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Abstract

Interval Pairwise Comparison Matrices have been widely used to account for uncertain statements concerning the

preferences of decision makers. Several approaches have been proposed in the literature, such as multiplicative

and fuzzy interval matrices. In this paper, we propose a general unified approach to Interval Pairwise Comparison

Matrices, based on Abelian linearly ordered groups. In this framework, we generalize some consistency conditions

provided for multiplicative and/or fuzzy interval pairwise comparison matrices and provide inclusion relations be-

tween them. Then, we provide a concept of distance between intervals that, together with a notion of mean defined

over real continuous Abelian linearly ordered groups, allows us to provide a consistency index and an indeterminacy

index. In this way, by means of suitable isomorphisms between Abelian linearly ordered groups, we will be able to

compare the inconsistency and the indeterminacy of different kinds of Interval Pairwise Comparison Matrices, e.g.

multiplicative, additive, and fuzzy, on a unique Cartesian coordinate system..

Keywords: Multi-criteria decision making; interval pairwise comparison matrix; Abelian linearly ordered group;

consistency; consistency index; indeterminacy index.

1 Introduction

As their name suggests, Pairwise Comparison Matrices (PCMs) have been a long standing technique for

comparing alternatives and their role has been pivotal in the development of modern decision making

methods. In accordance with decision theory, in this paper we shall consider a finite non-empty set of

n entities (e.g. criteria or alternatives) X = {x1, . . . , xn}, and the object of our investigation is the set

of comparisons between them with respect to one of their properties. That is, we are interested in the

subjective estimations aij ∀i, j ∈ {1, . . . , n}, where aij is a numerical representation of the intensity of

preference of xi over xj .

With respect to the values that aij can assume and their interpretation, it is fundamental to be aware that

various proposals have been presented, studied, and applied in the literature to solve real-world problems.

The foremost type of representation of valued preferences, at least with respect to the number of real-world

applications is probably the multiplicative representation, used among others by Saaty in the theory of
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the Analytic Hierarchy Process (AHP). In this sense, pairwise comparisons are expressed as positive real

numbers, aij ∈]0,+∞[ satisfying a condition of multiplicative reciprocity, aij · aji = 1. We shall note that

the AHP [37] is not the only method using this scheme for pairwise comparisons. For instance, proponents

of Multi Attribute Value Theory (MAVT) such as Keeney and Raiffa [24] and Belton and Stewart [2]

advocate the use of pairwise comparisons to estimate the ratios between weights of criteria when the value

function is additive. Hereafter, representations of preference of this kind will be called multiplicative.

Reciprocal preference relations, whose origins can be traced back at least to a study by Zermelo [53], assume

that intensities of preferences are represented on the open unit interval; that is, aij ∈]0, 1[. Similarly

to the multiplicative case, reciprocal preference relations obey a condition of reciprocity, in this case

aij +aji = 1. Interestingly, such a representation was studied, among others, also by Luce and Suppes [31]

under the name of ‘probabilistic preference relations’ and has been widely popularized within the fuzzy

sets community under the name of ‘fuzzy preference relations’. Instances of influential studies on these

mathematical structures under the fuzzy lens have been offered by Tanino [40], Herrera-Viedma et al. [21]

and Kacprzyk [23]. For sake of simplicity, and because the unit interval recalls the idea of membership

function, we shall refer to this case as the fuzzy case in the rest of this manuscript.

The third representation considered in this paper shall be called additive due to the fact that intensities

of preferences are expressed as real numbers, aij ∈] −∞,+∞[ and comply with a condition of additive

reciprocity, i.e. aij + aji = 0. We shall note that this representation coincides with the Skew-symmetric

additive representation of utilities proposed by Fishburn [17] and with the representation used by some

decision analysis methodologies such as REMBRANDT [35].

All in all, it emerges a picture where the technique of pairwise comparisons plays an important role within

decision theory. Moreover, in spite of their different formulations and interpretations, it was formalized

that different representations share the same algebraic structure [8], based on Abelian linearly ordered

groups, i.e. commutative groups equipped with an ordering relation. Hence, to derive results which

are general enough to pertain to each of these representations of preferences, we will focus on this more

general algebraic representation and exploit the full potential of group theory. Several authors have already

adopted this approach based on Abelian linearly ordered groups (e.g. [22, 25, 36, 47]). Nevertheless, in

spite of the general formulation of our results, examples involving specific representations of preferences

will be used in the rest of this paper.

More specifically, within this framework, we shall investigate the case of Interval Pairwise Comparisons

Matrices (IPCMs) according to which comparison values are expressed as intervals ãij = [a−ij , a
+
ij ] ⊂ R

instead of real numbers. The approach with intervals has been widely used to account for uncertain

statements concerning the preferences of a decision maker (e.g. [26, 54]) and studied separately in the

case of multiplicative preference relations [38, 39] and in the case of fuzzy preference relations [49], just to

cite few examples. In this paper, we shall generalize it and derive broader results. More specifically, we

will generalize interval arithmetic and propose a concept of metric on intervals when these are subsets of

Abelian linearly ordered groups. This will be instrumental to formulate the concept of IPCM and study,

in a more general context, the notions of reciprocity, consistency, and indeterminacy. Having done this,

we will propose and justify a consistency index which, in concert with an indeterminacy index, can be

used to evaluate the acceptability of IPCMs.

There are further papers in the literature that take into consideration consistency and indeterminacy:

Wang [43] considered multiplicative IPCMs and proposed a geometric mean based uncertainty index to

capture the inconsistency in the original multiplicative PCM; Liu [28] measured the consistency of a

multiplicative IPCM by computing Saaty’s consistency index [37] of one or two associated PCMs; Li et

al. [27] and Wang and Chen [44] proposed as indeterminacy index the geometric mean of the ratios
a+ij
a−ij

for both multiplicative and fuzzy IPCMs. However, no paper proposed a consistency index to be

computed directly from the IPCM, i.e. without considering associated PCMs, and no paper proposes

both a general consistency index and a general indeterminacy index suitable for each kind of IPCM (e.g.

additive, multiplicative, and fuzzy).
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The paper is organized as follows. Section 2 provides the necessary notions and notation for the real-valued

case. Next, in Section 3, we discuss the idea of intervals defined over a special type of group structure.

By drawing from the previous two sections, in Section 4 we present a general notion of interval pairwise

comparison matrix which has the merit of unifying different approaches under the same umbrella. This

will give us the possibility, in Section 5, to discuss reciprocity and consistency conditions in a more general

setting. In Sections 6 and 7, we introduce a consistency and an indeterminacy index, respectively. These

indices can be used in concert to evaluate the acceptability of preferences. Section 8 draws some conclusions

and proposes directions for future work. Finally, Appendix contains the proofs of the statements

2 Notation and preliminaries

In this section, we will provide notation and preliminaries which will be necessary in the rest of the paper.

2.1 Abelian linearly ordered groups

We start providing definitions and essential notation about Abelian linearly ordered groups in order to

define Pairwise Comparison Matrices (Subsection 2.2) and Interval Pairwise Comparison Matrices (Sections

4 and 5); for further details the reader can refer to [8].

Definition 2.1. Let G be a non-empty set, � : G×G→ G a binary operation on G, ≤ a weak order on

G. Then, G = (G,�,≤) is an Abelian linearly ordered group, Alo-group for short, if (G,�) is an Abelian

group and

a ≤ b⇒ a� c ≤ b� c. (1)

Let us denote with e the identity with respect to �, a(−1) the inverse of a ∈ G with respect to � and ÷
the operation defined by a÷ b = a� b(−1) ∀a, b ∈ G. Then, we have [8]:

a(−1) = e÷a, (a�b)(−1) = a(−1)�b(−1), (a÷b)(−1) = b÷a, a ≥ e⇔ a(−1) ≤ e, a ≤ b⇔ b(−1) ≤ a(−1).

(2)

Furthermore, we can define the concept of (n)-natural-power.

Definition 2.2. [8] Let G = (G,�,≤) be an Alo-group and n ∈ N0. The (n)-natural-power a(n) of a ∈ G
is defined as follows:

a(n) =

{
e, if n = 0

a(n−1) � a, if n ≥ 1.

Let z ∈ Z; then the (z)-integer- power a(z) of a ∈ G is defined as follows [8]:

a(z) =

{
a(n), if z = n ∈ N0

(a(n))(−1) if z = −n, n ∈ N.
(3)

An isomorphism between two Alo-groups G = (G,�,≤) and H = (H, ∗,≤) is a bijection φ : G→ H that

is both a lattice isomorphism and a group isomorphism, that is:

a < b⇔ φ(a) < φ(b) and φ(a� b) = φ(a) ∗ φ(b); (4)

where < is the strict simple order defined by “a < b⇔ a ≤ b and a 6= b”.

2.1.1 G-norm and G-distance

By definition, an Alo-group G is a lattice ordered group [3]. Namely, there exists max{a, b}, for each

a, b ∈ G. Thus, the existence of the max value between two elements of G and the existence of the inverse

of each element of G allows us to formulate the notions of G-norm and G-distance, which are generalizations

to G of the usual concepts of norm and distance.
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Definition 2.3. [8] Let G = (G,�,≤) be an Alo-group. Then, the function:

|| · ||G : a ∈ G→ ||a||G = max{a, a(−1)} ∈ G (5)

is a G-norm, or a norm on G.

Proposition 2.1. [8] The G-norm satisfies the properties:

1. ||a||G = ||a(−1)||G;

2. a ≤ ||a||G;

3. ||a||G ≥ e;
4. ||a||G = e⇔ a = e;

5. ||a� b||G ≤ ||a||G � ||b||G .

Definition 2.4. [8] Let G = (G,�,≤) be an Alo-group. Then, the operation

d : (a, b) ∈ G×G→ d(a, b) ∈ G

is a G-metric or G-distance if:

1. d(a, b) ≥ e;
2. d(a, b) = e⇔ a = b;

3. d(a, b) = d(b, a);

4. d(a, b) ≤ d(a, c)� d(c, b).

Proposition 2.2. [8] Let G = (G,�,≤) be an Alo-group. Then, the operation

dG : (a, b) ∈ G×G→ dG(a, b) = ||a÷ b||G ∈ G (6)

is a G-distance.

Let φ be an isomorphism between G = (G,�,≤) and H = (H, ∗,≤), g1, g2 ∈ G and h1, h2 ∈ H; then,

Cavallo and D’Apuzzo [8] prove that:

dH(h1, h2) = φ(dG(φ−1(h1), φ−1(h2))), dG(g1, g2) = φ−1(dH(φ(g1), φ(g2))). (7)

2.1.2 G-mean in real continuous Alo-groups

An Alo-group G = (G,�,≤) is called continuous if the operation � is continuous [8], and real if G is a

subset of the real line R and ≤ is the weak order on G inherited from the usual order on R. From now

on, we will assume that G = (G,�,≤) is a real continuous Alo-group, with G an open interval. Under

these assumptions, the equation x(n) = a has a unique solution [8]; thus, it is reasonable to consider the

following notions of (n)-root and G-mean.

Definition 2.5. [8]For each n ∈ N and a ∈ G, the (n)-root of a, denoted by a( 1
n

), is the unique solution

of the equation x(n) = a, that is: (
a( 1

n
)
)(n)

= a.

Definition 2.6. [8] The G-mean mG(a1, a2, ..., an) of the elements a1, a2, ..., an of G is

mG(a1, a2, ..., an) =

{
a1 for n=1 ,

(
⊙n

i=1 ai)
(1/n) for n ≥ 2.

For each q = m
n ∈ Q, with m ∈ Z and n ∈ N, and for each a ∈ G, the (q)-rational-power a(q) is defined as

follows [14]:

a(q) = (a(m))( 1
n

). (8)

The following are examples of real continuous Alo-groups which will be relevant in the rest of the paper

(see [9, 14] for details):
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Multiplicative Alo-group. R+ = (R+, ·,≤), where R+ =]0,+∞[ and · is the usual multiplication on R.

Thus, the R+-mean operator is the geometric mean,

mR+ (a1, ..., an) =

(
n∏
i=1

ai

) 1
n

and the R+-distance between a and b is dR+(a, b) = max
{
a
b ,

b
a

}
.

Additive Alo-group. R = (R,+,≤), where R =] −∞,+∞[ and + is the usual addition on R. Thus, the

R-mean operator is the arithmetic mean,

mR(a1, ..., an) =

∑n
i=1 ai
n

and the R-distance between a and b is dR(a, b) = max{a− b, b− a} = |a− b|.
Fuzzy Alo-group. I = (I,⊗,≤), where I =]0, 1[ and ⊗ :]0, 1[2→]0, 1[ is the operation defined by

a⊗ b =
ab

ab+ (1− a)(1− b)
. (9)

Thus, the I-mean operator is given by the following function [14]:

mI(a1, ..., an) =
n
√∏n

i=1 ai
n
√∏n

i=1 ai + n
√∏n

i=1(1− ai)
. (10)

The operation ⊗ is the restriction to ]0, 1[2 of a widely known uninorm introduced by Yager and

Rybalov [52] and then studied by Fodor et al.[18]. For this Alo-group, the I-distance between a and

b is the following one:

dI(a, b) = max

{
a(1− b)

a(1− b) + (1− a)b
,

b(1− a)

b(1− a) + (1− b)a

}
.

It was proven that for each pair G = (G,�,≤) and H = (H, ∗,≤) of real continuous Alo-groups with G

and H open intervals, there exists an isomorphism between them [8]. For example, the function

h : x ∈]0,+∞[ 7→ x

1 + x
∈]0, 1[ (11)

is an isomorphism between multiplicative Alo-group and fuzzy Alo-group. Another example is the function

g : x ∈]−∞,+∞[7→ ex

1 + ex
∈]0, 1[, (12)

which is an isomorphism between the additive Alo-group and the fuzzy Alo-group.

Moreover, let φ be an isomorphism between G = (G,�,≤) and H = (H, ∗,≤), g1, g2 . . . , gn ∈ G and

h1, h2 . . . , hn ∈ H; then, Cavallo and D’Apuzzo [8] prove that:

mG(g1, g2, ..., gn) = φ−1
(
mH(φ(g1), φ(g2), ..., φ(gn))

)
;

(13)

mH(h1, h2, ..., hn) = φ
(
mG(φ−1(h1), φ−1(h2), ..., φ−1(hn))

)
.

We believe that it is important to stress that the use of Alo-groups and the definition of group isomorphisms

between them is not a mere theoretical exercise. Alo-groups and their isomorphisms are necessary to show

the formal equivalence between different approaches. For instance, in his widely used textbook, Fraleigh

[19] defines an isomorphism as “the concept of two systems being structurally identical, that is, one being

just like the other except for names”.
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2.2 Pairwise Comparison Matrices over a real continuous Alo-group

Quantitative pairwise comparisons are a useful tool for estimating the relative weights on a set X =

{x1, x2, ..., xn} of decision elements such as criteria or alternatives. Pairwise comparisons can be modelled

by a quantitative preference relation on X:

A : (xi, xj) ∈ X ×X → aij = A(xi, xj) ∈ G

where G is an open interval of R and aij quantifies the preference intensity of xi over xj . When the

cardinality of X is small, A can be represented by a Pairwise Comparison Matrix (PCM )

A =


x1 x2 · · · xn

x1 a11 a12 . . . a1n

x2 a21 a22 · · · a2n
...

...
...

. . .
...

xn an1 an2 · · · ann

. (14)

Definition 2.7. [8] A PCM A = (aij) is a G-reciprocal if it verifies the condition:

aji = a
(−1)
ij ∀ i, j ∈ {1, . . . , n}.

Let A = (aij) be a G-reciprocal PCM and (σ(1), . . . , σ(n)) a permutation of (1, . . . , n); then, by Definition

2.7, for each permutation σ, the following equalities hold true:

aσ(j)σ(i) = a
(−1)
σ(i)σ(j) ∀ i, j ∈ {1, . . . , n}

and, as a consequence, Aσ defined as follows:

Aσ =


aσ(1)σ(1) aσ(1)σ(2) · · · aσ(1)σ(n)

aσ(2)σ(1) aσ(2)σ(2) · · · aσ(2)σ(n)
...

...
. . .

...

aσ(n)σ(1) aσ(n)σ(2) · · · aσ(n)σ(n)

 (15)

is a G-reciprocal PCM too. In other words, if we apply row-column permutations to a G-reciprocal PCM,

then also the resulting matrix will be a G-reciprocal PCM.

Definition 2.8. [8] A = (aij) is a G-consistent PCM, if verifies the following condition:

aik = aij � ajk ∀i, j, k ∈ {1, . . . , n}. (16)

Proposition 2.3. [8] Let A = (aij) be G-reciprocal PCM. Then, the following statements are equivalent:

1. A = (aij) is a G-consistent PCM;

2. aik = aij � ajk ∀i < j < k ∈ {1, . . . , n}.

Definition 2.9. [8] Let A = (aij) be a G-reciprocal PCM of order n ≥ 3. Then, its G-consistency index

is:

IG(A) =

 ⊙
i<j<k

dG(aik, aij � ajk)

( 1
|T | )

,

with T = {(i, j, k) : i < j < k} and |T | = n(n−2)(n−1)
6 its cardinality.

We stress that, in Definition 2.9, |T | ∈ N, with |T | ≥ 1, and the G-consistency index is a G-mean

(see Definition 2.6) of |T | G-distances from G-consistency. Moreover, let φ be an isomorphism between

G = (G,�,≤) and H = (H, ∗,≤), A′ = φ(A) = (φ(aij)); then, Cavallo and D’Apuzzo [8] prove that:

IH(A′) = φ(IG(A)). (17)
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Proposition 2.4. [8] Let A = (aij) be G-reciprocal PCM. Then, the following statements hold:

1. IG(A) ≥ e;
2. IG(A) = e⇔ A is G-consistent;

3. IG(A) = IG(Aσ) for all permutations σ.

3 Intervals over a real continuous Alo-group

In this section, by respecting standard rules of interval arithmetic [7, 34], we extend interval arithmetic

to work on a real continuous Alo-group G = (G,�,≤), with G an open interval of R. For notational

convenience, let [G] be the set of closed intervals over G, that is:

[G] = {ã = [a−, a+]|a−, a+ ∈ G, a− ≤ a+}. (18)

The subset of all singleton intervals (points) is denoted by [G]p, that is:

[G]p = {ã = [a−, a+] ∈ [G]|a− = a+}. (19)

Of course, if ã ∈ [G]p then ã degenerates in an element of G. Equality relation on [G] is defined as follows:

ã = b̃⇔ a− = b− and a+ = b+. (20)

Following [34] and [15], for each ã = [a−, a+] ∈ [G], we denote with:

ã(−1) = [(a+)(−1), (a−)(−1)] (21)

the reciprocal interval of ã; of course, ã(−1) ∈ [G] because, by the last equivalence in (2), (a+)(−1) ≤
(a−)(−1).

Let us consider ã = [a−, a+] and b̃ = [b−, b+] ∈ [G]; then we can borrow the definition of binary operation

on intervals and set:

ã�[G] b̃ = {a� b| a ∈ ã, b ∈ b̃} (22)

and consequently

ã÷[G] b̃ = ã�[G] b̃
(−1). (23)

The following theorem provides a further representations of ã�[G] b̃ and ã÷[G] b̃. Its main scope is that of

providing closed forms for the operations �[G] and ÷[G]. This will help simplify the operations and derive

results in closed form.

Theorem 3.1. Let ã, b̃ ∈ [G]; then, the following equalities hold:

ã�[G] b̃ = [a− � b−, a+ � b+],

ã÷[G] b̃ = [a− ÷ b+, a+ ÷ b−].

Proposition 3.1. The following assertions hold:

1. [e, e] ∈ [G] is the identity with respect to �[G];

2. ã ∈ [G] has inverse with respect to �[G] if and only if ã ∈ [G]p.

Example 3.1. From the previous proposition we know that if ã 6∈ [G]p, then ã(−1) in (21) is not its

inverse.

Let us consider the multiplicative Alo-group; then, e.g. we have [2, 4]�[R+] [1/4, 1/2] = [1/2, 2] 6= [1, 1].

Let us consider the additive Alo-group; then, e.g. we have [2, 4]�[R] [−4,−2] = [−2, 2] 6= [0, 0].

Let us consider the fuzzy Alo-group; then, e.g. we have [0.6, 0.7]�[I] [0.3, 0.4] = [0.39, 0.61] 6= [0.5, 0.5].
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A strict partial order on [G] is defined as follows:

ã <[G] b̃⇔ a+ < b−; (24)

thus, we set

ã ≤[G] b̃⇔ ã = b̃ or ã <[G] b̃. (25)

It is important to note that, as one should expect, the real case is just an instance of the interval-valued

case when the intervals are singletons. Hence, all the results obtained in the interval-valued case are

compatible with, and apply to, the real valued case as well. For sake of precision, the following theorem

stipulates this connection in the form of a isomorphism between Alo-groups.

Theorem 3.2. [G]p = ([G]p,�[G],≤[G]) is an Alo-group isomorphic to G = (G,�,≤).

Since the proof of the previous theorem implicitly shows that �[G] is a monoid operation for the Abelian

monoid [G] = ([G],�[G]), from now on, we will use �[G] instead of �[G].

The distance between two real numbers in an Alo-group was already defined by Cavallo and D’Apuzzo

[8] and here recalled in Proposition 2.2. Now we shall extend this proposal to the more general case of

intervals. First, we propose and study a notion of [G]-norm, that is the generalization to intervals of the

concept of G-norm in Definition 2.3.

Definition 3.1. The [G]-norm on [G] is given by the following function:

|| · ||[G] : ã ∈ [G]→ ||ã||[G] = max{||a−||G , ||a+||G} ∈ G.

Similarly to Proposition 2.1, we provide the following properties of [G]-norm:

Proposition 3.2. The [G]-norm satisfies the following properties:

1. ||ã||[G] = ||ã(−1)||[G];

2. a−, a+ ≤ ||ã||[G];

3. ||ã||[G] ≥ e;
4. ||ã||[G] = e⇔ a− = a+ = e;

5. ||ã�[G] b̃||[G] ≤ ||ã||[G] � ||b̃||[G].

We are now ready to extend the concept of G-distance to the interval-valued case and we call it [G]-distance.

Definition 3.2. The function

m : (ã, b̃) ∈ [G]× [G]→ m(ã, b̃) ∈ G

is a [G]-metric or [G]-distance if:

1. m(ã, b̃) ≥ e;
2. m(ã, b̃) = e⇔ ã = b̃:

3. m(ã, b̃) = m(b̃, ã);

4. m(ã, b̃) ≤ m(ã, c̃)�m(c̃, b̃).

With the following proposition, we introduce a function acting as a [G]-distance.

Proposition 3.3. The function

d[G] : (ã, b̃) ∈ [G]× [G]→ d[G](ã, b̃) = ||[a− ÷ b−, a+ ÷ b+]||[G] ∈ G

is a [G]-distance.

Remark 3.1. As one should expect, for the additive Alo-group, d[G] collapses into the distance between

real intervals, i.e. d[R](ã, b̃) = max{|a− − a+|, |b− − b+|}.
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4 Interval pairwise comparison matrices over a real continuous Alo-group

Let us assume that G = (G,�,≤) is a real continuous Alo-group, with G an open interval, and X =

{x1, x2, ..., xn} a set of decision elements such as criteria or alternatives.

Having laid down the necessary mathematical foundations, we are now ready to formalize and study the

concept of interval pairwise comparison matrix, where each entry is an interval in G (i.e. an element of

[G]). Let us consider the following quantitative preference relation on X:

Ã : (xi, xj) ∈ X ×X → ãij = Ã(xi, xj) ∈ [G]

where the interval ãij = [a−ij , a
+
ij ] ⊂ G represents the uncertain estimation of the preference intensity of xi

over xj . When the cardinality of X is small, Ã can be represented by an Interval Pairwise Comparison

Matrix (IPCM )

Ã =


x1 x2 · · · xn

x1 ã11 ã12 . . . ã1n

x2 ã21 ã22 · · · ã2n
...

...
...

. . .
...

xn ãn1 ãn2 · · · ãnn

 =


[a−11, a

+
11] [a−12, a

+
12] . . . [a−1n, a

+
1n]

[a−21, a
+
21] [a−22, a

+
22] · · · [a−2n, a

+
2n]

...
...

. . .
...

[a−n1, a
+
n1] [a−n2, a

+
n2] · · · [a−nn, a

+
nn]

 . (26)

Let Ã = (ãij) be a IPCM; we say that Ã = (ãij) degenerates in a PCM over G = (G,�,≤) if ãij ∈
[G]p,∀i, j ∈ {1, . . . , n}.

4.1 [G]-reciprocal IPCMs

As it was done for PCMs, we can now formulate and study the concept of reciprocity for IPCMs in a more

general framework.

Definition 4.1. Ã = (ãij), with ãij ∈ [G] for each i, j = 1, . . . , n, is a [G]-reciprocal IPCM if:

ãji = ã
(−1)
ij . (27)

Corollary 4.1. Ã = (ãij), with ãij ∈ [G] for each i, j = 1, . . . , n, is a [G]-reciprocal IPCM if and only if

a−ij � a
+
ji = a+

ij � a
−
ji = e. (28)

The following examples will show that [G]-reciprocity is suitable for the three most widely used types of

IPCMs.

Example 4.1. The following IPCM

Ã =

 [1, 1] [1
4 ,

1
2 ] [6, 7]

[2, 4] [1, 1] [3, 5]

[1
7 ,

1
6 ] [1

5 ,
1
3 ] [1, 1]


is a multiplicative [R+]-reciprocal IPCM; thus, each entry is an interval in R+.

Example 4.2. The following IPCM

Ã =

 [0, 0] [4, 7] [2, 4]

[−7,−4] [0, 0] [−3,−2]

[−4,−2] [2, 3] [0, 0]


is an additive [R]-reciprocal IPCM; thus, each entry is an interval in R.
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Example 4.3. The following IPCM

Ã =

 [0.5, 0.5] [0.6, 0.7] [0.7, 0.8]

[0.3, 0.4] [0.5, 0.5] [0.6, 0.8]

[0.2, 0.3] [0.2, 0.4] [0.5, 0.5]


is a fuzzy [I]-reciprocal IPCM; thus, each entry is an interval in I =]0, 1[.

Proposition 4.1. Ã = (ãij) is a [G]-reciprocal IPCM with

ãij �[G] ãji = [e, e] ∀i, j (29)

if and only if Ã = (ãij) degenerates in a G-reciprocal PCM.

From now on, we assume that Ã is a [G]-reciprocal IPCM. Let (σ(1), . . . , σ(n)) be a permutation of

(1, . . . , n); then, similarly to Aσ in (15), we define Ãσ as follows:

Ãσ =


ãσ(1)σ(1) ãσ(1)σ(2) ... ãσ(1)σ(n)

ãσ(2)σ(1) ãσ(2)σ(2) ... ãσ(2)σ(n)

... ... ... ...

ãσ(n)σ(1) ãσ(n)σ(2) ... ãσ(n)σ(n)

 . (30)

By using an argument similar to the one used to show that G-reciprocity of A guarantees the G-reciprocity

of Aσ, we provide the following proposition, which extends the result to IPCMs:

Proposition 4.2. Ã = (ãij) is [G]-reciprocal if and only if Ãσ is [G]-reciprocal for all permutations σ.

5 [G]-Consistency conditions for [G]-reciprocal IPCMs

The formulation of consistency conditions and reliable indices to estimate the extent of their violation

have played a pivotal role in the development of the theory of pairwise comparisons. As emerges from

recent studies [4], there is not a meeting of minds on the best way of capturing inconsistency. This is

even more so in the case of IPCMs since in this context there is not even a uniquely accepted condition of

consistency.

In this section, we generalize to [G]-reciprocal IPCMs consistency conditions which were initially proposed

in the literature for fuzzy IPCMs [45, 46] and multiplicative IPCMs [27, 42].

5.1 Liu’s [G]-consistency

Let Ã = ([a−ij , a
+
ij ]) be a [G]-reciprocal IPCM, then we define L = (lij) and R = (rij) as follows

lij =


a−ij i < j

e i = j

a+
ij i > j

rij =


a+
ij i < j

e i = j

a−ij i > j

. (31)

We stress that L = (lij) and R = (rij) are G-reciprocal PCMs. At this point, we can state the first

condition of consistency, which we call Liu’s [G]-consistency because it generalizes a consistency condition

provided by Liu [28] for multiplicative IPCMs.

Definition 5.1. Ã = ([a−ij , a
+
ij ]) is Liu’s [G]-consistent if{

lik = lij � ljk
rik = rij � rjk

∀i, j, k ∈ {1, . . . , n}; (32)

that is, L and R are G-consistent PCMs over (G,�,≤).

10



Proposition 5.1. The following statements are equivalent:

1. Ã = ([a−ij , a
+
ij ]) is Liu’s [G]-consistent;

2.

{
lik = lij � ljk
rik = rij � rjk

∀i < j < k;

3. ãik = ãij �[G] ãjk ∀i < j < k.

It is crucial to notice that, analogously to Liu’s consistency defined for multiplicative IPCMs (see [30]),

Liu’s [G]-consistency is not invariant with respect to the permutation of alternatives. This means that Liu’s

[G]-consistency depends on the labeling of criteria/alternatives and, as a consequence, Liu’s [G]-consistency

(inconsistency) of Ã does not imply Liu’s [G]-consistency (inconsistency) of Ãσ for different permutations

σ.

Example 5.1. Let us consider the following two additive [R]-reciprocal IPCMs:

Ã =

 [0, 0] [2, 4] [4, 7]

[−4,−2] [0, 0] [2, 3]

[−7,−4] [−3,−2] [0, 0]

 Ãσ =

 [0, 0] [−4,−2] [2, 3]

[2, 4] [0, 0] [4, 7]

[−3,−2] [−7,−4] [0, 0]

 ,

where the latter is obtained by applying σ = {2, 1, 3} to the former. Permutation σ does not change the

structure of the preferences, yet only the first IPCM is deemed Liu [R]-consistent.

The soundness of such consistency condition has thus been questioned in recent papers [33, 42, 32] as

it seems to violate a principle according to which a simple reordering of alternatives which leaves the

preferences unchanged shall not affect the consistency of these latter ones [6]. Consequently, to overcome

this issue, more recent formulations of consistency conditions for IPCMs are invariant under permutations

of alternatives.

5.2 Approximate [G]-consistency

In order to deal with the above mentioned shortcoming of Liu’s [G]-consistency, Liu et al. [30] proposed

an approximate consistency condition for multiplicative IPCMs. This consistency condition has also been

used in applications of multiplicative IPCM to solve problems of partner selection [29]. In this section, we

provide the notion of approximate [G]-consistency to generalize approximate consistency.

Let Ã = ([a−ij , a
+
ij ]) be a [G]-reciprocal IPCM, σ a permutation of {1, 2, . . . , n}, Ãσ in (30) and Lσ = (lσij)

and Rσ = (rσij) with lσij and rσij defined as follows:

lσij =


a−σ(i)σ(j) i < j

e i = j

a+
σ(i)σ(j) i > j

rσij =


a+
σ(i)σ(j) i < j

e i = j

a−σ(i)σ(j) i > j

. (33)

Example 5.2. Let us consider the multiplicative [R+]-reciprocal IPCM in Example 4.1. Let σ = {1, 2, 3},
then Ãσ = Ã and

Lσ =

 1 1
4 6

4 1 3
1
6

1
3 1

 Rσ =

 1 1
2 7

2 1 5
1
7

1
5 1

 .

Let σ1 = {1, 3, 2}, then

Ãσ1 =

 [1, 1] [6, 7] [1
4 ,

1
2 ]

[1
7 ,

1
6 ] [1, 1] [1

5 ,
1
3 ]

[2, 4] [3, 5] [1, 1]


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and

Lσ1 =

 1 6 1
4

1
6 1 1

5

4 5 1

 Rσ1 =

 1 7 1
2

1
7 1 1

3

2 3 1

 .

Definition 5.2. An IPCM Ã = ([a−ij , a
+
ij ]) is approximately [G]-consistent if there is a permutation σ such

that Lσ = (lσij) and Rσ = (rσij) are G-consistent PCMs over (G,�,≤).

Remark 5.1. We stress that, said in other words, Ã = ([a−ij , a
+
ij ]) is an approximately [G]-consistent IPCM

if and only if there is a permutation σ such that Ãσ is Liu’s [G]-consistent.

Example 5.3. Let us consider the additive [R]-reciprocal IPCM in Example 4.2 and the permutation

σ = {1, 3, 2}. Then:

Ãσ =

 [0, 0] [2, 4] [4, 7]

[−4,−2] [0, 0] [2, 3]

[−7,−4] [−3,−2] [0, 0]

 .

The additive PCMs

Lσ =

 0 2 4

−2 1 2

−4 −2 1

 Rσ =

 0 4 7

−4 1 3

−7 −3 1


are R-consistent; thus, Ã in Example 4.2 is an approximately [R]-consistent IPCM.

Theorem 5.1. The IPCM Ã = ([a−ij , a
+
ij ]) degenerates in a G-consistent PCM over (G,�,≤) if and only

if Lσ = (lσij) and Rσ = (rσij) are G-consistent PCMs over (G,�,≤) for each permutation σ.

5.3 [G]-consistency

In this section, we generalize the consistency condition employed by Li et al. [27] and Zhang [55] for

multiplicative IPCMs.

Definition 5.3. Ã = (ãij) is a [G]-consistent IPCM if

ãij �[G] ãjk �[G] ãki = ãik �[G] ãkj �[G] ãji ∀i, j, k ∈ {1, . . . , n}. (34)

By Theorem 3.1, [G]-consistency in Definition 5.3 is equivalent to:{
a−ij � a

−
jk � a

−
ki = a−ik � a

−
kj � a

−
ji ∀i, j, k ∈ {1, . . . , n}

a+
ij � a

+
jk � a

+
ki = a+

ik � a
+
kj � a

+
ji ∀i, j, k ∈ {1, . . . , n}.

(35)

The following proposition will show that [G]-consistency is invariant with respect to permutations of

alternatives.

Proposition 5.2. Ã = (ãij) is [G]-consistent if and only if Ãσ is [G]-consistent for all permutations σ.

Theorem 5.2. Let Ã = (ãij) be a [G]-reciprocal IPCM. Then, the following assertions are equivalent:

1. Ã = (ãij) is a [G]-consistent IPCM;

2. a−ik � a
+
ik = a−ij � a

+
ij � a

−
jk � a

+
jk ∀i, j, k ∈ {1, . . . , n};

3. a−ik � a
+
ik = a−ij � a

+
ij � a

−
jk � a

+
jk ∀i < j < k.
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5.4 Comparisons between consistency conditions

We are now ready to compare Liu’s [G]-consistency (Definition 5.1), approximate [G]-consistency (Def-

inition 5.2) and [G]-consistency (Defintion 5.3). Under the assumption of [G]-reciprocity, the following

proposition holds.

Proposition 5.3. The following statements hold:

1. If Ã is Liu’s [G]-consistent then Ã is approximately [G]-consistent;

2. If Ã is approximately [G]-consistent then Ã is [G]-consistent.

We stress that in the same way as G-consistency implies G-reciprocity [8], both Liu’s [G]-consistency

and approximate [G]-consistency imply [G]-reciprocity. Conversely, [G]-consistency does not imply [G]-

reciprocity. It is sufficient to propose a counterexample in the form of the following multiplicative IPCM: [1, 1] [2, 10] [6, 40]

[1
5 ,

1
2 ] [1, 1] [3, 4]

[ 1
40 ,

1
6 ] [1

8 ,
1
3 ] [1, 1]

 ,

which is [R+]-consistent but not [R+]-reciprocal.

Finally, it can be shown that, unlike approximate [G]-consistency, in which case one needs to seek for a

Liu’s [G]-consistent IPCM Ãσ to guarantee approximate [G]-consistency of Ã (see Remark 5.1), checking

[G]-consistency of Ã is more immediate because no permutation σ has to be considered (see Proposition

5.2).

The following examples show that the reverse implications in Proposition 5.3 are not true.

Example 5.4. The additive IPCM Ãσ in Example 5.1 is approximately [R]-consistent (because Ã is Liu

[R]-consistent) but not Liu [R]-consistent.

Example 5.5. The following additive IPCM is [R]-consistent, since a−13 + a+
13 = a−12 + a+

12 + a−23 + a+
23, but

not approximately [R]-consistent.  [0, 0] [0, 1] [0, 1]

[−1, 0] [0, 0] [−2, 2]

[−1, 0] [−2, 2] [0, 0]


The findings of Proposition 5.3 and the previous counterexamples are summarized in Figure 1.

Approximate [G]-consistency

[G]-consistency

Liu’s [G]-consistency

Figure 1: Inclusion relations between consistency conditions.

6 [G]-Consistency index of [G]-reciprocal IPCMs

In this section, we propose a method for quantifying the [G]-inconsistency of IPCMs as a violation of the

condition of [G]-consistency in Definition 5.3.

Let us denote with ãijk and ãikj the following intervals:

ãijk = [a−ijk, a
+
ijk] =

[
a−ij � a

−
jk � a

−
ki , a

+
ij � a

+
jk � a

+
ki

]
,

ãikj = [a−ikj , a
+
ikj ] =

[
a−ik � a

−
kj � a

−
ji , a

+
ik � a

+
kj � a

+
ji

]
.
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with this notation we can rewrite the [G]-consistency condition in Definition 5.3 as follows,

ãijk = ãikj ∀i, j, k ∈ {1, . . . , n}. (36)

Since [G]-inconsistency manifests itself in the violation of this latter condition and both sides of the equation

are intervals, we consider appropriate to quantify [G]-inconsistency by means of a suitable distance between

ãijk and ãikj . At this point, we can employ the [G]-distance d[G] in Proposition 3.3 to measure the local

[G]-inconsistency associated with i, j, k as follows:

d[G](ãijk, ãikj) = max{dG(ã−ijk, ã
−
ikj), dG(ã+

ijk, ã
+
ikj)}. (37)

Proposition 6.1. Let Ã be a [G]-reciprocal IPCM. Then, the following equalities hold true:

d[G](ãijk, ãikj) = max
{
ã−ijk ÷ ã

−
ikj , ã

−
ikj ÷ ã

−
ijk

}
= max

{
ã−ijk ÷ ã

−
ikj , ã

+
ijk ÷ ã

+
ikj

}
=

= max
{
ã−ikj ÷ ã

−
ijk, ã

+
ikj ÷ ã

+
ijk

}
= max

{
ã+
ijk ÷ ã

+
ikj , ã

+
ikj ÷ ã

+
ijk

}
.

Example 6.1. Let us consider the multiplicative IPCM Ã in Example 4.1; then, we have

d[R+](ã123, ã132) = max

{
3/28

12/5
,
12/5

3/28

}
=

12/5

3/28
=

112

5
= 22.4.

At this point, similarly to the G-consistency index in Definition 2.9, we can extend the local evaluation of

the [G]-inconsistency to an entire IPCM of order n ≥ 3 thanks to the concept of G-mean (see Definition

2.6) as follows:

Definition 6.1. Let Ã be a [G]-reciprocal IPCM of order n ≥ 3. Then, its [G]-consistency index is

I[G]

(
Ã
)

=

 ⊙
i<j<k

d[G](ãijk, ãikj)

( 1
|T | )

, (38)

with T = {(i, j, k) : i < j < k} and |T | = n(n−2)(n−1)
6 its cardinality.

Similarly to Definition 2.9, we stress that, in Definition 6.1, |T | ∈ N, with |T | ≥ 1, and the [G]-consistency

index is a G-mean (see Definition 2.6) of |T | [G]-distances from [G]-consistency. Moreover, let φ be an

isomorphism between G = (G,�,≤) and H = (H, ∗,≤), Ã′ = φ(Ã) = (φ(ãij)); then, by (37), equivalence

in (4), (7) and (13), we have that:

I[H](Ã
′) = φ(I[G](Ã)). (39)

Proposition 6.2. [8] Let Ã be a [G]-reciprocal IPCM; then:

I[G](Ã) ≥ e, I[G](Ã) = e⇔ Ã is [G]-consistent IPCM.

If all the entries of an IPCM collapse to singletons, then the [G]-consistency index I[G] for IPCMs becomes

the G-consistency index IG for PCMs (Definition 2.9). Hence, it is important to know that, to corroborate

the soundness of IG , it was shown [5, 11] that it satisfies a set of reasonable properties and therefore, at

present, it seems a reasonable function for estimating inconsistency. Moreover, contrarily to the approaches

by Liu [28] and Li et al. [27], where the consistency of a multiplicative IPCM is measured by computing

Saaty’s consistency index [37] of one or two associated PCMs, index I[G] is computed directly on the

original IPCM (i.e. without considering associated PCMs), and it is suitable for each kind of IPCM (i.e.

not only multiplicative IPCMs). For the cases of multiplicative, additive, fuzzy IPCMs, [G]-consistency

index I[G] assumes the following forms:

I[R+]

(
Ã
)

=

 ∏
i<j<k

d[R+](ãijk, ãikj)

 6
n(n−2)(n−1)

, (40)
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I[R]

(
Ã
)

=
6

n(n− 2)(n− 1)

∑
i<j<k

d[R](ãijk, ãikj), (41)

I[I]

(
Ã
)

=

(∏
i<j<k d[I](ãijk, ãikj)

) 6
n(n−2)(n−1)

(∏
i<j<k d[I](ãijk, ãikj)

) 6
n(n−2)(n−1)

+
(∏

i<j<k(1− d[I](ãijk, ãikj))
) 6

n(n−2)(n−1)

. (42)

We remark that isomorphisms between Alo-groups allow us to compare consistency of IPCMs defined over

different Alo-groups; e.g. in Example 6.3, we will compare consistency of a multiplicative IPCM with

consistency of a fuzzy IPCM.

Example 6.2. Let us consider the following multiplicative [R+]-reciprocal IPCM, which was used also by

Arbel and Vargas [1], Haines [20], and Wang et al. [41]

Ã1 =


[1, 1] [2, 5] [2, 4] [1, 3]

[1
5 ,

1
2 ] [1, 1] [1, 3] [1, 2]

[1
4 ,

1
2 ] [1

3 , 1] [1, 1] [1
2 , 1]

[1
3 , 1] [1

2 , 1] [1, 2] [1, 1]

 .

By applying Definition 6.1 and Proposition 6.1, I[R+]

(
Ã1

)
is given by the following geometric mean:

I[R+]

(
Ã1

)
= 4

√
d[R+](ã123, ã132) · d[R+](ã124, ã142) · d[R+](ã134, ã143) · d[R+](ã234, ã243) =

= 4

√
max

{
a−12 · a

−
23 · a

−
31

a−13 · a
−
32 · a

−
21

,
a−13 · a

−
32 · a

−
21

a−12 · a
−
23 · a

−
31

}
·max

{
a−12 · a

−
24 · a

−
41

a−14 · a
−
42 · a

−
21

,
a−14 · a

−
42 · a

−
21

a−12 · a
−
24 · a

−
41

}
·

· 4
√

max

{
a−13 · a

−
34 · a

−
41

a−14 · a
−
43 · a

−
31

,
a−14 · a

−
43 · a

−
31

a−13 · a
−
34 · a

−
41

}
·max

{
a−23 · a

−
34 · a

−
42

a−24 · a
−
43 · a

−
32

,
a−24 · a

−
43 · a

−
32

a−23 · a
−
34 · a

−
42

}
=

=
4

√
15

4
· 20

3
· 4

3
· 4

3
≈ 2.58199.

Example 6.3. Let us consider the following [I]-reciprocal fuzzy IPCM, proposed by Wang and Li [45]

Ã2 =


[0.50, 0.50] [0.35, 0.50] [0.50, 0.60] [0.45, 0.60]

[0.50, 0.65] [0.50, 0.50] [0.55, 0.70] [0.50, 0.70]

[0.40, 0.50] [0.30, 0.45] [0.50, 0.50] [0.40, 0.55]

[0.40, 0.55] [0.30, 0.50] [0.45, 0.60] [0.50, 0.50]

 .

Its consistency index can be computed by applying (42), or by applying the isomorphism h : R+ →]0, 1[ in

(11), that is:

I[I]

(
Ã2

)
= h(I[R+](h

−1(Ã2))) ≈ 0.503448.

Interestingly, although they are expressed on two different scales, values of consistency indices from different

representations of preferences are, thanks to the isomorphisms, comparable. For instance, let us consider

the multiplicative IPCM in Example 6.2; then, by using the isomorphism h in (11), we have that

h
(
I[R+]

(
Ã1

))
≈ 0.720826,

which entails that Ã1 is more inconsistent than Ã2.

7 [G]-Indeterminacy index of [G]-reciprocal IPCMs

If we follow the definition of [G]-consistency (Definition 5.3), we could encounter cases where IPCMs

with extremely wide intervals are considered [G]-consistent. Li et al.[27] and Zhang [55] reckoned that a
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multiplicative IPCM with all non-diagonal entries equal to ãij = [1/9, 9] would be considered consistent.

This case reflects a high ambiguity from the decision maker’s side and is classified as fully consistent.

Thus, in all these cases, the consistency of a IPCM, as formulated in Definition 5.3 loses its capacity of

yielding information on the real ability of a decision maker to be rational. To mitigate this problem, Li

et al. [27]suggested the use of an index of indeterminacy. Inconsistency of interval-valued preferences and

width of the intervals can then be used in concert to better asses the discriminative capacity of a decision

maker. We shall here propose a general definition of indeterminacy index and show that the proposals by

Li et al. [27] and Zhang [55] fits within in.

Definition 7.1. Let Ã be a [G]-reciprocal IPCM. The indeterminacy value of the entry ãij is

δ(ãij) = dG(a−ij , a
+
ij). (43)

Corollary 7.1. Let Ã be a [G]-reciprocal IPCM; then the following equality holds:

δ(ãij) = a+
ij ÷ a

−
ij . (44)

Definition 7.2. Let Ã be a [G]-reciprocal IPCM. The [G]-indeterminacy index is

∆[G]

(
Ã
)

=

⊙
i 6=j

δ(ãij)

( 1
n(n−1)

)

.

We stress that, in Definition 7.2, n(n−1) ∈ N and the [G]-indeterminacy index is a G-mean (see Definition

2.6) of n(n − 1) indeterminacy values. Moreover, let φ be an isomorphism between G = (G,�,≤) and

H = (H, ∗,≤), Ã′ = φ(Ã) = (φ(ãij)); then, by (13), we have that:

∆[H](Ã
′) = φ(∆[G](Ã)). (45)

Furthermore, by Corollary 4.1, we have that a+
ij ÷ a

−
ij = a+

ji ÷ a
−
ji; thus, it is sufficient to consider the

comparisons in the upper triangle of Ã and it leads to a simplification of the previous formula into:

∆[G]

(
Ã
)

=

⊙
i<j

(
a+
ij ÷ a

−
ij

)(2)

( 1
n(n−1)

)

. (46)

Proposition 7.1. Let Ã be a [G]-reciprocal IPCM; then:

∆[G]

(
Ã
)
≥ e, ∆[G]

(
Ã
)

= e⇔ Ã ∈ [G]p.

For multiplicative, additive and fuzzy IPCMs, the indeterminacy index can be written as follows, respec-

tively,

∆[R+]

(
Ã
)

=

∏
i<j

(
a+
ij

a−ij

) 2
n(n−1)

, (47)

∆[R]

(
Ã
)

=
2

n(n− 1)

∑
i<j

(
a+
ij − a

−
ij

)
, (48)

∆[I]

(
Ã
)

=

(∏
i<j

a+ij(1−a−ij)

a+ij(1−a−ij)+(1−a+ij)a−ij

) 2
n(n−1)

(∏
i<j

a+ij(1−a−ij)

a+ij(1−a−ij)+(1−a+ij)a−ij

) 2
n(n−1)

+

(∏
i<j

(
1− a+ij(1−a−ij)

a+ij(1−a−ij)+(1−a+ij)a−ij

)) 2
n(n−1)

. (49)

It is worth noting that:

• The indeterminacy index (47) is equal to the indeterminacy index proposed by Li et al. [27];
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• Function (48) represents a way to measure the indeterminacy of an additive IPCM and to best of

our knowledge there has not been similar proposals for the additive approach in the literature;

• Equation (49) is different from the indeterminacy index proposed by Wang and Chen [44] because

(49) takes in account the fuzzy mean, instead of geometric mean, and inverse of fuzzy group operation

⊗, instead of classical division (the set ]0, 1[ is not closed under the classical division of R).

Finally, the [G]-indeterminacy index is suitable for each kind of IPCM (i.e. not only multiplicative and

fuzzy IPCMs) and isomorphisms between Alo-groups allow us to compare indeterminacy of IPCMs defined

over different Alo-groups. In the following example we compare indeterminacy of a multiplicative IPCM

with indeterminacy of a fuzzy IPCM.

Example 7.1. Let us consider the multiplicative IPCM Ã1 in Example 6.2 and the fuzzy IPCM in Example

6.3. Firstly, we compute the [R+]-indeterminacy index of Ã1 as follows:

∆[R+](Ã1) =

∏
i<j

(
a+
ij

a−ij

)2
 1

4(4−1)

=

(
5

2
· 4

2
· 3

1
· 3

1
· 2

1
· 1

1
2

)1/6

= 1801/6 ≈ 2.376.

Secondly, we compute the [I]-indeterminacy index of Ã2, by applying the isomorphism h in (11), that is:

∆[I]

(
Ã2

)
= h(∆[R+](h

−1(Ã2))) ≈ 0.6506.

In their present forms the two values are incomparable, but they can be made comparable by applying the

isomorphism h to ∆[R+](Ã1) and obtain

h
(

∆[R+]

(
Ã1

))
≈ 0.7038

which, being larger than 0.6506, indicates that globally the preferences contained in the multiplicative

IPCM Ã1 are more indeterminate than those contained in the fuzzy IPCM Ã2, in addition to being more

inconsistent (see Example 6.3)

All in all, it has been stipulated that we can associate a consistency and an indeterminacy value to each

IPCM. In line with the approach by Li et al. [27], we also propose to use both values to determine whether

or not a matrix needs revision. To this end, we observe that the conjoint use of both indices lends itself

to some graphical interpretations.

• For each matrix Ã we have two values, I[G](Ã) and ∆[G](Ã). As shown in Figure 2a, these two values

partition the graph into four subsets. IPCMs with values in Q1 have greater indeterminacy and

inconsistency than Ã. Therefore it seems reasonable to consider them more inaccurate/irrational.

With a similar reasoning one could classify IPCMs with values in Q3 as less inaccurate/irrational.

IPCMs in Q2 and Q4 are not comparable since they have one value which is greater, but the other

one which is smaller.

• The second interpretation, also proposed by Li et al. [27] is that of fixing thresholds for both indices

and accept only IPCMs whose values are smaller or equal than the thresholds. Namely, if tI and t∆
were the thresholds, then we should accept only the IPCMs in the grey area in Figure 2b.

Example 7.2. Let us consider the multiplicative and fuzzy IPCMs Ã1 and Ã2 used in Examples 6.2, 6.3,

and 7.1. For Ã2, we had:

I[I](Ã2) = 0.503448;

∆[I](Ã2) = 0.6506.

For Ã1, by using the proper isomorphism h mentioned in (11), we obtained:

I[R+](Ã1) = 2.58199⇒ h(2.582) = 0.720826 = I[I](h(Ã1));

∆[R+](Ã1) = 2.376⇒ h(2.376) = 0.7038 = ∆[I](h(Ã1)).
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∆[G]

I[G]

∆[G](Ã)

I[G](Ã)

Ã

Q3

Q2 Q1

Q4

e
e

(a) First interpretation

∆[G]

I[G]

t∆

tI

e
e

(b) Second interpretation

Figure 2: I[G]-∆[G] axes: I[G] is the [G]-consistency index; ∆[G] is the [G]-indeterminacy index. Lying on

the I[G] axis, there are all PCMs. Lying on the ∆-axis, there are all [G]-consistent IPCMs. On

the origin of the axes (e, e), there are all G-consistent PCMs.

For sake of completeness, we also consider the following additive IPCM

Ã3 =


[0, 0] [1, 3] [2, 4] [6, 8]

[−3,−1] [0, 0] [1, 3] [4, 5]

[−4,−2] [−3,−1] [0, 0] [2, 3]

[−8,−6] [−5,−4] [−3,−2] [0, 0]

 ;

for which, by using the isomorphism g presented in (11), we can derive:

I[R](Ã3) = 3/2⇒ g(3/2) = 0.8175 = I[I](g(Ã3));

∆[R](Ã3) = 5/3⇒ g(5/3) = 0.841131 = ∆[I](g(Ã3)).

At this point, thanks to the isomorphisms, we can give a common graphical interpretation of the levels of

inconsistency and indeterminacy of all IPCMs, whether they be multiplicative, additive or fuzzy. In this

example, we can position the preferences expressed in Ã1, Ã2, Ã3 on [0.5, 1[×[0.5, 1[. Figure 3a represents

the “dominance”of the preferences expressed in Ã2 over those expressed in Ã1 since Ã2 is both less incon-

sistent and less indeterminate than h(Ã1). The same can be said of the preferences of Ã2 when compared

to those in Ã3.

If we establish thresholds tI = 0.7 and t∆ = 0.7 and stipulate that an acceptable IPCM ought to satisfy both

of them, then Figure 3b shows that only the preferences contained in Ã2 should be considered acceptable.

8 Conclusions and future work

In the paper, after generalizing interval arithmetic to a suitable algebraic structure, we provide a general

unified framework for dealing with IPCMs; in particular, reciprocal IPCMs, whose entries are intervals

on real continuous Abelian linearly ordered groups, allow us to unify several approaches proposed in the

literature, such as multiplicative, additive and fuzzy IPCMs.

In this context, firstly, we generalize some consistency conditions proposed in the literature and we establish

inclusion relations between them. Then, we provide a consistency index, based on a concept of distance

between intervals, in order to asses how much an IPCM is far from consistency; this consistency index

generalizes a consistency index proposed in [8], [14] for PCMs. We also consider an indeterminacy index

in order to assess ambiguity of a decision maker in expressing his/her preferences; consistency index and

indeterminacy index are used in concert to assess the discriminative capacity of a decision maker and

isomorphisms between Alo-groups allow us to compare consistency and indeterminacy of each kind of

IPCM and to represent them on a unique Cartesian coordinate system.
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∆[I]

I[I]

0.7208

0.7038

Ã1

0.5

0.5

g(Ã2)

h(Ã3)

(a) Preferences expressed in Ã2 are less inconsistent

and less indeterminate than those in Ã1. Pref-

erences expressed in Ã1 are less inconsistent and

less indeterminate than those in Ã3.

∆[I]

I[I]

0.7

0.7

0.5

0.5

Ã1

h(Ã3)

g(Ã2)

(b) With thresholds tI = 0.7 and t∆ = 0.7 only Ã2

is considered acceptable.

Figure 3: I[I]-∆[I] axes: I[I] is the [I]-consistency index; ∆[I] is the [I]-indeterminacy index. Graphical

analysis of inconsistency and indeterminacy of matrices Ã1, Ã2 and Ã3.

Our future work will be directed to investigate the possibility to extend to this kind of IPCMs further

notions and results obtained in the context of PCMs defined over Abelian linearly ordered groups, such

as weighting vector [10], transitivity condition [12] and weak consistency [13].

Finally, we observe that besides the approach based on intervals, a seemingly different approach grounded

on Atanassov’s concept of intuitionistic fuzzy sets has gained prominence to extend the concepts of fuzzy

PCMs [50] and multiplicative PCMs [51, 48]. Having realized this, thanks to an isomorphism between

interval-valued fuzzy sets and intuitionistic fuzzy sets (see [16], Th. 2.3), the results and the methods

developed in this paper can be straightforwardly extended to the case of intuitionistic PCMs.
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Appendix

Proof of Theorem 3.1. We first consider the first equality. Since � is continuous on [a−, a+] × [b−, b+],

there exist minimum and maximum in [a−, a+]× [b−, b+], and � assumes all values between minimum and

maximum. Finally, since � is monotone increasing in both arguments, the minimum is equal to a− � b−

and maximum is equal to a+ � b+; thus, the assertion is achieved. The second equality follows from the

previous one and from (23)

Proof of Proposition 3.1. 1. By Theorem 3.1, ã�[G] [e, e] = [e, e]�[G] ã = ã,∀ã ∈ [G].

2. ⇒) Let us suppose that ∃b̃ ∈ [G] such that ã�[G] b̃ = b̃�[G] ã = [e, e]. Then, we have,

[a−, a+]�[G] [b−, b+] = [a− � b−, a+ � b+] = [e, e],

from which {
a− � b− = e

a+ � b+ = e
⇒

{
a− = (b−)(−1)

a+ = (b+)(−1)
(50)

By a− ≤ a+, we have that (b−)(−1) ≤ (b+)(−1) and, by first equivalence in (2), b− ≥ b+, which,

together with b− ≤ b+ implies b− = b+. This, with (50), implies that a− = a+ and ã ∈ [G]p.

⇐) Let us consider ã = [a, a] ∈ [G]p. Then, [a, a] �[G] [a(−1), a(−1)] = [e, e] and the assertion is

achieved.

Proof of Theorem 3.2. By Theorem 3.1, ã�[G] b̃ ∈ [G] for each ã, b̃ ∈ [G]. Associativity and commutativity

of �[G] follow by associativity and commutativity of �. Finally, by Proposition 3.1, [G]p = ([G]p,�[G]) is

an Abelian group. Moreover, by (25) and (1), we have:

[a, a] ≤[G] [b, b]⇔ a ≤ b⇔ a� c ≤ b� c⇔ [a, a]�[G] [c, c] ≤[G] [b, b]�[G] [c, c];

thus, [G]p = ([G]p,�[G],≤[G]) is an Alo-group.

The bijection

i : a ∈ G 7→ [a, a] ∈ [G]p

is a group isomorphism because

i(a� b) = [a� b, a� b] = [a, a]�[G] [b, b] = i(a)�[G] i(b),
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and a lattice isomorphism because

a ≤ b⇔ [a, a] ≤[G] [b, b]⇔ i(a) ≤[G] i(b);

thus, the assertion is achieved.

Proof of Proposition 3.2. Properties 1, 2, 3, 4 follow immediately from Definition 3.1 and Proposition 2.1.

By Theorem 3.1, Definition 3.1 and property 5 of Proposition 2.1, we have:

||ã�[G] b̃||[G] = ||[a− � b−, a+ � b+]||[G] = max{||a− � b−||G , ||a+ � b+||G} ≤
≤ max{||a−||G � ||b−||G , ||a+||G � ||b+||G} ≤ max{||a−||G , ||a+||G} �max{||b−||G , ||b+||G} =

= ||ã||[G] � ||b̃||[G];

thus, item 5 is achieved.

Proof of Proposition 3.3. By Proposition 3.2, properties 1–3 in Definition 3.2 are satisfied.

Let us consider ã = [a−, a+], b̃ = [b−, b+], c̃ = [c−, c+] ∈ [G]; then, by Definition 3.1, Proposition 2.2 and

property 4 in Definition 2.4, we have:

d[G](ã, b̃) = max{dG(a−, b−), dG(a+, b+)}
≤ max{dG(a−, c−)� dG(c−, b−), dG(a+, c+)� dG(c+, b+)}
≤ max{dG(a−, c−), dG(a+, c+)} �max{dG(c−, b−), dG(c+, b+)}
= d[G](ã, c̃)� d[G](c̃, b̃);

thus, the assertion is achieved.

Proof of Corollary 4.1. By Definition 4.1 and (21).

Proof of Proposition 4.1. ⇒) By (29) and Proposition 3.1, we have that ãij ∈ [G]p; thus, by setting

aij = a−ij = a+
ij and by applying Corollary 4.1, we have aij�aji = e (i.e. A = (aij) is a G-reciprocal PCM).

⇐) The assertion follows by:

ãij �[G] ãji = [aij , aij ]�[G] [aji, aji] = [e, e]

and

ãji = [aji, aji] = [a
(−1)
ij , a

(−1)
ij ] = ã

(−1)
ij .

Proof of Proposition 4.2. Let Ã = (ãij) be a [G]-reciprocal IPCM; then, by Definition 4.1, for each per-

mutation σ, the following equalities hold true:

ãσ(j)σ(i) = ã
(−1)
σ(i)σ(j) ∀ i, j ∈ {1, . . . , n}

and, as a consequence, Ãσ is [G]-reciprocal.

The vice versa is straightforward.

Proof of Proposition 5.1. 1.⇔ 2.By Proposition 2.3.

2.⇒ 3. For each i < j < k, we have:

ãik = [a−ik, a
+
ik] = [lik, rik] = [lij � ljk, rij � rjk] = [lij , rij ]�[G] [ljk, rjk] = [a−ij , a

+
ij ]�[G] [a−jk, a

+
jk] = ãij �[G] ãjk.

3.⇒ 2. By assumption, for each i < j < k, we have:

[a−ik, a
+
ik] = [a−ij , a

+
ij ]�[G] [a−jk, a

+
jk] = [a−ij � a

−
jk, a

+
ij � a

+
jk];
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thus: {
lik = a−ik = a−ij � a

−
jk = lij � ljk

rik = a+
ik = a+

ij � a
+
jk = rij � rjk

∀i < j < k.

Proof of Theorem 5.1. If Ã = ([a−ij , a
+
ij ]) degenerates in a G-consistent PCM A = (aij) over (G,�,≤) with

a−ij = a+
ij = aij , for each i, j = 1, . . . , n, then by Proposition 2.4, Aσ = (aσ(i)σ(j)) is a G-consistent PCM

over (G,�,≤) for each permutation σ. Thus, Lσ = (lσij) = Rσ = (rσij) is a G-consistent PCM over (G,�,≤)

for each permutation σ.

Viceversa, let us assume Lσ = (lσij) and Rσ = (rσij) be G-consistent PCMs over (G,�,≤) for all permutation

σ; thus, for each permutation σ, the following equalities hold:

lσik = lσij � lσjk rσik = rσij � rσjk. (51)

Without loss of generality, we can assume i1 < k1 < j1; thus, for a permutation σ1, by definition of lσij in

(33) and first equality in (51), we have:

a−σ1(i1)σ1(k1) = a−σ1(i1)σ1(j1) � a
+
σ1(j1)σ1(k1).

Let us consider a permutation σ2 and integers i2, j2, k2, with j2 < i2 < k2, such that:

lσ1i1j1 = lσ2i2j2 , l
σ1
j1k1

= lσ2j2k2 , l
σ1
i1k1

= lσ2i2k2 ,

rσ1i1j1 = rσ2i2j2 , r
σ1
j1k1

= rσ2j2k2 , r
σ1
i1k1

= rσ2i2k2 .

Thus, by definition of rσij in (33) and second equality in (51), we have:

a+
σ1(i1)σ1(k1) = rσ1i1k1 = rσ2i2k2 = rσ2i2j2 � r

σ2
j2k2

= a−σ2(i2)σ2(j2) � a
+
σ2(j2)σ2(k2) = a−σ1(i1)σ1(j1) � a

+
σ1(j1)σ1(k1).

Thus, a−σ(i)σ(k) = a+
σ(i)σ(k) (i, k ∈ {1, . . . , n}) for each permutation σ, and, as a consequence, the assertion

is achieved.

Proof of Proposition 5.2. Checking the [G]-consistency of Ã requires checking that condition (34) holds for

the set of triples in the set S = {(i, j, k) | i, j, k ∈ {1, . . . , n}}. Similarly, [G]-consistency of Ãσ requires that

condition (34) hold for all the triples in Sσ = {(σ(i), σ(j), σ(k)) | i, j, k ∈ {1, . . . , n}}. Since by definition

σ : {1, . . . , n} → {1, . . . , n} is a bijection, we know that S = Sσ, and hence the proposition is true.

Proof of Theorem 5.2. 1 ⇒ 2 Let us assume (35) be true. Then, by applying [G]-reciprocity a−ij � a
+
ji =

a+
ij � a

−
ji = e (Corollary 4.1), we have:

(a−ik � a
+
ik)� (a−ki︸ ︷︷ ︸

e

�a−kj � a
−
ji) = (a−ik � a

−
kj � a

−
ji︸ ︷︷ ︸

a−ij�a
−
jk�a

−
ki

)� a−kj � a
+
jk︸ ︷︷ ︸

e

� a−ji � a
+
ij︸ ︷︷ ︸

e

= (a−ij � a
+
ij � a

−
jk � a

+
jk)� (a−ki � a

−
kj � a

−
ji);

thus, by cancellative law, the assertion is achieved.

2⇒ 1 By applying [G]-reciprocity a−ij � a
+
ji = a+

ij � a
−
ji = e (Corollary 4.1), for each i, j, k ∈ {1, . . . , n}, we

have:

a−ij � a
−
jk � a

−
ki =a−ij � a

−
jk � a

−
ki � a

−
ji � a

+
ij︸ ︷︷ ︸

e

� a−kj � a
+
jk︸ ︷︷ ︸

e

= a−ij � a
+
ij � a

−
jk � a

+
jk︸ ︷︷ ︸

a−ik�a
+
ik

�a−ki � a
−
ji � a

−
kj =

=a−ik � a
+
ik � a

−
ki︸ ︷︷ ︸

e

�a−ji � a
−
kj = a−ik � a

−
kj � a

−
ji
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and

a+
ij � a

+
jk � a

+
ki =a+

ij � a
+
jk � a

+
ki � a

−
ij � a

+
ji︸ ︷︷ ︸

e

� a−jk � a
+
kj︸ ︷︷ ︸

e

= a−ij � a
+
ij � a

−
jk � a

+
jk︸ ︷︷ ︸

a−ik�a
+
ik

�a+
ki � a

+
ji � a

+
kj =

=a−ik � a
+
ik � a

+
ki︸ ︷︷ ︸

e

�a+
ji � a

+
kj = a+

ik � a
+
kj � a

+
ji;

thus, by (35), Ã is [G]-consistent.

2⇒ 3 It is straightforward.

3⇒ 2 As a−ii = a+
ii and a−ij � a

+
ji = a+

ij � a
−
ji = e (Corollary 4.1), item 2 always holds if three or any two of

indices i, j, k are equal. Thus, we consider the case that i 6= j 6= k.

For i < j < k, item 2 is identical to item 3; thus, item 2 holds.

Let us consider i < k < j. By item 3, we have a−ij � a+
ij = a−ik � a+

ik � a−kj � a+
kj . Thus, by (2) and

[G]-reciprocity (Corollary 4.1), we have:

a−ik � a
+
ik = a−ij � a

+
ij ÷ (a−kj � a

+
kj) = a−ij � a

+
ij � (a+

kj � a
−
kj)

(−1) = a−ij � a
+
ij � a

−
jk � a

+
jk.

Similarly, we obtain that item 2 holds true for the remaining cases j < i < k, j < k < i, k < i < j,

k < j < i; thus, item 2 is achieved.

Proof of Proposition 5.3. 1. It is straightforward; it is enough to consider the permutation σ such that

σ(i) = i ∀i ∈ {1, . . . , n}.
2. If Ã is approximately [G]-consistent then, by Remark 5.1, there is a permutation σ such that Ãσ is Liu’s

[G]-consistent and, by Proposition 5.1, we have:

ãσik = ãσij � ãσjk ∀i < j < k.

As a consequence, the following equality holds:

[(ãσik)
−, (ãσik)

+] = [(ãσij)
− � (ãσjk)

−, (ãσij)
+ � (ãσjk)

+] ∀i < j < k.

Thus, we have that:

(ãσik)
− = (ãσij)

− � (ãσjk)
−, (ãσik)

+ = (ãσij)
+ � (ãσjk)

+ ∀i < j < k,

and finally:

(ãσik)
− � (ãσik)

+ = (ãσij)
− � (ãσij)

+ � (ãσjk)
− � (ãσjk)

+ ∀i < j < k;

thus, by Theorem 5.2, Ãσ is [G]-consistent, and by Proposition 5.2, Ã is [G]-consistent.

Proof of Proposition 6.1. By applying dG in Proposition 2.2, equality in (37) can be written as follows:

d[G](ãijk, ãikj) = max
{
ã−ijk ÷ ã

−
ikj , ã

−
ikj ÷ ã

−
ijk, ã

+
ijk ÷ ã

+
ikj , ã

+
ikj ÷ ã

+
ijk

}
.

By applying [G]-reciprocity, we have:

ã−ijk ÷ ã
−
ikj = (a−ij � a

−
jk � a

−
ki)÷ (a−ik � a

−
kj � a

−
ji) = (a+

ji � a
+
kj � a

+
ik)÷ (a+

ki � a
+
jk � a

+
ij) = ã+

ikj ÷ ã
+
ijk

and

ã−ikj ÷ ã
−
ijk = (a−ik � a

−
kj � a

−
ji)÷ (a−ij � a

−
jk � a

−
ki) = (a+

ki � a
+
jk � a

+
ij)÷ (a+

ji � a
+
kj � a

+
ik) = ã+

ijk ÷ ã
+
ikj .

Thus, the assertion is achieved.

Proof of Proposition 6.2. By (38), (37) and Proposition 3.3.

Proof of Corollary 7.1. By dG(a−ij , a
+
ij) = max{ a−ij ÷ a

+
ij , a

+
ij ÷ a

−
ij} and a+

ij ≥ a
−
ij .

Proof of Proposition 7.1. By Definition 7.2, Definition 7.1 and Proposition 2.2.
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