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Notes on Integer Partitions

Bernhard Ganter

Technische Universität Dresden

Abstract. Some observations concerning the lattices of integer partitions
are presented. We determine the size of the standard contexts, discuss
a recursive construction and show that the lattices have unbounded
breadth.

1 Introduction

Integer partitions have been studied since the time of Leibnitz and Euler and
are still of interest (see e.g. Knuth [13] for a contemporary contribution and
Andrews & Eriksson [3] for a monography).

We examine integer partitions from the perspective of Formal Concept Analy-
sis, a mathematical research direction that arose in the 1980s and that provides
algebraic methods for knowledge processing [8]. A strength of this line of work is
that it does not rely on numerical data. It translates given data into an algebraic
structure, more precisely, a complete lattice, and can then use structure theory
and visualization methods for such a concept lattice.

Real data is often so extensive and complex that even good visualizations are
difficult to read. Algebraic methods can help to filter out particularly interesting
aspects and to recognize structure. For this purpose, methods of conceptual
scaling and conceptual measurement have been worked out in Formal Concept
Analysis. They use meaningful und well-structured complete lattices as domains
of measurement. The measurements themselves then provide well-defined and
understood conceptual approximations to the data. Our hope is that integer
partitions can be useful for such measurement domains.

The set of all partitions of n, when endowed with the “dominance order”,
forms a complete lattice. Almost 50 years ago Thomas Brylawski published a
first major investigation on this topic. Building on his results we describe these
lattices as concept lattices and extend some of his findings. Our presentation
follows Brylawski’s paper [5], where also the proofs not given here can be found.
Our goal is to make the lattices of integer partitions better accessible to the
powerful algorithms of Formal Concept Analysis. As a first step, we investigate
the so-called standard contexts, which are the basic data structure for working
with these lattices.

We suggest that the reader, before going through the technical definitions
below, takes a look at Figure 1. It shows the lattice of the 42 partitions of the
integer 10, ordered by dominance.
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Fig. 1. The lattice of all partitions of the integer 10 (from [6]).
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2 Basic notions and facts

A partition of a positive integer n is a nonincreasing n-tuple a := (a1, . . . , an)
of integers ai ≥ 0 such that

∑n
i=1 ai = n. Usually we write such a partition as

n = a1 + a2 + . . . ,

omitting summands which are equal to zero. The set of all partitions of n is
denoted Part(n).

A partition a := (a1, . . . , an) dominates a partition b := (b1, . . . , bn) iff

i∑
j=1

aj ≥
i∑

j=1

bj holds for all i.

We mention an immediate consequence of this definition. Let l(a) denote the
length, i.e., the number of nonzero summands of the partition a. When a ≥ b,
then

∑l(b)
j=1 aj ≥

∑l(b)
j=1 bj = n, which implies l(a) ≤ l(b). Thus longer partitions

tend to be the lower part of the order.
To every partition a of n there corresponds a unique associated (n + 1)-

tuple â := (â0, . . . , ân), defined by

âi :=
i∑

j=1

aj for all i ∈ {0, . . . n}.

These associated tuples can be characterized as being precisely the nondecreasing
(i.e., âi ≥ âi−1) and concave (i.e., 2âi ≥ âi−1 + âi+1) (n + 1)-tuples of integers
with â0 = 0 and ân = n.

The dominance order defined above corresponds to the componentwise order
of the associated tuples, since

a ≥ b ⇐⇒ ∀i
i∑

j=1

aj ≥
i∑

j=1

bj ⇐⇒ ∀i âi ≥ b̂i.

The componentwise minimum of nondecreasing and concave tuples is nonde-
creasing and concave. Dominance therefore is a meet-semilattice order of the
partitions and thus automatically a lattice order.

Example 1. a := 5+1+1+1 and b := 4+2+2 are partitions of 8. Their infimum
can be computed via the associated tuples:

â = (0, 5, 6, 7, 8, . . .)

b̂ = (0, 4, 6, 8, 8, . . .)

min(â, b̂) = (0, 4, 6, 7, 8, . . .) = ĉ for c = 4 + 2 + 1 + 1.

Thus the infimum of a and b is

(5 + 1 + 1 + 1) ∧ (4 + 2 + 2) = 4 + 2 + 1 + 1.
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Note that the componentwise maximum

max(â, b̂) = (0, 5, 6, 8, . . .)

of â and b̂ is not concave, since 2 · 6 6≥ 5 + 8, and does therefore not give the
supremum.

The supremum of integer partitions can conveniently be computed using the
notion of duality. The dual or conjugate partition a∗ of a partition a is defined
as

a∗i := |{j | aj ≥ i}|, i ∈ {1, . . . , n}.
A suggestive visualization is given by the Ferrers diagrams, which represent
each partition of n by pebbles in an n×n-matrix, one row for each summand. The
dual partition corresponds to the transposed array, see Figure 2 for an example.

4+2+1 3 + 2 + 1 + 1 = (4 + 2 + 1)∗

Fig. 2. Ferrers diagrams for a partition of 7 and its dual.

Dualization is order-reversing, as Brylawski has shown, and thus is a lattice
anti-automorphism (of order 2, i.e., x∗∗ = x holds for all x). This allows to
compute the supremum of integer partitions as

a ∨ b = (a∗ ∧ b∗)∗.

Example 2. In the case of a := 5 + 1 + 1 + 1 and b := 4 + 2 + 2 we get

â∗ = (0, 4, 5, 6, 7, 8, . . .)

b̂∗ = (0, 3, 6, 7, 8, 8, . . .)

min(â∗, b̂∗) = (0, 3, 5, 6, 7, 8, . . .) = ĉ∗ for c = 5 + 2 + 1.

The supremum of a and b therefore is

(5 + 1 + 1 + 1) ∨ (4 + 2 + 2) = 5 + 2 + 1.

Ferrers diagrams can also visualize the dominance order relation. For that it is
useful to rotate the diagrams counterclockwise by 90◦ and to think of them as
sand piles (see e.g. [9]). “Rolling down” of some of the pebbles then leads to lower
elements in the dominance order. Brylawski has stated this in a less pictorial but
very helpful manner:
Proposition 1 ([5]1). A partition b is a lower neighbor of a := (a1, . . . , an) iff

b = (a1, . . . , ai − 1, . . . , aj + 1, . . .) with ai − aj = 2 or j = i+ 1.
1 Greene and Kleitman [10] attribute the result to Muirhead [15]. Muirhead’s paper
indeed contains a related idea, but not in the form of our proposition.
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3 The standard contexts

Brylawski used his characterization to determine the join-irreducible elements
of the lattice. These are precisely the ones with a unique lower neighbor. The
meet-irreducible partitions are the duals of these.

Proposition 2 ([5]). The join-irreducible partitions of n are precisely the ones
of the form

(q + 1, . . . , q + 1︸ ︷︷ ︸
r

, q, . . . , q︸ ︷︷ ︸
m−r

, 1, . . . , 1︸ ︷︷ ︸
a

),

where

n− a = q ·m+ r, a ≥ 0, m > r ≥ 0, q ≥ 2, and q ≥ 3 if a 6= 0 6= r.

Brylawski’s result provides all the information necessary for writing down the
standard contexts.2 Figure 3 shows the standard context of the partitions of 9.
Actually, it also shows the standard contexts for n = 1, . . . , 8, each of them as
a square subcontext in the upper left corner. The sizes of these contexts can be
obtained from Proposition 3 and from Figure 5.

Because of the lattice anti-automorphism of order 2 the standard contexts
are symmetric and may be read as adjacency matrices of undirected graphs,
however, with some vertices having loops. An example is shown in Figure 4.

Proposition 3. The number of join-irreducible integer partitions of n (as well
as the number of meet-irreducible ones) is⌊

(n+ 1) · (n+ 2)

6

⌋
− 1.

The first values for n = 1, . . . , 15, . . . are

0, 1, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44, . . . .

(Note that the nth value is equal to

0 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + . . . ,

where n is the number of summands.)

Proof. For given values of n, a ≥ 0, and m ≥ 1 there is at most one choice of q
and r in Proposition 2, since

q = (n− a) div m
r = (n− a) mod m.

The condition q ≥ 2 generally requires that m ≤ bn−a2 c. For a 6= 0 we must have
m ≤ bn−a3 c, except for the case that m divides n − a (and thus r = 0). This

2 See [8] for a definition of a standard context
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1

3
1
1
1
1
1
1

7
2

3
3
3

4
1
1
1
1
1

6
1
1
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2
2

4
4
1
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2
2
1

5
1
1
1
1

9
2 1 1 1 1 1 1 1 × × × × × × × × × × × × × × × ×
8 1 ×
2 2 2 1 1 1 × × × × × × × × × × × × × ×
5 4 × × × ×
3 1 1 1 1 1 1 × × × × × × × × × × × × × ×
7 1 1 × × ×
2 2 1 1 1 1 1 × × × × × × × × × × × × × × ×
3 3 3 × × × × × × × ×
6 1 1 1 × × × × ×
4 1 1 1 1 1 × × × × × × × × × × ×
4 4 1 × × × × × ×
2 2 2 2 1 × × × × × × × × × × × × ×
3 3 1 1 1 × × × × × × × × × × ×
3 2 2 2 × × × × × × × × × × ×
4 3 1 1 × × × × × × × ×
5 1 1 1 1 × × × × × × × ×

Fig. 3. The standard context of the lattice of partitions of the integer 9. It contains
the standard contexts for n = 1, . . . , 8 as square subcontexts, each in the upper left
corner. For the sizes of these subcontexts, cf. Proposition 3 or Figure 5.

Fig. 4. The graph obtained from reading the standard context of the partitions of 6 as
an adjacency matrix (the 8 × 8 matrix in the upper left of Fig. 3). The solid vertices
have loops.
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situation where a 6= 0, r = 0, and bn−a3 c < m only happens if q = 2, i.e., n− a
is even and m = n−a

2 .
The number of solutions therefore is bn2 c for a = 0, bn−12 c when a 6= 0,

m > bn−a3 c and r = 0, and
∑n
a=1 b

n−a
3 c else. Because of bn2 c + b

n−1
2 c = n − 1

and
∑n
a=1 b

n−a
3 c =

∑n−1
a=0 b

a
3 c = b

(n−1)(n−2)
6 c we get for the number of solutions

n− 1 +

⌊
(n− 1)(n− 2)

6

⌋
,

as claimed in the proposition. ut

4 Embeddings

A simple way to turn a partition a := (a1, . . . , an) of n into a partition of n+ 1
is to “add a 1 at the end3”, i.e., to obtain a + 1 := (a1, . . . , al(a), 1, 0, . . .). The
mapping

a 7→ a+ 1

obviously is 1-1. It satisfies

a ≥ b ⇐⇒ a+ 1 ≥ b+ 1,

as can easily be seen by comparing the associated (n+ 2)-tuples

â+ 1 = (0, a1, a1 + a2, . . . , a1 + . . .+ al(a), n+ 1, . . .)

b̂+ 1 = (0, b1, b1 + b2, . . . , b1 + . . .+ bl(b), n+ 1, . . .)

(recall that a ≥ b implies l(a) ≤ l(b)). When denoting the range of this mapping
by

Rn := {a+ 1 | a ∈ Part(n)} ⊆ Part(n+ 1),

we can conclude that the mapping a 7→ a + 1 is an order isomorphism from
Part(n) to Rn, with the induced order.

Proposition 4. The set Rn is infimum-closed, and so is its dual,

R∗n := {a∗ | a ∈ Rn}.

Proof. Note that for a ∈ Part(n+ 1) we have a ∈ Rn iff the associated (n+ 2)-
tuple contains the entry n. Now let a and b be in Rn, and let i(a), i(b) be
indices for which âi(a) = n = b̂i(b). W.l.o.g. assume that i(a) ≥ i(b). Then
b̂i(a) ∈ {n, n + 1}, and the i(a)th entry of â ∧ b is min(n, n + 1) = n. Thus
a ∧ b ∈ Rn.

Similarly, the elements of R∗n can be characterized as those a ∈ Part(n + 1)
satisfying a1 > a2, or, equivalently, 2·â1 > â2. For a, b ∈ R∗n the first components
of the associated (n+2)-tuple of a∧b are 0, min(a1, b1), and min(a1+a2, b1+b2).
And indeed it follows from a1 > a2 and b1 > b2 that 2 ·min(a1, b1) > min(a1 +
a2, b1 + b2). Thus a ∧ b ∈ R∗n. ut
3 Recall that l(a) denotes the highest index of a non-zero summand of a
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Lemma 1. The mapping a 7→ a + 1 is a lattice embedding of Part(n) into
Part(n+ 1), and so is its dual, a 7→ (a∗ + 1)∗.

Proof. Proposition 4 implicitly states that Rn also is supremum-closed (and R∗n
as well). Because when a and b are in Rn, then a∗ and b∗ are in R∗n and so is
a∗ ∧ b∗, according to the proposition. But then a ∨ b = (a∗ ∧ b∗)∗ is in Rn, as
claimed. ut

Note that Rn and R∗n are sublattices, but not complete sublattices, since Rn
does not contain the largest and R∗n does not contain the smallest element of
Part(n+ 1).

The lemma tells us that the partition lattice of n contains that of n− 1 in at
least two copies. This raises the question if a recursive construction is possible,
perhaps even for the standard contexts. We say that a context embedding

(H,N, J) α−→
−→β (G,M, I)

of (H,N, J) into (G,M, I) is a pair of one-to-one mappings α : H → G, β : N →
M such that h J n ⇐⇒ α(h) I β(n), and that a formal context (G,M, I) is
symmetric if there are mappings δGM : G→M and δMG :M → G, inverse to
each other, such that

g I m ⇐⇒ δMG(m) I δGM (g).

For simplification it is common to use the same symbol for both δGM and δMG,
for example, the symbol “∗”. The symmetry condition then simplifies to

g I m ⇐⇒ m∗ I g∗.

Moreover, it is assumed that x∗∗ = x holds for all objects and all attributes
x. Finally, when (H,N, J) and (G,M, I) are symmetric formal contexts, then a
context embedding

(H,N, J) α−→
−→β (G,M, I)

is called a symmetric context embedding if

β(n) = α(n∗)∗

holds for all n ∈ N . Graphically, this means that (G,M, I) can be written as a
symmetric table (invariant under transposition) and that (H,N, J) is isomorphic
to an induced subcontext of (G,M, I), which is itself symmetric under the same
symmetry.

The example for which we introduce these definitions is given in Figure 3.
It shows the standard context of the lattice of partitions of the integer 9 as
a symmetric table. It contains the standard contexts for n = 1, . . . , 8 as sym-
metrically embedded subcontexts4. More precisely, it shows a nested series of
symmetric embeddings, as indicated in Figure 5.
4 For n = 1, the standard context is empty. The object and attribute names apply
only for n = 9.

Final edited form was published in "International Journal of Approximate Reasoning". 142, S. 31-40. ISSN: 0888-613x. 
https://doi.org/10.1016/j.ijar.2021.11.004

8 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Fig. 5. The way the subcontexts of sizes 0,1,4,6,8,11,14,17 are nested in Figure 3.

This recursive construction of the standard context for n = 9 shows some
regularities, but it is not obvious, what the general construction rule might be.
The reason for that is given by the next proposition.

Proposition 5. There is no symmetric embedding of the standard context for
the lattice of partitions of n = 9 into that for n = 10.

The proof is by exhaustive search: we wrote a simple computer program that
checked all possible cases, without finding a solution. The basic idea of our
algorithm is described below. ut

Independently of this publication, Behrisch, Chavarri Villarello and Vargas-
García [4] have investigated similar questions. They later improved the result
of our Proposition 5 by showing that it holds even without the assumption of
a “symmetric” embedding. Their Proposition 19 states that there is no context
embedding of the standard context for the lattice of partitions of n = 9 into that
for n = 10.

The general “context embedding problem”, i.e., the question of whether a
given formal context can be embedded into another given one, is closely related
to the “induced subgraph isomorphism problem”, which has extensively been
studied in graph theory. It is known to be NP-complete for many graph classes,
see, e.g., Kijima et al. [12] for citations.

Being aware that no efficient general embedding test was to be expected, and
at the same time being convinced that an embedding from the case of n = 9
into that for n = 10 could be found (as for all smaller cases), we decided for a
brute-force approach, trying to construct an embedding element after element
in a backtracking algorithm. In the case of a symmetric embedding

(H,N, J) α−→
−→β (G,M, I)

this is easier, since only one of the two mappings α and β needs to be built,
while the other one is implicitly given.

Suppose g = α(h), where α is part of a context embedding and h ∈ H,
g ∈ G. Then, loosely speaking, the “row of g” must contain enough crosses and
non-crosses to include the “row of h”. More precisely,

|g′| ≥ |h′| and |M \ g′| ≥ |N \ h′|
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must hold. The algorithm therefore begins by choosing some h ∈ H, then some
g ∈ G that satisfies the conditions, removes the elements h, g and their duals
from the formal contexts and then proceeds to look for an embedding of

(H \ {h}, N \ {h∗}, Jr) into (G \ {g},M \ {g∗}, Ir),

where Jr and Ir are the restricted incidence relations, and so on. In subsequent
steps, the necessary conditions can be strengthened by taking the already chosen
images into account.

We were initially disappointed when, contrary to our expectations, the algo-
rithm did not find an embedding. We later realized that we had been lucky. If
the smallest counterexample would not be for n = 9 but for a larger n, then the
brute-force algorithm might have been unsuccessful.

5 Size and breadth

Take another look at Figure 1. Two properties of the lattice are eye-catching:
it is planar, and has many irreducible elements. In fact, half of its elements are
join-irreducible (21 of 42), and the number of meet-irreducibles is 21 as well (but
note that there are 12 doubly irreducible and 12 doubly reducible elements).

These observations are misleading, since they do not reflect a general trend.
It turns out that for larger n the lattices of integer partitions grow much faster
than their standard contexts. As a consequence they must contain large Boolean
lattices as suborders, which in turn implies a high order dimension.

The breadth of a complete lattice is the number of atoms of the largest
Boolean lattice that it contains as a suborder, and is (in the doubly founded
case) at the same time the size of the largest contranominal scale that is an
induced subcontext of its standard context. Recall that the kth contranominal
scale is

Nc(k) := ({1, . . . , k}, {1, . . . , k}, 6=).

We will show that partition lattices have unbounded breadth. The bounds
which we derive are however very weak.

We start with an example. Consider the case n = 200. It is known (we found
the result in [16], where it is cited from [3], but it also can be found in [1]), that
the number of partitions of 200 is

3 972 999 029 388.

From Proposition 3 we obtain that the number of join-irreducible partitions is⌊
201 · 202

6

⌋
− 1 = 6766.

A result of Albano and Chornomaz [2] (see below) states that the concept lattice
of a formal context (G,M, I) with |G| = 6766 can have at most

4

6
· 67663 = 206 492 708 730.66 . . .
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elements, unless the context contains a contranominal scale Nc(4). Therefore
the lattice of partitions of 200 must contain a 16-element Boolean lattice as a
suborder, i.e., it has breadth at least 4.

This can be generalized. The strategy is to show that the growth of the
number of partitions forces the standard contexts to contain contranominal scales
of arbitrary size. The partition function p(n) gives the number of partitions
for each positive integer n. It is sequence A000041 in the OEIS [1], from where
we cite the first values:

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, . . .

There is an explicit formula for p(n), but it is too complicated to be useful here.
For an introduction see Wilf’s lecture notes [16], where also the remarkable
Hardy-Ramanujan asymptotic approximation [11]

p(n) ∼ 1

4n
√
3
eπ
√

2n/3 (n→∞)

can be found. For our purposes, an elementary lower bound suffices:

Theorem 1 (Maróti [14]).

p(n) ≥ e2
√
n

14
for all n.

The second ingredient is

Theorem 2 (Albano & Chornomaz [2]). Let K := (G,M, I) be an Nc(k)-
free formal context with finite G and k ≤ |G|2 . Then

B(K) ≤ k

(k − 1)!
|G|k−1.

Combining these two theorems yields our desired result that partition lattices
have unbounded breadth:

Theorem 3. For each integer k there is an integer nk such that for each n ≥ nk
the lattice of partitions of n has breadth at least k.

Note that a concept lattice B(K) has breadth < k iff K is Nc(k)-free.

Proof. Let n be an integer for which the partition lattice is Nc(k)-free and k ≤
|G|/2. Then the inequality of Theorem 2 must hold and must remain valid if we
replace the left side by Maróti’s lower bound and the size of G by (n+2)2

6 , which
is an upper bound due to Proposition 3. This gives

e2
√
n

14
≤ k

(k − 1)!
· (n+ 2)2(k−1)

6k−1
.

This can be rewritten as

e2
√
n ≤ 14k

6k−1(k − 1)!
· (n+ 2)2(k−1),
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further as

e
√
n ≤

√
14k

6k−1(k − 1)!
· e(k−1) ln(n+2),

and eventually leads to
√
n ≤ ck + (k − 1) · ln(n+ 2),

where ck = ln
(√

14k
6k−1(k−1)!

)
. Since the square root grows faster than any

multiple of the logarithm, the inequality can only be fulfilled by finitely many
values of n, when k is fixed. ut

As an example, let k := 4 and n := 200. Then ck = ln(
√

14·4
63·6 ) ≈ −1.571,√

n ≈ 14.14, and (k− 1) · ln(n+2) ≈ 15.92. The inequality holds, in contrast to
the previous example, where we used exact values rather than approximations.
However, for n = 211, we get

√
n ≈ 14.526 and (k − 1) · ln(n + 2) ≈ 16.084, so

that the inequality is violated.

6 Conclusion and outlook

The lattices of integer partitions can be viewed as concept lattices. We described
their standard contexts by a simple rule, based on Brylawski’s findings, and
determined their sizes. It turns out that the lattices are of subexponential size
w.r.t. their standard contexts, and thus are of unbounded breadth.

The next step in the mathematical study of these lattices could be the cha-
racterization of the arrow relations and, building on that, the classification of
the possible subdirectly irreducible factors, see [8]. Figure 6 gives an impression,
showing that the arrow relations look very promising, at least for the case n = 9.

It remains open if the partition lattices can play a rôle in conceptual data
analysis. This seems implausible at first, but we found the many applications
that integer partitions have within mathematics (cf. [5] or [16]) surprising as
well.
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KPart(9)

1
1
1
1
1
1
1
1
1

8
1

2
1
1
1
1
1
1
1

6
3

2
2
2
2
1

7
1
1

3
1
1
1
1
1
1

7
2

3
3
3

4
1
1
1
1
1

6
1
1
1

3
2
2
2

5
4

5
2
2

4
4
1

4
2
2
1

5
1
1
1
1

9 ↗↙
2 1 1 1 1 1 1 1 ↗↙× × × × × × × × × × × × × × × ×
8 1 × ↗↙
2 2 2 1 1 1 × × × ×↗↙× × × × × × × × × ×
5 4 × × ↗↙ × ×
3 1 1 1 1 1 1 × ×↗↙× × × × × × × × × × × ×
7 1 1 × ↗↙ × ×
2 2 1 1 1 1 1 ×↗↙× × × × × × × × × × × × × ×
3 3 3 × × × × × ↗↙ × × × ↙
6 1 1 1 × × × × × ↗↙↙
4 1 1 1 1 1 × × × ×↗↙× × ↙× × × × ×
4 4 1 × × × × ↗ ×↗↙×
2 2 2 2 1 × × × × × ×↗↙× × × × × × ×
3 3 1 1 1 × × × × × ↗×↗↙× × × × ×
3 2 2 2 × × × × × × × × × × ×↗↙
4 3 1 1 × × × × ↗ × × × ×↗↙↗
5 1 1 1 1 × × × × × × ×↗↙↙×

Fig. 6. Same as in Figure 3, but with the arrow relations.
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