Theorem 4.2.1] proved to be X5-complete even if the
formula 7" is consistent [14, Definition 2.1.1]. Given a problem of abduction
(H,M,T) and h € H, a <-minimal solution of (H, M, T) containing h exists
if and only if S is not a <-minimal solution of the problem (H', M’ ,T")
defined as follows.

H = HUZUS
M = MU{w}
T = TR /WM /M A N{m” = m | m e M} A

(h—= 1) A (= w) A (S — \M)

If |H| = n, then S is a set of n+1 fresh variables. Also h” and w are fresh
variables and M" is a set of fresh variables in one-to-one correspondence with
M.

Regardless of the original problem, S is a solution of (H', M’ T"). Indeed,
SU{T"} contains S and A\ S — M’, which imply M’. Remains to prove that
S U{T"} is consistent. By definition, M’ = M U {w}. All subformulae of
T" are entailed by M’ but T[h"/h|[M"/M] and h — h” and can therefore
be removed without affecting consistency. Since S is a set of fresh variables,
none is in T'[h"/h][M" /M] A (h — k). This formula is consistent because T’
is consistent. As a result, S U{7"} is consistent, proving that S is a solution
of (H', M, T").

The solutions of (H', M',T") are further characterized (as proved below)
to contain one of the following:

1. a solution of (H, M,T) that contains h;

2. S.
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Since |S| = n+1 while a solution of the original problem has size between
0 and |H| = n, it follows that S is a minimal-size solution if and only if the
original problem has no solution containing h. This is therefore a reduction
from non-relevance to solution checking. Since relevance is Y5-hard, the
problem of solution checking would be IT5-hard. Remains to prove that every
solution of (H’, M’,T") contains one of the two sets above.

Let A" be a solution of (H', M',T"). If A’ does not contain s; € S then
s; only occur negated in A" U {T"} and A’ U {T",— A\ M}, in particular in
the formula A'S — A M. Therefore, this formula can be removed without
affecting consistency. The other variables of S may only occur once (in A’).
They can therefore be removed as well. This proves that if a solution of
(H', M', T") does not contain all of S then removing all elements of S from
it leads to another solution.

If A" is a solution not intersecting S, then A’ N H is a solution of the
original problem. This is proved as follows. The set A’ U {T"} contains
(AN H) UA{T[R"/h][M"/M],h — h"}. Since the first is consistent, the
second is consistent as well. Replacing each m” with m and swapping h and
h" transforms T'[h”/h][M" /M] into T'. Since variable name changes do not
affect satisfiability, the resulting set (A’ N H) U {T,h” — h} is consistent. It
contains (A’ N H) U {T}, whose consistency is the first condition for A’N H
being a solution of (H, M, T).

The second is (A'NH)U{T} = m for every m € M. Since A/U{T"} = M’
and M C M', it also holds A'U{T"} = m for every m € M. This is the same
as the inconsistency of A’ U {T",—~m}. Since w only occurs in the clauses
h — w and A S — w, and is positive in both, these can be removed without
affecting satisfiability. The same for the variables of S, which only occur
negated, and the variables of M\{m}, which only occur unnegated. Some
further simplifications can be done:

A UL{TIR JR)[M" JM])} U {h — B, m" — m, —m} =
= A U{TK/R[M"/M],h — B, ~m", ~m}

In this formula, h and m only occur once and can therefore be removed.
What remains is A'U{T'[h"/h][M" /M],—m"}. Renaming M" to M and h” to
h does not affect satisfiability; therefore, the set A’U{T, =m} is unsatisfiable.

Since the variables in S may only occur once in this set, in A, they can
be removed. The result is (A’ N H) U {T, —-m}. Since the changes did not
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affect satisfiability and the original set was unsatisfiable, so is this one. As
a result, (A'N H)U{T} = m. Since this holds for every m € M, and the
satisfiability of (A'N H) U {T'} was already proved, A’ N H is a solution of
(H,M,T).

What remains to be proved is that either A’ contains h or the whole S. To
the contrary, assume that A’ does not contain h and does not contain some
s; € S. Since w € M, formula A’U{T"} A —w is unsatisfiable. If A" does not
contain h and does not contain s;, these variables occur in A" U {7T"} A —~w
only in the clauses h — w and AS — A M’. All these occurrences of h
and s; are negated; therefore, these clauses can be removed without affecting
satisfiability. Since these are the only subformulae of A’U{7"} A—w containing
w, what remains is a subformula of A"U{7"}, which is consistent because A’
is a solution. This contradiction proves that every solution of (H', M’ , T")
contains either h or the whole S. O

The following theorem shows the complexity of the second best solution
verification problem with the cardinality-based preorder.

Theorem 8 Deciding whether A € NEXT_SOL<((H,M,T),{A:,...,An}))
is 15 -complete.

Proof. Membership is proved as follows: A is a second-best solution if it
is in SOL((H, M, R)) and for every A" C H such that |A’| < |A] it holds
that either A" U {T'} is inconsistent, A" U {T} = M or A" € {A;,..., A}
All these checks can be done with an NP oracle, once a subset A" C H is
nondeterministically generated.

Hardness is proved by the reduction of Lemma [, using m = 1 and
{Ay,..., A} = {{s}}. As the lemma proves, {s} is indeed a solution, and
is also among its minimal ones because all other ones (if any) have the form
H U {r}, so they have cardinality larger or equal than one.

The lemma also proves that every solution to the original problem is
translated into a solution of the new one. This reduction preserves the rel-
ative size of explanations, as they are all added one element. As a result,
the solutions are not only all translated, but maintain their relative size.
Therefore, AU{r} € NEXT _SOL((H',M',T"), {{s}}) holds if and only if
A e SOL<((H,M,T)) holds. O

The problem of existence of a second-best solution with a given element
of H can be shown to be Af[logn]-complete.
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Theorem 9 FEzistence of a solution in NEXT_SOL<((H,M,T),{A,...,An})
containing a given h € H is Af[logn]-complete.

Proof. The problem of checking for the existence of a solution A with size
bounded by a number k& and containing A is in X5, as it amounts to nonde-
terministically generating a solution and then checking it for being a second
best-solution and for its size being less than or equal to k. The problem
of relevance can be therefore solved by a binary search for the minimal size
of solutions [14, Theorem 4.3.2]: start with £ = |H|/2, and if the result is
positive change k = |H|3/4, otherwise k = |H|/4. Once the minimal size
is found, the problem can be solved by nondeterministically generating all
solutions of this size not being in {A;,..., A, } and then checking whether
h is in some of them.

Hardness follows from Lemma [I} & is <-relevant to (H, M,T) if and
only if a solution of NEXT _SOL((H',M',T"),{{s}}) containing h ex-
ists; this is proved like in the previous theorem. Since <-relevance
is Alf[logn]-hard [14, Theorem 4.3.2], also checking for solutions of
NEXT SOL<((H,M,T),{A;,...,A,}) containing a given h € H is
Al%[log n]-hard. O

4 Other Minimal Solution

The implicit assumption in second-best solutions is that non-minimal solu-
tions are taken into account once all minimal ones have been considered.
Indeed, the definition of NEXT_SOL({(H, M, T),{As,...,A,}) includes all
solutions that are minimal once Ay, ..., A,, are removed from consideration.
A different approach is to only allow minimal solutions. This is different in
that:

e second-best solutions are solutions that are minimal among the ones
different from the given ones;

e other minimal solutions are solutions that are minimal and are not
among the given ones.

The difference is that the first definition allows non-minimal solutions
if the minimal ones are all among the given ones. The second definition
does not. The difference only concerns non-minimal solutions. Therefore, it

21



disappears when the void preorder < is considered, as no solution is non-
minimal according to it.

When using C or <, the two definitions may lead to different results, like
in the problem:

{s,r}
{t}

{s — t}

N < T
|

The problem (H, M,T) has two explanations: {s} and {s,r}. Only the
first one is minimal in the two considered preorders; this is also intuitively
correct, as r does not really contribute to entail t. However, the second-best
solutions include this non-minimal one: NEXT SOL((H,M,T),{{s}}) =
{{s,7}}. Such a possibility is excluded when considering the other minimal
solutions: no one exists apart from {s}.

When C is used as the preorder, the complexity of checking another min-
imal solution is the same as that for a second-best solution. This can be
proved as for the proof of Theorem [ with minimal changes: for member-
ship, sets A\{h} are checked even if they are in {A;,..., A,,}; hardness is
proved with the very same reduction, which maps minimal solutions of the
original problem into solutions of the new problems that are both second-best
solutions and other solutions.

Other best solutions are easier than second-best, if using <: DP-complete.
The following lemma shows how to relate the solutions of a problem to the
minimal solutions of another problem. This property will be used to prove
that we can reduce the problem of checking a solution to the problem of
checking another minimal solution.

Lemma 3 Let P = (H,M,T) be a problem of abduction, where H =
{h1,...,hy}. Let P = (H', M',T") be the problem defined as follows, where
C, D, and E are sets of n fresh variables each.

H = CuD
M = MUE
T = TU{¢;— hi,c; —ei,di —e; | 1<i<n}

It holds:
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SOLS(<H/aM,aT/>) = {{Cz | hz € A}U{dz | hz €A} | A € SOL(<H>MaT>)}

Proof. Intuitively, e; € M’ enforces either ¢; or d; to be in every solution,
and minimization excludes solutions containing both. Since every ¢; entails
h;, M is entailed only if the ¢;’s correspond to the original solutions. Since
a solution not containing ¢; contains d;, each solution of P is mapped into a
minimal solution of P’.

Formally, the claim is proved in three steps: in the first, every solution
of P is proved to be translatable into a solution of P’; in the second, every
solution of P’ can be translated back to a solution of P; in the third, every
minimal solution of P’ is shown to contain d; if and only if it does not contain
¢;. These three steps prove the claim.

Let A be a solution of P, and A’ = {c; € C' | h; € A}U{d; € D | h; & A}.
The first step of the proof is to show that A’ is a solution of P’. Since AU{T'}
is consistent, it has a model. It can be extended to the new variables by
setting ¢; to the same value of h; and all d;’s and e;’s to true. This model
satisfies A and T', and also all implications ¢; — h; because ¢; is true if and
only if h; is true, and ¢; — ¢; and d; — e; because ¢; is true. Therefore,
A" U {T"} is consistent.

Entailment A" U {T"} = M U E also holds. Since A is a solution of the
original problem, AU {T'} = M holds. Since A’ contains every ¢; such that
h; € A, and T" contains ¢; — h;, it follows that A" U {T"} = A. As a result,
A"U{T"} = M. Since A’ contains either ¢; or d; for every i € {1,...,n} by
construction, and 7" contains ¢; — e; and d; — e;, it follows that A"U{T"} |=
E. This proves that A’ is a solution of P’

The second step is to prove that every solution A’ of P’ can be translated
back to a solution of P. In particular, this holds with A = {h; | ¢; € A’}
Consistency of AU{T'} is a consequence of the consistency of A’"U{T"}, since
this formula contains 7', A’ N C and {¢; — h;}, the latter two implying A.

Entailment A U {T'} &= M is a consequence of A’ U {T"} = M’ and
M C M’ which imply A'"U{7T"} = M. This holds if and only if A"U{T", —-m;}
is inconsistent for every m; € M. In this set, e¢; only occurs in ¢; — e; and
d; — e;, unnegated in both. As a result, these two clauses can be removed
without affecting consistency. After this operation, if d; still occurs is in A’,
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unnegated. It can therefore be removed. What remains is the following set,
which can be simplified by the usual methods:

(ANC)U{c —hi |1 <i<n}U{T,—m;}
= (ANnCYU{hi | e AYU{c — hi|c & Ay U{T,—m;}

Each ¢; occurs in a single clause: if ¢; € A’ then ¢; is only in A’ N C; if
c; € A’ then it is only in ¢; — h;. As a result, all clauses containing ¢; can be
removed without affecting consistency, leading to AU {T,—m;}. This proves

that AU {T} = m,;. This holds for every m; € M; therefore, AU{T} = M.

The final part of the proof is to show that all minimal solutions contain
either ¢; or d; but not both. This claim can be divided in two: that no solution
lacks both ¢; and d; for some i, and that every solution that contains both is
not minimal.

Let A’ be a solution that contains neither ¢; nor d; for an arbitrary index
i. The set A" U {T",—e;} contains ¢; and d; only in the clauses ¢; — h;,
¢i — e; and d; — e;, negated in all. As a result, these clauses can be
removed without affecting consistency. The consequence of this deletion is
that e; only occurs negated, and can therefore be removed. What remains is
a subet of A’U{T"}, which is consistent because A’ is a solution. This proves
that e; is not entailed, contradicting the assumption that A’ is a solution.

Solutions of P’ may contain both ¢; and d; for some i. However, this
solution is not minimal, since d; can be removed from it. Let A’ be a solution
containing both ¢; and d;. Since A’ U {T"} is consistent, so is A'\{d;} U
{T"}. Remains to prove that A"\{h} U{7T"} = M’, which amounts to the
inconsistency of A"\{h}U{T",—~ A\ M'}. Since ¢; € A, then ¢; — e; implies e;.
As a result, e; can be added to the set, and d; — ¢; removed. What remains
is a formula that contains d; only unnegated, as part of A’. It can therefore
be removed without affecting inconsistency. O

This lemma maps each solution of P into a <-minimal solution of P’, and
viceversa. It therefore provides a reduction from the problem of second-best
solutions with the void preorder < to the problem of other minimal solution
with the cardinality preorder <.

Theorem 10 The problem of checking another minimal solution w.r.t. < is
DP-complete.
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Proof. Given {Ay,..., A} with m > 1, one can check whether A is another
minimal solution by expressing |A| = |A;| as a propositional formula F' using
fresh variables. Then, the problem amounts to the satisfiability of AU{T, F'}
and the unsatisfiabity of AU {T,—~ A\ M}.

Hardness follows the DP-hardness of the problem of verifying A €
NEXT_SOL4((H,M,T),{As,..., A,}). Indeed, Lemma [3 proves that so-
lutions A, Ay,..., A, of (H, M,T) can be turned into <-minimal solutions
AAY AL of (H', M, T"). As a result, A is a solution of (H, M,T) not
in {A;,..., A} if and only if A" is a minimal solution of (H’, M’ T") not in
{A},..., A,}. Since the first problem is DP-hard, the second is DP-hard as
well. O

5 Using Additional Information

In the previous sections we have shown that the abduction problems remain
intractable even if we know a first solution. It seems that knowing a solution
does not help in reducing the computational complexity. In this section we
investigate whether during the search for the first solution, we could obtain
and store additional information (not just the solution) that allows for a
faster search for another solution. The complexity of such a problem can be
evaluated using compilability classes [5] and self reductions [23].

In short, a problem has the same complexity with and without additional
information if the part of the problem instance the additional information
derives from can be “moved” to the rest of the instance; this is called a
compilability self reduction; more details are in Section and the cited
articles. For abduction, the additional information comes from (H, M,T),
the rest of the instance is the subset A C H to check.

The problems analyzed in the previous sections have the same complexity
if T' is restricted to be a 3CNF': a set of clauses, each comprising exactly three
literals. Since 7" is now a set, v € T can be used to indicate that the clause
is in T'. Let Var(T) be the set of all propositional variables used by T, that
is, the alphabet of T'.

Given a set of variables X (for example, X = Var(T)U H U M in the
following proofs), ITx denotes the set of all possible clauses of three literals
over alphabet X. If | X | = n, the number of possible literals is 2n; this means
that the number of possible clauses of three literals is less than 2n x2n x2n =
8 x n3, a polynomial in n. The clauses of Iy are considered enumerated,
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and called vy, 72,73, . . .. Self reductions for problems of logics usually employ
this construction.

The first application of this concept is to the problem of verification with
the void preorder.

Lemma 4 If P = (H,M,T) is a problem of abduction with T in 3CNF
and A C H let P = (H',M',T") and A’ be defined as follows, where X =
Var(T) U H U M (hence, T C Ilx) and C is a set of fresh variables in
one-to-one correspondence with Ilx.

A, = AU{CZ | ’}/ZET}
H = HUC
M = M
T/ = {CZ—)’}/Z | ’}/Z’EH)(}
It holds:
A€ SOL((H, M,T)) iff A' € SOL((H', M, T"))

Proof. The first part of the proof is that A U T is consistent if and only if
A" UT' is consistent. Since {¢;, ¢; — 7;} is equivalent to {c;,v;}, it holds:

AUT = AU{g | v eTtu{c — |y ellx}
= AU{g |meTtU{c—=v|vneTtU{c—v|vellx\T}
= AU{g [ eTU{vi|veTtU{c = |y ellx\T}
= AU{g | meTUTU{c — v | v € lx\T}

In this formula, each ¢; appears once, either in {¢; | ...} or in {¢; —
vi | ...}. As a result, these clauses can be removed without affecting sat-
isfiability. The result is A U {T'}, proving that this set and A’ U {T"} are
equisatisfiable.

The second part of the proof is that AU T U {—~ A\ M} is consistent if
and only if A”UT"U{~ A\ M} is consistent. Thanks to the above chain of
equivalences, A’ UT" can be rewritten as AU {¢; | 7, € T U{T} U {¢; —
Yi | vi € Ux\T}. Therefore:

AUT'U{= \ M} = Au{c; | v € TIOTU{e; = i | v € Mvarn)\THU{~ \ M}
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Again, each ¢; only occur once in this formula. Therefore, all clauses
containing it can be removed, leading to the equisatisfiable formula A UT U
{= A\ M}. Therefore, AAUT" |= M if and only if AUT = M. O

This lemma provides a self-reduction for the problem of solution checking
for the empty preorder. In order to derive a proof of compilability hardness
from it, the three functions of classification, representativeness and extensions
are needed.

In this section, all abduction problems are assumed to be built over an
alphabet H,, U M,, U X,, for some n, where:

H = {hy,...,hy}
M = {my,...,m,}
X = {x1,...,x,}

This is not a restriction: if the variables are not these ones, they can be
renamed; if |H| < |M| new variables can be added to H; if |Var(T)\H\M| <
| H| new variables can be added to T'; for M, the new variables are also added
to T

The classification, representative and extension functions are defined over
pairs (A, (H, M, T)) where (H, M,T) is a problem of abduction and A C H
a candidate solution for it. The class of the pair I = (A, (H, M, T)) is its

number of assumptions, why coincide with its number of manifestations and
the number of other variables in the instance.

Class(I) = |H|
The representative instance of the class n has n variables of each type:

Repr(m) = (0, (H,,, M, Iy, uar,0x,))

The extension function is obtained by adding new variables. If Class(I) =
n and m > n then:

Ext({A,(H,M,T)),m) = (A, (H', M',T")) where:
H = HU{hpsr, .. h)
M = MU{m,i1,...,mmn}
T = TU{mpi1, .., mp} U{Tns1, ., T}
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This instance has m assumptions, meaning that Class((A, (H, M,T))) =
m, as required to the extension function. The second requirement is that
of equivalence: A is a solution of (H, M, T) if and only if A is a solution of
(H',M',T"). This holds because in AUT" and AUT"U{= A M} the new
variables h, 11, . . ., hy, only occur once (in A), the new variables z,, 11, ..., 2y,
only once (in T'), and the new variables m,1,...,my, in T and M but
unnegated in both. All these new variables can therefore be removed without
affecting consistency.

This proves the existence of the classification, representative and exten-
sion function for the problem of second-best solution verification. Since so-
lutions are not changed by the extension function, these can be used with all
of the considered preorders: void, set-based and cardinality-based.

The following results require problems of abductions to be restricted to
the case where the formula 7" is in 3CNF. Lemma 2] and Theorem [7] instead
employ reductions that produce come clauses that have more than three
literals. In particular, the first turns G into =G[X’/X] — m and the second
introduces A\ S — A M’. Both can be turned into clauses, but in general
with more than three literals. The following lemma shows how to turn a
formula in 3CNF without altering the abductive solutions.

Lemma 5 If l; and ly are two literals, C' a clause and x a fresh variable,
then SOL({(H, M, TN(l;VIsvVC))) = SOL({H, M, TAN(l;VIoVx)A\(—zVC))).

Proof. Every model M of T'A (I V Iy V C) satisfies either [; VI, or C. A
model of (I3 VIyVz) A (—zV C) can be constructed by setting z to false in
the first case and to false in the second. In the other way around, if M is a
model of (I VIyVz)A(—zV C) then it assigns x to either true or flase. In
the first case M satisfies C', in the second [; V ls.

This not only proves that the two formulae are equisatisfiable, but that
they have the same models apart from the value of z. Since z ¢ H and
x & M, it follows that BU{TA(l;VI;vVC)} and BU{(l1VIsVz)A(—zVC)} are
also equisatisfiable for every B C H U {—m | m € M}. Since the abductive
solutions are defined in terms of the satisfiability of 7" with a subset of H
with possibly the negation of an element of M, the claim is proved. O

A simple iteration of this lemma to all clauses of 7" made of more than
three literals proves that the problems of abduction are unchanged by the
restriction to clauses of three literals.
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Theorem 11 The problem of deciding whether A C H isin SOL({H, M, T))
is |M>DP-complete.

Proof. Membership follows from that in DP, which was proved in a previous
section, and the fact that every compilability class |r+C contains the relative
complexity class C [5].

Let (A, (H,, M,,T)) be a pair of class n. By definition, the representative
element of the class n is a pair (A’, (H', M', T")) in the same class n. The
class being the same implies that H' = H,,, M’' = M,, and Var(T")\H'\M' =
Var(T")\H'\M'. In other words, (H', M',T") has the same hypotheses H,,
manifestations M,, and other variables X,, of (H, M,T).

A reduction satisfies representative equivalence if and only if
(A, (Hp, M,,, T)) and (A, (H',M',T")) are translated into equivalent in-
stances. In both pairs the candidate solution is A, but in the second the
problem of abduction (H, M,T) is replaced by the one of the representa-
tive instance (H', M’ T). The reduction of the previous lemma translates
(A, (Hp, M,,T)) and (A, (H', M',T")) into the same pair (A, (H", M" T")),
since A is translated into A and the problem of abduction into one that de-
pends only on its variables; since (H, M,T) and (H’, M’ T) have the same
variables, they are translated into the same problem. The results of transla-
tion are therefore the same instance, which means that it is a self reduction.
Since the problem of checking whether A is a solution of (H, M, T) is DP-
hard even in the restriction of clauses of three literals thanks to Lemmal[5l and
has the required classification, representativeness and extension functions, it
is also |p>DP-hard. O

The lemma provides a reduction from solutions to solutions, but cannot be
used with C and <, as A may not be minimal because of another explanation
A’ that does not contain a ¢; € A. The point is that ¢; € A indicates the
presence of v; € T, and should therefore not be included in the minimization.

The problem is solved using a construction similar to that of Lemma Bt
for each ¢; introduce an hypothesis d; and a manifestation e;, and the clauses
¢; — e; and d; — ¢; in T. This way, the variables ¢; are not considered in
the minimization.

Lemma 6 Given P = (H,M,T) and A C H, construct P" and A’ as follows.

A = AU{CZ|%€T}U{CZZ|%€T}
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H = HUCUD
M = MUE
T = {Ci—>6i‘CiGC}U{di—)ei‘diGD}U{Ci—)’}/Z"”}/Z‘GHVar(T)}

The sets C, D, and E are sets new variables in one-to-one correspondence
with yer(ry, where Var(T') is the set of propositional variables of T'. It holds:

A€ SOLc((H,M,T)) iff A' € SOLc((H', M, T"))

The proof is omitted because of its similarity with that of Lemma [3l
The instance that results from this transformation can be further modified
as explained above to make the number of assumptions, manifestations and
other variables to be the same.

The following theorem shows that the case of set-containment is not differ-
ent from the case of the empty preorder, in the sense that compiling (H, M, T')
does not lower complexity.

Theorem 12 The problem of checking solutions using C is |MTI5 complete.

Proof. The problem is in II5; therefore, it is also in |p~II5. Hardness is
proved by the reduction in the previous lemma: since (H', M',T") only de-
pends on the class of (A, (H, M,T)), this translation satisfies the condition
of representative equivalence. The classification, representative, and exten-
sion functions are the ones shown before. Since the problem is IT5-hard this
proves that it is also |II5-hard O

The problem with < is |p>DP-complete. Indeed, from (H,M,T) one
can calculate the size of its minimal solutions, and then use this number to
determine whether a set of hypotheses is a minimal solution. The previous
lemma provides a proof of hardness for the same class, in the same way as
in the previous theorem. The proof is omitted because of its similarity with
the previous one.

Theorem 13 Checking whether a solution is minimal w.r.t. < is |>DP-
complete.
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6 Conclusions

In this article, we have investigated the problem of finding a solution to a
given abduction problem when some solutions have already been found. The
results show that the analyzed problems are computationally intractable,
but this does not rule out the possibility of tackling them. It only sug-
gests the most appropriate tools to use. Polynomial problems are best at-
tacked using deterministic polynomial algorithms, while problems in NP can
be solved using reduction to the propositional satisfiability problem (SAT)
and then passed to a state of the art SAT solver (for example, one of the
contestants in the SAT competition http://www.satcompetition.org/).
Problems in higher classes of the polynomial hierarchy (such as all the
problems shown in the paper) can be solved by a reduction to the Quan-
tified Boolean Formulae problem (QBF) and the use of QBF solvers
(http://qbf.satisfiability.org/gallery/). Problems higher up in the
polynomial hierarchy are more complex to solve, but, by identifying the pre-
cise complexity, we can better take advantage of the solvers.

There are some open questions and some possible future directions of
work. It makes sense to establish the complexity of finding a k-th best
solution, at least in the case of ordering based on cardinality. This can be
seen as a variant of the problems studied in this article where the given
solutions are not known.

Another question left open by this article is to find a reduction from
the problem of second-best solutions to simple abductions that preserve the
explanations. What is needed is the opposite of Lemma [, which shows
how to add a given explanation to an abduction problem: a reduction that
eliminates some given solutions from an abduction problem while leaving the
other ones unchanged.
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