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Highlights

• A robust clustering method for imprecise data is proposed
• The clustering process is based on fuzzy and possibilistic approaches
• Imprecision is managed in terms on fuzzy sets
• A new cluster validity index is suggested
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Abstract

This work focuses on robust clustering of data affected by imprecision. The
imprecision is managed in terms of fuzzy sets. The clustering process is
based on the fuzzy and possibilistic approaches. In both approaches the ob-
servations are assigned to the clusters by means of membership degrees. In
fuzzy clustering the membership degrees express the degrees of sharing of the
observations to the clusters. In contrast, in possibilistic clustering the mem-
bership degrees are degrees of typicality. These two sources of information
are complementary because the former helps to discover the best fuzzy par-
tition of the observations while the latter reflects how well the observations
are described by the centroids and, therefore, is helpful to identify outliers.
First, a fully possibilistic k-means clustering procedure is suggested. Then,
in order to exploit the benefits of both the approaches, a joint possibilistic
and fuzzy clustering method for fuzzy data is proposed. A selection proce-
dure for choosing the parameters of the new clustering method is introduced.
The effectiveness of the proposal is investigated by means of simulated and
real-life data.

Keywords: Imprecise information, Robustness, Fuzzy clustering,
Possibilistic clustering, Cluster validity.

1. Introduction

In most practical applications the results of the statistical analysis may
be poor due to some outliers or other departures from the ideal conditions on
which the statistical methods are based. In the cluster analysis framework,
the presence of contaminated data is usually deleterious: a limited number
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of outliers may lead to a completely wrong and inaccurate partition of the
observations. In this work, following the fuzzy approach and the closely
related possibilistic one, some robust clustering procedures will be proposed.
In doing so, we assume to deal with a special kind of data, i.e., non-precise
data. A fruitful way to handle imprecision is by means of fuzzy sets [1, 2, 3].
In this connection, it is important to distinguish between the epistemic and
ontic nature of the fuzzy data. In the epistemic approach fuzzy data are seen
as imprecise measurements of precise data. Thus, the available information
on a precise quantity is ill-known and the lack of precision is managed through
fuzzy sets. In the ontic approach fuzzy data are seen as whole entities, hence
the quantity under investigation is assumed to be intrinsically imprecise. In
practice, the distinction between the epistemic and ontic fuzzy sets has a
relevant impact on the statistical tools to apply. See, for more details, [4, 5].
In this work we assume to deal with ontic fuzzy sets.

A lot of standard clustering procedures have been generalized to the fuzzy
data case. The use of belief functions in the clustering process is considered in
[6]. Clustering fuzzy data by means of mixtures of distributions is suggested
in [7, 8]. The large majority of the proposals are based on the fuzzy k-means
algorithm and consist mainly in introducing suitable dissimilarity measures
for fuzzy data [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Robust clustering
methods for fuzzy data can be found in [20, 21, 22, 23, 24, 25]. These are
robust versions of the fuzzy k-means algorithm for such a kind of data and
can be distinguished with respect to the approach adopted for handling the
outliers. In the precise data case, these can be roughly summarized as follows
(we refer to the review in [26] for a deeper insight). An approach consists in
the use of medoids (see, e.g., [27]). This is a a timid kind of robustification
because it does not explicitly manage contaminated data reducing their in-
fluence in the clustering process [28]. An alternative approach is represented
by trimming (see, e.g., [29]). The key idea is to simultaneously discard a pro-
portion of observations and to apply the clustering procedure on the clean
data. Thus, in the trimming approach the observations are considered either
outliers or not. A softer approach allowing the existence of “outliers to a
certain extent” consists in adding a noise cluster to the k “good” clusters
[30]. The role of the noise cluster is that the outliers will be assigned to it
with high membership degrees and, therefore, will have small membership
degrees to the “good” clusters. A distinct approach is represented by the use
of metrics able to mitigate the influence of outliers (see, e.g., [31, 32]). A
different strategy is offered by the possibilistic approach [33]. Its peculiarity
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is that the membership degree is only based on the distance between the
observation and the involved centroid. Hence, the outliers, far from the bulk
of the data, will have low membership degrees to all the clusters (see, for a
deeper insight, [33]).

In this work, following the possibilistic approach, two new robust fuzzy
clustering methods for fuzzy data will be proposed. The first method is fully
possibilistic. However, as we will see, it may suffer from the risk of obtain-
ing coincident clusters, i.e., clusters characterized by the same centroids. To
overcome this problem, a second robust method is introduced preventing the
occurrence of coincident clusters. The outline of the paper is as follows. In
the next section we recall the theory of fuzzy sets describing the general fam-
ily of LR fuzzy data and a dissimilarity measure for LR fuzzy data. Then, we
discuss the concept of fuzzy data outliers. In Section 3 we recall the fuzzy k-
means algorithm for LR fuzzy data [22] and propose a possibilistic clustering
method for LR fuzzy data. Since it is not guaranteed that coincident clusters
do not occur, the so-called possibilistic fuzzy clustering method for LR fuzzy
data (PFkM-F) is suggested in Section 4. A selection procedure for choosing
the parameters to be used in PFkM-F is discussed in Section 5. The effec-
tiveness of the proposal is illustrated in Section 6 by means of a simulation
study and some applications to real data. Finally, some concluding remarks
are made in Section 7.

2. Fuzzy data

A fuzzy set X̃ is identified by a membership function μX̃(z), i.e. a map-
ping μX̃(z) : R → [0, 1] (see [1]). Let Kc(R) be the class of non-empty
compact convex subsets of R, the class of fuzzy numbers is Fc(R) = {μX̃(z) :

R → [0, 1] : X̃α ∈ Kc(R)}, where X̃α is the α-level set of X̃. For 0 < α ≤ 1,
it can be defined as the non-empty compact convex subset of R such that
X̃α = {z : μX̃(z) ≥ α}. For α = 0, X̃0 = cl({z : μX̃(z) > 0}) (cl() indicates
the closure of a set).

The most common class of fuzzy numbers is the LR one. In this case, the
generic fuzzy datum X̃ can be defined by four parameters, namely the left
center (c1), the right center (c2), the left spread (l > 0) and the right spread
(r > 0), and the following membership function:

μX̃(z) =

⎧⎨⎩
L
(
c1−z

l

)
z ≤ c1,

1 c1 ≤ z ≤ c2,
R

(
z−c2
r

)
z ≥ c2,

(1)
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Figure 1: An LR fuzzy number and its specific cases. From the top in clockwise direction,
a trapezoidal fuzzy number, a crisp number, a triangular fuzzy number and an interval
are reported.

where the function L : R → [0, 1] (and R) is a convex upper semi-continuous
function so that L(0) = 1 and L(z) = 0, for all z ∈ R \ [0, 1]. The centers
provide information about the location of the fuzzy datum, whilst the spreads
inform us about the associated imprecision (the size). If L(z) = 1 − z and

R(z) = 1 − z for 0 ≤ z ≤ 1, then X̃ is a trapezoidal fuzzy number when
c1 �= c2 and a triangular fuzzy number when c1 = c2 = c. If l = r = s �= 0,
then X̃ is a symmetric LR fuzzy number. If c1 �= c2 and l = r = 0 we get
an interval. Finally, a crisp number (non-fuzzy datum) is obtained when
c1 = c2 = c and l = r = 0. All the above specific cases are represented in
Figure 1.

When p LR fuzzy variables are collected on a set of n observations, we
have the fuzzy data matrix

X̃ =
{
X̃ij ≡ (c1ij, c2ij, lij, rij)LR, i = 1, ..., n, j = 1, ..., p

}
, (2)

where X̃ij ≡ (c1ij, c2ij, lij, rij)LR represents the j-th LR fuzzy variable col-
lected on the i-th observation with left center c1ij, right center c2ij, left spread
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lij and right spread rij. We can define the matrices of the left centers (C1), of
the right centers (C2), of the left spreads (L) and of the right spreads (R) of
order (n× p) with generic elements c1ij, c2ij, lij and rij, respectively. Hence,
x̃i ≡ (c1i, c2i, li, ri)LR is the fuzzy vector of length p for observation i, where

x̃i, c1i, c2i, li and ri are the i-th rows of X̃, C1, C2, L and R, respectively.

2.1. Dissimilarity measures for fuzzy data

In order to develop clustering methods for LR fuzzy data we need a
suitable dissimilarity measure. We adopt the one introduced in [22]. It
is defined as a weighted sum of the (squared) Euclidean distances between
centers and spreads. In detail, given two LR fuzzy observations, x̃i and x̃i′

we have

d2w(x̃i, x̃i′) = w2[d2 (c1i, c1i′) + d2 (c2i, c2i′)] + (1− w)2[d2 (li, li′) + d2 (ri, ri′)], (3)

where d(·, ·) is the standard Euclidean distance (for non-fuzzy data), w and
1−w are weights for the center component and the spread component, respec-
tively. By means of d2w(x̃i, x̃i′) we compute the dissimilarity between two LR
fuzzy observations as the weighted sum of the squared Euclidean distances
for the (left and right) centers and the (left and right) spreads. The weights
w and 1− w must be non-negative. Moreover, taking into account that the
membership function takes the maximum value in the centers, they must be
such that the distances for the centers play a more relevant role than those
for the spreads, hence, w ≥ 1 − w ≥ 0. It follows that w must belong to
[0.5, 1] (and 1 − w to [0, 0.5]). As we shall see, w will be estimated within
the clustering problem. It must be underlined that (3) is utilized for evalu-
ating the existing differences among observations belonging to a given data
set and, therefore, the estimated weight is optimal only for the involved data
set.

Remark 1. The squared dissimilarity in (3) is valid for the general class
of LR fuzzy numbers. Some particular cases are worth mentioning. For in-
stance, in the case of triangular fuzzy data, (3) can still be applied. When we
have symmetric triangular fuzzy data (3) reduces to the squared dissimilarity
proposed in [19]. Finally, in case of non-fuzzy data, (3) coincides with the
squared Euclidean distance.
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2.2. Fuzzy data and outliers
There exist different kinds of contamination. Fuzzy data can be consid-

ered outliers with respect to their centers (see top of Figure 2). In this case
the contamination is due to the location. Another kind of contamination is

Figure 2: From top to bottom: outlier w.r.t. center, outlier w.r.t. spread, outlier w.r.t.
center and spread (red dashed line).

due to the size (see middle of Figure 2), i.e., outliers with respect to their
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spreads. Finally, there are outliers with respect to both centers and spreads
(see bottom of Figure 2), that are outliers due to both the location and the
size. When clustering fuzzy data we should apply methods able to mitigate
the distortion produced by all these kinds of contamination.

3. Fuzzy and possibilistic k-means algorithms for fuzzy data

In order to cluster n observations described by p LR fuzzy variables, the
fuzzy k-means clustering method for LR fuzzy data (FkM-F) proposed by
Coppi et al. [22] can be applied. The FkM-F optimization problem can be
written as

min
U,H̃,w

JFkM−F =
n∑

i=1

k∑
g=1

um
igd

2
w

(
x̃i, h̃g

)
, (4)

s.t. uig ≥ 0, i = 1, . . . , n, g = 1, . . . , k, (5)
k∑

g=1

uig = 1, i = 1, . . . , n, (6)

w ∈ [0.5, 1], (7)

where uig is the membership degree of observation i to cluster g, stored in
the matrix U of order (n× k), and

H̃ =
{
H̃gj ≡

(
hC1
gj , h

C2
gj , h

L
gj, h

R
gj

)
LR

, g = 1, ..., k, j = 1, ..., p
}
. (8)

In (8) H̃gj ≡
(
hC1
gj , h

C2
gj , h

L
gj, h

R
gj

)
LR

represents the j-th LR fuzzy variable for

the g-th centroid with left center hC1
gj , right center hC2

gj , left spread hL
gj and

right spread hR
gj. We can define the centroid matrices of the left centers

(HC1), of the right centers (HC2), of the left spreads (HL) and of the right
spreads (HR) of order (k × p) with generic elements hC1

gj , h
C2
gj , h

L
gj and hR

gj,

respectively. Therefore, h̃g ≡ (hC1
g ,hC2

g ,hL
g ,h

R
g )LR is the fuzzy vector of

length p for centroid g, where h̃g, h
C1
g , hC2

g , hL
g and hR

g are the g-th rows of

H̃, HC1 , HC2 , HL and HR, respectively. Thus, the centroids are assumed to
have a complex structure inherited from the observed data. In other words,
the imprecision of the observed data is propagated to the centroids that are

of fuzzy nature. The squared dissimilarity d2w

(
x̃i, h̃g

)
recalled in (3) is used

for comparing observation i with centroid g. Finally, m > 1 is the fuzziness
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parameter. The membership degrees of the observations to the clusters are
such that they are inversely related to the relative dissimilarities between the
observations and the centroids. For this reason, the membership degrees can
be interpreted as degrees of sharing (of the observations to the clusters).

In case of outliers, the fuzzy approach fails due to the unit-sum constraints
of the membership degrees. By relaxing these constraints we move from the
fuzzy to the possibilistic approach [33]. The so-called possibilistic k-means
clustering method for LR fuzzy data (PkM-F) can be formalized as

min
T,H̃,w

JPkM−F =
n∑

i=1

k∑
g=1

tηigd
2
w

(
x̃i, h̃g

)
+

k∑
g=1

γg

n∑
i=1

(1− tig)
η , (9)

s.t. tig ∈ [0, 1], i = 1, . . . , n, g = 1, . . . , k, (10)

w ∈ [0.5, 1], (11)

where tig is the membership degree of observation i to cluster g, stored in the
matrix T of order (n×k). As for the standard possibilistic k-means clustering
method for non-fuzzy data [33], the membership degrees are possibility values
and are usually referred to as the degrees of typicality (of the observations
to the clusters), although, as an anonymous reviewer noted, tig is not a
possibility value in a strict sense because, for the generic i-th observation, tig’s
should be normalized so that max

g
tig = 1. γg is a cluster-specific parameter

tuning the importance of the clusters and η (> 1) is the fuzzifier. The
parameter γg can be defined as

γg = γ

n∑
i=1

um
igd

2
w

(
x̃i, h̃g

)
n∑

i=1

um
ig

, g = 1, . . . , k, (12)

where, usually, γ = 1 and hg’s and uig’s are obtained from FkM-F. (12) can
be motivated by noting that the γg’s give the relative weight of the second
term of the loss compared to the first one. The second term avoids the trivial
solution with T = 0. When the γg’s have approximately the same order of

the d2w

(
x̃i, h̃g

)
’s, then the two terms of the loss are weighted roughly equally.

The values of the γg’s differ among clusters and depend on their overall sizes
and shapes. The choice of the γg’s determines the zones of influence of
the clusters. In particular, γg gives the dissimilarity at which the degree of
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typicality of an observation to cluster g becomes 0.5. When γg is low or high,
we expect degrees of typicality tig’s low or high, respectively.

The solution of PkM-F can be derived by using the iterative algorithm
proposed in the next section. In PkM-F the degrees of typicality are in-
versely related to the absolute dissimilarities between the observations and
the centroids. In fact, a common property of clustering methods based on
the possibilistic approach is that the membership degrees are computed by
considering only the dissimilarity between the observation and the involved
centroid, regardless of the centroids of the remaining clusters. Intuitively,
this clarifies how the possibilistic approach well manages contaminated data.
Outliers are far from the bulk of the data and, thus, far from all the cen-
troids. Therefore, they usually have degrees of typicality close to 0 to all the
clusters (see, for an deeper discussion, [33]).

The PkM-F problem is a novel clustering method and represents an ex-
tension to the fuzzy data case of the algorithm introduced in [33]. Note,
however, that PkM-F is not the first possibilistic clustering method for LR
fuzzy data proposed in the literature. In fact, taking inspiration from [39],
Coppi et al. [22] propose a different possibilistic clustering method for fuzzy
data (hereinafter, C-PkM-F). The PkM-F and C-PkM-F methods can be
formulated in the same way except for the second term of the cost function.
Such a second term (not reported here for C-PkM-F) avoids solutions with
T = 0.

Although the possibilistic approach to clustering works well, it suffers
from a well-known limitation, i.e., the risk of obtaining a trivial solution
with coincident clusters [34]. Since the sum of the degrees of typicality for
every observation to all the clusters is no longer required to be equal to one,
it may occur that the centroids of the clusters are the same. This can be
explained by noting that the loss functions of the possibilistic procedures can
usually be decomposed into the sum of k terms (one for every cluster) that
can be minimized independently of each other. It is easy to show that such a
comment holds for PkM-F and C-PkM-F. A heuristic remedy to the coinci-
dent cluster problem is the use of a rational starting point. For instance, the
iterative algorithm of PkM-F can be run starting from the FkM-F solution.
This strategy has also been adopted for C-PkM-F. Although very common,
this remedy does not always exclude the occurrence of trivial solutions with
coincident clusters.

It should be clear that in practical applications PkM-F will be rarely
used. Nonetheless, it is useful to derive the here-proposed clustering method.
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More specifically, in order to solve the coincident clustering problem, at least
two strategies can be followed. The first one consists in adding a repulsion
term among centroids in the loss function. Such a repulsion term forces the
centroids to be far from each other. In [23] a possibilistic clustering method
with repulsion constraints for symmetric triangular fuzzy data is developed.
Its extension to the general family of LR fuzzy data is not straightforward. A
different strategy for preventing coincident clusters is the hybridization of the
fuzzy and possibilistic approaches, namely of FkM-F and PkM-F, exploiting
their potentialities and overcoming their drawbacks. This is pursued in this
work.

4. Possibilistic fuzzy k-means algorithm for fuzzy data

The possibilistic fuzzy k-means clustering method for LR fuzzy data
(PFkM-F) can be formalized as

min
U,T,H̃,w

JPFkM−F =
n∑

i=1

k∑
g=1

(
aum

ig + btηig
)
d2w

(
x̃i, h̃g

)
+

k∑
g=1

γg

n∑
i=1

(1− tig)
η ,(13)

s.t. uig ≥ 0, i = 1, . . . , n, g = 1, . . . , k, (14)
k∑

g=1

uig = 1, i = 1, . . . , n, (15)

tig ∈ [0, 1], i = 1, . . . , n, g = 1, . . . , k, (16)

w ∈ [0.5, 1], (17)

where m > 1 denotes the parameter of fuzziness and η and γg have the same
meanings discussed in PkM-F. The idea underlying PFkM-F is to exploit the
potentialities of FkM-F and PkM-F. This goal is achieved by minimizing a
cost function which is a linear combination of those of FkM-F and PkM-F,
respectively, with weights given by a and b, respectively. The non-negative
quantities a and b tune the relative importance of the degrees of sharing
(in U) and of the degrees of typicality (in T) in the objective function.
These two sources of information are not exclusive because they jointly allow
for a thorough analysis of the cluster structure. The matrix T helps to
detect outliers. Generally speaking, an observation can be considered an
outlier when all its degrees of typicality are low. In addition, the fuzzy
partition of the observations can be assessed by looking at U. The non-
negative parameters a and b tune the importance of the degrees of sharing
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and typicality in the clustering process. The higher a (b) is, the more relevant
is the emphasis of the fuzzy (possibilistic) approach. In fact, if a is high,

then the centroids (in H̃) mainly depend on the degrees in U. Similarly, if
b is high, the degrees in T remarkably influence the centroids. Therefore, in
order to reduce the effect of outliers, a larger value of b can be set. Coincident
clusters could occur for large values of b, but the problem can easily be solved
by increasing a. In other words, the simultaneous use of FkM-F and PkM-F
allows to eliminate the drawbacks of the two methods. On the one hand,
the FkM-F part of the cost function avoids (for sufficiently large values of
a) that the centroids are coincident and therefore the degrees of typicality
have a practical meaning. On the other hand, the PkM-F part mitigates
the influence of the outliers in the obtained partition. In case of particularly
large values of a and b, it might be convenient to select a high value for
γ in (12) to avoid that the second term of (13) plays a negligible role in
the clustering process. For a deeper insight into the properties of clustering
methods jointly based on the fuzzy and possibilistic approaches the interested
reader may refer to [35, 36].

Remark 2. A lot of existing clustering methods can be obtained as special
cases of PFkM-F. If b = 0 and γg = 0, g = 1, . . . , k, then we obtain FkM-F
[22], while for a = 0 the problem coincides with PkM-F. When PFkM-F is

run using non-fuzzy data (i.e., X̃ ≡ X with C1 = C2 = X and L = R = 0
being 0 the matrix of order (n × p) with zero elements), then the PFkM-

F reduces to the procedure proposed in [36]. If X̃ ≡ X, then the PFkM-F
coincides with the standard fuzzy k-means (FkM) algorithm [37] when b = 0
and γg = 0, g = 1, . . . , k, and with the standard possibilistic k-means (PkM)
algorithm [33] when a = 0.

In PFkM-F the number of clusters k and the parameters (m, η, a, b) must
be chosen. In Section 5 we focus on this problem by proposing a heuristic
procedure for providing good values for these quantities.

4.1. Iterative algorithm

The optimal solution of PFkM-F can be found by minimizing the con-
strained optimization problem in (13)-(17) with respect to every group of
parameters. In order to obtain the optimal fuzzy membership degree matrix
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U, we consider the Lagrangian function

L(U,T, H̃, w, λ) =
n∑

i=1

k∑
g=1

(
aum

ig + btηig
)
d2w

(
x̃i, h̃g

)
(18)

+
k∑

g=1

γg

n∑
i=1

(1− tig)
η − λ

(
k∑

g=1

uig − 1

)
.

We compute the partial derivatives of (18) with respect to uig and λ and we
set them equal to 0:

ϑL(U,T, H̃, w, λ)

ϑuig

= 0 ⇔ mum−1
ig ad2w

(
x̃i, h̃g

)
− λ = 0, (19)

ϑL(U,T, H̃, w, λ)

ϑλ
= 0 ⇔

k∑
g=1

uig − 1 = 0. (20)

By the usual calculations, we then get

uig =
1

k∑
g′=1

(
d2w(x̃i,h̃g)
d2w(x̃i,h̃g′)

) 1
m−1

, i = 1, . . . , n, g = 1, . . . , k. (21)

The possibilistic degree matrix T is obtained by considering the partial
derivative of (13) with respect to tig

ϑL(U,T, H̃, w, λ)

ϑtig
= 0 ⇔ ηtη−1ig bd2w

(
x̃i, h̃g

)
− ηγg (1− tig)

η−1 = 0. (22)

Hence, after a little algebra, we obtain

tig =
1

1 +

(
d2w(x̃i,h̃g)

γg

)1/(η−1) , i = 1, . . . , n, g = 1, . . . , k. (23)

By considering the partial derivatives of (13) with respect to hC1
g , hC2

g , hL
g

and hR
g and setting them to 0, the centroid matrix is given by

hC1
g =

n∑
i=1

(
aum

ig + btηig
)
c1i

n∑
i=1

(
aum

ig + btηig
) , g = 1, . . . , k, (24)
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hC2
g =

n∑
i=1

(
aum

ig + btηig
)
c2i

n∑
i=1

(
aum

ig + btηig
) , g = 1, . . . , k, (25)

hL
g =

n∑
i=1

(
aum

ig + btηig
)
li

n∑
i=1

(
aum

ig + btηig
) , g = 1, . . . , k, (26)

hR
g =

n∑
i=1

(
aum

ig + btηig
)
ri

n∑
i=1

(
aum

ig + btηig
) , g = 1, . . . , k. (27)

Finally, to update the weight, first we note that the second term of (13) does
not depend on w and, thus, can be ignored. Moreover, the loss function can
be rewritten as

w2

n∑
i=1

k∑
g=1

(
aum

ig + btηig
)
[d2

(
c1i,h

C1
g

)
+ d2

(
c2i,h
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(28) is a parabola with respect to w. Since the parabola opens up, the
minimizer is given by its vertex and, hence, we obtain
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.(29)

If w < 0.5, then we set w = 0.5. This can be explained by noting that, for
values of w ≥ 0.5, the parabola is a monotonically increasing function of w.
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At every update the loss function to minimize decreases. These updates
are repeated upon, after updating all the parameter entities, the value of the
loss function decreases less than a specified threshold (e.g. 10−5) from the
previous function value. The algorithm is summarized below.

Algorithm PFkM-F (X̃, a, b, m, η, k)

Step 0a. Generate randomly a feasible membership degree matrix U.

Step 0b. Generate randomly a feasible possibilistic degree matrix T.

Step 0c. Compute the centroid matrix H̃ according to (24)-(27).

Step 1. Update the weight w according to (29). If w < 0.5, then w = 0.5.

Step 2. Update the centroid matrix H̃ according to (24)-(27).

Step 3. Update the fuzzy membership degree matrix U according to (21).

Step 4. Update the possibilistic membership degree matrix T according to
(23).

Step 5. Check convergence. If the convergence condition is not satisfied, go
to Step 1.

Remark 3. When the variables have different units of measurement, it is
convenient to run PFkM-F on preprocessed data. Following [22] we suggest
to standardize the left and right centers using the mean and the standard de-
viation of the (left and right) centers of each variable. Then the left and right
spreads are divided by the standard deviation of the corresponding centers.

5. Selection of PFkM-F parameters

In this section we propose a selection procedure for choosing the number
of clusters k and the values of the parameters m, η, a and b.
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5.1. Generalized Xie and Beni index

In order to determine good choices for the PFkM-F parameters, a new
cluster validity index for the fuzzy and possibilistic framework is introduced.
The starting point is the well-known XB index [38] defined as

XB =

n∑
i=1

k∑
g=1

u2
igd

2 (xi,hg)

n min
g,g′(g �=g′)

d2 (hg,hg′)
. (30)

The optimal number of clusters k is the value that minimizes XB.
In the possibilistic framework, XB could be derived in a straightforward

way by substituting uig with tig. Nonetheless, XB loses its validity because
the row-wise sum of the tig’s is no longer constrained to be equal to one.
In order to solve this problem, Yang and Wu [39] normalize the degrees of
typicality as tNig =

tig
k∑

g′=1

tig′
, i = 1, . . . , n, g = 1, . . . , k. Rescaling the degrees of

typicality is justified by the attempt to discard solutions with a large number
of small degrees of typicality. In these cases, the XB index may take a low
value because the numerator is close to zero, but the corresponding solution
may have no practical meaning. Starting from (30), we develop a generalized
version of XB for PFkM-F. The new index, called XBPF−F , is

XBPF−F =

n∑
i=1

k∑
g=1

(u2
ig + tN2

ig )d2w

(
x̃i, h̃g

)
n min

g,g′(g �=g′)
d2w

(
h̃g, h̃g′

) . (31)

The idea of (31) is similar to the one of XB. The numerator measures
the deviation of the observations from the centroids. Such a deviation is
weighted by the squared degrees of sharing and (normalized) typicality. The
denominator gives the level of separation of the partition expressed in terms
of the minimum dissimilarity among the centroids. It is clear that a partition
is good when the XBPF−F index takes a low value.

Remark 4. In the XBPF−F index the powers of the degrees of sharing and
typicality are set equal to two, although in PFkM-F their exponents are m
and η, respectively. This choice is also made in [38] and can be justified by

a practical reason. Given U, T and H̃, we are interested in an index that
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does not vary for different values of m and η. For the same practical reason
we do not weigh U and T by a and b, respectively.

Remark 5. In the literature, a large number of cluster validity indexes in
the fuzzy and/or possibilistic approach have been proposed and, of course,
these could be applied in PFkM-F. For instance, another widely used index
is the Fuzzy Silhouette [40], which is a generalization of the standard Silhou-
ette index [41] in the fuzzy framework. The reason why we decided to use
XBPF−F is that its denominator is proportional to the minimum dissimilar-
ity between centroids. If coincident cluster occurs, then XBPF−F −→ +∞
and, therefore, the solution is automatically discarded. This property does
not necessarily hold for other indexes, such as the Fuzzy Silhouette.

5.2. Choice of k, m, η, a and b

We suggest to select (k,m, η, a, b) in such a way to minimize XBPF−F .
In doing so, we should ignore two kinds of solutions having no practical
meaning. The first one is when coincident clusters occur. However, we
saw in Remark 5 that this goal is always achieved. The latter situation is
when a lot of degrees of typicality are low. This is the case in which the
possibilistic clustering struggles to determine the cluster structure because a
high percentage of observations is considered as outliers. On the basis of our
preliminary analyses, we observed that valuable solutions are usually found
when the values of a and b are not “too far”. In fact, if a is much bigger than
b then the results may be poor because the centroids are strongly affected by
the outliers. Conversely, if b is much bigger than a, then the performance of
PFkM-F can be unsatisfactory because the degrees of sharing have limited
importance. We are going to clarify all of these points in the next section
where the results of a simulation experiment are discussed.

6. Applications

In Section 6.1 the results of a simulation study carried out in order to
study the behavior of PFkM-F also in comparison with its more closely re-
lated competitors, i.e., those based on the fuzzy and/or possibilistic approach,
are discussed. In particular, we studied how well PFkM-F recovered the clus-
ter structure of the data and estimated the centroids. The performance of
PFkM-F was compared with FkM-F, PkM-F and C-PkM-F. Moreover, we
evaluated the performance of the selection procedure proposed in Section 5.2.
In Section 6.2, PFkM-F was applied to two real-case studies.
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6.1. Simulated data
Simulated LR fuzzy data sets were randomly generated with a structure of

k = 2 and 3 clusters of equal size and p = 2 and 8 fuzzy variables as described
below. The number of observations was set equal to n = 60, 120, 180 and 240.
The clusters had equal sizes and were distinguished with respect to either the
centers (case cen) or the spreads (case spr). In the cen case, the observations
belonging to the first cluster had left and right centers randomly generated
from Unif[0, 1] and Unif[1, 2], respectively, whereas both the left and the right
spreads from Unif[0, 1]. The observations belonging to the second cluster were
such that their spreads were randomly generated from Unif[0, 1], whereas the
left and right centers from Unif[0, 1] + sep and Unif[1, 2] + sep, respectively.
When k = 3, the third cluster was characterized by observations with left and
right centers randomly generated from Unif[0, 1]+2sep and Unif[1, 2]+2sep,
respectively, and left and right spreads from Unif[0, 1]. Hence, in the cen
case, the data generation process for the spreads was the same for all the
clusters. The opposite comment holds for the spr case. In fact, the left
and right centers of the clusters were randomly generated from Unif[0, 1] and
Unif[1, 2], respectively. To distinguish the clusters, the spreads of the first
cluster were randomly drawn from Unif[0, 1], those of the second clusters from
Unif[0, 1]+sep and, when k = 3, those of the third one from Unif[0, 1]+2sep.
The parameter sep took two values tuning the level of separation of the
clusters. We had partially separated clusters when sep = 1 (case part)
and well separated clusters when sep = 2 (case well). The data sets were
contaminated by the presence of some outliers. We considered two cases
(low and high) corresponding to a percentage of outliers equal to 10% and
30%, respectively. The outliers had anomalous centers and/or spreads. In
particular, for each data set, 1/3 when k = 2 or 1/6 when k = 3 of the outliers
had the left and right centers randomly generated from Unif[0, 1]+sep/2 and
Unif[1, 2]+ sep/2, respectively, and the spreads from Unif[0, 1]+ sep/2. Such
outliers were equally far from Clusters 1 and 2. When k = 3, 1/6 of the
outliers were equally far from Clusters 2 and 3. They had the left and right
centers randomly generated from Unif[0, 1] + 3sep/2 and Unif[1, 2] + 3sep/2,
respectively, and the spreads from Unif[0, 1]+3sep/2. Moreover, another 1/3
of the outliers had abnormal values for the centers, since these were randomly
generated from Unif[0, 1] − 2sep (left centers) and Unif[1, 2] − 2sep (right
centers) and both the spreads from Unif[0, 1]. Finally, the last 1/3 of the
outliers had the left and right centers randomly generated from Unif[0, 1] and
Unif[1, 2], respectively, and the left and right centers both from Unif[0, 1] +
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Figure 3: Example of randomly generated data set (case sep = 2, n = 60, low, cen). For
each observation, reported are the supports of the two fuzzy variables. The black, red and
blue rectangles refer to the outliers and to the observations belonging to Cluster 1 and 2,
respectively.

2sep, from which it is clear that their spreads were abnormal. For every
level of every design variable, 10 data sets were randomly generated. An
example of randomly generated data set is reported in Figure 3. Hence, 2
(numbers of clusters, k = 2, 3) × 2 (numbers of variables, p = 2, 8) × 4
(data sizes, n = 60, 120, 180, 240) × 2 (cluster structures, cen or spr) ×
2 (levels of separation between clusters, sep = 1, 2) × 2 (percentages of
contamination, low or high) × 10 (replications) = 1280 LR fuzzy data sets
were randomly generated during the simulation experiment. All these data
sets were analyzed by PFkM-F, FkM-F, PkM-F and C-PkM-F setting k = 2
or k = 3 according to the known in advance number of clusters. Five random
starts were used for PFkM-F and FkM-F. The optimal solution of FkM-F
was the only one (rational) starting point for the PkM-F and C-PkM-F
algorithms.

Except for k, the parameters of the PFkM-F algorithm were determined
using the selection procedure proposed in Section 5.2. The possible values of
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m and η ranged from 1.5 to 2.5 with step equal to 0.25. The parameters a
and b took scores from 0.5 to 5 with step equal to 0.5. In order to guarantee
that the values of a and b were not “too far”, we imposed that the difference
between a and b in absolute value was not higher than 2. For instance, if
a = 1.5, then the possible values of b were {0.5, 1, 1.5, 2, 2.5, 3, 3.5}. More-
over, in order to avoid solutions with a large number of observations having
low degrees of typicality, i.e., observations recognized as outliers, we consid-
ered the following rule. We skipped solutions, i.e., we did not compute the
XBPF−F index, when the clustering method recognized at least one half of
the observations as outliers. The same grid search was considered for the se-
lection of m in FkM-F and of η in PkM-F and C-PkF-F. The optimal values
of m for FkM-F and η for PkM-F were determined in such a way to minimize
XBPF−F . This was applied setting a = 1 and b = 0 for FkM-F and a = 0
and b = 1 for PkM-F. Note that for PkM-F and C-PkM-F we adopted the
previously described rule for skipping meaningless solutions. Nonetheless, if,
for a certain data set, feasible PkM-F or C-PkM-F solutions were not found,
then the rule was ignored.

6.1.1. Results

First of all, the selection procedure for PFkM-F proposed in Section 5.2
gave the following average values computed using all the 1280 data sets:
m = 1.63, η = 1.72, a = 3.16 and b = 1.69. Thus, the values of m and η were
almost equal on average, whereas the selection procedure tended to choose a
value of a higher than the one of b. For FkM-F the average value of m was
1.67, for C-PkM-F and PkM-F the ones of η were 1.99 and 2.32, respectively.

In order to evaluate how the clustering methods worked, we observed their
ability to estimate properly the centroids and to assign the non-outliers and
the outliers to the clusters with high or low degrees of sharing or typicality,
respectively. To assess how well every method recovered the true centroids we
computed the REC measure based on the sum of the squared dissimilarities
of the centers and the spreads between all the true and estimated centroids:

REC =
k∑

g=1

[
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g
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R
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)]

,(32)

where the superscript ‘T ’ refers to the matrices of the centers and the spreads
for the true centroids determined using the non-outliers, i.e., computing the
average values of the observations belonging to every cluster. To analyze the
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Figure 4: Median values and 10th and 90th percentiles (within parentheses) of REC and
SEP .

level of separation between centroids, we computed the SEP measure, based
on the minimum sum of the squared dissimilarities of the centers and the
spreads between pairs of centroids:

SEP = min
g,g′(g �=g′)

[
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(
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g ,h

R
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.(33)

Figure 4 displays the median values and the 10th and 90th percentiles of (32)
and (33) for the four methods. To investigate how well the four methods
assigned the observations to the clusters we studied the percentage of non-
outliers assigned to the correct cluster in the hard clustering sense, i.e., with
degrees of sharing or typicality higher than 0.5. With regard to the non-
outliers we also checked the degrees of sharing or typicality to the correct
and wrong cluster. Finally, we analyzed the maximal degree of the outliers.
The median values and the 10th and 90th percentiles of the previous quantities
are reported in Figure 5.

By inspecting Figure 4 some comparative assessments about how the
methods recovered the prototypes can be given. The methods based on the
fuzzy approach performed better than those based on the possibilistic one
(REC values reported in the left side of Figure 4). This can be motivated by
observing the median SEP values (right side of Figure 4) from which we can
see the tendency of the possibilistic methods to produce coincident clusters.
Note that the percentage of occurrences of trivial solutions was 72.27% and
79.61% for C-PkM-F and PkM-F, respectively. A good compromise was
achieved by PFkM-F that worked well by exploiting the potentialities of
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Figure 5: Median values and 10th and 90th percentiles (within parentheses) of percentages
of non-outliers assigned (hard clustering sense) to the correct cluster, degrees of non-
outliers assigned to the correct and wrong cluster and maximal degrees of outliers.

the possibilistic and fuzzy approaches, namely, it estimated the prototypes
reasonably well and avoided coincident clusters (no trivial PFkM-F solutions
were registered during the entire simulation study).

By inspecting Figure 5, we can see that the fuzzy membership degree
information (the matrices U from FkM-F and PFkM-F) was more insightful
than the possibilistic membership degree information (the matrices T from
C-PkM-F, PkM-F and PFkM-F) with respect to the non-outliers, but was
not helpful when dealing with contaminated data. In fact, non-outliers were
almost always assigned to the correct cluster (top left side of Figure 5) with
high (median equal to 0.97) fuzzy membership degrees (top right side of
Figure 5) by applying FkM-F and PFkM-F (considering U). A good per-
formance was also observed for PkM-F. However, by looking at the low and
left side of the figure, we can observe that PkM-F also tended to give high
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degrees of typicality to the wrong cluster. This occurred because PkM-F
frequently produced coincident clusters and, hence, high degrees of typical-
ity to all the clusters. The fuzzy membership degrees were not informative
to recognize the outliers (bottom right side of Figure 5). In fact, by con-
sidering the fuzzy membership degree matrix U from FkM-F, we could not
assess whether outliers were present in the data. This was not the case when
we considered the possibilistic membership degrees. In fact, C-PkM-F and
PkM-F assigned the outliers to the clusters with median degrees of typicality
lower than 0.5. The above comments on fuzzy and possibilistic membership
degrees jointly hold for PFkM-F. This allows us to highlight the complemen-
tary information provided by U and T. More specifically, on the one hand,
the degrees of typicality (in T) allowed us to properly discover the presence
of outliers. On the other hand, the degrees of sharing (in U) allowed us to
properly discover the fuzzy cluster structure.

6.1.2. Computational issues

We investigated some computational issues related to the PFkM-F algo-
rithm for fixed values of k, a, b, m and η (without taking into account the
computational time of the parameter selection procedure proposed in Section
5.2). The computational complexity of PFkM-F has the same order of mag-
nitude as FkM and, in particular, it is linear with respect to the number of
observations, O(n). We studied it in practice together with the tendency of
the algorithm to hit local optima. The former point was analyzed by observ-
ing the computation time in seconds. Note that the simulation study was
carried out on a personal computer with 2.80 GHz processor and 16.00 GB
RAM and the convergence criterion was 10−5. The risk of local optima was
assessed by recording, for each data set, the percentage of times in which the
function value was less than 0.1% bigger than that of the purported global
optimum (PGO). The PGO was defined as the best estimate of the global
optimum, i.e., for each data set, the best solution out of five runs of the
PFkM-F. The results concerning computation time and risk of local optima
referred to the runs of PFkM-F setting the parameters according to the selec-
tion procedure of Section 5.2. The average computation time of the PFkM-F
algorithm was 0.39s. It mainly depended on the number of observations (the
average computation times were equal to 0.14s and 0.62s when n = 60 and
n = 240, respectively), the number of clusters (0.24s when k = 2 and 0.54s
when k = 3), the number of variables (0.26s when p = 2 and 0.51s when
p = 8) and the percentage of outliers (0.26s for the low level of contami-
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nation and 0.51s for the high one). The registered computation times were
almost always lower than 1.00s (93.84% of times) and the maximum one was
lower than 10.00s.

The average percentage of times in which the PGO was attained was
59.97%. We observed that the PFkM-F algorithm was more prone to hit
the PGO when k = 2, when the clusters were distinguished by the spreads
(spr case) and when the level of contamination was low (low case): in such
cases the percentages of attaining the PGO were 70.28%, 72.06% and 73.19%,
respectively. Therefore, more than one random start is suggested to reduce
the risk of local optima. In particular, the use of five random starts appears
to be appropriate.

6.2. Real data

6.2.1. Sensory profiling Gamonedo cheese data

The first application to real data was an example in sensory analysis.
The quality of a specific kind of cheese from Asturias (Spain), named Ga-
monedo blue cheese, has been investigated by the LILA institute for obtaining
the Protected Designation of Origin (PDO) [42]. This was done by taking
into account the subjective perceptions of experts about n = 42 Gamonedo
cheeses made by different producers with respect to p = 11 characteristics:
shape, rind, texture aspect, smell intensity, smell quality, texture hardness,
crispness, flavour intensity, flavour quality, aftertaste, global quality. In par-
ticular, for each cheese the expert was invited to express her/his perception
using a graduate scale ranging from 0% (lowest quality) to 100% (highest
quality). We believed that these perceptions did not allow a precise repre-
sentation. Hence, according to the ontic treatment, they were managed by
fuzzy data seen as whole entities. Specifically, the perception of each char-
acteristic was represented by means of a trapezoidal fuzzy number whose
0-level was the set of values that were compatible with the opinion of the
taster at some extent and the 1-level was the set of values that were fully
compatible with her/his opinion. Finally, the trapezoidal fuzzy number was
obtained by linearly interpolating these two levels. The assessments made
by one of the experts were analyzed by PFkM-F 1. The optimal parameters
were found in connection with the minimum of XBPF−F (see, Figure 6). We
got k = 2, m = 1.5, η = 2, a = 3 and b = 1.

1The data are available upon request.
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Figure 6: Values of XBPF−F for number of cluster k from 2 to 6, related to the sensory
profiling Gamonedo cheese data.

In order to visualize the results, in Figure 7 we displayed the cheeses and
the centroids onto the plane found by applying Principal Component Anal-
ysis for fuzzy data [43]. First of all it was interesting to discover that the
first component (x-axis) was mainly related to smell intensity, smell qual-
ity, flavour intensity, flavour quality, aftertaste and global quality, hence this
component reflected the smell and taste likings, closely related to the global
quality. Component 2 (y-axis) depended on shape, rind and texture aspect
and, thus, was interpreted as the sight liking. By observing the centroids, the
two clusters distinguished ‘high quality Gamonedo cheeses’ (Cluster 1) and
‘low quality Gamonedo cheeses’ (Cluster 2). In the hard clustering sense, the
fuzzy partition was composed by clusters of size 23 (Cluster 1) and 19 (Clus-
ter 2). Some cheeses (denoted by dashed line rectangles) shared their fuzzy
membership degrees between the two clusters. In fact, they were assigned
to Cluster 1 with membership degrees lower than 0.70. Hence, they had in-
termediate values between the two clusters. To assess how far these cheeses
were from the centroids, the degrees of typicality in the matrix T were stud-
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Figure 7: Plot of the first two components of the sensory profiling Gamonedo cheese data.
The blue rectangles refer to cheeses assigned to Cluster 1 and the green ones to those
assigned to Cluster 2; the solid or dashed lines denote cheeses assigned to the clusters
with membership degree ≥ 0.70 or in the interval in the interval (0.50, 0.70), respectively;
the dotted line denotes the anomalous cheeses characterized by low maximal degrees of
typicality; the bold solid line denotes the centroids.

ied. Among others, an interesting finding concerned the cheese represented
by a dot line rectangle. It was clearly assigned to Cluster 2 (with degree of
sharing equal to 0.88), but the corresponding degree of typicality was very
low (0.16). This showed that the involved cheese was very far from both the
clusters. It was assigned to Cluster 2 because it was extremely far from the
centroid of Cluster 1. On the basis of the cluster interpretation, we concluded
that such a cheese was an outlier because it was definitely not appreciated
by the expert, i.e. its scores were noticeably lower than those pertaining to
the other cheeses.

6.2.2. Temperature data

The data referred to the monthly temperatures in Celsius degrees of a
set of geographical units in Italy. We assumed that the temperature of a
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Figure 8: Values of XBPF−F for number of cluster k from 2 to 6, related to the monthly
temperature data.

certain geographical unit is an intrinsically fuzzy datum due to size of the
area. Thus, the imprecision of the data was considered in the ontic sense. For
every geographical unit (n = 162) and every month (p = 12 the information
was represented by a triangular fuzzy number2.

The use of the PFkM-F clustering algorithm aimed at discovering some
common patterns among the geographical units and the existence of anoma-
lous geographical units. The optimal parameters were found according to
XBPF−F (Figure 8). We got k = 3, m = 1.75, η = 2, a = 4.5 and b = 2.5.

The three clusters highlighted the presence of three levels of temperature:
hot, warm and cold. In the hard clustering sense, according to the degrees
of sharing in U, such a fuzzy partition was composed by clusters of size 71,
76 and 13, respectively. A summary of the PFkM-F results is displayed in
Figure 9 where we plotted the geographical units and the centroids onto the
planes spanned by the first two principal components [43].

2The data are available upon request.
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Figure 9: Plot of the first two components of the temperature data. The green rectangles
refer to geographical units assigned to Cluster 1, the orange ones to those assigned to
Cluster 2 and the blue ones to those assigned to Cluster 3; the solid or dashed lines denote
geographical units assigned to the clusters with membership degrees ≥ 0.70 or in the
interval (0.50, 0.70), respectively; the red dotted rectangles denote geographical units not
assigned to the clusters in the hard clustering sense (degrees of sharing < 0.50); the green
or blue dotted lines denote anomalous geographical units assigned to the clusters (degrees
of sharing ≥ 0.50) and characterized by low maximal degrees of typicality; the bold solid
line denotes the centroids.

The locations of the centroids was consistent with the cluster interpreta-
tion taking into account that Components 1 and 2 reflected the wintertime
and summertime temperatures, respectively. From the top right side to the
bottom left side the centroids of Clusters 1 (green solid line rectangle), 2 (or-
ange solid line rectangle) and 3 (blue solid line rectangle) are ordered. Apart
from some exceptions, the first two clusters discriminated the geographi-
cal units with respect to their positions. In detail, Clusters 1 and 2 were
composed by geographical units from Southern and Northern-Central and
Italy, respectively. Instead, mountain geographical units belonged to Cluster
3. Therefore, this cluster of smaller size had the merit of highlighting the
unique features of the geographical units characterized by high altitude.
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The majority of the geographical units were assigned to the clusters with
high (≥ 0.70) degrees of sharing (solid line rectangles of different colors ac-
cording to the cluster memberships). A small percentage (about 13%), de-
noted by dashed line rectangles, was assigned to the clusters with membership
degrees lower than 0.70 (and higher than 0.50). Only two geographical units,
Firenzuola and Monte Calamita from Tuscany (represented by black solid
line rectangles), were not assigned to the clusters with membership degrees
greater than 0.50. This occurred because these units had intermediate val-
ues between two clusters. In particular, Firenzuola shared the features of
Clusters 1 and 2 and Monte Calamita those of Clusters 2 and 3.

In order to detect anomalous geographical units, we inspected the typ-
icality matrix T. We discovered at least two outliers (Plateau Rosa and
Lampedusa) displayed by dotted line rectangles. The temperatures of these
geographical units were extremely far from those of all the centroids. Plateau
Rosa (rectangle in the bottom left side) was assigned to Cluster 3 with de-
gree of sharing equal to 0.76, but the corresponding degree of typicality is
0.01. It is a mountain geographical units located in front of the Matterhorn
mountain with altitude higher than 3000 meters. The registered tempera-
tures were much colder than those of the centroid of Cluster 3. The opposite
comment held for Lampedusa, the southernmost part of Italy, with respect
to Cluster 1 (degrees of sharing and typicality to Cluster 1 equal to 0.83 and
0.09, respectively). The associated rectangle (in the top right of the figure)
had the center farthest to the right. In fact, Lampedusa had extremely hot
temperatures, especially in the wintertime.

7. Concluding remarks

In this paper we have developed some robust clustering methods for non-
precise information. First we have proposed a fully possibilistic version of
the k-means clustering method for LR fuzzy data (PkM-F) where, differently
from the fuzzy approach, the sum of the membership degrees of an obser-
vation to all the clusters is no longer required to be equal to one. In this
respect, the possibilistic membership degrees can be interpreted as degrees
of typicality, rather than as degrees of sharing as is the case for the fuzzy ap-
proach. Although PkM-F should be not sensitive to outliers, it has a major
limitation, namely coincident clusters may occur. To overcome this problem,
a second approach has been proposed. It consists in hybridizing the fuzzy
and possibilistic approaches to clustering, exploiting the benefits of both the
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approaches (i.e., to extract information about the fuzzy partition and the
typicality of the observations) and avoiding their limitations (i.e., disruptive
effect of outliers and coincident cluster problem). We have referred to this
method as possibilistic fuzzy k-means clustering method for LR fuzzy data
(PFkM-F). Some parameters must be set before running the PFkM-F. A
selection procedure for choosing good values for these parameters has been
proposed. It is based on a novel cluster validity index for hybrid clustering
methods such as PFkM-F. We have checked the adequacy of PFkM-F by
means of simulation and real-case studies. This has been done by comparing
the performance of PFkM-F with the ones of other related clustering meth-
ods for fuzzy data. We have found that PFkM-F worked in a satisfactory
way also in comparison with its competitors.

On the basis of these good results, we indicate at least three perspectives
of research: to speed up the selection procedure for the PFkM-F parameters
by using, for instance, a line search strategy or a Pareto analysis; to generalize
to the full LR family the possibilistic clustering method proposed in [23]; to
develop biclustering methods for non-fuzzy and/or fuzzy data according to
the fuzzy and possibilistic approaches.
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